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Abstract— In this paper, we propose a novel deep sparse
coding network (SCN) capable of efficiently adapting its own
regularization parameters for a given application. The network
is trained end-to-end with a supervised task-driven learning algo-
rithm via error backpropagation. During training, the network
learns both the dictionaries and the regularization parameters
of each sparse coding layer so that the reconstructive dictio-
naries are smoothly transformed into increasingly discriminative
representations. In addition, the adaptive regularization also
offers the network more flexibility to adjust sparsity levels.
Furthermore, we have devised a sparse coding layer utilizing
a “skinny” dictionary. Integral to computational efficiency, these
skinny dictionaries compress the high-dimensional sparse codes
into lower dimensional structures. The adaptivity and discrim-
inability of our 15-layer SCN are demonstrated on six benchmark
datasets, namely Cifar-10, Cifar-100, STL-10, SVHN, MNIST,
and ImageNet, most of which are considered difficult for sparse
coding models. Experimental results show that our architecture
overwhelmingly outperforms traditional one-layer sparse coding
architectures while using much fewer parameters. Moreover, our
multilayer architecture exploits the benefits of depth with sparse
coding’s characteristic ability to operate on smaller datasets.
In such data-constrained scenarios, our technique demonstrates
a highly competitive performance compared with the deep neural
networks.

Index Terms— Image classification, sparse representation, dic-
tionary learning, image analysis, image recognition.

I. INTRODUCTION

S
PARSE coding has shown promising performance on a

range of computer vision tasks including image classifi-

cation and target detection [42], [43], [51], [54], [60], [62],

[62]. Even when given only a small amount of training sam-

ples, sparse coding models can become exceptionally resilient

against severely corrupted or noisy data. Consequently, sparse

coding is well suited to real-life image recognition tasks in

which images are often degraded by sensor static or when

objects in the image are occluded. However, when the noise

in the data is actually an expression of the natural variation

of objects, such as those caused by changes in illumination or

orientation, the linear representation of sparse coding becomes
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a liability [51], [61]. As such, sparse coding models exhibit

disappointing performance on large datasets where variability

is broad and anomalies are common.

Conversely, deep neural networks thrive on bounti-

ful data. Their success derives from an ability to dis-

till the core essence of a subject from abundant diverse

examples [15], [18], [27], [46], [58]. This feat has encour-

aged researchers to try and augment the learning capacity

of traditionally shallow sparse coding methods by adding

layers [16], [20], [33]. Theoretically, multilayer sparse coding

networks are expected to combine the best of both strategies.

For instance, the imperative for sparse codes to adequately

reconstruct an input signal [6] ameliorates information degen-

eracy issues within deep architectures [17], [21]. Furthermore,

multilayer sparse coding networks demand less training data as

compared to deep neural networks. To date, however, endeav-

ors to marry the two techniques have not achieved significant

improvements over their individual counterparts [20], [33].

The realization of a successful multilayer sparse coding

architecture is obstructed by three critical challenges:

• Efficiently learning dictionaries with sufficient discrimi-

native power.

• Avoiding the growth of overly fat dictionaries.

• Calibrating large quantities of regularization parameters.

Supervised dictionary learning with labeled data provides

an opportunity to overcome the first challenge. However,

the difficulty lies in computing the gradient with respect

to each dictionary element. As covered in Section II-B,

there has been inspiring breakthroughs in adapting super-

vised dictionary learning algorithms for use in shallow sparse

coding frameworks [35], [61]. We attempt to build on past

achievements by training a multilayer sparse coding net-

work using an end-to-end supervised dictionary learning

algorithm.

The second challenge arises during the sparse recovery

procedure. The dictionary must grow fat with reference data if

it is to perform a satisfactory reconstruction of the input signal

from a sparse code. In a multilayer environment, dictionaries

deeper in the network bear a greater burden, for they must

convey crucial information with increasing austerity. This is

particularly problematic for unsupervised dictionary learning.

The unsupervised learning algorithm cannot judge what infor-

mation to retain or discard based on reconstructive feedback.

As the dictionaries grow more fatter, the sparse codes become

further attenuated. Processing such structures is computa-

tionally prohibitive. We apply supervised dictionary learn-

ing and signal compression algorithms to address this issue.
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Inspired by the Network in Network [32] and SqueezeNet [24]

architectures, we propose a dimension reduction layer that

balances discriminative power with reconstructive potential.

In contrast to the fat dictionary, the reduction layer uses

a much skinnier dictionary for lossy compression of the

high-dimensional sparse codes while also introducing an addi-

tional nonlinearity to the network.

The third obstruction is inflicted by the large parameter

space of the multilayer sparse coding network. Tradition-

ally, the sparsity level in a sparse coding model is chosen

manually by cross-validation and remains fixed throughout

training. As the network gains layers, the manual selection of

regularization parameters quickly becomes daunting. Hence,

we propose automatically adapting the sparsity level via task-

driven regularization.

To summarize, this paper makes the following contributions

to sparse coding networks:

• Reduction of sparse code dimensionality by employing

’skinny’ dictionaries to create reduction layers.

• Dynamic adaptation of �1 regularization parameters with

task-driven regularization.

• Supervised, end-to-end training of a multilayer sparse

coding network with the aforementioned features.

• The code for training and testing our SCN is available

online.1

In Section II, we briefly review the works related to

multilayer sparse coding, supervised dictionary learning and

dimensionality reduction. In Section III, we elaborate on

our network design and adaptive regularization technique.

We develop and discuss an end-to-end supervised training

procedure for SCN in Section IV. In order to clearly per-

ceive the efficiency of supervised learning, we do not apply

any unsupervised learning schemes to pretrain the dictionary.

In Section V, we evaluate our multilayer sparse coding net-

work on six benchmark datasets, including Cifar-10, Cifar-100,

STL-10, SVHN, MNIST and ImageNet. The first four datasets

are considered to be highly challenging for sparse coding.

Of particular interest is the Cifar-100 which poses formidable

challenges to sparse coding. In our evaluation, we show

our network to decisively outperform shallow sparse coding

architectures. Moreover, we demonstrate our network attains

highly competitive results with state-of-the-art models such

as deep residual learning [18] in terms of both classification

accuracy and the model size.

