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Supervised Deep Sparse Coding Networks
for Image Classification

Xiaoxia Sun"’, Nasser M. Nasrabadi

Abstract—1In this paper, we propose a novel deep sparse
coding network (SCN) capable of efficiently adapting its own
regularization parameters for a given application. The network
is trained end-to-end with a supervised task-driven learning algo-
rithm via error backpropagation. During training, the network
learns both the dictionaries and the regularization parameters
of each sparse coding layer so that the reconstructive dictio-
naries are smoothly transformed into increasingly discriminative
representations. In addition, the adaptive regularization also
offers the network more flexibility to adjust sparsity levels.
Furthermore, we have devised a sparse coding layer utilizing
a “skinny” dictionary. Integral to computational efficiency, these
skinny dictionaries compress the high-dimensional sparse codes
into lower dimensional structures. The adaptivity and discrim-
inability of our 15-layer SCN are demonstrated on six benchmark
datasets, namely Cifar-10, Cifar-100, STL-10, SVHN, MNIST,
and ImageNet, most of which are considered difficult for sparse
coding models. Experimental results show that our architecture
overwhelmingly outperforms traditional one-layer sparse coding
architectures while using much fewer parameters. Moreover, our
multilayer architecture exploits the benefits of depth with sparse
coding’s characteristic ability to operate on smaller datasets.
In such data-constrained scenarios, our technique demonstrates
a highly competitive performance compared with the deep neural
networks.

Index Terms—Image classification, sparse representation, dic-
tionary learning, image analysis, image recognition.

I. INTRODUCTION

PARSE coding has shown promising performance on a
Srange of computer vision tasks including image classifi-
cation and target detection [42], [43], [51], [54], [60], [62],
[62]. Even when given only a small amount of training sam-
ples, sparse coding models can become exceptionally resilient
against severely corrupted or noisy data. Consequently, sparse
coding is well suited to real-life image recognition tasks in
which images are often degraded by sensor static or when
objects in the image are occluded. However, when the noise
in the data is actually an expression of the natural variation
of objects, such as those caused by changes in illumination or
orientation, the linear representation of sparse coding becomes
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a liability [51], [61]. As such, sparse coding models exhibit
disappointing performance on large datasets where variability
is broad and anomalies are common.

Conversely, deep neural networks thrive on bounti-
ful data. Their success derives from an ability to dis-
till the core essence of a subject from abundant diverse
examples [15], [18], [27], [46], [58]. This feat has encour-
aged researchers to try and augment the learning capacity
of traditionally shallow sparse coding methods by adding
layers [16], [20], [33]. Theoretically, multilayer sparse coding
networks are expected to combine the best of both strategies.
For instance, the imperative for sparse codes to adequately
reconstruct an input signal [6] ameliorates information degen-
eracy issues within deep architectures [17], [21]. Furthermore,
multilayer sparse coding networks demand less training data as
compared to deep neural networks. To date, however, endeav-
ors to marry the two techniques have not achieved significant
improvements over their individual counterparts [20], [33].

The realization of a successful multilayer sparse coding
architecture is obstructed by three critical challenges:

« Efficiently learning dictionaries with sufficient discrimi-
native power.

o Avoiding the growth of overly fat dictionaries.

o Calibrating large quantities of regularization parameters.

Supervised dictionary learning with labeled data provides
an opportunity to overcome the first challenge. However,
the difficulty lies in computing the gradient with respect
to each dictionary element. As covered in Section II-B,
there has been inspiring breakthroughs in adapting super-
vised dictionary learning algorithms for use in shallow sparse
coding frameworks [35], [61]. We attempt to build on past
achievements by training a multilayer sparse coding net-
work using an end-to-end supervised dictionary learning
algorithm.

The second challenge arises during the sparse recovery
procedure. The dictionary must grow fat with reference data if
it is to perform a satisfactory reconstruction of the input signal
from a sparse code. In a multilayer environment, dictionaries
deeper in the network bear a greater burden, for they must
convey crucial information with increasing austerity. This is
particularly problematic for unsupervised dictionary learning.
The unsupervised learning algorithm cannot judge what infor-
mation to retain or discard based on reconstructive feedback.
As the dictionaries grow more fatter, the sparse codes become
further attenuated. Processing such structures is computa-
tionally prohibitive. We apply supervised dictionary learn-
ing and signal compression algorithms to address this issue.
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Inspired by the Network in Network [32] and SqueezeNet [24]
architectures, we propose a dimension reduction layer that
balances discriminative power with reconstructive potential.
In contrast to the fat dictionary, the reduction layer uses
a much skinnier dictionary for lossy compression of the
high-dimensional sparse codes while also introducing an addi-
tional nonlinearity to the network.

The third obstruction is inflicted by the large parameter
space of the multilayer sparse coding network. Tradition-
ally, the sparsity level in a sparse coding model is chosen
manually by cross-validation and remains fixed throughout
training. As the network gains layers, the manual selection of
regularization parameters quickly becomes daunting. Hence,
we propose automatically adapting the sparsity level via task-
driven regularization.

To summarize, this paper makes the following contributions
to sparse coding networks:

o Reduction of sparse code dimensionality by employing

’skinny’ dictionaries to create reduction layers.

o Dynamic adaptation of {1 regularization parameters with

task-driven regularization.

o Supervised, end-to-end training of a multilayer sparse

coding network with the aforementioned features.

o The code for training and testing our SCN is available

online.!

In Section II, we briefly review the works related to
multilayer sparse coding, supervised dictionary learning and
dimensionality reduction. In Section III, we elaborate on
our network design and adaptive regularization technique.
We develop and discuss an end-to-end supervised training
procedure for SCN in Section IV. In order to clearly per-
ceive the efficiency of supervised learning, we do not apply
any unsupervised learning schemes to pretrain the dictionary.
In Section V, we evaluate our multilayer sparse coding net-
work on six benchmark datasets, including Cifar-10, Cifar-100,
STL-10, SVHN, MNIST and ImageNet. The first four datasets
are considered to be highly challenging for sparse coding.
Of particular interest is the Cifar-100 which poses formidable
challenges to sparse coding. In our evaluation, we show
our network to decisively outperform shallow sparse coding
architectures. Moreover, we demonstrate our network attains
highly competitive results with state-of-the-art models such
as deep residual learning [18] in terms of both classification
accuracy and the model size.

