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Quantum entanglement is fragile to thermal fluctuations, which raises the question whether finite
temperature phase transitions support long-range entanglement similar to their zero temperature counter-
parts. Here we use quantumMonte Carlo simulations to study the third Renyi negativity, a generalization of
entanglement negativity, as a proxy of mixed-state entanglement in the 2D transverse field Ising model
across its finite temperature phase transition. We find that the area-law coefficient of the Renyi negativity is
singular across the transition, while its subleading constant is zero within the statistical error. This indicates
that the entanglement is short-range at the critical point despite a divergent correlation length. Renyi
negativity in several exactly solvable models also shows qualitative similarities to that in the 2D transverse
field Ising model.
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Long-range correlations in a quantum system can lead to
long-range quantum entanglement. For example, the
entanglement in the ground state of a 1þ 1D conformal
field theory (CFT) for a subregion of size l takes the form
S ∼ c logl [1–3], and thus is not expressible as the sum of
local terms close to the entangling boundary, i.e.,
Sð2lÞ ≠ 2SðlÞ, underlining the long range nature of
entanglement. Similarly, the entanglement of the ground
state of a 2þ 1D CFT for a circular bipartition of radius R
is given by S ∼ R − F, where F again captures the long-
range entanglement [4–10]. At the same time, long-range
correlations do not necessarily imply long-range entangle-
ment as is evident by considering a classical Ising model at
its finite temperature critical point—the entanglement is
clearly zero in this system for any bipartition. A more
interesting question is to consider a quantum Hamiltonian
in d space dimensions at a finite temperature critical point
where the system is described by the Gibbs state ρ ∝ e−βH,
not a pure state. The critical exponents for this system are
described by a d-dimensional classical field theory [11]
since the imaginary time direction is finite. What is the
nature of quantum entanglement across such a transition?
Does there exist any universal long-distance component of
entanglement at this critical point? Although enormous
progress has been made in last two decades in under-
standing entanglement of pure quantum states, very little is
understood about the entanglement of interacting many-
body quantum systems in mixed states such as the Gibbs
state. In this Letter, we will study a specific quantity called
entanglement Renyi negativity at a finite temperature
critical point for a 2þ 1D lattice model using quantum

Monte Carlo (QMC) simulations, and make progress on
some of these qualitative questions.
Given a density matrix ρ on a bipartite Hilbert space

HA ⊗ HB, the two parties A and B are separable if and only
if ρ can be expressed as a convex combination of direct
product states: ρ ¼ P

i Piρ
A
i ⊗ ρBi . There exist several

measures of entanglement that quantify how much a given
state deviates from a separable state. Most of these
measures require optimization over all possible states in
the Hilbert space, making them intractable for many-body
systems [12]. However, there does exist at least a mixed
state entanglement measure called entanglement
negativity [13] (henceforth just “negativity” for brevity),
which does not invoke any optimization. Consider a
density matrix acting on the Hilbert space HA ⊗ HB:
ρ ¼ P

A;B;A0;B0 ρA;B;A0B0 jAijBihA0jhB0j, a partial transpose
operation over A gives ρTA ¼ P

A;B;A0;B0 ρA;B;A0B0

jA0ijBihAjhB0j. The negativity EN is then defined as
EN ¼ logðkρTAk1Þ. Although negativity can be zero for
an entangled mixed state, a nonzero negativity necessarily
implies the nonzero entanglement between the two parties.
In spite of being computable without requiring any

optimization, negativity is analytically tractable only in
simple models such as free bosonic and fermionic
systems [14–19], 1þ 1D CFTs, integrable spin chains
[20–23], and systems that have a tensor network repre-
sentation such as commuting projector Hamiltonians
[24–28]. It is thus desirable to devise a QMC scheme
for large-scale simulation. However, the definition of
negativity involves a matrix one norm, which impedes
the construction of a QMC algorithm. Taking a cue from a
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somewhat similar obstacle in the evaluation of von
Neumann entropy for pure states [29], one approach is
to instead consider “Renyi negativity” which involves
various moments of the partial transposed density matrix.
Such an object was first introduced as an analytical tool to
calculate negativity in the CFT [20,30], and was later
implemented in a QMC simulation by the replica trick in
Refs. [31,32] for a 1D spin chain and the Bose-Hubbard
model. It has also been studied in the ground state of two-
dimensional free lattice models [15,16].
Here we present an extensive numerical study for Renyi

