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Abstract—We prove that computing a Nash equilibrium of a
two-player (n X n) game with payoffs in [—1, 1] is PPAD-hard
(under randomized reductions) even in the smoothed analysis
setting, smoothing with noise of constant magnitude. This gives
a strong negative answer to conjectures of Spielman and Teng
[ST06] and Cheng, Deng, and Teng [CDT09].

In contrast to prior work proving PPAD-hardness after
smoothing by noise of magnitude 1/poly(n) [CDTO09], our
smoothed complexity result is not proved via hardness of
approximation for Nash equilibria. This is by necessity, since
Nash equilibria can be approximated to constant error in quasi-
polynomial time [LMMO3]. Our results therefore separate
smoothed complexity and hardness of approximation for Nash
equilibria in two-player games.

The key ingredient in our reduction is the use of a random
zero-sum game as a gadget to produce two-player games which
remain hard even after smoothing. Our analysis crucially shows
that all Nash equilibria of random zero-sum games are far from
pure (with high probability), and that this remains true even
after smoothing.

Keywords-Nash equilibrium; PPAD; zero-sum game;
smoothed analysis; smoothed complexity; anticoncentration

I. INTRODUCTION

Nash equilibrium is the central solution concept in game
theory. Computational complexity results establishing the in-
tractability of Nash equilibrium [SV06], [CDT09], [DGP09]
suggest that players that are even mildly computationally
bounded may not be able to converge to a Nash equilibrium
in the worst case. However, the fragility of these intractable
game constructions, together with the fact that random
games are tractable [BVV07], have led experts to conjecture
that Nash equilibrium should have smoothed polynomial
time algorithms (e.g. [ST06] Conjecture 15, and [CDTO09]
Conjecture 2). If these conjectures were true, they could
explain why players in realistic games can converge to equi-
librium. In this paper, we prove that even with aggressive
smoothing perturbations of constant magnitude, finding a
Nash equilibrium continues to be PPAD-complete (under
randomized reductions).

Shant is supported by NSF grant CCF-1750436.
Joshua is supported by an NSF Graduate Research Fellowship.
Samuel is supported by a Miller Postdoctoral Fellowship.

Definition 1 (X-SMOOTHED-NASH).

For a distribution X on R and problem size n, fix worst-
case n X n matrices W, Wp with entries in [—1,1], and
let No, Ng be n x n matrices whose entries are drawn
iid. from X. X-SMOOTHED-NASH is the problem of
computing, with probability' at least 1 — % a Nash equilib-
rium of the game (W4 + Na, Ws + Np).

Theorem 1 (Main Theorem).

There exists a universal constant € > 0, such that for any
probability distribution X on [—e, €], X-SMOOTHED-NASH
is PPAD-hard under a randomized reduction.”

A. Complexity context: smoothed analysis vs hardness of
approximation

In their 2006 survey on smoothed analysis, Spielman
and Teng posed the challenge ([ST06], Open Question
11) of exploring the connections between smoothed com-
plexity and hardness of approximation. Concretely, they
considered the example of two-player Nash equilibrium
subject to o-bounded perturbations: Given a hard game
A,B € [-1,1]™*", perturbing each entry independently
gives rise to a new instance A, B € [-1 — 0,1 + o]"*";
any Nash equilibrium of A, B is an O(c)-approximate-Nash
equilibrium of the original game A, B. Hence, solving Nash
equilibrium in the smoothed model is at least as hard as
approximating Nash [ST06, Proposition 9.12].

More generally, any hard instance = of any computational

! Amplifying the success probability of smoothed algorithms is generally
non-trivial (and sometimes impossible). We note that our hardness result
continues to hold even for algorithms that are only required to succeed with
probability o(1).

2Formally, we assume that there is a (single-dimensional) distribution
X’ such that Pr,x ./ x/(Jz — 2| > 1/poly(n)) < 1/poly(n) and
X' can be sampled by randomized polynomial-time algorithm. This holds
for any natural smoothing distribution — e.g. truncated Gaussian or uniform.
For arbitrary X such X’ can be sampled by a randomized algorithm which
receives as input a poly(n)-size approximation of the CDF of X. For X
where such advice is necessary, our arguments show that X-SMOOTHED-
NASH is PPAD-hard under randomized reductions with polynomial-length
advice.
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The o-neighborhood of an intractable instance z. Tractable instances are colored. (1-a) smoothed-algorithmica: almost all instances in the

o-neighborhood are tractable, (1-b) smoothed-complexity: very few instances in the o-neighborhood are tractable; (1-c) hardness of approximation: it

is intractable to find a solution to any instance in the o-neighborhood.

problem® (e.g. © = (A, B) in the case of Nash) can be in
one of three states (as illustrated in Figure 1):
Smoothed-algorithmica*: Most instances in z’s neighbor-
hood can be solved efficiently.

Smoothed-complexity: A small fraction of z’s neighbor-
hood can be solved efficiently.
Hardness-of-approximation: Finding a solution for any
instance in z’s neighborhood is intractable.’

Of course, as in Spielman and Teng’s proposition,
hardness-of-approximation immediately rules out efficient
smoothed algorithms. But most interesting open problems
in smoothed analysis admit approximation algorithms; this
limits the applicability of using hardness-of-approximation
to prove new smoothed-complexity results.

In contrast to the thriving literature on hardness of ap-
proximation and smoothed algorithms, smoothed complexity
results are rare. In this paper, we make a small step toward
establishing a theory of smoothed complexity, in the con-
text of Spielman and Teng’s original example: two-player
Nash equilibrium subject to bounded perturbations®. While
settling an open problem in equilibrium computation, we
believe that our result is just the tip of the iceberg of the
theory of smoothed complexity.

B. Historical context

In 1928 Von Neumann [Neu28] proved that every (finite,
perfect information) zero-sum game has an equilibrium;
this result was extended to general games by Nash in

3Naturally, the correspondence between approximation algorithms and
smoothed analysis requires matching the respective notions of approxima-
tion and smoothing perturbations.