II. RELATED WORK

A. Deep Sparse Coding Network

Sparse coding with overcomplete dictionary was first pro-

posed in [1]. To augment the learning capacity of sparse

coding model, several researchers have attempted to extend

the one-layer sparse coding model to multilayer hierarchical

architectures. Early approach is applied on contour detection

in [23] by sparsely representing activations of complex cells

hiearchically. Maire et al. [38] train a two-layer sparse coding

model using unsupervised dictionary learning for the purpose

1https://github.com/XiaoxiaSun/supervised-deep-sparse-coding-networks

of contour detection and semantic labeling. Zhou et al. [68]

employ sparse coding model with a multilayer architecture

to generate the linear features for image classification. Sim-

ilarly, Zhang et al. [65] construct multilayer sparse coding

network by repetitively stacking sparse coding layer, max

pooling layer and contrast normalization layer and train the

dictionaries using unsupervised learning. Lin and Kung [33]

enforce nonnegativity constraints on orthogonal matching pur-

suit (OMP) to improve the stability of the sparse activations

for a three layer sparse coding network. Yu et al. [62] have

developed an unsupervised dictionary learning algorithm for

jointly training the dictionaries in a two-layer sparse coding

network. To deal with the dimensionality explosion of the

hidden sparse codes, He et al. [20] propose to compress the

sparse codes into low-dimensional dense features. Multipath

sparse coding [3] combines a collection of hierarchical sparse

codes to capture various aspects of discriminative structures

for image classification. Wang et al. [53] have enforced the

sparsity priors on deep network for the purpose of image

super-resolution.

From the perspective of dictionary learning, most common

approach for training multilayer sparse coding network is to

optimize the reconstructive dictionaries of each layer in a

greedily layer-wise fashion [8], [33], where the nonlinearity is

usually enforced with a ReLU layer. An alternative approach

is to unfold and approximate the sparse coding process with

deep neural networks [16], [39], in which the sparse coding

parameters are trained end-to-end by minimizing reconstruc-

tion loss. The strategy of unfolding the sparse recovery algo-

rithm is also exploited and developed for training the deep

sparse coding networks in an end-to-end fashion [52], [57].

For instance, the deep �0 encoder [52] and the maximal

sparsity networks [57] unrolls the iterative sparse recovery

algorithm of �0 pursuit into an equivalent deep neural network.

As such, the training of the dictionaries in sparse coding is

reformulated into an equivalent deep neural network training

problem, which can be efficiently optimized in an end-to-

end fashion via by error backpropagation. These approaches

demonstrate promising performance and provide an efficient

way for training sparse coding dictionaries by taking advantage

of modern GPU architecture. Our approach differs in two

ways: First, each sparse coding layer of the proposed networks

recovers the sparse codes by solving �1-minimization problem

instead of �0-minimization problem, which enables us to

train the regularization parameters via error backpropagation.

Second, we propose to employ a dimension reduction layer

before each sparse coding layer in order to avoid the explosion

of hidden feature dimensionality and to improve the scalability

of the proposed network.

In addition, the proposed network also shares a high level

motivation with the stacked autoencoder [49] and CNN-based

model with auxiliary reconstruction loss [66], [67], which

trains the network in an unsupervised, semi-supervised or

supervised fashion by manually balancing the discriminative

and reconstruction loss. In contrast we employ conventional

sparse coding instead of neural network to encode latent

features and train the network supervisedly in an end-to-end

fashion.
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B. Supervised Dictionary Learning for One-Layer Sparse

Coding Model

Supervised dictionary learning strengthens the discrimina-

tive power of the sparse codes by exploiting the labeled

samples. Due to the nonsmoothness of the �1-regularizer,

computing the gradient with respect to the dictionary is a tricky

task. Overcomplete independent component analysis [28] is

proposed to orthogonalize the dictionary and approximate

the sparse coding with a linear function such that the dif-

ferentiation of the implicit sparse coding function can be

avoided. Fast approximation of sparse coding is proposed

in [16] to train the dictionary of each layer in a greedy,

unsupervised fashion and initialize a corresponding multilayer

neural network with the pretrained sparse coding dictionaries.

Bradley and Bagnell [4] propose to directly compute the

gradient of the dictionary by switching the �1 regularizor with

the smoothed Kullback-Leibler divergence. Applying fixed

point differentiation and error backpropagation, a supervised

dictionary learning scheme for the shallow sparse coding

model is proposed in [61]. Thorough study on task-driven

dictionary learning algorithms with various applications are

carried out in [35]. In this paper, we generalize the single-layer

supervised dictionary learning to multilayer network based on

multilevel optimization.

C. Dimensionality Reduction and Clustering

in Deep Neural Networks

Bottleneck shaped neural network [18], [56] applies dimen-

sionality reduction in order to reduce the overfitting of resid-

ual network. In contrast to neural network, dimensionality

reduction with nonnegative sparse coding is equivalent to

clustering [10] and therefore the low dimensional hidden fea-

tures act as weighted cluster indicators which is discussed in

Section III-B. Alternate approach related to our work is the

deep semi-nonnegative matrix factorization (semi-NMF) [47]

that trains a hierarchical network with the reconstruction loss.

Our approach differs from the aforementioned works since

we simultaneously learn high dimensional discriminative rep-

resentations and low dimensional clustered features in a single

network architecture with end-to-end supervised learning.

D. Adaptive Regularization

In sparse coding, by adapting the sparsity level we can

achieve a better approximation of the underlying model for

a given training data with lower estimation bias. The adaptive

Lasso is proposed in [69] and has been proved to satisfy the

oracle property [14]. Do et al. [11] propose to substitute the

sparsity level of orthogonal matching pursuit (OMP) with a

predefined halting criterion. In low-level feature representa-

tion, a nonparametric method based on expectation minimiza-

tion algorithm [41] is proposed to automatically adjust the

sparsity level for the soft thresholding operator. In the case

of image deblurring and superresolution, the regularization

parameters are proposed to be estimated by assuming the

distribution of sparse codes follow a zero-mean Laplacian

distribution [12]. To be noted, all these methods are carried

out for the purpose of low-level feature extraction and are

based on shallow structures with unsupervised learning, while

we optimize the regularization parameters using end-to-end

supervised learning.

