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Abstract—We prove that computing a Nash equilibrium of a
two-player (n×n) game with payoffs in [−1, 1] is PPAD-hard
(under randomized reductions) even in the smoothed analysis
setting, smoothing with noise of constant magnitude. This gives
a strong negative answer to conjectures of Spielman and Teng
[ST06] and Cheng, Deng, and Teng [CDT09].

In contrast to prior work proving PPAD-hardness after
smoothing by noise of magnitude 1/poly(n) [CDT09], our
smoothed complexity result is not proved via hardness of
approximation for Nash equilibria. This is by necessity, since
Nash equilibria can be approximated to constant error in quasi-
polynomial time [LMM03]. Our results therefore separate
smoothed complexity and hardness of approximation for Nash
equilibria in two-player games.

The key ingredient in our reduction is the use of a random
zero-sum game as a gadget to produce two-player games which
remain hard even after smoothing. Our analysis crucially shows
that all Nash equilibria of random zero-sum games are far from
pure (with high probability), and that this remains true even
after smoothing.

Keywords-Nash equilibrium; PPAD; zero-sum game;
smoothed analysis; smoothed complexity; anticoncentration

I. INTRODUCTION

Nash equilibrium is the central solution concept in game

theory. Computational complexity results establishing the in-

tractability of Nash equilibrium [SV06], [CDT09], [DGP09]

suggest that players that are even mildly computationally

bounded may not be able to converge to a Nash equilibrium

in the worst case. However, the fragility of these intractable

game constructions, together with the fact that random

games are tractable [BVV07], have led experts to conjecture

that Nash equilibrium should have smoothed polynomial

time algorithms (e.g. [ST06] Conjecture 15, and [CDT09]

Conjecture 2). If these conjectures were true, they could

explain why players in realistic games can converge to equi-

librium. In this paper, we prove that even with aggressive

smoothing perturbations of constant magnitude, finding a

Nash equilibrium continues to be PPAD-complete (under

randomized reductions).
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Definition 1 (X-SMOOTHED-NASH).
For a distribution X on R and problem size n, fix worst-

case n × n matrices WA,WB with entries in [−1, 1], and

let NA, NB be n × n matrices whose entries are drawn

i.i.d. from X . X-SMOOTHED-NASH is the problem of

computing, with probability1 at least 1− 1
n , a Nash equilib-

rium of the game (WA +NA,WB +NB).

Theorem 1 (Main Theorem).
There exists a universal constant ε > 0, such that for any
probability distribution X on [−ε, ε], X-SMOOTHED-NASH
is PPAD-hard under a randomized reduction.2

A. Complexity context: smoothed analysis vs hardness of
approximation

In their 2006 survey on smoothed analysis, Spielman

and Teng posed the challenge ([ST06], Open Question

11) of exploring the connections between smoothed com-

plexity and hardness of approximation. Concretely, they

considered the example of two-player Nash equilibrium

subject to σ-bounded perturbations: Given a hard game

A,B ∈ [−1, 1]n×n, perturbing each entry independently

gives rise to a new instance Â, B̂ ∈ [−1 − σ, 1 + σ]n×n;

any Nash equilibrium of Â, B̂ is an O(σ)-approximate-Nash

equilibrium of the original game A,B. Hence, solving Nash

equilibrium in the smoothed model is at least as hard as

approximating Nash [ST06, Proposition 9.12].

More generally, any hard instance x of any computational

1Amplifying the success probability of smoothed algorithms is generally
non-trivial (and sometimes impossible). We note that our hardness result
continues to hold even for algorithms that are only required to succeed with
probability o(1).

2Formally, we assume that there is a (single-dimensional) distribution
X′ such that Prx∼X,x′∼X′ (|x − x′| > 1/poly(n)) ≤ 1/poly(n) and
X′ can be sampled by randomized polynomial-time algorithm. This holds
for any natural smoothing distribution – e.g. truncated Gaussian or uniform.
For arbitrary X such X′ can be sampled by a randomized algorithm which
receives as input a poly(n)-size approximation of the CDF of X . For X
where such advice is necessary, our arguments show that X-SMOOTHED-
NASH is PPAD-hard under randomized reductions with polynomial-length
advice.



(a)

σ

x

(b)

σ

x

(c)

σ

x

Figure 1. The σ-neighborhood of an intractable instance x. Tractable instances are colored. (1-a) smoothed-algorithmica: almost all instances in the
σ-neighborhood are tractable, (1-b) smoothed-complexity: very few instances in the σ-neighborhood are tractable; (1-c) hardness of approximation: it
is intractable to find a solution to any instance in the σ-neighborhood.

problem3 (e.g. x = (A,B) in the case of Nash) can be in

one of three states (as illustrated in Figure 1):

Smoothed-algorithmica4: Most instances in x’s neighbor-

hood can be solved efficiently.

Smoothed-complexity: A small fraction of x’s neighbor-

hood can be solved efficiently.

Hardness-of-approximation: Finding a solution for any

instance in x’s neighborhood is intractable.5

Of course, as in Spielman and Teng’s proposition,

hardness-of-approximation immediately rules out efficient

smoothed algorithms. But most interesting open problems

in smoothed analysis admit approximation algorithms; this

limits the applicability of using hardness-of-approximation

to prove new smoothed-complexity results.

In contrast to the thriving literature on hardness of ap-

proximation and smoothed algorithms, smoothed complexity

results are rare. In this paper, we make a small step toward

establishing a theory of smoothed complexity, in the con-

text of Spielman and Teng’s original example: two-player

Nash equilibrium subject to bounded perturbations6. While

settling an open problem in equilibrium computation, we

believe that our result is just the tip of the iceberg of the

theory of smoothed complexity.