4The name is “smoothed-algorithmica” is a cultural reference to Im-
pagliazzo’s five worlds [Imp95] and should not be interpreted to imply
a technical connection. Formally speaking, the existence of smoothed-
algorithmica yet intractable instances is in fact consistent with any of
Impagliazzo’s worlds except Algorithmica.

SIntuitively we would like to say that every instance in z’s neighborhood
is intractable. Formally, however, this may be inaccurate. In fact in the case
of Nash equilibrium it is provably false! Given game (A, B), consider game
(A’, B), where A’ — A is a matrix whose entries are identically equal to
some small A which encodes a Nash equilibrium for (A, B) (and hence
also for (A’, B)).

6Speilman and Teng discuss perturbing each entry by a uniform-[—o, o]
noise, but our result holds for any bounded i.i.d. perturbations
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1951 [Nas51]. In 1947 Dantzig [Dan98] designed the sim-
plex algorithm for solving linear programs (and thus also
zero-sum games); in 1964 Lemke and Howson [LH64]
gave a simplex-like algorithm for general games. Both are
known to take exponential time in the worst case [KM72],
[SVO06], but are observed to perform much better in practice
(e.g. [Sha87], [ARSvS10]).

For linear programming, Khachiyan [Kha79] gave the
first polynomial time algorithm in 1979, and Spielman and
Teng proved in 2004 [ST04] that the simplex algorithm has
smoothed polynomial complexity. It was natural to hope
(and in fact quite widely believed, e.g. [DGP05] and [STO06,
Conjecture 9.51] respectively) that the last two results would
again be extended to general games. Surprisingly, this was
ruled out by Chen, Deng, and Teng [CDTO09]. Specifically,
they showed that 1/poly(n)-approximate Nash equilibrium
is hard, which by Spielman and Teng’s proposition rules
out any smoothed efficient algorithms for noise magnitude
1/poly(n) (assuming PPAD is not contained in search-
RP). Chen, Deng, and Teng nevertheless conjectured that
for constant magnitude noise, two-player Nash equilibrium
should have a polynomial time algorithm.

Progress on smoothed complexity of Nash with e-noise
(for small constant ¢ > 0) was made by [Rub16] who proved
the following hardness of approximation result: assuming
the “Exponential Time Hypothesis for PPAD” ”, finding an
e-approximate Nash equilibrium requires quasipolynomial
(= n'°e(") time. By Spielman and Teng’s proposition,
this hardness of approximation result also implies an anal-
ogous quasipolynomial hardness in the smoothed setting.
For hardness of approximation, the result of [Rubl6] is
essentially optimal due to a matching quasipolynomial time
approximation algorithm [LMMO3]. This quasipolynomial
time algorithm does not extend to the smoothed case, and
a large gap in the complexity of constant-smoothed Nash
(quasipolynomial vs exponential) remained open.

In this work, we resolve the complexity of two-player
Nash equilibrium with constant-magnitude smoothing, prov-

"The Exponential Time Hypothesis (ETH) for PPAD is a strengthening
of PPAD Q (search-)RP, which postulates that End-of-Line (the canonical

PPAD-problem) requires 291 time.
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ing that it is PPAD-complete (under randomized reductions).
Compared to [Rubl6], we rule out smoothed polynomial
time algorithms under a much weaker assumption (PPAD ¢
(search-)RP vs ETH for PPAD).}? Alternatively, comparing
both results under the same assumption, ETH for PPAD,
we prove a much stronger lower bound on the running time
(2PN (") ys 2 plog(m))?  Finally, another advantage of our
result compared to [Rub16] is that our proof is much simpler,
and in particular does not require any PCP-like machinery.

C. Intuition and roadmap

We will reduce 1/poly(n)-approximate Nash to X-
SMOOTHED-NASH. The starting point of our reduction is
the following simple idea: for any mixed strategies (z,y)
which are spread over a large number of actions, the noise
from the smoothing averages out. In contrast, if we start
with an off-the-shelf PPAD-hard game (P, @) and amplify
it by simple repetition (formally, tensor the payoff matrices
P, @ with the all ones matrix J), the signal from P, Q will
remain strong even with respect to well-spread strategies.
This means that given a well-spread (in a sense we make
precise later) Nash equilibrium x, y for a tensored, smoothed
game (P®J+Np,Q®J+Ng), we can recover a 1 /poly(n)-
approximate equilibrium for (P, Q).

There is one major problem with the reduction suggested
above: an oracle for X-SMOOTHED-NASH might not re-
turn a well-spread equilibrium (z, y). Our goal henceforth is
to modify this construction to create a game where no Nash
equilibrium has strategies concentrated on a small number of
actions. Note that pure or even small-support equilibria don’t
break only our proof approach: they can be found efficiently
by brute-force enumeration, so such games cannot be hard.

Which games have no strategies concentrated on a small
number of actions? At one extreme, if the entries of the
payoff matrices are entirely i.i.d. (from any continuous
distribution), a folklore result states that the game has a
pure equilibrium with probability approaching 1 —1/e. This
creates a significant problem: we have to work with games
where the entries are smoothed with independent noise —
if such games turn out also to have pure or small-support
strategies, then they cannot be hard.

In contrast to i.i.d. random games, we observe that random
zero-sum games tend to have only well spread equilib-
ria [Rob06], [Jon04]. For example, they are exponentially
unlikely to have a pure equilibrium; intuitively, if a pure
strategy profile is exceptionally good for one player, it is
likely exceptionally bad for the other. In the context of
our proof approach, another advantage of random zero-sum

8As discussed above, this holds in the case that X is approxi-
mately polynomial-time sampleable — otherwise we require the assumption
PPAD ¢ (search-)RP/poly.

9In fact, under the plausible hypothesis that the true complexity of End-
of-Line (the canonical PPAD-problem) is ~ 27" for some constant 0 <
a < 1/2, our result implies the qualitatively-same strong lower bound, and
the result of [Rubl6] completely breaks.
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games is that with respect to well-spread mixed strategies,
they will also average out. That is, even if we add a random
zero-sum game Z, we can still hope to recover a 1/poly(n)
Nash equilibrium for (P, Q) from a well-spread equilibrium
for (P®J+ Z+ Np,Q ® J — Z + Ng). Our main
technical task is to show that adding a random zero-sum
game in this fashion produces a game with only well-spread
Nash equilibria, even in the presence of the i.i.d. smoothing
Ny, Np.