III. MULTILAYER SPARSE CODING NETWORKS

In this section, we first describe the inference of SCN, which

is based on nonnegative sparse coding. We then introduce

and discuss our proposed bottleneck module for improving

the performance of the network, which consists a cascade of

an expansion layer followed by a reduction layer.

A. Inference With Nonnegative Sparse Coding

We now introduce a general formulation of sparse coding

layer for SCN as shown in Fig. 1. Let the representation

of the layer h in SCN be a 3D-tensor A
(h) ∈ R

nh×Ih ×Jh ,

h ∈ {0, . . . , H } and denote each local feature vector at (i, j)

of layer h as α
(h)
i, j � A

(h)
:,i, j ∈ R

nh , where nh , Ih and Jh

are the number of channels, height and width of the layer

representation. For instance, α
(0)
i, j of a color image represents

a 3-channel pixel of red, green and blue. In deeper layers

where h > 0, α
(h)
i, j represent a local sparse code. To recover

the local sparse code α
(h)
i, j , we construct an intermediate local

feature x
(h)
i, j = ψ(α

(h−1)
i, j ) ∈ R

mh by concatenating all the

neighboring features centered at (i, j) within a window of

size kh−1 ×kh−1 from the previous layer h −1, For illustrative

purpose, we assume the neighboring window is square. ψ(·)

denotes the concatenation operation and mh = nh−1k2
h−1.

We constrain the sparse codes to be nonnegative in order to

introduce nonlinearity to the deep network. Given a dictionary

D(h) ∈ R
mh×nh of layer h, the nonnegative sparse code is

recovered by solving the following constrained elastic net

problem:

α
∗ = arg min

α>0

1

2
kx − Dαk2

2 + λ1kαk1 +
λ2

2
kαk2

2, (1)

where we have omitted the coordinate and layer indices for

simplicity. kαk1 =
∑N

n=1 |αn | is the �1-norm and λ1, λ2 > 0

are the regularization parameters. Importance of the parameter

λ2 is to stabilize the training procedure [35]. In this paper,

we directly solve (1) using conventional sparse recovery

algorithm for inference instead of applying unfolding on sparse

coding process with deep neural network [16], [39]. Number

of sparse recovery algorithms such as Learned Iterative Shrink-

age and Thresholding Algorithm (LISTA) [16], [39], Fast

ISTA (FISTA) [2] and Least Angle Regression (LARS) [13]

can efficiently solve problem 1. In this paper, we adopt FISTA

mainly for the ease of coding in GPUs. The nonnegativity

is enforced by using nonnegative soft-thresholding during

the optimization. For the purpose of clarity, sparse recovery

algorithm for solving problem (1) is shown in Appendix A.

B. Constructing Multilayer Architecture With Bottleneck

Modules

We formulate a generalized, multilayer sparse coding archi-

tecture as illustrated Fig. 1. Following (1), we denote the
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Fig. 1. Architecture of our multilayer sparse coding network: (a) The proposed network is constructed by repeatedly stacking multiple bottleneck modules.
The network does not contain any pooling operation and subsampling is conducted with a stride of 2. (b) Bottleneck module consists of one expansion layer
and one reduction layer, which is used to expand or reduce the dimensionality of the local features of the previous layer, respectively. (c) Interpretation of
SCN. Red and hollow circles on the manifolds are the active and inactive atoms, respectively. Yellow circles represent all the local features of a hidden layer
and blue circles denotes the neighboring local features centered at (i, j).

nonnegative sparse coding as a nonlinear function f : R
M →

R
N such that the sparse code at a given location can be

recovered as

α
∗ = f (x,�), (2)

where � represents the parameters for a given sparse coding

layer including the dictionary and the regularization parame-

ters. In sparse coding, the sparse coefficient α
∗ ∈ R

N is

generally of much higher dimension than the input signal.

Thus, if output sparse codes are naively and repeatedly fed

into successive sparse coding layers, computational complexity

quickly explodes. Inspired by Network in Network [32] and

SqueezeNet [24], we introduce a sparse coding layer with an

excessively skinny dictionary to reduce the dimensions of the

sparse codes while also forcing sparsity of the low-dimension

outputs, as shown in Fig. 1a. Unlike compression with linear

projection, such as random projection or PCA, reducing the

signal dimension with a sparse coding scheme achieves a good

preservation of prior layer information while infusing more

nonlinearity into the network.

The core building block of the SCN is the bottleneck mod-

ules, as depicted in Fig. 1b. Each bottleneck module consists

of a cascade of two specialized sparse coding layers, which

are referred to as expansion layer and reduction layer. The

expansion layer is equipped with a relatively wide dictionary

in order to reach a fine-grained partition of the input feature

space, whereas the reduction layer has a relatively skinny

dictionary which focuses more on dimensionality reduction

and clustering in order to extract more abstract representations.

More specifically, we have

α
∗ = f ( f (x,�e),�r ), (3)

where we have dropped the subscript indices for simplicity.

�e, �r are the parameter sets of the expansion and reduc-

tion layers, respectively. We note that the order of the two

specialized layers in a bottleneck module does not matter

much in the multilayer environment. For illustrative purpose,

we sequentially employ expansion layer and reduction layer in

a single bottleneck module. We illustrate the two specialized

sparse coding layers and describe the motivations of proposing

the bottleneck module in more details:

1) Expansion Layer Focuses on Partitioning Feature Space:

Nonnegative sparse coding functions as a robust and stable

partition of the input feature space [61], where the ‘resolution’

of the partition depends on the dictionary width. With a

relatively wide or even overcomplete dictionary, we are able to

achieve a high resolution fine-grained partition of the feature

space and therefore recover highly discriminative sparse codes.

Behavior of sparse coding with a wide or even overcomplete

dictionary in single layer environment has been thoroughly

exploited through number of studies [35], [54], [61].