B. Historical context

In 1928 Von Neumann [Neu28] proved that every (finite,

perfect information) zero-sum game has an equilibrium;

this result was extended to general games by Nash in

3Naturally, the correspondence between approximation algorithms and
smoothed analysis requires matching the respective notions of approxima-
tion and smoothing perturbations.

4The name is “smoothed-algorithmica” is a cultural reference to Im-
pagliazzo’s five worlds [Imp95] and should not be interpreted to imply
a technical connection. Formally speaking, the existence of smoothed-
algorithmica yet intractable instances is in fact consistent with any of
Impagliazzo’s worlds except Algorithmica.

5Intuitively we would like to say that every instance in x’s neighborhood
is intractable. Formally, however, this may be inaccurate. In fact in the case
of Nash equilibrium it is provably false! Given game (A,B), consider game
(A′, B), where A′ − A is a matrix whose entries are identically equal to
some small λ which encodes a Nash equilibrium for (A,B) (and hence
also for (A′, B)).

6Speilman and Teng discuss perturbing each entry by a uniform-[−σ, σ]
noise, but our result holds for any bounded i.i.d. perturbations

1951 [Nas51]. In 1947 Dantzig [Dan98] designed the sim-

plex algorithm for solving linear programs (and thus also

zero-sum games); in 1964 Lemke and Howson [LH64]

gave a simplex-like algorithm for general games. Both are

known to take exponential time in the worst case [KM72],

[SV06], but are observed to perform much better in practice

(e.g. [Sha87], [ARSvS10]).

For linear programming, Khachiyan [Kha79] gave the

first polynomial time algorithm in 1979, and Spielman and

Teng proved in 2004 [ST04] that the simplex algorithm has

smoothed polynomial complexity. It was natural to hope

(and in fact quite widely believed, e.g. [DGP05] and [ST06,

Conjecture 9.51] respectively) that the last two results would

again be extended to general games. Surprisingly, this was

ruled out by Chen, Deng, and Teng [CDT09]. Specifically,

they showed that 1/poly(n)-approximate Nash equilibrium

is hard, which by Spielman and Teng’s proposition rules

out any smoothed efficient algorithms for noise magnitude

1/poly(n) (assuming PPAD is not contained in search-

RP). Chen, Deng, and Teng nevertheless conjectured that

for constant magnitude noise, two-player Nash equilibrium

should have a polynomial time algorithm.

Progress on smoothed complexity of Nash with ε-noise

(for small constant ε > 0) was made by [Rub16] who proved

the following hardness of approximation result: assuming

the “Exponential Time Hypothesis for PPAD7 ”, finding an

ε-approximate Nash equilibrium requires quasipolynomial

(≈ nlog(n)) time. By Spielman and Teng’s proposition,

this hardness of approximation result also implies an anal-

ogous quasipolynomial hardness in the smoothed setting.

For hardness of approximation, the result of [Rub16] is

essentially optimal due to a matching quasipolynomial time

approximation algorithm [LMM03]. This quasipolynomial

time algorithm does not extend to the smoothed case, and

a large gap in the complexity of constant-smoothed Nash

(quasipolynomial vs exponential) remained open.

In this work, we resolve the complexity of two-player

Nash equilibrium with constant-magnitude smoothing, prov-

7The Exponential Time Hypothesis (ETH) for PPAD is a strengthening
of PPAD � (search-)RP, which postulates that End-of-Line (the canonical

PPAD-problem) requires 2Ω̃(n) time.



ing that it is PPAD-complete (under randomized reductions).

Compared to [Rub16], we rule out smoothed polynomial

time algorithms under a much weaker assumption (PPAD �
(search-)RP vs ETH for PPAD).8 Alternatively, comparing

both results under the same assumption, ETH for PPAD,

we prove a much stronger lower bound on the running time

(2poly(n) vs ≈ nlog(n))9. Finally, another advantage of our

result compared to [Rub16] is that our proof is much simpler,

and in particular does not require any PCP-like machinery.

C. Intuition and roadmap

We will reduce 1/poly(n)-approximate Nash to X-

SMOOTHED-NASH. The starting point of our reduction is

the following simple idea: for any mixed strategies (x, y)
which are spread over a large number of actions, the noise

from the smoothing averages out. In contrast, if we start

with an off-the-shelf PPAD-hard game (P,Q) and amplify

it by simple repetition (formally, tensor the payoff matrices

P,Q with the all ones matrix J), the signal from P,Q will

remain strong even with respect to well-spread strategies.

This means that given a well-spread (in a sense we make

precise later) Nash equilibrium x, y for a tensored, smoothed

game (P⊗J+NP , Q⊗J+NQ), we can recover a 1/poly(n)-
approximate equilibrium for (P,Q).

There is one major problem with the reduction suggested

above: an oracle for X-SMOOTHED-NASH might not re-

turn a well-spread equilibrium (x, y). Our goal henceforth is

to modify this construction to create a game where no Nash

equilibrium has strategies concentrated on a small number of

actions. Note that pure or even small-support equilibria don’t

break only our proof approach: they can be found efficiently

by brute-force enumeration, so such games cannot be hard.

Which games have no strategies concentrated on a small

number of actions? At one extreme, if the entries of the

payoff matrices are entirely i.i.d. (from any continuous

distribution), a folklore result states that the game has a

pure equilibrium with probability approaching 1−1/e. This

creates a significant problem: we have to work with games

where the entries are smoothed with independent noise –

if such games turn out also to have pure or small-support

strategies, then they cannot be hard.

In contrast to i.i.d. random games, we observe that random

zero-sum games tend to have only well spread equilib-

ria [Rob06], [Jon04]. For example, they are exponentially

unlikely to have a pure equilibrium; intuitively, if a pure

strategy profile is exceptionally good for one player, it is

likely exceptionally bad for the other. In the context of

our proof approach, another advantage of random zero-sum

8As discussed above, this holds in the case that X is approxi-
mately polynomial-time sampleable – otherwise we require the assumption
PPAD � (search-)RP/poly.