Our first step is to rule out all small support equilibria.:
In Section IV we formalize the above intuition, showing that
every equilibrium of a random zero-sum game has large sup-
ports, even when we add constant-magnitude perturbations.
For technical reasons, our proof in this section works for
random zero-sum games whose entries are drawn uniformly
from discrete {—1,1}.

Our second step is to obtain a robust version of no-
small-support.: Namely, building on the fact every equi-
librium has large support, in Section V we prove that it
must be well-spread (formally, the mixed strategies have
small || - ||2 norm). For technical reasons, our proof in this
section works for random zero-sum games whose entries
are drawn uniformly from continuous [—1, 1]. Fortunately,
we can make both of proofs work simultaneously by taking
the sum of a {—1,1} and a [—1, 1] zero-sum games.

Putting it all together.: To summarize, our final con-
struction of hard instance is given by:

A= PeJ + Zy11y + Z1g
B = Q@J - Z{—l,l} - Z[—l,l]v
S—— ——
PPAD-hard large support well-spread

where Z¢_1 1y, Z[_1,1) are random matrices with i.i.d. en-
tries uniformly sampled from {—1,1} and [—1, 1] (respec-
tively), and (P, @) is a PPAD-hard bimatrix game, and .J is
an (appropriate-dimension) all-ones matrix.

In Section III, we show that when the Nash equi-
librium strategies are well-spread, the random zero-sum
games and random perturbations average out. Thanks to the
amplification, the signal from (P, Q) remains sufficiently
strong. Thus, we can map any Nash equilibrium of (A, B)
to a 1/poly(n)-approximate Nash equilibrium of (P, Q).
By [CDTO09] this suffices to establish PPAD-hardness (under
randomized reductions).

Remark (Inverse-polynomial signal-to-noise ratio).

Interestingly, the amplification of (P, Q) by repetition is
so powerful that our proof would go through even if we
were to multiply P and @ by an inverse-polynomial small
scalar.'? In this sense, we show that Nash remains intractable
even subject to noise (zero-sum + i.i.d.) that is polynomially
larger than the worst-case signal.

10We only informally state the result to prioritize simplicity, but it will
be evident by the remarks in Section II-A.
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D. Additional related work

Subsequent to the seminal works of [DGP09], [CDT09]
which showed that Nash equilibrium is PPAD-complete,
there has been an active line of work on algorithms
with provable guarantees for exact or approximate equi-
libria in special cases including: sparse games [BarlS§],
low-rank games [KT10], [AGMSI11], positive-semidefinite
games [ALSV13], anonymous games [DP15], [CDS17], tree
games [EGGO6], [BLP15], [OI16]. Complexity limitations
for most of these special cases known as well: sparse
games [CDTO06], [LS18], low-rank games [Mehl14], anony-
mous games [CDO15], and tree games [DFS20].

More relevant to the topic of smoothed analysis, it is
known that when equilibria do not fluctuate when the input is
perturbed, finding equilibria can be done efficiently [BB17].
Furthermore, a game chosen at random is likely to have
easy-to-find equilibria [BVVO07].

Spielman and Teng [ST06, Open Question 11] ask
whether there is a relation between approximation hardness
and smoothed lower bounds: the former implies the latter,
but little else is known regarding smoothed lower bounds.
For the case of integer linear programs over the unit cube,
Beier and Vocking [BV06] show that a problem has polyno-
mial smoothed complexity if and only if it admits a pseudo-
polynomial algorithm. Note that a pseudo-polynomial algo-
rithm can be used to approximate by truncating input num-
bers. For other problems, we are aware of a few papers that
argue smoothed complexity lower bounds via approximation
hardness, e.g. [CDTO09], [HTO07], [KNO7].

II. PRELIMINARIES

We formally define the problem here, and present some
remarks. Let m be a positive integer. We let e; € R"
be the ith indicator vector. Let A, B € R"*™ be payoff
matrices (corresponding to Alice and Bob). We define a
Nash equilibrium to be vectors x,y € RZ,, called mixed
strategies, such that ||z||; = ||y||1 = 1 we have that

xT Ay = maxe] Ay
i€[n]

T By = max x' Be,.
i€[n]

We say that an equilibrium is e-approximate if

xTAy + € > maxe] Ay
i€[n]

xTBy + ¢ > maxxT Be;.
i€[n]

For a given equilibrium «,y (often clear from context),
we let A% and B be the restrictions of A and B to
supp(x) x supp(y), respectively. We let A9 and B0 be
the restrictions to supp(x) x supp(y), etc. Computing any
Nash equilibrium, even n~?()-approximate, is known to be

PPAD-complete [CDT09]:
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Theorem 2 ([CDTO09]). For all ¢ > 0, computing an n~°-
approximate Nash equilibrium of an n X n bimatrix game
with entries bounded in [0,1] is PPAD-complete.

A. Remarks on the reduction

The reduction, presented in Section III, will ultimately
take a hard instance of Theorem 2 and transform it into
a instance of X-SMOOTHED-NASH, for suitable distri-
butions X. By the nature of the reduction, if one applies
the same reduction with a wider hardness-of-approximation
guarantee, one can deduce that for a suitable constant ¢ > 0,
it is PPAD-hard under a randomized reduction to find a n™¢-
approximate equilibrium of X-SMOOTHED-NASH (see,
e.g., Eq. 5). This has two interesting implications.

First, this means that if you truncate the output of the
distribution X, as well as the uniform distribution sampled
in the reduction, to O(logn) bits, it is still PPAD-hard to
find an (approximate) equilibrium for the resulting instance
. In particular, the smoothed complexity result is robust to
the underlying arithmetic representation of the payoffs.

Second, scaling down the hard instance of Theorem 2 by
a small polynomial still maintains an n~ () hardness-of-
approximation guarantee. Thus, as mentioned in the intro-
duction, the reduction implies that Nash remains intractable
even subject to noise (zero-sum + i.i.d.) that is polynomially
larger than the worst-case signal.