II. RELATED WORK
A. Deep Sparse Coding Network

Sparse coding with overcomplete dictionary was first pro-
posed in [1]. To augment the learning capacity of sparse
coding model, several researchers have attempted to extend
the one-layer sparse coding model to multilayer hierarchical
architectures. Early approach is applied on contour detection
in [23] by sparsely representing activations of complex cells
hiearchically. Maire et al. [38] train a two-layer sparse coding
model using unsupervised dictionary learning for the purpose

1 https://github.com/XiaoxiaSun/supervised-deep-sparse-coding-networks
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of contour detection and semantic labeling. Zhou et al. [68]
employ sparse coding model with a multilayer architecture
to generate the linear features for image classification. Sim-
ilarly, Zhang er al. [65] construct multilayer sparse coding
network by repetitively stacking sparse coding layer, max
pooling layer and contrast normalization layer and train the
dictionaries using unsupervised learning. Lin and Kung [33]
enforce nonnegativity constraints on orthogonal matching pur-
suit (OMP) to improve the stability of the sparse activations
for a three layer sparse coding network. Yu et al. [62] have
developed an unsupervised dictionary learning algorithm for
jointly training the dictionaries in a two-layer sparse coding
network. To deal with the dimensionality explosion of the
hidden sparse codes, He er al. [20] propose to compress the
sparse codes into low-dimensional dense features. Multipath
sparse coding [3] combines a collection of hierarchical sparse
codes to capture various aspects of discriminative structures
for image classification. Wang et al. [53] have enforced the
sparsity priors on deep network for the purpose of image
super-resolution.

From the perspective of dictionary learning, most common
approach for training multilayer sparse coding network is to
optimize the reconstructive dictionaries of each layer in a
greedily layer-wise fashion [8], [33], where the nonlinearity is
usually enforced with a ReL.U layer. An alternative approach
is to unfold and approximate the sparse coding process with
deep neural networks [16], [39], in which the sparse coding
parameters are trained end-to-end by minimizing reconstruc-
tion loss. The strategy of unfolding the sparse recovery algo-
rithm is also exploited and developed for training the deep
sparse coding networks in an end-to-end fashion [52], [57].
For instance, the deep (o encoder [52] and the maximal
sparsity networks [57] unrolls the iterative sparse recovery
algorithm of {( pursuit into an equivalent deep neural network.
As such, the training of the dictionaries in sparse coding is
reformulated into an equivalent deep neural network training
problem, which can be efficiently optimized in an end-to-
end fashion via by error backpropagation. These approaches
demonstrate promising performance and provide an efficient
way for training sparse coding dictionaries by taking advantage
of modern GPU architecture. Our approach differs in two
ways: First, each sparse coding layer of the proposed networks
recovers the sparse codes by solving £1-minimization problem
instead of {p-minimization problem, which enables us to
train the regularization parameters via error backpropagation.
Second, we propose to employ a dimension reduction layer
before each sparse coding layer in order to avoid the explosion
of hidden feature dimensionality and to improve the scalability
of the proposed network.

In addition, the proposed network also shares a high level
motivation with the stacked autoencoder [49] and CNN-based
model with auxiliary reconstruction loss [66], [67], which
trains the network in an unsupervised, semi-supervised or
supervised fashion by manually balancing the discriminative
and reconstruction loss. In contrast we employ conventional
sparse coding instead of neural network to encode latent
features and train the network supervisedly in an end-to-end
fashion.
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B. Supervised Dictionary Learning for One-Layer Sparse
Coding Model

Supervised dictionary learning strengthens the discrimina-
tive power of the sparse codes by exploiting the labeled
samples. Due to the nonsmoothness of the {;-regularizer,
computing the gradient with respect to the dictionary is a tricky
task. Overcomplete independent component analysis [28] is
proposed to orthogonalize the dictionary and approximate
the sparse coding with a linear function such that the dif-
ferentiation of the implicit sparse coding function can be
avoided. Fast approximation of sparse coding is proposed
in [16] to train the dictionary of each layer in a greedy,
unsupervised fashion and initialize a corresponding multilayer
neural network with the pretrained sparse coding dictionaries.
Bradley and Bagnell [4] propose to directly compute the
gradient of the dictionary by switching the £ regularizor with
the smoothed Kullback-Leibler divergence. Applying fixed
point differentiation and error backpropagation, a supervised
dictionary learning scheme for the shallow sparse coding
model is proposed in [61]. Thorough study on task-driven
dictionary learning algorithms with various applications are
carried out in [35]. In this paper, we generalize the single-layer
supervised dictionary learning to multilayer network based on
multilevel optimization.

C. Dimensionality Reduction and Clustering
in Deep Neural Networks

Bottleneck shaped neural network [18], [56] applies dimen-
sionality reduction in order to reduce the overfitting of resid-
ual network. In contrast to neural network, dimensionality
reduction with nonnegative sparse coding is equivalent to
clustering [10] and therefore the low dimensional hidden fea-
tures act as weighted cluster indicators which is discussed in
Section III-B. Alternate approach related to our work is the
deep semi-nonnegative matrix factorization (semi-NMF) [47]
that trains a hierarchical network with the reconstruction loss.
Our approach differs from the aforementioned works since
we simultaneously learn high dimensional discriminative rep-
resentations and low dimensional clustered features in a single
network architecture with end-to-end supervised learning.

D. Adaptive Regularization

In sparse coding, by adapting the sparsity level we can
achieve a better approximation of the underlying model for
a given training data with lower estimation bias. The adaptive
Lasso is proposed in [69] and has been proved to satisfy the
oracle property [14]. Do et al. [11] propose to substitute the
sparsity level of orthogonal matching pursuit (OMP) with a
predefined halting criterion. In low-level feature representa-
tion, a nonparametric method based on expectation minimiza-
tion algorithm [41] is proposed to automatically adjust the
sparsity level for the soft thresholding operator. In the case
of image deblurring and superresolution, the regularization
parameters are proposed to be estimated by assuming the
distribution of sparse codes follow a zero-mean Laplacian
distribution [12]. To be noted, all these methods are carried
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out for the purpose of low-level feature extraction and are
based on shallow structures with unsupervised learning, while
we optimize the regularization parameters using end-to-end
supervised learning.

III. MULTILAYER SPARSE CODING NETWORKS

In this section, we first describe the inference of SCN, which
is based on nonnegative sparse coding. We then introduce
and discuss our proposed bottleneck module for improving
the performance of the network, which consists a cascade of
an expansion layer followed by a reduction layer.