9In fact, under the plausible hypothesis that the true complexity of End-
of-Line (the canonical PPAD-problem) is ≈ 2n

α
for some constant 0 <

α ≤ 1/2, our result implies the qualitatively-same strong lower bound, and
the result of [Rub16] completely breaks.

games is that with respect to well-spread mixed strategies,

they will also average out. That is, even if we add a random

zero-sum game Z, we can still hope to recover a 1/poly(n)
Nash equilibrium for (P,Q) from a well-spread equilibrium

for (P ⊗ J + Z + NP , Q ⊗ J − Z + NQ). Our main

technical task is to show that adding a random zero-sum

game in this fashion produces a game with only well-spread

Nash equilibria, even in the presence of the i.i.d. smoothing

NA, NB .

Our first step is to rule out all small support equilibria.:
In Section IV we formalize the above intuition, showing that

every equilibrium of a random zero-sum game has large sup-

ports, even when we add constant-magnitude perturbations.

For technical reasons, our proof in this section works for

random zero-sum games whose entries are drawn uniformly

from discrete {−1, 1}.

Our second step is to obtain a robust version of no-
small-support.: Namely, building on the fact every equi-

librium has large support, in Section V we prove that it

must be well-spread (formally, the mixed strategies have

small || · ||2 norm). For technical reasons, our proof in this

section works for random zero-sum games whose entries

are drawn uniformly from continuous [−1, 1]. Fortunately,

we can make both of proofs work simultaneously by taking

the sum of a {−1, 1} and a [−1, 1] zero-sum games.

Putting it all together.: To summarize, our final con-

struction of hard instance is given by:

A := P ⊗ J + Z{−1,1} + Z[−1,1]

B := Q⊗ J︸ ︷︷ ︸
PPAD-hard

− Z{−1,1}︸ ︷︷ ︸
large support

− Z[−1,1]︸ ︷︷ ︸
well-spread

,

where Z{−1,1}, Z[−1,1] are random matrices with i.i.d. en-

tries uniformly sampled from {−1, 1} and [−1, 1] (respec-

tively), and (P,Q) is a PPAD-hard bimatrix game, and J is

an (appropriate-dimension) all-ones matrix.

In Section III, we show that when the Nash equi-

librium strategies are well-spread, the random zero-sum

games and random perturbations average out. Thanks to the

amplification, the signal from (P,Q) remains sufficiently

strong. Thus, we can map any Nash equilibrium of (A,B)
to a 1/poly(n)-approximate Nash equilibrium of (P,Q).
By [CDT09] this suffices to establish PPAD-hardness (under

randomized reductions).

Remark (Inverse-polynomial signal-to-noise ratio).
Interestingly, the amplification of (P,Q) by repetition is

so powerful that our proof would go through even if we

were to multiply P and Q by an inverse-polynomial small

scalar.10 In this sense, we show that Nash remains intractable

even subject to noise (zero-sum + i.i.d.) that is polynomially
larger than the worst-case signal.

10We only informally state the result to prioritize simplicity, but it will
be evident by the remarks in Section II-A.



D. Additional related work

Subsequent to the seminal works of [DGP09], [CDT09]

which showed that Nash equilibrium is PPAD-complete,

there has been an active line of work on algorithms

with provable guarantees for exact or approximate equi-

libria in special cases including: sparse games [Bar18],

low-rank games [KT10], [AGMS11], positive-semidefinite

games [ALSV13], anonymous games [DP15], [CDS17], tree

games [EGG06], [BLP15], [OI16]. Complexity limitations

for most of these special cases known as well: sparse

games [CDT06], [LS18], low-rank games [Meh14], anony-

mous games [CDO15], and tree games [DFS20].

More relevant to the topic of smoothed analysis, it is

known that when equilibria do not fluctuate when the input is

perturbed, finding equilibria can be done efficiently [BB17].

Furthermore, a game chosen at random is likely to have

easy-to-find equilibria [BVV07].

Spielman and Teng [ST06, Open Question 11] ask

whether there is a relation between approximation hardness

and smoothed lower bounds: the former implies the latter,

but little else is known regarding smoothed lower bounds.

For the case of integer linear programs over the unit cube,

Beier and Vöcking [BV06] show that a problem has polyno-

mial smoothed complexity if and only if it admits a pseudo-

polynomial algorithm. Note that a pseudo-polynomial algo-

rithm can be used to approximate by truncating input num-

bers. For other problems, we are aware of a few papers that

argue smoothed complexity lower bounds via approximation

hardness, e.g. [CDT09], [HT07], [KN07].

II. PRELIMINARIES

We formally define the problem here, and present some

remarks. Let n be a positive integer. We let ei ∈ Rn

be the ith indicator vector. Let A,B ∈ Rn×n be payoff

matrices (corresponding to Alice and Bob). We define a

Nash equilibrium to be vectors x,y ∈ Rn
≥0, called mixed

strategies, such that ‖x‖1 = ‖y‖1 = 1 we have that

xᵀAy = max
i∈[n]

eᵀi Ay

xᵀBy = max
i∈[n]

xᵀBei.

We say that an equilibrium is ε-approximate if

xᵀAy + ε ≥ max
i∈[n]

eᵀi Ay

xᵀBy + ε ≥ max
i∈[n]

xᵀBei.

For a given equilibrium x,y (often clear from context),

we let A00 and B00 be the restrictions of A and B to

supp(x) × supp(y), respectively. We let A10 and B10 be

the restrictions to supp(x)× supp(y), etc. Computing any

Nash equilibrium, even n−O(1)-approximate, is known to be

PPAD-complete [CDT09]:

Theorem 2 ([CDT09]). For all c > 0, computing an n−c-
approximate Nash equilibrium of an n × n bimatrix game
with entries bounded in [0, 1] is PPAD-complete.