B. Concentration for random bilinear forms

We introduce here the following concentration bound
which is useful in our result.

Definition 2 (Subgaussian random variable). A R-valued
random variable X is subgaussian with variance proxy s? >
0 if for all t > 0, Eexp(tX) < exp(s?t?/2). Note that if
X € [—b,b] for some b > 0 with probability 1, then X is
subgaussian with variance proxy b /4.

Lemma 3. Let A be an n X n matrix with independent
subgaussian entries with variance proxy at most 1. For all
u > 0, with probability at least 1 —exp(—u?), all ¢,y € R"
with ||z|2 = ||y|l2 = 1 have

x' Ay < O(Vlogn +u)(|lz| + l|lyll) -

As a corollary, with the same probability, all x,y € R™ with
1, Iyl <1 have

a' Ay < O(Vlogn +u)(||zll2 + yll2).-
The proof of this lemma is deferred to the Appendix.

III. THE REDUCTION, AND PROOF OF THEOREM 1

First, we show in Section III-A the reduction in the
case that the noise distribution X is symmetric, i.e., the
probability of sampling a and —a is identical for all a > 0.
We then show in Section III-B a slight modification which
works for any distribution X.
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A. The symmetric case

Let ¢ > 0 be a sufficiently small constant. Let X be
any symmetric distribution on [—e¢,¢€]. Let n,b be positive
integers such that b divides n, b = n%°!, and n is sufficiently
large. We divide [n] into b blocks which we label I; :=
{(=1)2+1, (i—1)%+2,...,0- %} Welet £ := n/b = n"?
denote the block length.

Let P,Q € R"*® be payoff matrices. Let .J; denote the
¢ x ¢ all 1’s matrix. Let Zy be an n X n matrix whose
entries are sampled i.i.d. from the Rademacher distribution
(i.e., the uniform distribution on {—1,1}). Let Z; be an
n X n matrix whose entries are sampled i.i.d. from the
uniform distribution on [—1, 1]. Let A, B, be nxn matrices
whose entries are i.i.d. sampled from X (all distributions
independent).!!

A=PQRJ+Zy+ 71+ A,
B:=Q®J,—Zy— 71+ B,

where P ® .J, denotes the n X n matrix, where every entries
in block Ii X Ij is Pi,j~

We present here here the final result of this paper. We
will refer without proof to a bound on the norm of the
equilibrium strategy vectors, and we defer its proof to the
rest of the paper, namely Sections IV and V. This norm
bound is the technical heart of this paper, and the present
section illustrates its strength.

We seek to show that equilibria of the reduced game
(A, B) can be used to efficient produce approximate equi-
libria to the game (P, ), which we have assumed is hard
to approximate. Let (x,y) be an equilibrium of (A, B).
We will show in Section V that, with high probability,
llzll2, |yl < n~°2, even when € is a constant. Note that
b = n%0 is the dimension of the input game (P, Q). Define
(2,9) to be distributions over [b] such that for all i € [n]

& = in’a (T Zyi’-
i'el; i'el;
Theorem 4. With probability 1 —n~2, we have that (%, )
is a b= -approximate equilibrium of (P, Q).

Proof: We claim that (&,9) is an b~19 = n=0-19-
approximate equilibrium of (P, () with high probability.
Assume not, without loss of generality, Alice would benefit
from deviating from &. That is, there exists ¢ € [b] such that

ey

Define ug to be the uniform probability vector on support
S, then, the above is equivalent to

2T(P® Ji)y < ul(P®J)y—b "

&TPy <e]Py—b 1.

2)

"I'The to meet the definition of X-SMOOTHED-NASH, which specifies
that the hard game must have entries between [—1,1], we can scale the
construction (and thus X') by a factor of 3.
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By Lemma 3, we may assume that the concentration in-
equality holds for 51 (Zy + Z; + A.), then we know that

2+e¢
T (Zo + Ad)y| < O(\/@ n—02) 3)
luj (Zo + Ayl < O(\/@ n=02) @

Combining Egs. 2,3, and 4 we get

xT Ay <u] Ay — b~ + O(\/logn n™%?) < uj Ay.
(5

since b = n0L. This contradicts that (z,y) is a Nash
equilibrium of (A, B).

By a similar argument, Bob does not wish to deviate with
high probability. Therefore, (&,%) is a b~ '?-approximate
Nash equilibrium of (P, Q). [ |

Since finding a b~ !?-approximate Nash equilibrium is
PPAD-hard [CDT09] when P and () have constant sized en-
tries, finding the smoothed equilibrium of (A, B) is PPAD-
hard. Since the proofs of Sections IV and V hold when X is
supported on [—e, €] for € > 0 constant, this is an instance of
X-SMOOTHED NASH, and therefore concludes the proof
of Theorem 1 when X is a symmetric distribution.

B. General X

Let X be any distribution supported on [—¢/2,¢/2]. Let
Y := X — X' be the distribution on [—¢, €] which takes two
i.i.d. samples from X and subtracts them. Note that Y is a
symmetric distribution, so by the previous section we have
that Y-SMOOTHED NASH is hard. In particular, it is hard
to find an equilibrium from the distribution

A=PJy+ 2o+ 7Z1+ Ay
BI:Q@)JE—Z()—Zl—FBy,

where Ay and By are matrix whose entries are i.i.d. samples
from Y. We can rewrite Ay = Ax — A’y and By = Bx —
B, where Ax, A'y, Bx, B are all i.i.d. matrix samples
from X. Thus, the distribution can be rewritten as

A=PeJi+Zo+ Z1 — Ax) + Ax
BI:(Q®J[—Z()—Z1—BS()+B)(,

This is an instance of X-SMOOTHED NASH, and we
conclude Theorem 1 for arbitrary X, losing a factor 2 on e.

IV. EQUILIBRIA HAVE LARGE SUPPORT

In this section and the following, we will show the
bound on ||z||2, ||y|l2 which was required in the proof of
Theorem 1. We first show that the support of the equilibria
is large with high probability. Then, in Section V, use this to
argue that the weight must be sufficiently spread. The main
result of this section is the following lemma.