negativity in the 2D transverse field Ising model (TFIM)
using QMC simulations. In contrast to the 1D models in
Refs. [31,32], or the free models in Refs. [15,16], the 2D
TFIM hosts a finite temperature transition, which allows us
to pose and answer questions related to the universal mixed
state entanglement across the transition.
Renyi negativity in simple models.—The Renyi

negativity of index n is defined as Rn ¼ − log
½(trfðρTAÞng)=(trρn)�. When ρ is a pure state, Rn directly
relates to Renyi entanglement entropy Sn with Rn ∝ Sn for
odd n, and Rn ∝ Sn=2 for even n. Rn reduces to−EN with an
analytic continuation by sending n → 1 for even n [20,30].
For a large class of lattice models and field theories

relevant to our discussion, Renyi negativity shares several
key features with the negativity EN. For example, for the
Gibbs state corresponding to a 1D CFT, both Rn and EN
exhibit an area law with similar dependence on tempera-
ture: EN; Rn ∼ logðβÞ [21,33]. Next, consider higher
dimensional solvable models studied in Refs. [18,27] that
exhibit a finite-T phase transition. The key results from
these models were (i) for nonlocal models (such as the
spherical model), EN is singular across the phase transition;
(ii) for local models, area-law coefficient of EN is singular
across the finite temperature phase transition; (iii) for local
models, after subtracting off the local terms (which
includes the area-law component), negativity decays
exponentially even at the critical point: ΔEN ∼ e−L=ξQ ,
where ξQ defines a “quantum correlation length” that
remains finite even at the transition. The significance of
the last result implies that the long-range component of
negativity vanishes in the thermodynamic limit, in agree-
ment with the conventional wisdom that these phase
transitions are “classical” rather than “quantum”.
We find all these features carry over to the Renyi

negativity Rn, with the difference that the temperature
where the partition function Z ¼ trðe−βHÞ becomes singu-
lar is given by nTc where Tc is the actual critical tempera-
ture. This is because Rn involves raising the Gibbs state to
the power n, and thus the effective inverse temperature for
the bulk of the system is given by nβ, where β is the
physical inverse temperature. To illustrate these points, first
consider the quantum spherical model from Ref. [27],
H ¼ 1

2
g
P

N
i¼1 p

2
i − ð1=2NÞPN

i;j¼1 xixj, where fxig is
subject to the spherical constraint: δ½ð1=NÞPN

i¼1 x
2
i − 1

4
�.

This model hosts a finite-T transition at a coupling
gc and temperature Tc that satisfy the equation
2

ffiffiffiffiffi
gc

p
cothð1

2
βc

ffiffiffiffiffi
gc

p Þ ¼ 1. We find that although the
Renyi negativities for this model are continuous functions
of temperature, the derivative dRn=dT is discontinuous at a
temperature nTc, similar to the behavior of negativity EN
[34]. Since this model is nonlocal, Renyi negativities do not
follow an area law, and there is no distinction between
local contributions to negativity from nonlocal ones.
To that end, we next briefly report the results on Renyi
negativity for a local model considered in Ref. [18]:
H ¼ 1