A. Inference With Nonnegative Sparse Coding

We now introduce a general formulation of sparse coding
layer for SCN as shown in Fig. 1. Let the representation
of the layer i in SCN be a 3D-tensor AM e R™>InxJn,
h €{0,..., H} and denote each local feature vector at (i, j)
of layer h as ocl(h) = A(}z) e R"™, where ny, I, and Jj
are the number of channels, height and width of the layer
representation. For instance, ag)} of a color image represents
a 3-channel pixel of red, green and blue. In deeper layers

where h > 0, a® represent a local sparse code. To recover

N,

the local sparse code o/, we construct an intermediate local

feature Xl(h]) = w(al(’h; )) € R™» by concatenating all the
neighboring features centered at (i, j) within a window of
size kp—1 X kp—1 from the previous layer & — 1, For illustrative
purpose, we assume the neighboring window is square. w(-)
denotes the concatenation operation and mj; = nh,lki_l.
We constrain the sparse codes to be nonnegative in order to
introduce nonlinearity to the deep network. Given a dictionary
D" e R™>*™ of layer h, the nonnegative sparse code is
recovered by solving the following constrained elastic net
problem:

A2
2
where we have omitted the coordinate and layer indices for
simplicity. |je]l; = ZQ’ZI |ay| is the £1-norm and Ay, Ay > 0
are the regularization parameters. Importance of the parameter
A2 is to stabilize the training procedure [35]. In this paper,
we directly solve (1) using conventional sparse recovery
algorithm for inference instead of applying unfolding on sparse
coding process with deep neural network [16], [39]. Number
of sparse recovery algorithms such as Learned Iterative Shrink-
age and Thresholding Algorithm (LISTA) [16], [39], Fast
ISTA (FISTA) [2] and Least Angle Regression (LARS) [13]
can efficiently solve problem 1. In this paper, we adopt FISTA
mainly for the ease of coding in GPUs. The nonnegativity
is enforced by using nonnegative soft-thresholding during
the optimization. For the purpose of clarity, sparse recovery
algorithm for solving problem (1) is shown in Appendix A.

1
a* = argmin - |x — De |3 + 21 llelli + =lleel3, (1)
a>0 2

B. Constructing Multilayer Architecture With Bottleneck
Modules

We formulate a generalized, multilayer sparse coding archi-
tecture as illustrated Fig. 1. Following (1), we denote the
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Architecture of our multilayer sparse coding network: (a) The proposed network is constructed by repeatedly stacking multiple bottleneck modules.

The network does not contain any pooling operation and subsampling is conducted with a stride of 2. (b) Bottleneck module consists of one expansion layer
and one reduction layer, which is used to expand or reduce the dimensionality of the local features of the previous layer, respectively. (c) Interpretation of
SCN. Red and hollow circles on the manifolds are the active and inactive atoms, respectively. Yellow circles represent all the local features of a hidden layer

and blue circles denotes the neighboring local features centered at (i, j).

nonnegative sparse coding as a nonlinear function f : RM —
RY such that the sparse code at a given location can be
recovered as

o = f(x,0), 2)

where ® represents the parameters for a given sparse coding
layer including the dictionary and the regularization parame-
ters. In sparse coding, the sparse coefficient a* € R is
generally of much higher dimension than the input signal.
Thus, if output sparse codes are naively and repeatedly fed
into successive sparse coding layers, computational complexity
quickly explodes. Inspired by Network in Network [32] and
SqueezeNet [24], we introduce a sparse coding layer with an
excessively skinny dictionary to reduce the dimensions of the
sparse codes while also forcing sparsity of the low-dimension
outputs, as shown in Fig. la. Unlike compression with linear
projection, such as random projection or PCA, reducing the
signal dimension with a sparse coding scheme achieves a good
preservation of prior layer information while infusing more
nonlinearity into the network.

The core building block of the SCN is the bottleneck mod-
ules, as depicted in Fig. 1b. Each bottleneck module consists
of a cascade of two specialized sparse coding layers, which
are referred to as expansion layer and reduction layer. The
expansion layer is equipped with a relatively wide dictionary
in order to reach a fine-grained partition of the input feature
space, whereas the reduction layer has a relatively skinny
dictionary which focuses more on dimensionality reduction
and clustering in order to extract more abstract representations.
More specifically, we have

a* = f(f(X5 ®€)’ ®r), (3)

where we have dropped the subscript indices for simplicity.
®,, O, are the parameter sets of the expansion and reduc-
tion layers, respectively. We note that the order of the two

specialized layers in a bottleneck module does not matter
much in the multilayer environment. For illustrative purpose,
we sequentially employ expansion layer and reduction layer in
a single bottleneck module. We illustrate the two specialized
sparse coding layers and describe the motivations of proposing
the bottleneck module in more details:

1) Expansion Layer Focuses on Partitioning Feature Space:
Nonnegative sparse coding functions as a robust and stable
partition of the input feature space [61], where the ‘resolution’
of the partition depends on the dictionary width. With a
relatively wide or even overcomplete dictionary, we are able to
achieve a high resolution fine-grained partition of the feature
space and therefore recover highly discriminative sparse codes.
Behavior of sparse coding with a wide or even overcomplete
dictionary in single layer environment has been thoroughly
exploited through number of studies [35], [54], [61].

2) Reduction Layer Focuses on Clustering Features: Reduc-
tion layer is designed to produce abstract compact sparse codes
using a much narrower dictionary compared to that of the
expansion layer. Nonnegative sparse coding with skinny dictio-
nary functions as clustering, which can be illustrated based on
semi-NMF [10]. Several inspirational works [22], [36], [39]
illustrate the relations between sparse coding, dictionary learn-
ing and matrix factorization: In a reduction layer, when
the given dictionary is skinny, the nonnegative sparse cod-
ing is equivalent with sparsity-regularized semi-NMF algo-
rithm, which is strongly related to the K-means clustering.
Hence, the skinny dictionary atoms in reduction layer can be
interpreted as the cluster centroids of the high dimensional
inputs, whereas the corresponding low dimensional nonnega-
tive sparse code is the weighted cluster indicator.