A. Remarks on the reduction

The reduction, presented in Section III, will ultimately

take a hard instance of Theorem 2 and transform it into

a instance of X-SMOOTHED-NASH, for suitable distri-

butions X . By the nature of the reduction, if one applies

the same reduction with a wider hardness-of-approximation

guarantee, one can deduce that for a suitable constant c > 0,

it is PPAD-hard under a randomized reduction to find a n−c-

approximate equilibrium of X-SMOOTHED-NASH (see,

e.g., Eq. 5). This has two interesting implications.

First, this means that if you truncate the output of the

distribution X , as well as the uniform distribution sampled

in the reduction, to O(log n) bits, it is still PPAD-hard to

find an (approximate) equilibrium for the resulting instance

. In particular, the smoothed complexity result is robust to

the underlying arithmetic representation of the payoffs.

Second, scaling down the hard instance of Theorem 2 by

a small polynomial still maintains an n−O(1) hardness-of-

approximation guarantee. Thus, as mentioned in the intro-

duction, the reduction implies that Nash remains intractable

even subject to noise (zero-sum + i.i.d.) that is polynomially
larger than the worst-case signal.

B. Concentration for random bilinear forms

We introduce here the following concentration bound

which is useful in our result.

Definition 2 (Subgaussian random variable). A R-valued

random variable X is subgaussian with variance proxy s2 >
0 if for all t > 0, E exp(tX) ≤ exp(s2t2/2). Note that if

X ∈ [−b, b] for some b > 0 with probability 1, then X is

subgaussian with variance proxy b2/4.

Lemma 3. Let A be an n × n matrix with independent
subgaussian entries with variance proxy at most 1. For all
u > 0, with probability at least 1−exp(−u2), all x,y ∈ Rn

with ‖x‖2 = ‖y‖2 = 1 have

x�Ay ≤ O(
√
log n+ u)(‖x‖1 + ‖y‖1) .

As a corollary, with the same probability, all x,y ∈ Rn with
‖x‖1, ‖y‖1 ≤ 1 have

x�Ay ≤ O(
√
log n+ u)(‖x‖2 + ‖y‖2) .

The proof of this lemma is deferred to the Appendix.

III. THE REDUCTION, AND PROOF OF THEOREM 1

First, we show in Section III-A the reduction in the

case that the noise distribution X is symmetric, i.e., the

probability of sampling a and −a is identical for all a > 0.

We then show in Section III-B a slight modification which

works for any distribution X .



A. The symmetric case

Let ε > 0 be a sufficiently small constant. Let X be

any symmetric distribution on [−ε, ε]. Let n, b be positive

integers such that b divides n, b = n0.01, and n is sufficiently

large. We divide [n] into b blocks which we label Ii :=
{(i−1)nb +1, (i−1)nb +2, . . . , i·nb }. We let � := n/b = n0.99

denote the block length.

Let P,Q ∈ Rb×b be payoff matrices. Let J� denote the

� × � all 1’s matrix. Let Z0 be an n × n matrix whose

entries are sampled i.i.d. from the Rademacher distribution

(i.e., the uniform distribution on {−1, 1}). Let Z1 be an

n × n matrix whose entries are sampled i.i.d. from the

uniform distribution on [−1, 1]. Let Aε, Bε be n×n matrices

whose entries are i.i.d. sampled from X (all distributions

independent).11

A := P ⊗ J� + Z0 + Z1 +Aε

B := Q⊗ J� − Z0 − Z1 +Bε,

where P ⊗J� denotes the n×n matrix, where every entries

in block Ii × Ij is Pi,j .

We present here here the final result of this paper. We

will refer without proof to a bound on the norm of the

equilibrium strategy vectors, and we defer its proof to the

rest of the paper, namely Sections IV and V. This norm

bound is the technical heart of this paper, and the present

section illustrates its strength.

We seek to show that equilibria of the reduced game

(A,B) can be used to efficient produce approximate equi-

libria to the game (P,Q), which we have assumed is hard

to approximate. Let (x,y) be an equilibrium of (A,B).
We will show in Section V that, with high probability,

‖x‖2, ‖y‖2 ≤ n−0.2, even when ε is a constant. Note that

b = n0.01 is the dimension of the input game (P,Q). Define

(x̂, ŷ) to be distributions over [b] such that for all i ∈ [n]

x̂i =
∑
i′∈Ii

xi′ , ŷi =
∑
i′∈Ii

yi′ .

Theorem 4. With probability 1−n−2, we have that (x̂, ŷ)
is a b−19-approximate equilibrium of (P,Q).

Proof: We claim that (x̂, ŷ) is an b−19 = n−0.19-

approximate equilibrium of (P,Q) with high probability.

Assume not, without loss of generality, Alice would benefit

from deviating from x̂. That is, there exists i ∈ [b] such that

x̂ᵀP ŷ ≤ eᵀi P ŷ − b−19. (1)

Define uS to be the uniform probability vector on support

S, then, the above is equivalent to

xᵀ(P ⊗ J�)y ≤ uᵀ
Ii
(P ⊗ J�)y − b−19. (2)

11The to meet the definition of X-SMOOTHED-NASH, which specifies
that the hard game must have entries between [−1, 1], we can scale the
construction (and thus X) by a factor of 3.

By Lemma 3, we may assume that the concentration in-

equality holds for 1
2+ε (Z0 + Z1 +Aε), then we know that

|xᵀ(Z0 +Aε)y| ≤ O(
√

log n n−0.2) (3)

|uᵀ
Ii
(Z0 +Aε)y| ≤ O(

√
log n n−0.2) (4)

Combining Eqs. 2,3, and 4 we get

xᵀAy ≤ uᵀ
Ii
Ay − b−19 +O(

√
log n n−0.2) < uᵀ

Ii
Ay.