2) Reduction Layer Focuses on Clustering Features: Reduc-

tion layer is designed to produce abstract compact sparse codes

using a much narrower dictionary compared to that of the

expansion layer. Nonnegative sparse coding with skinny dictio-

nary functions as clustering, which can be illustrated based on

semi-NMF [10]. Several inspirational works [22], [36], [39]

illustrate the relations between sparse coding, dictionary learn-

ing and matrix factorization: In a reduction layer, when

the given dictionary is skinny, the nonnegative sparse cod-

ing is equivalent with sparsity-regularized semi-NMF algo-

rithm, which is strongly related to the K-means clustering.

Hence, the skinny dictionary atoms in reduction layer can be

interpreted as the cluster centroids of the high dimensional

inputs, whereas the corresponding low dimensional nonnega-

tive sparse code is the weighted cluster indicator.

Empirically, there are three main operations within a bot-

tleneck module. First is i) hyperpixel construction within

3 × 3 receptive fields of low dimensional inputs. Next,

ii) an expansion layer transforms the input coefficients into
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a feature map of high dimension sparse codes. Finally, with

iii) reduction layer, our skinny dictionary compresses the

high-dimensional sparse codes into a low-dimensional space.

In this paper, all dictionaries have 3×3 receptive fields. Unlike

multilayer neural networks, there is no need to implement

nonlinear activation functions after the sparse coding layer

because of the enforcement of nonnegative constraint on the

sparse code.

Our SCN is designed to stack multiple bottleneck modules

in order to perform dimensionality expansion and reduction

repeatedly. Batch normalization layer [25] is added after each

sparse coding layer in order to obtain a faster convergence.

The last bottleneck module lies on top of a global average

pooling layer, which is followed by a fully connected layer

which functions as the linear classifier.

C. Interpreting SCN as Deep Subspace Learning

For illustrative purposes, we consider the simplified case

where all the local features of layer h lie on a union of

disjoint subspaces, i.e., every pair of these subspaces only

intersect at origin. As is shown in Fig. 1c, each atom of the

learned dictionary is the cluster center of a large number of

local features in R
nh and every nonnegative sparse code α

(h)
i, j

in layer h describes how strong it is connected to a certain

cluster center. We note that in the case of supervised learning,

the distance between each local feature and their related cluster

centers, i.e., dictionary atoms, are not only measured by the

reconstructive loss but also described by the discriminative

loss as shown in (4).

In the case of SCN, large number of subspaces in R
nh are

related to each other through the local sparse code α
(h)
i, j , which

itself lies on another subspace in R
nh+1 of the deeper layer

h +1. Similarly, as the network goes deeper, each point in R
nk

of layer k relates to a more complex union of subspaces in R
n j

of the shallower layer j , where k � j , i.e., local sparse codes

in deeper layers are more expressive compared to those from

shallower layers. Driven by the discriminative loss function,

the local features of two different classes are gradually mapped

to different subspaces of each layer and eventually become

linearly separable with respect to the hyperplane defined by

the classifier.

IV. SUPERVISED DICTIONARY LEARNING FOR

MULTILAYER SPARSE CODING NETWORK

In this section, we first describe the discriminative loss func-

tion of SCN. Then we introduce the adaptive regularization

scheme, which allows each layer to automatically adapt its

own �1-regularization parameters. Finally, we develop the dic-

tionary updating rule for the multilayer sparse coding network

by extending the task-driven dictionary learning [35], [61] to

a multilevel case.

A. Problem Formulation With Multilevel Optimization

Without loss of generality, we consider a prediction task for

binary class given a set of training pairs {A
(0)
s , ys}

S
s=1, where

ys ∈ {0, 1} is the label for the image sample A
(0)
s . Given

an SCN with H sparse coding layers, our goal is to fit the

network prediction to the label through minimizing a smooth

and convex loss function L : R × R → R with respect to

the network parameters, including dictionaries, regularization

parameters and the linear classifier. Suppose the network learns

to map the input image A
(0)
s to the corresponding label ys , the

optimization procedure of SCN is formulated as an empirical

risk minimization problem based on multilevel optimization:

min
θ

1

S

S
∑

s=1

L(ys, g(A(H)
s , w)) +

µ

2
R(θ),

s.t . α
(H)∗

s = arg min
α

(H )
s ≥0

f (D(H), λ(H), x(H)s ,α(H)
s ),

...

s.t . α
(1)∗

s = arg min
α(1)≥0

f (D(1), λ(1), x(1)
s ,α(1)

s ),

s.t . λ(h) > 0, x(h)
s = ψ(α(h−1)∗

s ), ∀h = 1, . . . , H, (4)

where θ = {D(h), λ(h), w}H
h=1 is the learnable parameter set

including both dictionaries and regularization parameters. g :

R
nH → R is a linear classifier parameterized by w ∈ R

nH . f

is the nonnegative sparse coding operation defined in Eq. (3).

In this paper, we adaptively optimize the regularization para-

meters at each layer, which has a similar effect as training the

bias in deep neural networks [39]. The motivation for training

regularization parameters is that the use of cross-validation for

parameter searching becomes a formidable task as the network

becomes deeper, which is further discussed in Section IV-B.

To prevent the �2-norm of dictionary to be arbitrarily large

and recovering trivial sparse codes, we introduce regularizer

R(D) � kDk2
F , or usually referred to as weight decay in

deep neural network, on the dictionary to reduce the over-

fitting. We note that constraining every dictionary atom with

kd j k2 ≤ c, where c > 0 is a chosen constant, is the most

common choice for regularizing dictionary atoms in a single

layer model. However, during experiment, we found that such

constraint is too stringent for the network to converge due to

the gradient projection. Besides, enforcing normalization on

the dictionary atom is dangerous when the task-driven regular-

ization is employed. During training, some atoms could always

remain inactivate if the regularization parameters increase

beyond a large threshold. Hence, we only enforce a relatively

weak �2-norm regularizor on the dictionary atoms.

B. Adaptive Regularization

Previous works on sparse coding usually select the regu-

larization parameters manually by cross-validation. However,

this scheme is infeasible when we extend the sparse coding to

multilayer architectures. Tuning regularization parameters by

hand would introduce two major issues in the case of multi-

layer architectures. First and obviously, manually searching for

the optimal parameters of the underlying model would become

onerous since the parameter space grows exponentially larger

when the model becomes deeper. Second, during experimenta-

tion, we found that our multilayer sparse coding network with

fixed regularization parameters suffers from low convergence

rate and low classification performance.