Lemma 5. With probability 1 — n=3, for every Nash
equilibrium (x,y) of (A, B), we have that |supp(x)| =
[supp(y)| > .
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We prove this result using methods partially inspired
by [Jon04]. Observe that a Nash equilibrium of (A, B)
requires that

xTAy > e] Ay
xTBy > xT Be;
= xT(A+ B)y > e] Ay + x" Be;

for all ¢ € [n]
for all j € [n]

for all 4,5 € [n].
(6)

We seek to show that Eq. 6 cannot hold when the
support x,y is sufficiently small.'> To do that, we propose
a “benchmark” to which both the LHS and the maximum
value of the RHS of Eq. 6 are comparable to. To define
this benchmark, we begin by introducing a notion of robust
partition of the strategy vectors. Consider & € R™ such that
|||y = 1. Let L = [logyn]/2%. Let D = 22°". Let
Ei, ..., Ep be intervals such that E; = (D, D~=1)] for
alli < Land By, = [0,D-~ Y] Letz = 2 4. 42
such that
T; TjEC FE;

0 otherwise

We say that «(*) is sparse if it has at most L nonzero
coordinates; otherwise we say ) is dense. Let Tsparse DE
the sum of the sparse ("’ and Tgense De the sum of the
dense ones. Note that © = Xyparse + Tdense- Now define the
following quantity

6(IB) =V lognl|mdellse”2 + ||msparse||1~

We call S(x) the benchmark for x. This quantity will
appear in a number of concentration/anti-concentration in-
equalities. First, we show a key anticoncentration inequality
concerning this robust partition.

Lemma 6. Assume that X is the uniform distribution on
{—1,1} (i.e.,, the Rademacher distribution). There exists a
universal constant ¢ > 0 with the following property: For
all x € R™ such that ||x||y = 1, with probability at least
n=9001 oyer v ~ X7

(v,x) > cf(x).

The proof of the above lemma is deferred to the Appendix.
The following concentration bound will also be of use. For
any distribution X, we let X"*™ denote the distribution of
n X n matrices with entries i.i.d. samples from X.

Claim 7. Let X be any distribution on [—1,1]. There exists
a universal constant C' > 0 such that for all n > 0, with
probability 1 — 1/n* over M ~ X"*", for all x,y € R"
such that ||z||1 = ||y|l1 = 1, we have that

leTMy| < C- (B(x) + B(y)).
12In the case of [Jon04], which considers zero-sum games, the LHS of

(6) is equal to 0, so it suffices to bound the probability that the RHS is
positive for some i and j.

276

Proof: Apply Lemma 3 to M with u = y/3logn. Then,
there is a universal constant C’ such that with probability
1 —1/n?, for all x,y with £; norm 1,

|w£enseMydense| S Cl V logn(”mdenseHQ + ||ydenseH2)-

Thus, since the entries of M have absolute value at most 1,
|2T Myl < |27 Mysparse| + [T arse M Ydense|
+ |2 epse M Ydense|
< ||Ysparsell1 + [|®sparsell1
+ C/\/@(”mdemem + || Ydensell2)
< max(C’, 1)(B(z) + B(y)).

Thus, we can set C' = max(C’, 1). [ |

These lemmas will allow us to prove Lemma 5. We
present first the following facts about equilibria in random
games.

Proposition 8. With probability 1, for nonempty S, T C [n]
there is at most one Nash equilibrium (x,vy) of (A, B) with
S = supp(x) and T = supp(y). Further, with probability 1
all such equilibria have |S| = |T|.

Proof: Fix nonempty S, T C [n]. Fix ig € S. Assume
without loss of generality that |S| > |T|. Denote A% as
the sub-matrix of A restricted to rows indexed by S and
columns indexed by 7'. For any equilibrium (x,vy) with
supports S and T, we have that zTAy = e] Ay for all
i € S, when treating « and y as |S|- and |T|-dimensional
vectors, respectively. Therefore,

(e; —e;))TAYy = 0 for all i € S\ {ip}. (7

Since all the entries of A% are drawn independently from a
continuous distribution, the null space of the linear system
(7) has dimension max(|T'|—[S|+1,0) < 1 with probability
1. Since y # 0 the null space must have dimension exactly
1. Thus, |T'| —|S|+1 > 1, which implies that |S| = |T'| and
the solution y is unique, as there can be at most one vector
in a 1-dimensional subspace with coordinates summing to
one. By a similar argument x is also unique.

Since there are only finitely many choices of S and
T, with probability 1 the proposition holds for all Nash
equilibria simultaneously. |

With probability 1, all equilibria of A and B will have
the same support size, and further, for every pair of possible
supports S C [n] and 7' C [n] there is at most one
equilibrium. We let =,y € R™ denote the probability
distributions of strategies in this equilibrium.

We can now prove Lemma 5

Proof of Lemma 5.: Assume (which happens with
probability 1 — n~*) that the event described in Claim 7
occurs for M +(Ac + B.). Fix S,T C [n] with
|S], |T| < €/10. We seek to show that with probability at
most 27¢, S and T can be the support of a Nash equilibrium.
By Proposition 8, we can assume that |S| = |T|.
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Also by Proposition 8, with probability 1, there is at most
one equilibrium (x,y) on the game (A% B) with full
support. Note that  and y, if they exist, are independent
of the entries of A and B outside of S x 7. As mentioned
earlier in the section, in order for the equilibrium to extend,
the Ineq. 6 must hold:

2T(A+ B)y > e]Ay + *"Be; forall i,j € [n].

Say that ¢ € [n] \ S is S-good if el (Zy + Z1 + A)y >
¢f(y). By Lemma 6, we know that e] Z1y > ¢((y) with
probability at least %1, Independently, we have that
el (Zy + Ac)y > 0 with probability at least 1/2 (since
Zy+ A, is a mean-zero matrix distribution). Therefore, both
this event happens with probability at least n =901 /2 >
n—0.01

Likewise, say that j € [n]\T is T-good if 7(—Zy—Z1—
Be)e; > c¢f(x). By the same argument, this also happens
with probability at least n=%°! . Furthermore, the S-good
events and 7-good events are independent of each other
because each event is based on a disjoint subset of entriesZ
from Zy and Z;.