(5)

since b = n0.01. This contradicts that (x,y) is a Nash

equilibrium of (A,B).
By a similar argument, Bob does not wish to deviate with

high probability. Therefore, (x̂, ŷ) is a b−19-approximate

Nash equilibrium of (P,Q).
Since finding a b−19-approximate Nash equilibrium is

PPAD-hard [CDT09] when P and Q have constant sized en-

tries, finding the smoothed equilibrium of (A,B) is PPAD-

hard. Since the proofs of Sections IV and V hold when X is

supported on [−ε, ε] for ε > 0 constant, this is an instance of

X-SMOOTHED NASH, and therefore concludes the proof

of Theorem 1 when X is a symmetric distribution.

B. General X

Let X be any distribution supported on [−ε/2, ε/2]. Let

Y := X−X ′ be the distribution on [−ε, ε] which takes two

i.i.d. samples from X and subtracts them. Note that Y is a

symmetric distribution, so by the previous section we have

that Y -SMOOTHED NASH is hard. In particular, it is hard

to find an equilibrium from the distribution

A := P ⊗ J� + Z0 + Z1 +AY

B := Q⊗ J� − Z0 − Z1 +BY ,

where AY and BY are matrix whose entries are i.i.d. samples

from Y . We can rewrite AY = AX −A′
X and BY = BX −

B′
X , where AX , A′

X , BX , B′
X are all i.i.d. matrix samples

from X . Thus, the distribution can be rewritten as

A := (P ⊗ J� + Z0 + Z1 −A′
X) +AX

B := (Q⊗ J� − Z0 − Z1 −B′
X) +BX ,

This is an instance of X-SMOOTHED NASH, and we

conclude Theorem 1 for arbitrary X , losing a factor 2 on ε.

IV. EQUILIBRIA HAVE LARGE SUPPORT

In this section and the following, we will show the

bound on ‖x‖2, ‖y‖2 which was required in the proof of

Theorem 1. We first show that the support of the equilibria

is large with high probability. Then, in Section V, use this to

argue that the weight must be sufficiently spread. The main

result of this section is the following lemma.

Lemma 5. With probability 1 − n−3, for every Nash
equilibrium (x,y) of (A,B), we have that |supp(x)| =
|supp(y)| > n0.96.



We prove this result using methods partially inspired

by [Jon04]. Observe that a Nash equilibrium of (A,B)
requires that

xᵀAy ≥ eᵀi Ay for all i ∈ [n]

xᵀBy ≥ xᵀBej for all j ∈ [n]

=⇒ xᵀ(A+B)y ≥ eᵀi Ay + xᵀBej for all i, j ∈ [n].
(6)

We seek to show that Eq. 6 cannot hold when the

support x,y is sufficiently small.12 To do that, we propose

a “benchmark” to which both the LHS and the maximum

value of the RHS of Eq. 6 are comparable to. To define

this benchmark, we begin by introducing a notion of robust
partition of the strategy vectors. Consider x ∈ Rn such that

‖x‖1 = 1. Let L = 	log2 n
/2100. Let D = 22
500

. Let

E1, . . . , EL be intervals such that Ei = (D−i, D−(i−1)] for

all i < L and EL = [0, D−(L−1)]. Let x = x(1)+ · · ·+x(L)

such that

x
(i)
j =

{
xj xj ∈ Ei

0 otherwise

We say that x(i) is sparse if it has at most L nonzero

coordinates; otherwise we say x(i) is dense. Let xsparse be

the sum of the sparse x(i)’s and xdense be the sum of the

dense ones. Note that x = xsparse+xdense. Now define the

following quantity

β(x) =
√
log n‖xdense‖2 + ‖xsparse‖1.

We call β(x) the benchmark for x. This quantity will

appear in a number of concentration/anti-concentration in-

equalities. First, we show a key anticoncentration inequality

concerning this robust partition.

Lemma 6. Assume that X is the uniform distribution on
{−1, 1} (i.e., the Rademacher distribution). There exists a
universal constant c > 0 with the following property: For
all x ∈ Rn such that ‖x‖1 = 1, with probability at least
n−0.001 over v ∼ Xn

〈v,x〉 ≥ cβ(x).

The proof of the above lemma is deferred to the Appendix.

The following concentration bound will also be of use. For

any distribution X , we let Xn×n denote the distribution of

n× n matrices with entries i.i.d. samples from X .

Claim 7. Let X be any distribution on [−1, 1]. There exists
a universal constant C > 0 such that for all n ≥ 0, with
probability 1 − 1/n4 over M ∼ Xn×n, for all x,y ∈ Rn

such that ‖x‖1 = ‖y‖1 = 1, we have that

|xᵀMy| ≤ C · (β(x) + β(y)).

12In the case of [Jon04], which considers zero-sum games, the LHS of
(6) is equal to 0, so it suffices to bound the probability that the RHS is
positive for some i and j.

Proof: Apply Lemma 3 to M with u =
√
3 log n. Then,

there is a universal constant C ′ such that with probability

1− 1/n3, for all x,y with �1 norm 1,

|xᵀ
denseMydense| ≤ C ′√log n(‖xdense‖2 + ‖ydense‖2).

Thus, since the entries of M have absolute value at most 1,

|xᵀMy| ≤ |xᵀMysparse|+ |xᵀ
sparseMydense|

+ |xᵀ
denseMydense|

≤ ‖ysparse‖1 + ‖xsparse‖1
+ C ′√log n(‖xdense‖2 + ‖ydense‖2)

≤ max(C ′, 1)(β(x) + β(y)).

Thus, we can set C = max(C ′, 1).
These lemmas will allow us to prove Lemma 5. We

present first the following facts about equilibria in random

games.