Authorized licensed use limited to: West Virginia University. Downloaded on April 22,2021 at 00:04:44 UTC from IEEE Xplore.  Restrictions apply. 
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To begin training, we initialize the �1-regularization para-

meter with some small value to avoid numerical issues (set

to be 10−5 in our paper) and then optimize the underlying

sparsity level of the network with the given training data.

Applying error backpropagation with the projected gradient

descent algorithm, we have

λ1 ←

(

λ1 − ρ
∂L

∂α∗

∂α
∗

∂λ1

)

+

, (5)

where ρ > 0 is the learning rate, L is the total task-driven

loss function defined in Eq. (4). The detailed updating rule

for regularization parameters will be discussed in the next

section. As we shall see in the experiment, Eq. (5) causes the

regularization parameters to adjust during training in order to

render sparse outputs.

C. Updating Dictionary and Regularization Parameter

Every sparse code is parameterized by the dictionary and

regularization parameters, it is therefore natural to solve the

multilevel optimization problem (4) with gradient descent

method based on error backpropagation [9]. The deriva-

tion of the updating rules is based on the fixed point

differentiation [35], [59], [61]. We state the first order opti-

mality condition of the nonnegative elastic net, which is the

core building block of the derivation:

Lemma 1 (Optimality Conditions of Nonnegative Elastic

Net): The optimal sparse code α
∗ of (1) solves the following

system:

d>
j (Dα

∗ − x) + λ2α
∗
j = −λ1, if α∗

j > 0 (6)

d>
j (Dα

∗ − x) + λ2α
∗
j ≥ −λ1, otherwise. (7)

The nonnegative part of the sparse code α
∗ can be described

as α
∗

 = (D>


D
 + λ2I)−1(D>

x − λ11
), where 1
 ∈ R

|
|

is an all one vector, 
 is the active set of α
∗ and |
| is the

cardinality of the active set 
.

Proof: Let ∂kαk1 be the subgradient of kαk1. Since α
∗

is a the optimum of (1), ∀ j ∈ [N], ∃z ∈ ∂kαk1, such that

α
∗ solves the nonlinear Karush “Kuhn” Tucker (KKT) system

(d>
j (Dα

∗−x)+λ2α
∗
j +λ1 z j )·α j = 0 and z j is the j th element

of z. Followed by the classical result of Elastic Net [35] and

the complementary slackness of KKT condition, when α j = 0,

we have z j ≤ 1 and reach (6). Representation of α
∗

 can be

achieved by applying algebraic simplification on (6) for all

atoms j . When α j > 0, we have z j = 1 and reach (7).

Eq. (6) demonstrates the relation between the sparse code

and the dictionary. Based on Lemma 1, the desired gradients

for optimizing SCN are summarized as follows:

⎧

⎪

⎨

⎪

⎩

∂L/∂D = −Dγα
> + (x − Dα) γ

>,

∂L/∂λ1 = −γ ,

∂L/∂x = Dγ ,

(8)

where γ 
 = (D>

D
+λ2I|
|)

−1 ·∂L/∂α
. Optimizing dictio-

naries and regularization parameters with stochastic gradient

descent is shown in Algorithm 1. We leave more a detailed

derivation of the above equations in Appendix B.

Algorithm 1 Dictionary and Parameter Update for Deep

Sparse Coding Network

V. EXPERIMENTAL VERIFICATION

We conduct extensive experiments on CIFAR-10,

CIFAR-100, STL-10, SVHN and MNIST. We demonstrate

that the proposed SCN exhibits competitive performance

while using much smaller number of parameters and layers

compared to numerous deep neural network approaches.

Notably, a 15-layer SCN model exceeds the performance

of a 164-layer and 1001-layer deep residual network,

respectively. The proposed SCN is implemented using Matlab

with C++ and GPU backend based on the framework of

MatConvNet [48].

Configuration of Network Architecture: Our sparse cod-

ing network consists of seven bottleneck modules with a

total number of fourteen sparse coding layers. The archi-

tecture of the network is inspired by the Residual Network

(ResNet) [18]. The network structure consists of two key

features. First, there are no maxpooling layers. The spatial

subsampling operation is fulfilled by specific sparse coding

layers with a stride of 2. Second, the subsampling is carried out

in deeper layers instead of the shallower ones. Both of these

two strategies have been verified to improve the classification

performance in multilayer architectures [18], [45]. Except for

ImageNet dataset, the SCN architecture used in this paper is

divided into three sections, i.e., (16, 16K )×3−(32, 32K )×2−

(64, 64K )×2, where each (M, M K )× P denotes a bottleneck

module that is repeatedly stacked for P times, the output

dimensions of reduction and expansion layers are M and M K .

For ImageNet, the network structure is set to be (32, 32K ) ×

2 − (64, 64K ) × 2 − (128, 128K ) × 2 − (256, 256K ) × 2.
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Fig. 2. Visualization of feature map: From left to right: Original image; feature maps of our sparse coding network - feature maps contain mostly background
are labeled with yellow rectangles; and feature map of the baseline CNN.

For CIFAR-10 and CIFAR-100, we exploit the performance

of the network with different width, i.e., K ∈ {1, 2, 4}. For

MNIST, SVHN and STL-10, we set K = 4. For ImageNet,

we set K = 4. We denote an SCN with width of M K as

SCN-K. The window size kh at each sparse coding layer

has a size of 3 × 3. Following the architecture of ResNet,

we apply spatial subsampling with a factor of 2 at the last two

bottleneck modules. The last sparse coding layer is followed

by one global spatial average pooling layer [32] and one fully

connected layer which is the linear classifier. Batch normal-

ization is added after each sparse coding layer to facilitate

the convergence. We use the same network configurations for

CIFAR-10, CIFAR-100, STL-10 and SVHN. For MNIST we

set the number of filters at the first layer to be 8 due to the

simplicity of the dataset.