Since x and y are probability distributions, there exists
io € S and jo € T such that e] (P ® Jy)y > xT(P ® Jo)y
and z7(Q ® Jy)ej, > xT(Q ® Jo)y. Let ', j' € [b] be the
indices of the blocks such that ig € I;; and jy € Ij. Since
we assume that |S|, |T'| < ¢/10, we have that I;; \ S and
I;;\ T both have size at least 9¢/10.

Now, for any good i € I;; \ S and good j € I;; \ T, we
have

xT(A+ B)y
=z (P )y +2"(Q® Jo)y +xT(Ac + Bo)y
<el (P J)y+aT(Q® Jo)ej +2Ce(B(x) + B(y))
=e] (P® Jo)y+zT(Q® Ji)e; +2Ce(B(z) + B(y))
<el(P® Ty +2T(Q® J)e; +c(Bla) + Bly))
(because € < 2¢/C)
<el](PRJo+Zo+Z1+ Ay
+2T(Q® Jy—Zoy — Z1 + Be)e;
=e] Ay + =" By,
which contradicts Ineq. 6. Thus, there must either be no good

i € Iy \ S or there is no good j € I;; \ T. This happens
with probability at most

_ 9¢/10 _ 0.01 0.97
2(1771 0.01) / < 26~ (09)/n™% 7
where we use in the last inequality that n is sufficiently
large. The number of pairs S, T with support at most 1996
is at most

n

2 0.96
2n>"
<< n0.96> sn :
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Note that for n sufficiently large, n2"" **e~n""" <« n—4.

Thus, all equilibria have support size greater than n%-%¢ with
probability at least 1 — 2n~* > 1 — n=3, [

V. EQUILIBRIA HAVE SMALL {5 NORM

Towards showing the missing bound in the proof of
Theorem 1, the previous section showed that with high
probability, any equilibrium must have polynomially large
support. We complete here the proof of the norm bound,
which in turn completes the proof of Theorem 1.

Lemma 9. With probability 1—20n"3, for every Nash equi-
librium (x,y) of (A, B), we have that |||z, [|y|l2 < n=%2

We must, however, begin this section with a few technical
results. We will need the following theorem, which is derived
from the fact that the VC-dimension of the set of halfspaces
in R has VC-dimension at most d + 1 — that is, the VC-
dimension of {x + 1[(z,v) +t>0] : v € RY ¢t € R} is
at most d + 1. (See e.g. [Wail9], Example 4.21.)

Theorem 10 (Multivariate Glivenko-Cantelli). Let X be a
random vector in R? and let X1,..., X, be independent
copies of X. For all § € [0, 1], with probability 1 — 6,

sup
veERT teR

co(yf2. =)

We also need the following Littlewood-Offord-type theo-
rem.

Theorem 11 ([RV15], Theorem 1.2). Let X1,...,X, be
real-valued independent random variables with densities
almost everywhere bounded by K. Let ay,...,a, € R with
>icna? = 1. Then the density of Y., a;X; is bounded
by V2K almost everywhere.

o 21X v) 2 8] = Br((X,v) 2 £)

The following lemma, which we obtain as a corollary of
these two theorems, allows us to argue that the entries of a
product of a random matrix with a fixed vector are relatively
spread out.

Lemma 12. Let n,d be positive integers. Let X be an R-
valued random variable with density bounded by K. Let
gi...,gn be independent random vectors in R? whose
coordinates are independent copies of X. With probability
1—4, for all unit vectors v € R? and all intervals [a,b] C R,

L3 1llgive) € [ab]

sx/iKa_bJro(ﬁﬂ/ngm) :

Proof: By Theorem 10, with probability at least 1 —
0, the CDFs of (g,v) and the empirical distribution of
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(gi,v) have distance at most O <\/g+ \/ bg(;””) for

all v € R So it suffices to show that for every unit
v € R, Pry((g,v) € [a,b]) < v2K]|a — b|. This follows
immediately from Theorem 11. [ |

Finally, this lemma allows us to prove the following claim.

Claim 13. Let X be a distribution on [—1,1] whose prob-
ability density is at most 100 everywhere. Let M ~ X™*",
With probability 1 — n=*, for every S, T C [n] with
|S| > n%9 and |T| < n®®, there exists disjoint S1,S> C S
of size at least n®"* each such that for all unit vectors
y € R™ with support in T there exists r € R such that

for all iy € S1
for all i5 € Ss.

el My >r+ n =007

el My <r

Proof: For every T C [n] of size at most n°-8°, apply

Lemma 12 to the rows of M restricted to the columns
of T (so d = |T| < n085) with § = e . Thus,
with probablhty 1 —e ™, for every unit vector y € R?
supported on 7" and every 1nterval [a, b] of length n=%-%6 /10,
the number of i € [n] such that e] My € [a,b] is at most

lloofab+0<\f \/W)

choices of ¢ € [n] for which e Ay falls in that interval.
Since | S| > n°95, this implies there exist 7 € R, and disjoint
S1,95 C S of size at least %% such that

~0.06

7774

0.94)

0.07

el My >r+
el My <r

>r4n” for all 7, € Sy

for all i5 € S5.

Taking the union bound over all choices of 7' we get this
all happens with probability at most

n 0.86 0.85
1—<< 085)6” >1—e " >1—n"%
=n-

|

We can now prove Lemma 9.

Proof of Lemma 9: With probability 1 — n=3, by
Lemma 5, for every equilibrium (@, y) of (A, B) with sup-
port S and T, respectively, we have that |S| = |T'| > n%9.
Since there are n°-%! blocks. By the pigeonhole principle
there exists ig, jo € [b] such that SN I, |,|T' NI | > n®%.