Empirically, there are three main operations within a bot-
tleneck module. First is i) hyperpixel construction within
3 x 3 receptive fields of low dimensional inputs. Next,
ii) an expansion layer transforms the input coefficients into
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a feature map of high dimension sparse codes. Finally, with
iii) reduction layer, our skinny dictionary compresses the
high-dimensional sparse codes into a low-dimensional space.
In this paper, all dictionaries have 3 x 3 receptive fields. Unlike
multilayer neural networks, there is no need to implement
nonlinear activation functions after the sparse coding layer
because of the enforcement of nonnegative constraint on the
sparse code.

Our SCN is designed to stack multiple bottleneck modules
in order to perform dimensionality expansion and reduction
repeatedly. Batch normalization layer [25] is added after each
sparse coding layer in order to obtain a faster convergence.
The last bottleneck module lies on top of a global average
pooling layer, which is followed by a fully connected layer
which functions as the linear classifier.

C. Interpreting SCN as Deep Subspace Learning

For illustrative purposes, we consider the simplified case
where all the local features of layer 4 lie on a union of
disjoint subspaces, i.e., every pair of these subspaces only
intersect at origin. As is shown in Fig. lc, each atom of the
learned dictionary is the cluster center of a large number of
local features in R and every nonnegative sparse code oc(hj)
in layer i describes how strong it is connected to a certain
cluster center. We note that in the case of supervised learning,
the distance between each local feature and their related cluster
centers, i.e., dictionary atoms, are not only measured by the
reconstructive loss but also described by the discriminative
loss as shown in (4).

In the case of SCN, large number of subspaces in R"" are
related to each other through the local sparse code oz( ) , which
itself lies on another subspace in R+! of the deeper layer
h+ 1. Similarly, as the network goes deeper, each point in R"*
of layer k relates to a more complex union of subspaces in R"J
of the shallower layer j, where k >> j, i.e., local sparse codes
in deeper layers are more expressive compared to those from
shallower layers. Driven by the discriminative loss function,
the local features of two different classes are gradually mapped
to different subspaces of each layer and eventually become
linearly separable with respect to the hyperplane defined by
the classifier.

IV. SUPERVISED DICTIONARY LEARNING FOR
MULTILAYER SPARSE CODING NETWORK

In this section, we first describe the discriminative loss func-
tion of SCN. Then we introduce the adaptive regularization
scheme, which allows each layer to automatically adapt its
own {1-regularization parameters. Finally, we develop the dic-
tionary updating rule for the multilayer sparse coding network
by extending the task-driven dictionary learning [35], [61] to
a multilevel case.

A. Problem Formulation With Multilevel Optimization

Without loss of generality, we consider a prediction task for
binary class given a set of training pairs {As , ys}s 1, where

ys € {0, 1} is the label for the image sample .As . Given
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an SCN with H sparse coding layers, our goal is to fit the
network prediction to the label through minimizing a smooth
and convex loss function L : R x R — R with respect to
the network parameters, including dictionaries, regularization
parameters and the linear cla551ﬁer Suppose the network learns
to map the input image A to the corresponding label y;, the
optimization procedure of SCN is formulated as an empirical
risk minimization problem based on multilevel optimization:

S
!
min § 2 LOn 84 ) + SRO).

f(D(H) /1(1‘1)
>0

S.t. oc(H) = arg {nin (H)“,otgH)),
>

s.t. (1) =arg min f(DWD, 1D x

a>0

st AW >0, xgh) = w(agh_l) ),

where 0 = {D®), }L(h),w},':’:1 is the learnable parameter set
including both dictionaries and regularization parameters. g :
R"# — R is a linear classifier parameterized by w € R"#. f
is the nonnegative sparse coding operation defined in Eq. (3).
In this paper, we adaptively optimize the regularization para-
meters at each layer, which has a similar effect as training the
bias in deep neural networks [39]. The motivation for training
regularization parameters is that the use of cross-validation for
parameter searching becomes a formidable task as the network
becomes deeper, which is further discussed in Section IV-B.

To prevent the {;-norm of dictionary to be arbitrarily large
and recovering trivial sparse codes, we introduce regularizer
R(D) & ID||, or usually referred to as weight decay in
deep neural network, on the dictionary to reduce the over-
fitting. We note that constraining every dictionary atom with
ld;jll2 < ¢, where ¢ > 0 is a chosen constant, is the most
common choice for regularizing dictionary atoms in a single
layer model. However, during experiment, we found that such
constraint is too stringent for the network to converge due to
the gradient projection. Besides, enforcing normalization on
the dictionary atom is dangerous when the task-driven regular-
ization is employed. During training, some atoms could always
remain inactivate if the regularization parameters increase
beyond a large threshold. Hence, we only enforce a relatively
weak {;-norm regularizor on the dictionary atoms.

D ally,

Vi=1,....,H, (4

B. Adaptive Regularization

Previous works on sparse coding usually select the regu-
larization parameters manually by cross-validation. However,
this scheme is infeasible when we extend the sparse coding to
multilayer architectures. Tuning regularization parameters by
hand would introduce two major issues in the case of multi-
layer architectures. First and obviously, manually searching for
the optimal parameters of the underlying model would become
onerous since the parameter space grows exponentially larger
when the model becomes deeper. Second, during experimenta-
tion, we found that our multilayer sparse coding network with
fixed regularization parameters suffers from low convergence
rate and low classification performance.

Authorized licensed use limited to: West Virginia University. Downloaded on April 22,2021 at 00:04:44 UTC from IEEE Xplore. Restrictions apply.



410

To begin training, we initialize the {;-regularization para-
meter with some small value to avoid numerical issues (set
to be 107> in our paper) and then optimize the underlying
sparsity level of the network with the given training data.
Applying error backpropagation with the projected gradient
descent algorithm, we have

oL oa*
h(-rsmn ). 6)

where p > 0 is the learning rate, L is the total task-driven
loss function defined in Eq. (4). The detailed updating rule
for regularization parameters will be discussed in the next
section. As we shall see in the experiment, Eq. (5) causes the
regularization parameters to adjust during training in order to
render sparse outputs.

C. Updating Dictionary and Regularization Parameter

Every sparse code is parameterized by the dictionary and
regularization parameters, it is therefore natural to solve the
multilevel optimization problem (4) with gradient descent
method based on error backpropagation [9]. The deriva-
tion of the updating rules is based on the fixed point
differentiation [35], [59], [61]. We state the first order opti-
mality condition of the nonnegative elastic net, which is the
core building block of the derivation:

Lemma 1 (Optimality Conditions of Nonnegative Elastic
Net): The optimal sparse code o* of (1) solves the following
system:

d] Da* —x) + doat = =4, if af > 0 (6)
d;-r(Doc* —x) + /12(1;? > —]4, otherwise. 7

The nonnegative part of the sparse code a* can be described
as a = (D \Dp + D) "D x — 2114), where 15 € RIA
is an all one vector, \ is the active set of o* and || is the
cardinality of the active set A.