Proposition 8. With probability 1, for nonempty S, T ⊂ [n]
there is at most one Nash equilibrium (x,y) of (A,B) with
S = supp(x) and T = supp(y). Further, with probability 1
all such equilibria have |S| = |T |.

Proof: Fix nonempty S, T ⊂ [n]. Fix i0 ∈ S. Assume

without loss of generality that |S| ≥ |T |. Denote A00 as

the sub-matrix of A restricted to rows indexed by S and

columns indexed by T . For any equilibrium (x,y) with

supports S and T , we have that xᵀAy = eᵀi A
00y for all

i ∈ S, when treating x and y as |S|- and |T |-dimensional

vectors, respectively. Therefore,

(ei − ei0)
ᵀA00y = 0 for all i ∈ S \ {i0}. (7)

Since all the entries of A00 are drawn independently from a

continuous distribution, the null space of the linear system

(7) has dimension max(|T |−|S|+1, 0) ≤ 1 with probability

1. Since y �= 0 the null space must have dimension exactly

1. Thus, |T |− |S|+1 ≥ 1, which implies that |S| = |T | and

the solution y is unique, as there can be at most one vector

in a 1-dimensional subspace with coordinates summing to

one. By a similar argument x is also unique.

Since there are only finitely many choices of S and

T , with probability 1 the proposition holds for all Nash

equilibria simultaneously.

With probability 1, all equilibria of A and B will have

the same support size, and further, for every pair of possible

supports S ⊂ [n] and T ⊂ [n] there is at most one

equilibrium. We let x,y ∈ Rn denote the probability

distributions of strategies in this equilibrium.

We can now prove Lemma 5

Proof of Lemma 5.: Assume (which happens with

probability 1 − n−4) that the event described in Claim 7

occurs for M = 1
2ε (Aε + Bε). Fix S, T ⊂ [n] with

|S|, |T | < �/10. We seek to show that with probability at

most 2−�, S and T can be the support of a Nash equilibrium.

By Proposition 8, we can assume that |S| = |T |.



Also by Proposition 8, with probability 1, there is at most

one equilibrium (x,y) on the game (A00, B00) with full

support. Note that x and y, if they exist, are independent

of the entries of A and B outside of S × T . As mentioned

earlier in the section, in order for the equilibrium to extend,

the Ineq. 6 must hold:

xᵀ(A+B)y ≥ eᵀi Ay + xᵀBej for all i, j ∈ [n].

Say that i ∈ [n] \ S is S-good if eᵀi (Z0 + Z1 + Aε)y >
cβ(y). By Lemma 6, we know that eᵀi Z1y > cβ(y) with

probability at least n−0.001. Independently, we have that

eᵀi (Z0 + Aε)y ≥ 0 with probability at least 1/2 (since

Z0+Aε is a mean-zero matrix distribution). Therefore, both

this event happens with probability at least n−0.001/2 ≥
n−0.01.

Likewise, say that j ∈ [n]\T is T -good if xᵀ(−Z0−Z1−
Bε)ej > cβ(x). By the same argument, this also happens

with probability at least n−0.01 . Furthermore, the S-good

events and T -good events are independent of each other

because each event is based on a disjoint subset of entriesZ

from Z0 and Z1.

Since x and y are probability distributions, there exists

i0 ∈ S and j0 ∈ T such that eᵀi0(P ⊗ J�)y ≥ xᵀ(P ⊗ J�)y
and xᵀ(Q ⊗ J�)ej0 ≥ xᵀ(Q ⊗ J�)y. Let i′, j′ ∈ [b] be the

indices of the blocks such that i0 ∈ Ii′ and j0 ∈ Ij′ . Since

we assume that |S|, |T | ≤ �/10, we have that Ii′ \ S and

Ij′ \ T both have size at least 9�/10.

Now, for any good i ∈ Ii′ \ S and good j ∈ Ij′ \ T , we

have

xᵀ(A+B)y

= xᵀ(P ⊗ J�)y + xᵀ(Q⊗ J�)y + xᵀ(Aε +Bε)y

≤ eᵀi0(P ⊗ J�)y + xᵀ(Q⊗ J�)ej0 + 2Cε(β(x) + β(y))

= eᵀi (P ⊗ J�)y + xᵀ(Q⊗ J�)ej + 2Cε(β(x) + β(y))

< eᵀi (P ⊗ J�)y + xᵀ(Q⊗ J�)ej + c(β(x) + β(y))

(because ε < 2c/C)

< eᵀi (P ⊗ J� + Z0 + Z1 +Aε)y

+ xᵀ(Q⊗ J� − Z0 − Z1 +Bε)ej

= eᵀi Ay + xᵀBy,

which contradicts Ineq. 6. Thus, there must either be no good

i ∈ Ii′ \ S or there is no good j ∈ Ij′ \ T . This happens

with probability at most

2
(
1− n−0.01

)9�/10 ≤ 2e−(0.9)�/n0.01 ≤ e−n0.97

,

where we use in the last inequality that n is sufficiently

large. The number of pairs S, T with support at most n0.96

is at most (
n

≤ n0.96

)2

≤ n2n0.96

.

Note that for n sufficiently large, n2n0.96

e−n0.97 � n−4.

Thus, all equilibria have support size greater than n0.96 with

probability at least 1− 2n−4 ≥ 1− n−3.

V. EQUILIBRIA HAVE SMALL �2 NORM

Towards showing the missing bound in the proof of

Theorem 1, the previous section showed that with high

probability, any equilibrium must have polynomially large

support. We complete here the proof of the norm bound,

which in turn completes the proof of Theorem 1.

Lemma 9. With probability 1−20n−3, for every Nash equi-
librium (x,y) of (A,B), we have that ‖x‖2, ‖y‖2 ≤ n−0.2.