With probability 1 — 2n =%, Claim 13 holds with for both
M:?L(Z()‘I*Zl%»AE)aHdM ( Z(]*Zl+B)
Further, with probability at least 1 — 2n , Lemma 3 holds
for M = Q%_E(ZO—FZl +A.)and M = ﬁ(—Zg—Z1 +B.)
with © = \/glog n.

We seek to show that any large-support equilibrium also
has small /5 norm. Assume for sake of contradiction (and
without loss of generality) that ||y|l2 > n=%2. Let S’ =
SN 1I;, and T" be the set of coordinates of y which are
greater than n =985, Clearly |T'| < n%8. Let yr be the
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coordinates of y supported on 7" and g7+ be the remaining
coordinates. Observe that

2
_ _ _ Y
||ny||§ <n- (TL 0.85)2 =n 0.7 < ” 2”2 (8)
2
_ Y
13 = w13 — g 13 > 1202, ©

Applying Claim 13 for M = Zo+ 71+ A.) and the sets
S’,T" and the vector y’ := Ty, there exists Si,85e s
and r € R such that (scaling by 2+ ¢ > 1)

%f; (

—0.07

e{l (Zo+ Z1 + Ay’ +n

6{2 (ZO + Z1 -+ AE)

for all i; € S

>r
<r for all iy € S5.

Thus,

ul, (Zo+Z1+ Ay >r+n 0
u}é (Zo+Z1+ Ay <r
= (ug; —ugy)(Zo+ 21+ Ay’ > n~ 007,
Applying (9),
—ug)(Zo+Z1+A)yr > n " ||yl2/2 > n 7028

(us;

Since Lemma 3 holds for M =
have that

o (Zo+ Z1 + Al). w

(us; —usy)"(Zo + Z1 + A)yr

> —(2+4¢)C"Vlogn([lus; — usyll2 + |g17]2)
> _p001 max(\/§n*0'94/2, n70.7/2)
> 034,

Therefore, since y = yr + yr

(uSi - “S;)T(Zo +A)y > p=028 _ =034 5 =029

Since S} and S% are subsets of the same block, we have that
ug (P ® Jp) = ugy (P ® Jp). Therefore,

(us; —ugy)TAy > n 0%

But, since S| and S} are subsets of the support of &, we
know that

(us; —usy)TAy =0,
thus we have a contradiction. Therefore, ||y|l2 < n~%2. By
a similar argument (also with probability 1— 5173, ||z||2 <

n~92 as desired. By the union bound, the total probability
of success is at least 1 — 20n=3 > 1 — n=2. ]
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APPENDIX

A. Proof of Lemma 3

To prove this lemma, we rely on the following powerful
comparison inequality of Talagrand.

Theorem 14 (Talagrand’s comparison inequality, high-
-probability version. [Ver18], Exercise 8.6.5). Suppose that
{Xs}ses is a collection of R-valued random variables,
indexed by some S C R", 0 ¢ S. Suppose that for all
s,t € S, Xy — Xy is subgaussian with variance proxy at
most ||s — t||2. There is a universal constant C' > 0 such
that for all u > 0, with probability at least 1 — exp(—u?),

sup Xy < C

E sup<g7s>+u~sups|2).
sesS

(QNN(UJ)SGS s€S

Now we can prove Lemma 3.

Lemma 3. Let A be an n X n matrix with independent
subgaussian entries with variance proxy at most 1. For all
u > 0, with probability at least 1 —exp(—u?), all x,y € R"
with ||x||2 = ||lyll2 = 1 have

a' Ay < O(Vlogn +u)(||z| + [lyll) -

As a corollary, with the same probability, all x,y € R™ with
]2 Iyl <1 have

z' Ay < O(Vlogn +u)(||zl2 + [|yl2) -

Proof: Consider for each x,y € R" the random
variable = " Ay/(||z|1 + ||lyl|1)- Since the entries of A are
subgaussian with variance proxy 1, there is a universal
C > 0 such that (U, A) is subgaussian with variance proxy

C||U||%, where || - ||F is the Frobenius norm, for any n x n
matrix U. Hence, for z,y, z’',y’ € R",
ajTAy (:Z:I)TAy'
Il +lyll [l + Y]
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is subgaussian with variance proxy C|lzy " /(||=||1+]|y|l1)—
(@)(y")" /(I + [yl We claim that

2

‘ zy'  (2)(y)T
el +lylls 2+ Y]l e
2
(z,y) (=',y")

S ‘

where (x,y) denotes the concatenation of @ and y to a 2n-
length vector. To see this, recalling that ||z|2 = ||y|l2 =
[zl = [¥'ll2 = 1, let m = [[z[1 + [lyl1 and m' =
[l='|l1 + |¥’[l1 and expand both sides, it is equivalent to
prove

lelly + Nyl 2l + [yl

m? + (m')? = 2m(m’)(z, ') (y,y')

mQ(m/)Q
_2m? 4 2(m')? = 2m(m') (@, &) — 2m(m'){y, y)
= mz(m/)z ’

This is equivalent to

1 1
— +

(@, 2') + (y,9') — (=, 2"){y"y)
m?  (m') -

mm/’

0.

5 — 2

Dividing by 2/mm/ and using 1/m? +1/(m’)? > 2/mm’,
it is enough to show

1- <w7wl> - <yvy/> - <w’ wl><ylvy> > 0.
This factors as (1 — (@, 2'))(1 — (y,y’)) > 0 since we
assumed x, x’,y,y’ were unit vectors.

Now we can apply Theorem 14 to see that with probability
at least 1 — exp(—u?),

x| Ay
sup T RTEET—T
z,y |l + [lyllx
2llo=llylla=1
<c E sup (z,9),9) ‘u
g~N(O) my /1 + Nyl
llella=llyll-=1

where C' is a universal constant, g is a length 2n Gaussian
vector with independent coordinates, and we have used that
l@ )2 < l@yll = 2] + ylh. To finish the
argument, observe that

E (z,v),9)
g~N(0,1) k7 2l + [yl
llla=lylla=1
- E o < O0H1 .
gNN(OJ)HgH < O(y/logn)

Finally, to prove the corollary, note that we just showed
that with probability at least 1 — exp(—u?), all ¢,y €
R" with all; = ||yl = 1 have @' Ay/|alls]lyl> <
O(logn + u) - (1/llzll2 + 1/|lyll2). Muliplying by
lz||2||yll2 implies the corollary. [ |

B. Proof of Lemma 6

1) Facts about the binomial distribution: In our result,
we need the following bound of Erd6s [Erd45].