Proof: Let 0|la||; be the subgradient of |le|;. Since a*
is a the optimum of (1), Vj € [N],3z € d|«l|, such that
o™ solves the nonlinear Karush “Kuhn” Tucker (KKT) system
(djT(Doc*—x)—}—/lza;’.‘—}—/ll zj)-aj = 0and z; is the j™ element
of z. Followed by the classical result of Elastic Net [35] and
the complementary slackness of KKT condition, when a; = 0,
we have z; < 1 and reach (6). Representation of &} can be
achieved by applying algebraic simplification on (6) for all
atoms j. When a; > 0, we have z; = 1 and reach (7).

Eq. (6) demonstrates the relation between the sparse code
and the dictionary. Based on Lemma 1, the desired gradients
for optimizing SCN are summarized as follows:

oL/oD = —Dya' +(x—Da)y',
oL/oA = —p, (®)
oL/ox =Dy,

where y 5 = (D DA +421)5)) "1 -0L/0a . Optimizing dictio-
naries and regularization parameters with stochastic gradient
descent is shown in Algorithm 1. We leave more a detailed
derivation of the above equations in Appendix B.
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Algorithm 1 Dictionary and Parameter Update for Deep
Sparse Coding Network

Require: {D™}M_ dictionary initialized with Gaussian ran-
dom noise, initial {)\gh)}le. {x;,y;} training pairs. ¢ =

1: while stopping criterion not satisfied do
2: Randomly choose a sample pair {x;,y;} and let
al® = (x;).
3: for layer h =1 to H do
: o™« argmingm g 5[x" — DMa™ |3 +
A e+ 2 a3,
where x(") = ¢ (a(h=1).

5: end for
6: for layer h = H down to 1 do
7 Update the dictionary/regularization parameters

with a gradient descent/projection step
D" «— DWW — p,(dL/oDM + D),
MY (A = pu(@L/oN® 4 ux(M))

where p; is the learning rate at time ¢.
8: end for
9: t+—t+ 1.
10: end while
11: return {D"W \(YH

V. EXPERIMENTAL VERIFICATION

We conduct extensive experiments on CIFAR-10,
CIFAR-100, STL-10, SVHN and MNIST. We demonstrate
that the proposed SCN exhibits competitive performance
while using much smaller number of parameters and layers
compared to numerous deep neural network approaches.
Notably, a 15-layer SCN model exceeds the performance
of a 164-layer and 1001-layer deep residual network,
respectively. The proposed SCN is implemented using Matlab
with C++ and GPU backend based on the framework of
MatConvNet [48].

Configuration of Network Architecture: Our sparse cod-
ing network consists of seven bottleneck modules with a
total number of fourteen sparse coding layers. The archi-
tecture of the network is inspired by the Residual Network
(ResNet) [18]. The network structure consists of two key
features. First, there are no maxpooling layers. The spatial
subsampling operation is fulfilled by specific sparse coding
layers with a stride of 2. Second, the subsampling is carried out
in deeper layers instead of the shallower ones. Both of these
two strategies have been verified to improve the classification
performance in multilayer architectures [18], [45]. Except for
ImageNet dataset, the SCN architecture used in this paper is
divided into three sections, i.e., (16, 16 K)x3—(32,32K)x2—
(64, 64K) x2, where each (M, MK) x P denotes a bottleneck
module that is repeatedly stacked for P times, the output
dimensions of reduction and expansion layers are M and M K.
For ImageNet, the network structure is set to be (32, 32K) x
2 — (64,64K) x 2 — (128, 128K) x 2 — (256,256K) x 2.
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Fig. 2. Visualization of feature map: From left to right: Original image; feature maps of our sparse coding network - feature maps contain mostly background

are labeled with yellow rectangles; and feature map of the baseline CNN.

For CIFAR-10 and CIFAR-100, we exploit the performance
of the network with different width, i.e., K € {I, 2, 4}. For
MNIST, SVHN and STL-10, we set K = 4. For ImageNet,
we set K = 4. We denote an SCN with width of MK as
SCN-K. The window size kj; at each sparse coding layer
has a size of 3 x 3. Following the architecture of ResNet,
we apply spatial subsampling with a factor of 2 at the last two
bottleneck modules. The last sparse coding layer is followed
by one global spatial average pooling layer [32] and one fully
connected layer which is the linear classifier. Batch normal-
ization is added after each sparse coding layer to facilitate
the convergence. We use the same network configurations for
CIFAR-10, CIFAR-100, STL-10 and SVHN. For MNIST we
set the number of filters at the first layer to be 8 due to the
simplicity of the dataset.

Training: At the training stage, we apply data augmen-
tation and preprocessing for all datasets except for MNIST
and SVHN with random horizontal flipping and random
translation. The image is translated up to 4 pixels in each
direction for CIFAR-10 and CIFAR-100, and up to 12 pixels
for STL-10, which is a common procedure for preprocess-
ing CIFAR-10 [8], [18], [30], [32]. Images in the same batch
share the same augmentation parameters. Both training and
testing images are preprocessed with per-pixel-mean subtrac-
tion, which is a common procedure for preprocessing these
datasets [8], [18], [30], [32]. We use a minibatch size of 128
for MNIST, CIFAR-10, CIFAR-100 and SVHN. For STL-10,
we use a batch size of 16 in order to have more iterations
per epoch on the small training set. For all dataset, the initial
learning rate is set to 0.1 and SCN is trained with a total of 200
epochs. For CIFAR-10, CIFAR-100 and STL-10, we follow a

similar learning rate schedule with [19], where the learning
rate decreases twice at 80 and 160 epochs by a factor of 10.
For MNIST, the network is trained with 25 epochs, where the
learning rate decreases at 10 and 20 epochs by a factor of 10.
The weight decay is set to 0.0005 for all the dataset with cross-
validation. We evaluate our multilayer sparse coding network
on the benchmark dataset of CIFAR-10, CIFAR-100, SVHN
and MNIST.