We must, however, begin this section with a few technical

results. We will need the following theorem, which is derived

from the fact that the VC-dimension of the set of halfspaces

in Rd has VC-dimension at most d + 1 – that is, the VC-

dimension of {x �→ 1[〈x,v〉 + t ≥ 0] : v ∈ Rd, t ∈ R} is

at most d+ 1. (See e.g. [Wai19], Example 4.21.)

Theorem 10 (Multivariate Glivenko-Cantelli). Let X be a
random vector in Rd and let X1, . . . , Xn be independent
copies of X . For all δ ∈ [0, 1], with probability 1− δ,

sup
v∈Rd,t∈R

∣∣∣∣∣ 1n
n∑

i=1

1[〈Xi,v〉 ≥ t]− Pr
X
(〈X,v〉 ≥ t)

∣∣∣∣∣
≤ O

(√
d

n
+

√
log(1/δ)

n

)
.

We also need the following Littlewood-Offord-type theo-

rem.

Theorem 11 ([RV15], Theorem 1.2). Let X1, . . . , Xn be
real-valued independent random variables with densities
almost everywhere bounded by K. Let a1, . . . , an ∈ R with∑

i≤n a
2
i = 1. Then the density of

∑
i≤n aiXi is bounded

by
√
2K almost everywhere.

The following lemma, which we obtain as a corollary of

these two theorems, allows us to argue that the entries of a

product of a random matrix with a fixed vector are relatively

spread out.

Lemma 12. Let n, d be positive integers. Let X be an R-
valued random variable with density bounded by K. Let
g1 . . . , gn be independent random vectors in Rd whose
coordinates are independent copies of X . With probability
1−δ, for all unit vectors v ∈ Rd and all intervals [a, b] ⊂ R,

1

n

n∑
i=1

1[〈gi,v〉 ∈ [a, b]]

≤
√
2K|a− b|+O

(√
d

n
+

√
log(1/δ)

n

)
.

Proof: By Theorem 10, with probability at least 1 −
δ, the CDFs of 〈g,v〉 and the empirical distribution of



〈gi,v〉 have distance at most O

(√
d
n +

√
log(1/δ)

n

)
, for

all v ∈ Rd. So it suffices to show that for every unit

v ∈ Rd, Prg(〈g,v〉 ∈ [a, b]) ≤ √
2K|a − b|. This follows

immediately from Theorem 11.

Finally, this lemma allows us to prove the following claim.

Claim 13. Let X be a distribution on [−1, 1] whose prob-
ability density is at most 100 everywhere. Let M ∼ Xn×n.
With probability 1 − n−4, for every S, T ⊂ [n] with
|S| ≥ n0.95 and |T | ≤ n0.85, there exists disjoint S1, S2 ⊂ S
of size at least n0.94 each such that for all unit vectors
y ∈ Rn with support in T there exists r ∈ R such that

eᵀi1My ≥ r + n−0.07 for all i1 ∈ S1

eᵀi2My ≤ r for all i2 ∈ S2.

Proof: For every T ⊂ [n] of size at most n0.85, apply

Lemma 12 to the rows of M restricted to the columns

of T (so d = |T | ≤ n0.85) with δ = e−n0.86

. Thus,

with probability 1 − e−n0.86

, for every unit vector y ∈ Rd

supported on T and every interval [a, b] of length n−0.06/10,

the number of i ∈ [n] such that eᵀi My ∈ [a, b] is at most

n

[
100

√
2|a− b|+O

(√
d

n
+

√
log(1/δ)

n

)]
= O(n0.94)

choices of i ∈ [n] for which eᵀi Ay falls in that interval.

Since |S| ≥ n0.95, this implies there exist r ∈ R, and disjoint

S1, S2 ⊂ S of size at least n0.94 such that

eᵀi1My ≥ r +
n−0.06

10
≥ r + n−0.07 for all i1 ∈ S1

eᵀi2My ≤ r for all i2 ∈ S2.

Taking the union bound over all choices of T we get this

all happens with probability at most

1−
(

n

≤ n0.85

)
e−n0.86 ≥ 1− e−n0.85 ≥ 1− n−4.

We can now prove Lemma 9.

Proof of Lemma 9: With probability 1 − n−3, by

Lemma 5, for every equilibrium (x,y) of (A,B) with sup-

port S and T , respectively, we have that |S| = |T | ≥ n0.96.

Since there are n0.01 blocks. By the pigeonhole principle

there exists i0, j0 ∈ [b] such that |S ∩ Ii0 |, |T ∩ Ij0 | ≥ n0.95.

With probability 1− 2n−4, Claim 13 holds with for both

M = 1
2+ε (Z0 + Z1 +Aε) and M = 1

2+ε (−Z0 − Z1 +Bε).
Further, with probability at least 1− 2n−3, Lemma 3 holds

for M = 1
2+ε (Z0+Z1+Aε) and M = 1

2+ε (−Z0−Z1+Bε)

with u =
√
3 logn.

We seek to show that any large-support equilibrium also

has small �2 norm. Assume for sake of contradiction (and

without loss of generality) that ‖y‖2 ≥ n−0.2. Let S′ =
S ∩ Ii0 and T ′ be the set of coordinates of y which are

greater than n−0.85. Clearly |T ′| ≤ n0.85. Let yT ′ be the

coordinates of y supported on T ′ and ȳT ′ be the remaining

coordinates. Observe that

‖ȳT ′‖22 ≤ n · (n−0.85)2 = n−0.7 ≤ ‖y‖22
2

(8)

‖yT ′‖22 = ‖y‖22 − ‖ȳT ′‖22 ≥ ‖y‖22
2

. (9)

Applying Claim 13 for M = 1
2+ε (Z0+Z1+Aε) and the sets

S′, T ′ and the vector y′ := yT ′
‖yT ′‖2

, there exists S′
1, S

′
2 ∈ S′

and r ∈ R such that (scaling by 2 + ε ≥ 1)

eᵀi1(Z0 + Z1 +Aε)y
′ ≥ r + n−0.07 for all i1 ∈ S′

1

eᵀi2(Z0 + Z1 +Aε)y
′ ≤ r for all i2 ∈ S′

2.