Theorem 15 ([Erd45], variant of [Dzil4]). Let ay,...,a, >
1 be real numbers and €, ..., €, be Rademacher random
variables (uniform distribution on {—1,1}) then for all
integers k > 1,

Prlaie; + - anen, >k —1] > Prleg + - + €, > K.

Furthermore, the following binomial inequality will be
useful:

Lemma 16 ([Ash90]). For all k and n,

n - 27LH(k/n)
(’f)_ Ven

where H(-) is the binary entropy function.
Note that when & = % (1 + 0), then

Hk/n) o= 2 logy(3(1+)) — T3 " loga (51— )

=1 — (logye)d?.

Combining with the above inequality gives

1 <n> > 1 _ns?
— —e .
2n\k/) — \/8n

This allows us to show the following:

Claim 17. For all integers n > k > 0 with n sufficiently

large
1 < [n 1 10k
— > - . 10
o L (z) = 10000 eXp( n ) (10)

Proof: Note that here, 6 = £. If k > n — 24/n, then

n’

—10k? /n. < —10n + 40y/n — 400 < —9n

for n sufficiently large. Note that the LHS of 10 is at least
27" > ¢797 and thus is at least the RHS.

On the other hand, if & < n — 2/n, then by Lemma 16,
the sum of the first /n terms is at least

) e (225))

al

vV &n n
k2 4 dky/m + 4
— Loexp <_+\f”+">
n

5k% + 5n
> L xp| ———
VB ¢ ( n )

1 ( 5k2>
= ——exp|— |,
e5y/8 P n
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which implies the claim. [ |
We recall here the statement of Lemma 6, and give a
proof with the above results:

Lemma 6. Assume that X is the uniform distribution on
{—1,1} (i.e., the Rademacher distribution). There exists a
universal constant ¢ > 0 with the following property: For
all x € R™ such that ||x||y = 1, with probability at least
n= 9001 oyer v ~ X7

(v,2) > cB(x).

Proof: Recall, we have deﬁned the following: let
L = [logyn/2997. Let D = 22°" and let Ey,...,Ey be
intervals such that E; = (D~%, D~(=V] for all i < L and
E; = [0,D~E=D] Let = ™ + ... + & such that
a:y) = x; - 1[z; € E;]. We say =) is sparse if it has
at most L nonzero coordinates; otherwise it is dense. Let
F c {1,2,...,L} be the set of dense indices. Let Tsparse
be the sum of the sparse (s and Tgense De the sum of
the dense ones, and define

:13) = \/@deense‘b + ||wSPaYS'3||1'

Note that if we drop x(X), 5 changes by at most
Viogn|lz@ |y < ny/logn - n=2""+1  a negligeably small
te(rrr)l. Thus, we can without loss of generality assume that
x() = 0.

Since (@) = [|@aparse |1 + /108 1| dene |2+ We have for
any x, at least one of || sparse|[1 OF v/10gn||Tdense||2 is at
least éﬁ (x). Assume we know that with probability at least
207000 (v @ oparse) = Q|| Tsparse||1); and with probabil-
ity at least 279901 (v @gense) = Q(V10g 1| T dense||2)-
Then, we know with probability at least =999 one of
(v, Tsparse) and (U, Tdense) is at least (S (x)) and the other
is at least 0 and thus their sum is at least 5(x). We split the
remainder of the proof into two parts.

Part 1, (v, Tsparse) = Q|| Zsparse|[1): Let &’ be the 2L
largest coordinates of Zgparse. Note that [|a’||; is at least
D? times the sum of the next 2L largest coordinates of
Tsparse and at least D* times the sum of the next 2L largest

! 1 2 %”wsparseH-

Now with probability 1/22%, because v has
iid. Rachemacher entries, (v,z’) = |||, and
with probability at least 1/2, (v,%sparse — ') > 0.

Thus, with probability at least 1/220+1

<v7msparse> > %Hmsparse”L

> 2n70.001’

Part 2, (V,Tgense) = QV10gn||Tdensell2): Since
Taense = > ;e p TV, we have that
Viogn

P ense Z T ANA T ense 11

|0 @) > Yo P l@nele| D

. Viogn - [lz@]3
> 1P e s 12
E? r|:v w N 1OOOD||wdenseH2 ( )

282

Consider i € F, and let m; > L + 1 be the support size
of (V. Since :cgz)Di > 1 for all j in the support of x("),
we have by Theorem 15 and Claim 17, that for any integer
k€ [07 mz]

. k i ms
P (1) o i
r{@’w = JZ 2 <z>
_mg +k+1
k:—|—2
10m; .
= 10000 ( i ) )
Observe that ||xz® |, < /m ||:1:()|| < \/nTiD_(i—l)_
Thus,
Pr|(v,z®) > LHJ;(UHQ
N N
k+2)\°
2 —10m; .
- 100006Xp< " ( mi > )
Let

[P

1
k= ’71000\/ m,logn |

| L dense || 2

|

Then, note that

k+2 _ 3 1 flogn [z
m; 1000 my ||wdense||2
Thus, since (a + b)? < 2a? + 2b?,
2 (i)1]2
1om, - k+2 Z_180_ logn |E ||22.
my; m; 5 - 104 HmdenseHQ
Therefore,
) / (1))|12
Pr (v,w(’)) > logn ] [l ]|3
1000D ||mdense H 2
1 180  logn  [la@|3
> —— : .
— 104 P < m; 5-10% HmdenseH%

Applying Eq. 12, and noting that each m; > L > |F|.

Pr | (v, Zgense) > logndeense”z
’ =77 1000D
1 180 logn
> e (-0 J)
i€l
1 ~10°°
= Jgirei”
> n2 %, -107°
> 0001

For n sufficiently large. This concludes the proof.
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