Training: At the training stage, we apply data augmen-

tation and preprocessing for all datasets except for MNIST

and SVHN with random horizontal flipping and random

translation. The image is translated up to 4 pixels in each

direction for CIFAR-10 and CIFAR-100, and up to 12 pixels

for STL-10, which is a common procedure for preprocess-

ing CIFAR-10 [8], [18], [30], [32]. Images in the same batch

share the same augmentation parameters. Both training and

testing images are preprocessed with per-pixel-mean subtrac-

tion, which is a common procedure for preprocessing these

datasets [8], [18], [30], [32]. We use a minibatch size of 128

for MNIST, CIFAR-10, CIFAR-100 and SVHN. For STL-10,

we use a batch size of 16 in order to have more iterations

per epoch on the small training set. For all dataset, the initial

learning rate is set to 0.1 and SCN is trained with a total of 200

epochs. For CIFAR-10, CIFAR-100 and STL-10, we follow a

similar learning rate schedule with [19], where the learning

rate decreases twice at 80 and 160 epochs by a factor of 10.

For MNIST, the network is trained with 25 epochs, where the

learning rate decreases at 10 and 20 epochs by a factor of 10.

The weight decay is set to 0.0005 for all the dataset with cross-

validation. We evaluate our multilayer sparse coding network

on the benchmark dataset of CIFAR-10, CIFAR-100, SVHN

and MNIST.

Baseline Comparison Methods: We compare our pro-

posed SCN with numerous multilayer sparse coding-based

approaches, including multilayer sparsity regularized cod-

ing (OMP) [8] and nonnegative multilayer sparse coding

(NOMP) [33]. We also compare with supervised convolu-

tional kernel networks (SCKN) [34] and scattering network

(ScatNet) [5]. For deep neural network baseline, we mainly

compare with ResNet [18], [19], wide residual network

(WRN) [63] and swapout networks (SwapOut) [44].

A. CIFAR-10 and CIFAR-100

Our most extensive experiment is conducted on the CIFAR-

10 dataset [26], which consists of 60, 000 color images that

are evenly splitted into 10 classes. The database is split into

50, 000 training samples and 10, 000 test samples. Each class

has 5, 000 training images and 1, 000 testing images with size

32 × 32. CIFAR-100 has exactly the same set of images as

CIFAR-10 but are split into 10 times more classes, therefore

each class has much fewer training samples compared with

CIFAR-10, making it a more challenging dataset for the task

of classification.

In Fig. 2, we display the feature maps of both the sparse

coding network and the baseline CNN, which are produced
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Fig. 3. Visualization of feature map in dimension expansion layer and
reduction layer: From left to right: Original image; feature maps of expansion
layer; feature maps of reduction layer.

by the output of the dimension expansion layer in the third

bottleneck module of our sparse coding network and the cor-

responding ReLU layer of the CNN baseline, respectively. The

baseline CNN is constructed by replacing every sparse coding

layer of the SCN with a convolutional layer and a ReLU layer.

The output of the selected layer contains 64 channels and

for each image we present the eight feature maps with the

largest �2-norms. These visualizations indicate the multilayer

sparse coding network has a much better separation of the

foreground and background. The background contains mostly

low-frequency nondiscriminative information, which can be

reconstructed easily with few dictionary atoms. Together with

the nonnegativity constraint on the sparse codes, our network

produces the unmixing effect as we see in the feature map.

In addition, the feature map is also much sparser than that of

the CNN. Moreover, the feature maps of the sparse coding

network are similar to each other, verifying the fact that the

atoms belonging to similar subspaces are activated.

We also study the relation between the features in the

expansion layer and the reduction layer of a single bottleneck

module. The corresponding learned features are extracted

from the hidden outputs of the third bottleneck module. For

each layer, we present the five feature maps with the largest

�2-norms. Visualization of these features are illustrated

in Fig. 3. The features in expansion layer usually contain

smaller parts of the object with a higher sparsity level.

In addition, features in expansion layer contain more edge

information compared to those in the reduction layer. In con-

trast, the features in the reduction layer are composed of

larger parts of objects with more texture information. Hence,

the reduction layer and the expansion layer are specialized in

learning distinctive patterns of the hidden feature maps.

We now study the behavior of the expansion and reduction

layers of our multilayer sparse coding network as well as

the evolution of the regularization parameters by referring to

Fig. 4.

1) Optimization of Regularization Parameters: The evolu-

tion of the regularization parameter with respect to epochs

is shown in Fig. 4a. The displayed regularization parameters

are extracted from each of the sparse coding layers, which

contains a total of 14 learnable regularization parameters. The

parameters grow to larger magnitude as training progresses and

start to decrease when the learning rate is decreased by a factor

of 10. Shown in Fig. 4b, large portion of the regularization

parameters have a magnitude above 0.05, which is able to

enforce the output to be highly sparse. Illustrated in Fig. 4c,

less than 10% of the output elements of the last sparse coding

layer are nonzero.

2) Behavior of Expansion and Reduction Layer: Illustrated

in Fig. 4c, the outputs of the expansion layers are much

sparser than the reduction layers. The shallower layers tend to

have low reconstruction error with low sparsity level, whereas

the deeper layers usually have high reconstruction error but

high sparsity level. For instance, the first expansion layer has

approximately 45% nonzero sparse coefficients with less than

25% reconstruction errors, while the two deepest expansion

layers have less than 10% nonzero coefficients with 50%−60%

reconstruction errors. This observation verifies the fact that

the shallower layers produce low-level reconstructive features,

while the deeper layers produce discriminative features with

weak reconstructive power. Table I and Fig. 5 show that the

classification performance of SCN increases with the width

of the dictionary of the expansion layer, gaining 3% and 6%

on CIFAR-10 and CIFAR-100, respectively. In the case when

K = 4, our 15-layer SCN exhibits competitive performance

compared to 20-layer SwapOut network on CIFAR-10 while

using twice fewer parameters, which further verifies the impor-

tance of the expansion layer.

Unlike the expansion layers, most of the reduction layers

are far less discriminative as shown in Fig. 4d. Except for the

last reduction layer that reaches a sparsity level of 20%, all

others have 40% − 50% nonzero sparse coefficients.