2

P
r⃗ ðπ2r⃗ þm2ϕ2

r⃗Þ þ 1
2

P
hr⃗;r⃗0iKðϕr⃗ − ϕr⃗0 Þ2, where the

physical mass obeys m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tn;c

p
for T > Tn;c, and

m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðTn;c − TÞp

for T < Tn;c. Here Tn;c ¼ nTc gives
the critical temperature of the state ρ ∼ expf−nβHg. This
model can be considered as a mean-field description of the
TFIM while taking into account Gaussian fluctuations. We
find that the area-law coefficient of the Renyi negativity has
a cusp singularity at a temperature T ¼ nTc where Tc is the
physical critical temperature, while the subleading, long-
distance part of Renyi negativity, defined via a subtraction
scheme analogous to Kitaev-Preskill/Levin-Wen construc-
tion [35,36], decays exponentially with system size, even at
the critical point [34].
Renyi negativity for 2þ 1D transverse field Ising

model.—The models discussed above are exactly solvable,
and one might wonder if the qualitative features exhibited
by them may be attributed to this fact. We now turn
our focus to the TFIM on a square lattice, which is known
for hosting a finite-T phase transition within 2D Ising
universality, and is not exactly solvable. The Hamiltonian is
given by

H ¼ −
X
hiji

σziσ
z
j − hx

X
i

σxi ; ð1Þ

where the σzi ; σ
x
i are the Pauli operators at site i, and hiji

denotes all the nearest neighbor pairs on a square lattice.
We impose the periodic boundary condition, and set
hx ¼ 2.75. We first locate the corresponding critical inverse
temperature βc ¼ 1.0874ð1Þ from a finite size scaling of the
Binder ratio B2 ¼ hM4

zi=hM2
zi2 calculated by the standard

stochastic series expansion (SSE) simulation [34]. This
result is consistent with a previous QMC study [40].
Since the Renyi negativity Rn vanishes for n ¼ 1, 2, the

smallest nontrivial integer is n ¼ 3, which will be the focus
of our QMC simulations. R3 can be expressed as

R3ðAÞ ¼ − log

�
trfðρTAÞ3g

trρ3

�
¼ − log

�
Z½A; β; 3�
Z½3β�

�
; ð2Þ

where Z½A; β; 3� ¼ trf½ðexpð−βHÞÞTA �3g and Z½3β� ¼
tr½expð−3βHÞ� are the partition functions subjected to
the boundary conditions shown in Figs. 1(a) and 1(b),
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respectively. Therefore, the Renyi negativity can be calcu-
lated using the SSE by numerically integrating the differ-
ence between the energy estimators for different boundary
conditions:

R3½β� ¼
Z

β

0

dβ0hEðβ0ÞiA;β;3 − hEðβ0Þi3β; ð3Þ

where h� � �iA;β;3 and h� � �i3β denote the expectation values
evaluated with corresponding boundary conditions. Here,
we focus on dR3=dβ as the derivative enhances the
singularity in a finite-size simulation. Since dR3=dβ
corresponds simply to the difference between the energy
estimators, no thermodynamic integration is required.
Figure 2(a) shows the temperature derivative of the area-

law coefficient R3=j∂Aj as a function of the temperature for
different system sizes. Here j∂Aj denotes the length of the
boundary of region A over which partial transpose is taken.
The singularity occurs at T ¼ 3Tc, consistent with our
expectations. To understand the precise nature of this
singularity, we note that on general symmetry grounds,
the leading singular contribution to the area-law coefficient
of negativity EN=j∂Aj as well as its Renyi counterparts will
be proportional to the energy density [18]. Therefore,
dðEN=j∂AjÞ=dT as well as dðR3=j∂AjÞ=dT will receive a
contribution proportional to the specific heat. For instance,
in the exactly solvable model discussed above, both
dEN=dT and dR3=dT are discontinuous across the tran-
sition, which is indeed the singular behavior of the specific
heat within the mean field [34]. Returning to the 2D Ising
model, we recall that the specific heat exponent α ¼ 0 and
the correlation length exponent ν ¼ 1. Denoting the linear
size of the system by L and t ¼ ðT − TcÞ=Tc, the singular
part of the specific heat in the vicinity of the critical point
takes the form cv;singðL; tÞ ∼ cv;singðL; 0Þ þ fðLtÞ where
cv;singðL; 0Þ ∝ logðLÞ and f is a universal function with the
form fðjxj ≪ 1Þ ∼ constant, and fðjxj ≫ 1Þ ∼ − logðjxjÞ
[41]. Note that were α ≠ 0 (e.g., in the 3D Ising
model), cv;singðL; tÞ would take a different form,
namely, cv;singðL; tÞ ∼ cv;singðL; 0ÞgðLtÞ.
Figure 2(b) shows the scaling collapse of