Baseline Comparison Methods: We compare our pro-
posed SCN with numerous multilayer sparse coding-based
approaches, including multilayer sparsity regularized cod-
ing (OMP) [8] and nonnegative multilayer sparse coding
(NOMP) [33]. We also compare with supervised convolu-
tional kernel networks (SCKN) [34] and scattering network
(ScatNet) [5]. For deep neural network baseline, we mainly
compare with ResNet [18], [19], wide residual network
(WRN) [63] and swapout networks (SwapOut) [44].

A. CIFAR-10 and CIFAR-100

Our most extensive experiment is conducted on the CIFAR-
10 dataset [26], which consists of 60, 000 color images that
are evenly splitted into 10 classes. The database is split into
50, 000 training samples and 10, 000 test samples. Each class
has 5, 000 training images and 1, 000 testing images with size
32 x 32. CIFAR-100 has exactly the same set of images as
CIFAR-10 but are split into 10 times more classes, therefore
each class has much fewer training samples compared with
CIFAR-10, making it a more challenging dataset for the task
of classification.

In Fig. 2, we display the feature maps of both the sparse
coding network and the baseline CNN, which are produced
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Fig. 3.
reduction layer: From left to right: Original image; feature maps of expansion
layer; feature maps of reduction layer.

Visualization of feature map in dimension expansion layer and

by the output of the dimension expansion layer in the third
bottleneck module of our sparse coding network and the cor-
responding ReLU layer of the CNN baseline, respectively. The
baseline CNN is constructed by replacing every sparse coding
layer of the SCN with a convolutional layer and a ReL.U layer.
The output of the selected layer contains 64 channels and
for each image we present the eight feature maps with the
largest {;-norms. These visualizations indicate the multilayer
sparse coding network has a much better separation of the
foreground and background. The background contains mostly
low-frequency nondiscriminative information, which can be
reconstructed easily with few dictionary atoms. Together with
the nonnegativity constraint on the sparse codes, our network
produces the unmixing effect as we see in the feature map.
In addition, the feature map is also much sparser than that of
the CNN. Moreover, the feature maps of the sparse coding
network are similar to each other, verifying the fact that the
atoms belonging to similar subspaces are activated.

We also study the relation between the features in the
expansion layer and the reduction layer of a single bottleneck
module. The corresponding learned features are extracted
from the hidden outputs of the third bottleneck module. For
each layer, we present the five feature maps with the largest
{>-norms. Visualization of these features are illustrated
in Fig. 3. The features in expansion layer usually contain
smaller parts of the object with a higher sparsity level.
In addition, features in expansion layer contain more edge
information compared to those in the reduction layer. In con-
trast, the features in the reduction layer are composed of
larger parts of objects with more texture information. Hence,
the reduction layer and the expansion layer are specialized in
learning distinctive patterns of the hidden feature maps.

We now study the behavior of the expansion and reduction
layers of our multilayer sparse coding network as well as
the evolution of the regularization parameters by referring to
Fig. 4.

1) Optimization of Regularization Parameters: The evolu-
tion of the regularization parameter with respect to epochs
is shown in Fig. 4a. The displayed regularization parameters

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

are extracted from each of the sparse coding layers, which
contains a total of 14 learnable regularization parameters. The
parameters grow to larger magnitude as training progresses and
start to decrease when the learning rate is decreased by a factor
of 10. Shown in Fig. 4b, large portion of the regularization
parameters have a magnitude above 0.05, which is able to
enforce the output to be highly sparse. Illustrated in Fig. 4c,
less than 10% of the output elements of the last sparse coding
layer are nonzero.

2) Behavior of Expansion and Reduction Layer: 1llustrated
in Fig. 4c, the outputs of the expansion layers are much
sparser than the reduction layers. The shallower layers tend to
have low reconstruction error with low sparsity level, whereas
the deeper layers usually have high reconstruction error but
high sparsity level. For instance, the first expansion layer has
approximately 45% nonzero sparse coefficients with less than
25% reconstruction errors, while the two deepest expansion
layers have less than 10% nonzero coefficients with 50%—60%
reconstruction errors. This observation verifies the fact that
the shallower layers produce low-level reconstructive features,
while the deeper layers produce discriminative features with
weak reconstructive power. Table I and Fig. 5 show that the
classification performance of SCN increases with the width
of the dictionary of the expansion layer, gaining 3% and 6%
on CIFAR-10 and CIFAR-100, respectively. In the case when
K = 4, our 15-layer SCN exhibits competitive performance
compared to 20-layer SwapOut network on CIFAR-10 while
using twice fewer parameters, which further verifies the impor-
tance of the expansion layer.

Unlike the expansion layers, most of the reduction layers
are far less discriminative as shown in Fig. 4d. Except for the
last reduction layer that reaches a sparsity level of 20%, all
others have 40% — 50% nonzero sparse coefficients.

3) SCN With Bottleneck Module Uses Parameters Effi-
ciently: From Table I, we can see that the proposed SCN uses
fewest learnable parameters compared to all baseline models
and contain fewest number of layers compared to all deep
neural network-based baselines. Compared to the state-of-the-
art approach of ResNext, our model uses almost 100x fewer
parameters and almost one half of layers while still reaching
a competitive performance. Moreover, the SCN-4 outperforms
other approaches with similar model size such as ResNet-
1001 on CIFAR-100.

4) SCN Exhibits Strongly Competitive Performance Com-
pared to Baselines Models: The proposed SCN achieves
classification error of 5.81% and 19.93% on CIFAR-10 and
CIFAR-100, respectively, which is shown in Table 1. Consider
the small size of our model, the performance of SCN is rather
strong and competitive.

In addition, we also exploit the techniques in deep learning
community in order to further improve the performance of
the proposed SCN model. More specifically, we evaluate the
effectiveness of the shortcut connection in the SCN model.
We impose shortcut connection on every bottleneck mod-
ule by adding its input and output together followed by a
ReLU layer. The SCN architecture with shortcut connection is
denoted as ResSCN. Classification error rates of ResSCN-1,
ResSCN-2 and ResSCN-4 are demonstrated in Table I.
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(a)-(b): Evolution and distribution of the regularization parameters, respectively. The parameters are extracted from the last sparse coding layer.

(c)-(d): Evaluation of the behavior of upsampling and downsampling layer, respectively. The blue and red lines indicate the nonzero elements and reconstruction

error in percentage, respectively. Layer index specified by the module index.