3) SCN With Bottleneck Module Uses Parameters Effi-

ciently: From Table I, we can see that the proposed SCN uses

fewest learnable parameters compared to all baseline models

and contain fewest number of layers compared to all deep

neural network-based baselines. Compared to the state-of-the-

art approach of ResNext, our model uses almost 100× fewer

parameters and almost one half of layers while still reaching

a competitive performance. Moreover, the SCN-4 outperforms

other approaches with similar model size such as ResNet-

1001 on CIFAR-100.

4) SCN Exhibits Strongly Competitive Performance Com-

pared to Baselines Models: The proposed SCN achieves

classification error of 5.81% and 19.93% on CIFAR-10 and

CIFAR-100, respectively, which is shown in Table I. Consider

the small size of our model, the performance of SCN is rather

strong and competitive.

In addition, we also exploit the techniques in deep learning

community in order to further improve the performance of

the proposed SCN model. More specifically, we evaluate the

effectiveness of the shortcut connection in the SCN model.

We impose shortcut connection on every bottleneck mod-

ule by adding its input and output together followed by a

ReLU layer. The SCN architecture with shortcut connection is

denoted as ResSCN. Classification error rates of ResSCN-1,

ResSCN-2 and ResSCN-4 are demonstrated in Table I.
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Fig. 4. (a)-(b): Evolution and distribution of the regularization parameters, respectively. The parameters are extracted from the last sparse coding layer.
(c)-(d): Evaluation of the behavior of upsampling and downsampling layer, respectively. The blue and red lines indicate the nonzero elements and reconstruction
error in percentage, respectively. Layer index specified by the module index.

TABLE I

CLASSIFICATION ERROR (%) ON CIFAR-10 AND CIFAR-100

ResSCN-4 achieves classification error rates of 5.52% and

18.78% on CIFAR-10 and CIFAR-100. Hence, the perfor-

mance of the SCN is further improved by employing shortcut

connection.

B. STL-10

The dataset STL-10 is originally designed for unsupervised

learning, which contains a total number of 5, 000 labeled train-

ing images and 8, 000 testing images with size of 96×96. For

this dataset, we follow the evaluation protocol used in [64].

The training samples in STL-10 is highly limited and SCN

is supposed to generate more competitive performance due to

the regularization from the bottleneck modules. We directly

apply the 14 sparse coding layer model on STL-10 and

replace the 8 × 8 average pooling with 24 × 24. We compare

our network with the baseline of DeepTEN and previous
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Fig. 5. Learning curve of SCN on CIFAR-10 and CIFAR-100. Dotted and solid lines denote the learning curves of training and testing stage, respectively.

TABLE II

CLASSIFICATION ACCURACY (%) ON STL-10

TABLE III

SVHN CLASSIFICATION ERROR

state-of-the-art approach [67]. From table II, we can see

SCN with bottleneck module (SCN-4) outperforms Deep-TEN

under fair comparison by a large margin of 7%. SCN

also exceeds previous state-of-the-art performance [67] by

almost 9%.

C. SVHN

SVHN [40] is a dataset consisting of color images of

digits collected from Google Street View. The images are of

size 32 × 32 with 73, 257 images for training and 26, 032

images for testing. The dataset also comes with 531, 131

additional labeled images. Again, we directly use the network

configuration for CIFAR-100. This dataset is less difficult due

to a large number of the labeled training samples. For a fair

comparison, we delete 400 samples per training class and

200 samples per class from the extra set, which are used

for cross-validation by the compared methods in Table III.

The network is trained only on the training and the extra

set. The image of the dataset is preprocessed by subtracting

TABLE IV

CLASSIFICATION ERROR (%) ON MNIST

per-pixel-mean and we do not conduct any data augmentation.

Due to the large size of the dataset, we only train our network

with 20 epochs. We achieve a test error of 2.16% with a few

learnable parameters. A summary of comparable methods is

shown in Table III. Our sparse coding network outperforms

the CNN-baseline with 0.8% and is comparable with other

state-of-the-art performance while using substantially fewer

parameters.

D. MNIST

The MNIST [29] dataset consists of 70, 000 images of

digits, of which 60, 000 are the training set and the remaining

10, 000 are the test set. Each digit is centered and normal-

ized to a 28 × 28 field. We subtract the per-pixel-mean of

each image and do not perform any data augmentation. The

classification error on this dataset is reported in Table IV.

With limited epochs, our sparse coding network achieves a

classification error of 0.36%, which is comparable with state-

of-the-art performance.

E. ImageNet

To further illustrate the efficiency and scalability of the

proposed SCN on datasets with larger images, we train a

16-layer SCN which is composed of 8 bottleneck modules on

the ImageNet 2012 dataset. The dataset consists of 1.28 mil-

lion training images coming from 1, 000 classes, including
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TABLE V

CLASSIFICATION ERROR (%) ON IMAGENET

TABLE VI

EMPIRICAL INFERENCE TIME (MS) ON IMAGENET

50k validation images and 100k testing images. The models

are trained on the 1.28 million training images, and evaluated

on the 50k validation images. We evaluate both top-1 and top-

5 error rates on this dataset.

We train the proposed SCN with a total number of 100

epochs and employ a batch size of 512. The model is

trained with 8 Nvidia Volta V100 GPUs on Amazon Web

Service (AWS) and takes a total number of 66 hours to finish

the training. Initial learning rate is set to be 0.1 and the

learning rate is reduce by a factor of 10 at epoch 30, 60 and

90. The batch size is set to 512. The purpose this experiment is

to demonstrate the scalability of the proposed model, i.e., we

do not aim at pursuing the highest accuracy but to achieve a

competitive performance under fair comparison.

The experimental result on ImageNet is shown in Table V.

We compare our work mainly with residual networks. For a

fair comparison, we report the ResNet results produced by

Tensorpack [55] which uses the same batch size and learning

rate schedule for training. The proposed SCN-4 achieves an

error rate of 29.58% and 10.75% for top-1 and top-5 error,

respectively.

F. Empirical Computation Time Analysis

For CIFAR-10 and CIFAR-100, training SCN-4 model with

200 epochs takes about 26 hours and inference of all the

10, 000 testing images takes about 9 seconds. Training and

inference with SCN-4 on STL-10 dataset takes about 21 hours

and 65 seconds, respectively. For MNIST, training and testing

takes about 3 hours and 7 seconds, respectively.