dðR3=j∂AjÞ=dT − dðR3=j∂AjÞ=dTj3Tc
with respect to Lt,

where t ¼ ðT − 3TcÞ=3Tc, consistent with our expectation
that dðR3=j∂AjÞ=dT is proportional to the specific heat of

the 2D Ising model. The inset shows the scaling right at the
critical point, where we find that dðR3=j∂AjÞ=dT ∝ logðLÞ,
again consistent with 2D Ising universality.
Universal long-range Renyi negativity.—Now we turn to

the question of whether there is a universal subleading term
in the Renyi negativity that reflects long-range quantum
entanglement. Writing R3 ¼ al − γ þ b=lþ � � �, where l is
the size of the entangling boundary, we are interested in
whether γ is nonzero. To extract γ we use a subtraction
scheme introduced by Levin and Wen [36] in the context of
the ground state topological order, to cancel out the short-
distance (local) contributions to negativity. In particular, we
construct four subregions S1, S2, S3, and S4 using combi-
nations of four subparts marked as Ξ1, Ξ2, Ξ3 and Ξ4

(see inset of Fig. 3). The subregions Si are defined as
S1≡Ξ1 ∪Ξ4;S2≡Ξ1 ∪Ξ2 ∪Ξ4;S3≡Ξ1 ∪Ξ2 ∪Ξ3 ∪Ξ4, and

FIG. 1. Boundary conditions for different replicas in space-
imaginary time for (a) trfðρTAÞ3g and (b) trðρ3Þ.

FIG. 2. (a) Temperature derivative of the area-law coefficient of
the Renyi negativity across the finite temperature transition.
Geometry of the bipartition is shown in the inset and the vertical
line indicates the location of the transition. (b) Data collapse for
Fig. 2(a). The inset shows the linear scaling of temperature
derivative at the critical point with logðLÞ.
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S4 ≡ Ξ1 ∪ Ξ3 ∪ Ξ4. The nonlocal component γ of R3 is
given by

γ ¼ −½R3ðS2Þ − R3ðS1Þ − R3ðS3Þ þ R3ðS4Þ�=2
¼ −½2R3ðS2Þ − R3ðS1Þ − R3ðS3Þ�=2; ð4Þ

where we have used the relation R3ðS2Þ ¼ R3ðS4Þ arising
from the symmetry of the model Hamiltonian.
The most straightforward way to compute γ is to

calculate R3ðSiÞ separately and perform the subtraction
as in Eq. (4). However, this requires three independent
simulations and, the errors from each R3ðSiÞ will cumulate
in the final subtraction. Here we develop an expanded
ensemble method that allows us to calculate γ in a single
simulation. We first write γ as the logarithm of the ratio of
partition functions

γ ¼ 1

2
log

Z2
S2

ZS1ZS3

; ð5Þ

where ZSi is a shorthand notation for Z½Si; β; 3�.
To implement our method, in addition to the conven-

tional SSE update, we also perform sampling in an
expanded ensemble of the partition functions. In particular,
we allow the system to switch between different partition
functions ZSi by changing the imaginary-time boundary
conditions [see Fig. 1(a)]. This can be achieved by
sampling the total partition function Ztot defined as

Ztot ¼
X3
i¼1

ZSi ; ð6Þ

by proposing a move from ZSi to either ZSiþ1
or ZSi−1 with

equal probability. The update is accepted if the spin

configuration is consistent with the new boundary con-
ditions. It is clear that these moves correspond to adding or
removing only region Ξ2 or Ξ3, which is much smaller than
Si, so a better acceptance rate can be achieved. The ratio
Z2
S2
=ZS1ZS3 then is simply estimated by N2