TABLE I
CLASSIFICATION ERROR (%) ON CIFAR-10 AND CIFAR-100
Method # Params # Layers CIFAR-10 CIFAR-100

SCKN [34] 10.50M 10 10.20 -

OMP [8] 0.70M 2 18.50 -

PCANet [7] 0.28B 3 21.33 -
NOMP [33] 1.09B 4 18.60 39.92
NiN [32] - - 8.81 35.68
DSN [30] 1.34M 7 7.97 36.54
WRN [63] 36.56M 28 4.00 19.25
ResNet-110 [18] 0.85M 110 6.41 27.22
ResNet-1001 v2 [19] 10.2M 1001 4.92 27.21
ResNext-29 [56] 68.10M 29 3.58 17.31
SwapOut-20 [44] 1.10M 20 5.68 25.86
SwapOut-32 [44] 7.43M 32 4.76 22.72
SCN-1 0.17T™™ 15 8.86 25.08
SCN-2 0.35M 15 7.18 22.17
SCN-4 0.69M 15 5.81 19.93
ResSCN-1 0.17™™ 15 8.16 23.95
ResSCN-2 0.35M 15 6.91 21.42
ResSCN-4 0.69M 15 5.52 18.78

ResSCN-4 achieves classification error rates of 5.52% and
18.78% on CIFAR-10 and CIFAR-100. Hence, the perfor-
mance of the SCN is further improved by employing shortcut
connection.

B. STL-10

The dataset STL-10 is originally designed for unsupervised
learning, which contains a total number of 5, 000 labeled train-

ing images and 8, 000 testing images with size of 96 x 96. For
this dataset, we follow the evaluation protocol used in [64].
The training samples in STL-10 is highly limited and SCN
is supposed to generate more competitive performance due to
the regularization from the bottleneck modules. We directly
apply the 14 sparse coding layer model on STL-10 and
replace the 8 x 8 average pooling with 24 x 24. We compare
our network with the baseline of DeepTEN and previous
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Learning curve of SCN on CIFAR-10 and CIFAR-100. Dotted and solid lines denote the learning curves of training and testing stage, respectively.
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CLASSIFICATION ERROR (%) ON MNIST
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TABLE II
CLASSIFICATION ACCURACY (%) ON STL-10
Method #Params #Layers Accuracy
SWWAE [67] 10.50M 10 74.33
Deep-TEN 25.60M 50 76.29
SCN-4 0.69M 15 83.11
TABLE III
SVHN CLASSIFICATION ERROR
Method # params # layers Error (%)
RCNN [31] 2.6"™ - 1.77
ReNet [50] 23.12M 7 2.38
DSN [30] 1.34M 7 1.92
Maxout [8] - - 2.37
NIN [32] - - 2.35
SCN-4 0.69M 15 2.16

state-of-the-art approach [67]. From table II, we can see
SCN with bottleneck module (SCN-4) outperforms Deep-TEN
under fair comparison by a large margin of 7%. SCN
also exceeds previous state-of-the-art performance [67] by
almost 9%.

C. SVHN

SVHN [40] is a dataset consisting of color images of
digits collected from Google Street View. The images are of
size 32 x 32 with 73,257 images for training and 26, 032
images for testing. The dataset also comes with 531, 131
additional labeled images. Again, we directly use the network
configuration for CIFAR-100. This dataset is less difficult due
to a large number of the labeled training samples. For a fair
comparison, we delete 400 samples per training class and
200 samples per class from the extra set, which are used
for cross-validation by the compared methods in Table III.
The network is trained only on the training and the extra
set. The image of the dataset is preprocessed by subtracting

Method #Params #Layers Accuracy
CKN [37] 2 0.39
ScatNet [5] - 3 0.43
PCANet [7] - 3 0.62
S-SC [61] - 1 0.84
TDDL [35] - 1 0.54

SCN-4 0.69M 15 0.36

per-pixel-mean and we do not conduct any data augmentation.
Due to the large size of the dataset, we only train our network
with 20 epochs. We achieve a test error of 2.16% with a few
learnable parameters. A summary of comparable methods is
shown in Table III. Our sparse coding network outperforms
the CNN-baseline with 0.8% and is comparable with other
state-of-the-art performance while using substantially fewer
parameters.

D. MNIST

The MNIST [29] dataset consists of 70,000 images of
digits, of which 60, 000 are the training set and the remaining
10, 000 are the test set. Each digit is centered and normal-
ized to a 28 x 28 field. We subtract the per-pixel-mean of
each image and do not perform any data augmentation. The
classification error on this dataset is reported in Table IV.
With limited epochs, our sparse coding network achieves a
classification error of 0.36%, which is comparable with state-
of-the-art performance.

E. ImageNet

To further illustrate the efficiency and scalability of the
proposed SCN on datasets with larger images, we train a
16-layer SCN which is composed of 8 bottleneck modules on
the ImageNet 2012 dataset. The dataset consists of 1.28 mil-
lion training images coming from 1, 000 classes, including
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TABLE V
CLASSIFICATION ERROR (%) ON IMAGENET

Method #Params | #Layers | Top-1 err. | Top-5 err.
ResNet-18 [18] | 11.7M 18 29.66 10.50
ResNet-34 [18] | 21.8M 34 26.17 8.56

SCN-4 9.79M 16 29.58 10.75

TABLE VI

EMPIRICAL INFERENCE TIME (MS) ON IMAGENET

Method
Inference time

ResNet-18
9.06

ResNet-34
10.87

SCN-4
18.25

50k validation images and 100k testing images. The models
are trained on the 1.28 million training images, and evaluated
on the 50k validation images. We evaluate both top-1 and top-
5 error rates on this dataset.

We train the proposed SCN with a total number of 100
epochs and employ a batch size of 512. The model is
trained with 8 Nvidia Volta V100 GPUs on Amazon Web
Service (AWS) and takes a total number of 66 hours to finish
the training. Initial learning rate is set to be 0.1 and the
learning rate is reduce by a factor of 10 at epoch 30, 60 and
90. The batch size is set to 512. The purpose this experiment is
to demonstrate the scalability of the proposed model, i.e., we
do not aim at pursuing the highest accuracy but to achieve a
competitive performance under fair comparison.