On the dataset of ImageNet, we compare the empirical infer-

ence time of various networks including ResNet-18, ResNet-

34 and SCN-4. For each of the networks, we repeatedly

test 1, 000 images of the size 256 × 256 on single Nvidia

Volta V100 GPU and report the averaged inference time in

milliseconds (ms) in Table VI. On average, ResNet-18 and

ResNet-34 inference each image at 9.06ms and 10.87ms,

respectively. On the other hand, SCN-4 takes 18.25ms to

inference single image.

VI. CONCLUSION AND DISCUSSION

In this paper, we have developed a novel multilayer sparse

coding network by training the dictionaries and the regulariza-

tion parameters simultaneously using an end-to-end supervised

Algorithm 2 FISTA for Nonnegative Elastic Net

learning scheme. We have shown empirical evidence that

the regularization parameters can adapt to the given training

data. The high computational complexity of multilayer sparse

coding networks has motivated us to explore more efficient

strategies for accomplishing sparse recovery. We propose

applying reduction layers within sparse coding modules to

dramatically reduce the output dimensionality of the layers and

mitigate computational costs. Moreover, we also show that our

sparse coding network is compatible with other powerful deep

learning techniques such as batch normalization. Our network

produces results competitive with deep neural networks but

uses significantly fewer parameters and layers. In particu-

lar, our network performs exceedingly well on CIFAR-100,

indicating a lower training data requirement compared to

multilayer neural networks.

APPENDIX

A. Solving Constrained Elastic Net Using FISTA

For the purpose of clarification, we describe the nonnegative

FISTA in Algorithm 2, which is used for inference during

training and testing. We denote (A)+ as the element-wise

nonnegative thresholding on A.

B. Dictionary and Parameter Update

We now derive the backpropagation rule for solving prob-

lem 4. In this paper, we derive the updating rule for the case

of holistic sparse coding since extension to the convolutional

local sparse coding is trivial. We start by differentiating the

empirical loss function with respect to every element of the

dictionaries and regularization parameters:

∂L

∂d
(h)
j k

=
∂L

∂α(H)
·

(

h+1
∏

i=H

∂α
(i)

∂α(i−1)

)

·
∂α

(h)

∂d
(h)
j k

, (9)

∂L

∂λ
(h)
1

=
∂L

∂α(H)
·

(

h+1
∏

i=H

∂α
(i)

∂α(i−1)

)

·
∂α

(h)

∂λ
(h)
1

, s.t. λ
(h)
1 > 0,

(10)

where d
(h)
j k is the ( j, k)-element of the dictionary D(h).

To solve for (9) and (10), we need to derive ∂α
(h)/∂α

(h−1),

∂α
(h)/∂d

(h)
j k and ∂α

(h)/∂λ
(h)
1 . We employ fixed point differen-

tiation for deriving the required derivatives, which is based on
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the previous works of dictionary learning for one-layer sparse

coding model [35], [61]. Let α ∈ R
N 2 be the optimal point of

Lasso problem, it then satisfies the optimality condition based

on (6) and for all α
 > 0:

(D>

D
 + λ2I|
|)α
 − D>


x + λ11|
| = 0, (11)

where we have omitted the layer indices for simplicity. 


denotes the active set of the sparse code α and |
| is the

cardinality of the active set. D
 ∈ R
m×|
| is the subset of

dictionary consists of the active atoms. I|
| ∈ R
|
|×|
| is

identity matrix and 1|
| ∈ R
|
| is an all one vector.

1) Differentiation of ∂L/∂D: We first derive the differentia-

tion ∂α/∂d j k for a single dictionary element d j k. The inactive

atoms are not updated since the desired gradient on which

α j = 0 is not well defined [35], [61] and ∂α
c/∂d j k = 0,

where 
c is the complementary of 
. Differentiate both sides

of (11) with respect to d j k for all j ∈ 
:

(

D>

D
 + λ2I|
|

) ∂α


∂d j k

+
∂D>


D


∂d j k

α
 −
∂D>


x

∂d j k

= 0, (12)

which is equivalent with

∂α


∂d j k
= (D>


D
 + λ2I|
|)
−1(

∂D>

x

∂d j k
−

∂D>

D


∂d j k
α
). (13)

We reach the updating rule for a single dictionary element:

∂L

∂d j k

=

(

∂L

∂α

)>




·(D>

D
+λ2I|
|)

−1(
∂D>


x

∂d j k

−
∂D>


D


∂d j k

α
).

(14)

Stacking all elements ∂L/∂d j k into ∂L/∂D and applying

algebraic simplification:

∂L

∂D
= −Dγα

> + (x − Dα) γ
>, (15)

where γ 
 = (D>

D
 + λ2I|
|)

−1 · ∂L/∂α
 and γ 
c = 0.

Due to the sparsity constraint, only few atoms are activated in

each layer and |
| is small enough for efficiently implemen-

tation (21) on modern GPUs.

2) Differentiation of ∂L/∂λ: Differentiating both sides of

Eq. (11) with respect to λ1:

D>

D


∂α

∂λ1
= −1, (16)

and we reach at

∂L

∂λ1
=

(

∂L

∂α

)>




· −(D>

D
 + λ2I|
|)

−1 = −γ . (17)

3) Differentiation of ∂L/∂x: The gradient of sparse code α

with respect to each input signal element x can be reached by

differentiating both sides of (11) with respect to xi :

(D>

D
 + λ2I|
|)

∂α


∂xi

−
∂D>


x

∂xi

= 0, (18)

where xi is the i th element of x. (18) is equivalent with

∂α


∂xi

= (D>

D
 + λ2I|
|)

−1 ∂D>

x

∂xi

. (19)

2We have omitted the superscript ‘*’ for simplicity.

Therefore we have

∂L

∂xi

=

(

∂L

∂α

)>




· (D>

D
 + λ2I|
|)

−1 ∂D>

x

∂xi

, (20)

which can be further simplified as

∂L

∂x
= Dγ . (21)
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