S2
=NS1NS3,

where NSi is the number of samples in ZSi .
Since γ is computed in a single simulation with an

enlarged ensemble, we avoid the accumulation of error in
the naive postsubtraction. The new method is crucial in
obtaining accurate γ, especially for the large system size
L ¼ 60. As the system size increases, the acceptance rates
for exchanging regions Ξ2 and Ξ3 become smaller as more
sites need to be updated. In such a case, we can further
divide Ξ into several smaller subregions to add more
intermediate ensembles and optimize the performance with
the reweighting method [34]. The simulation typically runs
with 108 Monte Carlo steps for smaller system sizes,
and runs with around 109 Monte Carlo steps for larger
system sizes.
Figure 3 shows the results for γ. It is essentially zero at

temperatures across the transition for all the system sizes
we consider, despite the fact that each individual term
R3ðSiÞ is singular at the transition (Fig. 2). This indicates
that this finite-T transition is driven purely by classical
correlations and there exists no long-range entanglement at
the transition, in line with our expectations based on the
results from Ref. [18] and of the exactly solvable models
discussed above.
Before concluding, we briefly comment on the corner

contribution for Renyi negativity. For a 2þ 1D CFTat zero
temperature, a corner at the entangling boundary contrib-
utes a universal logarithmic term to the entanglement
[15,42–45]. We expect that this logarithmic term will be
replaced by a nonuniversal constant at a finite-T critical
point discussed in this work if one uses (Renyi) negativity
as an entanglement measure. This is due to the finite
“entanglement length scale” set by the inverse temperature
β (see Ref. [34] for a heuristic argument and numerical
evidence in a solvable model). This is consistent with
vanishing of the subleading term γ: had there been a
logarithmic corner contribution, γ itself would have also
diverged logarithmically under the Levin-Wen scheme.
Conclusion.—We presented the first QMC study of the

Renyi negativity, a variant of negativity, across a finite-T
phase transition in a nonintegrable model (2D TFIM). We
found a clear signature of singularity in the area-law
coefficient of bipartite Renyi negativity, and vanishing of
the subleading, nonlocal part of Renyi negativity. This
indicates that the long-range correlations inherent to the
critical point are completely classical, and the singularity
associated with quantum correlations is localized close to
the boundary. To extract this subleading term, we imple-
mented the Levin-Wen subtraction scheme using a novel
Monte Carlo algorithm that automatically cancels out the
leading area-law contribution in a single simulation.

FIG. 3. The subleading contribution γ to the third Renyi
negativity R3 obtained via Levin-Wen’s subtraction scheme
across the critical temperature. The inset shows the four subparts
Ξ1, Ξ2, Ξ3, and Ξ4 employed in the subtraction scheme (see the
main text for details). The dashed vertical line shows the location
of the critical point.
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We note that Ref. [46] used a linked-cluster expansion to
argue that the area-law coefficient of negativity is not
singular across the finite-T transition in the 2D TFIM.
Although we only studied Renyi negativity, our results
along with the results of Ref. [18] strongly suggest that the
lack of any visible singularity in Ref. [46] is due to rather
small system sizes accessible within the linked-cluster
expansion (L≲ 10). Even for the Renyi negativity, singu-
larity at the critical point would not be visible at such sizes.
We also extended the analytical results on the negativity

of exactly solvable models to the Renyi negativity, and
found that they share essentially all qualitative features
close to a finite-T transition. In particular, while the area-
law coefficient is singular, the subleading component γ
vanishes exponentially with the system size. We are unable
to do similar scaling analysis for the 2D TFIM because the
Monte Carlo sampling error in γ increases rapidly when
increasing the system size while the mean value of γ is close
to zero.
The vanishing of the nonlocal component of Renyi

negativity suggests that the Gibbs state is separable up
to short-distance quantum correlations. Therefore, we
expect that there exists a minimally entangled typical
thermal state (METTS) decomposition [47] of the
Gibbs state both near and at the finite temperature tran-
sition: ρ ¼ P

i pijψ iihψ ij where each pure state jψ ii is
short-range entangled. Another promising future direction
would be to study the Renyi negativity in 4D toric code,
which is argued to host a finite temperature transition from
a topological ordered phase to a topologically trivial Gibbs
state [48], using a similar QMC scheme.
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