The experimental result on ImageNet is shown in Table V.
We compare our work mainly with residual networks. For a
fair comparison, we report the ResNet results produced by
Tensorpack [55] which uses the same batch size and learning
rate schedule for training. The proposed SCN-4 achieves an
error rate of 29.58% and 10.75% for top-1 and top-5 error,
respectively.

F. Empirical Computation Time Analysis

For CIFAR-10 and CIFAR-100, training SCN-4 model with
200 epochs takes about 26 hours and inference of all the
10, 000 testing images takes about 9 seconds. Training and
inference with SCN-4 on STL-10 dataset takes about 21 hours
and 65 seconds, respectively. For MNIST, training and testing
takes about 3 hours and 7 seconds, respectively.

On the dataset of ImageNet, we compare the empirical infer-
ence time of various networks including ResNet-18, ResNet-
34 and SCN-4. For each of the networks, we repeatedly
test 1,000 images of the size 256 x 256 on single Nvidia
Volta V100 GPU and report the averaged inference time in
milliseconds (ms) in Table VI. On average, ResNet-18 and
ResNet-34 inference each image at 9.06ms and 10.87ms,
respectively. On the other hand, SCN-4 takes 18.25ms to
inference single image.

VI. CONCLUSION AND DISCUSSION

In this paper, we have developed a novel multilayer sparse
coding network by training the dictionaries and the regulariza-
tion parameters simultaneously using an end-to-end supervised
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Algorithm 2 FISTA for Nonnegative Elastic Net

Require: Dictionary D € RM*N k is the largest eigenvalue
of (D™D + A;X), precompute A =1 — (D7D + A1),
b = %(DTX — A1), iterator t =0, oy = 0 € RY, v, =
0¢c RN, so = 1.

1: while stopping criterion not satisfied do

2: (o THN I o (A’Vt + b)+

3: sep1 < (L+ (14 4s2))/2.

4 Y1 o+ (e — D) (oug1 — x0) /5041
5: t+—t+1.

6: end while

7:

return Nonnegative sparse code o;.

learning scheme. We have shown empirical evidence that
the regularization parameters can adapt to the given training
data. The high computational complexity of multilayer sparse
coding networks has motivated us to explore more efficient
strategies for accomplishing sparse recovery. We propose
applying reduction layers within sparse coding modules to
dramatically reduce the output dimensionality of the layers and
mitigate computational costs. Moreover, we also show that our
sparse coding network is compatible with other powerful deep
learning techniques such as batch normalization. Our network
produces results competitive with deep neural networks but
uses significantly fewer parameters and layers. In particu-
lar, our network performs exceedingly well on CIFAR-100,
indicating a lower training data requirement compared to
multilayer neural networks.

APPENDIX
A. Solving Constrained Elastic Net Using FISTA

For the purpose of clarification, we describe the nonnegative
FISTA in Algorithm 2, which is used for inference during
training and testing. We denote (A); as the element-wise
nonnegative thresholding on A.

B. Dictionary and Parameter Update

We now derive the backpropagation rule for solving prob-
lem 4. In this paper, we derive the updating rule for the case
of holistic sparse coding since extension to the convolutional
local sparse coding is trivial. We start by differentiating the
empirical loss function with respect to every element of the
dictionaries and regularization parameters:

oL oL (’ﬁ oa) ) oa® o)
) T () PG RO

5d;k oa i oa'll @djk

h+1 i

oL oL oa® oo™

—hZ—H H“il ‘“—h, S.t. igh)>0,
6/15 ) oa(H) i oai—1 8/15 )

(10)

where dj(.},? is the (j,k)-element of the dictionary D).
To solve for (9) and (10), we need to derive aa(h)/ﬁa(h_l),
oa™ 6dﬁ) and oa(™/ (’MY’). We employ fixed point differen-
tiation for deriving the required derivatives, which is based on
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the previous works of dictionary learning for one-layer sparse
coding model [35], [61]. Let« € RY 2 pe the optimal point of
Lasso problem, it then satisfies the optimality condition based
on (6) and for all xp > O:

(DADA + Aodjaes — Dix + Ai1jp =0, (1)

where we have omitted the layer indices for simplicity. A
denotes the active set of the sparse code a and |A] is the
cardinality of the active set. Dy € R™*IAl is the subset of
dictionary consists of the active atoms. Iz € RIAIXIAL jg
identity matrix and 15| € RI*l is an all one vector.

1) Differentiation of dL/oD: We first derive the differentia-
tion da/0d ji for a single dictionary element d ;. The inactive
atoms are not updated since the desired gradient on which
aj = 0 is not well defined [35], [61] and daac/0djr = 0,
where A€ is the complementary of A. Differentiate both sides
of (11) with respect to dji for all j € A:

dap 0D Dy oD x
DDA + Aalin) o + —Aay - A =0, (12)
( A Al od i od i od i
which is equivalent with
dop T _,,0Dix 8D Dy
—— =D,\D Aol ————ap). (13
od;r (DDA + A211A)) (adjk Sd;r ap). (13)
We reach the updating rule for a single dictionary element:
oL oL\ " oDix oD Dy
— = (=) - ODA+i0ja) (=2 — A ).
ad (805)A( P
(14

Stacking all elements 0L/0dj; into 0L/0D and applying
algebraic simplification:

oL T T
D= Dya’ +(x—Da)y ',
where y, = (DXDA + /121‘,\‘)_1 -0L/oap and p e = 0.
Due to the sparsity constraint, only few atoms are activated in
each layer and |A] is small enough for efficiently implemen-
tation (21) on modern GPUs.
2) Differentiation of 0L/0A: Differentiating both sides of
Eq. (11) with respect to Ai:

5)

DXDAa—M =1, (16)
and we reach at
oL oL\ " _
T (E)A c=(DADA + ZoIa) ==y, (A7)

3) Differentiation of 0L/ox: The gradient of sparse code o«
with respect to each input signal element x can be reached by

differentiating both sides of (11) with respect to x;:
oo oD x
(DADA + Z2Lja)—— — —2= =0, (18)
Xi axi

where x; is the i element of x. (18) is equivalent with

dap - _,0D]x
——— = (D.D Aol 19
ox; (DADA + 221jA) ox; (19)

2We have omitted the superscript “*” for simplicity.
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Therefore we have

oL oL\ " oD 1 x
— =(=) MDA+ Ix) =22, (20
0Xx; (8“)/\ (DDA + Z20ia)) oX; (20)
which can be further simplified as
oL
— =Dy. 20
[5).4
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