Thus,

uᵀ
S′
1
(Z0 + Z1 +Aε)y

′ ≥ r + n−0.07

uᵀ
S′
2
(Z0 + Z1 +Aε)y

′ ≤ r

=⇒ (uS′
1
− uS′

2
)ᵀ(Z0 + Z1 +Aε)y

′ ≥ n−0.07.

Applying (9),

(uS′
1
−uS′

2
)ᵀ(Z0+Z1+Aε)yT ′ ≥ n−0.07‖y‖2/2 ≥ n−0.28.

Since Lemma 3 holds for M = 1
2+ε (Z0 + Z1 + Aε), we

have that

(uS′
1
− uS′

2
)ᵀ(Z0 + Z1 +Aε)ȳT ′

≥ −(2 + ε)C ′√log n(‖uS′
1
− uS′

2
‖2 + ‖ȳT ′‖2)

≥ −n0.01 max(
√
2n−0.94/2, n−0.7/2)

≥ −n−0.34.

Therefore, since y = yT ′ + ȳT ′

(uS′
1
− uS′

2
)ᵀ(Z0 +Aε)y ≥ n−0.28 − n−0.34 ≥ n−0.29.

Since S′
1 and S′

2 are subsets of the same block, we have that

uS′
1
(P ⊗ J�) = uS′

2
(P ⊗ J�). Therefore,

(uS′
1
− uS′

2
)ᵀAy ≥ n−0.29.

But, since S′
1 and S′

2 are subsets of the support of x, we

know that

(uS′
1
− uS′

2
)ᵀAy = 0,

thus we have a contradiction. Therefore, ‖y‖2 ≤ n−0.2. By

a similar argument (also with probability 1−5n−3, ‖x‖2 ≤
n−0.2, as desired. By the union bound, the total probability

of success is at least 1− 20n−3 ≥ 1− n−2.
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APPENDIX

A. Proof of Lemma 3

To prove this lemma, we rely on the following powerful

comparison inequality of Talagrand.

Theorem 14 (Talagrand’s comparison inequality, high-

-probability version. [Ver18], Exercise 8.6.5). Suppose that
{Xs}s∈S is a collection of R-valued random variables,
indexed by some S ⊆ Rn, 0 /∈ S. Suppose that for all
s, t ∈ S, Xs − Xt is subgaussian with variance proxy at
most ‖s − t‖2. There is a universal constant C > 0 such
that for all u > 0, with probability at least 1− exp(−u2),

sup
s∈S

Xs ≤ C

(
E

g∼N (0,I)
sup
s∈S

〈g, s〉+ u · sup
s∈S

‖s‖2
)

.

Now we can prove Lemma 3.

Lemma 3. Let A be an n × n matrix with independent
subgaussian entries with variance proxy at most 1. For all
u > 0, with probability at least 1−exp(−u2), all x,y ∈ Rn

with ‖x‖2 = ‖y‖2 = 1 have

x�Ay ≤ O(
√
log n+ u)(‖x‖1 + ‖y‖1) .

As a corollary, with the same probability, all x,y ∈ Rn with
‖x‖1, ‖y‖1 ≤ 1 have

x�Ay ≤ O(
√
log n+ u)(‖x‖2 + ‖y‖2) .

Proof: Consider for each x,y ∈ Rn the random

variable x�Ay/(‖x‖1 + ‖y‖1). Since the entries of A are

subgaussian with variance proxy 1, there is a universal

C > 0 such that 〈U,A〉 is subgaussian with variance proxy

C‖U‖2F , where ‖ · ‖F is the Frobenius norm, for any n× n
matrix U . Hence, for x,y,x′,y′ ∈ Rn,

x�Ay

‖x‖1 + ‖y‖1 − (x′)�Ay′

‖x′‖1 + ‖y′‖1



is subgaussian with variance proxy C‖xy�/(‖x‖1+‖y‖1)−
(x′)(y′)�/(‖x′‖1 + ‖y′‖1)‖2F . We claim that∥∥∥∥ xy�

‖x‖1 + ‖y‖1 − (x′)(y′)�

‖x′‖1 + ‖y′‖1

∥∥∥∥2
F

≤
∥∥∥∥ (x,y)

‖x‖1 + ‖y‖1 − (x′,y′)
‖x′‖1 + ‖y′‖1

∥∥∥∥2
2

,

where (x,y) denotes the concatenation of x and y to a 2n-

length vector. To see this, recalling that ‖x‖2 = ‖y‖2 =
‖x′‖2 = ‖y′‖2 = 1, let m = ‖x‖1 + ‖y‖1 and m′ =
‖x′‖1 + ‖y′‖1 and expand both sides, it is equivalent to

prove

m2 + (m′)2 − 2m(m′)〈x,x′〉〈y,y′〉
m2(m′)2

≤ 2m2 + 2(m′)2 − 2m(m′)〈x,x′〉 − 2m(m′)〈y,y′〉
m2(m′)2

.

This is equivalent to

1

m2
+

1

(m′)2
− 2

〈x,x′〉+ 〈y,y′〉 − 〈x,x′〉〈y′,y〉
mm′ ≥ 0 .

Dividing by 2/mm′ and using 1/m2 + 1/(m′)2 ≥ 2/mm′,
it is enough to show

1− 〈x,x′〉 − 〈y,y′〉 − 〈x,x′〉〈y′,y〉 ≥ 0 .

This factors as (1 − 〈x,x′〉)(1 − 〈y,y′〉) ≥ 0 since we

assumed x,x′,y,y′ were unit vectors.

Now we can apply Theorem 14 to see that with probability

at least 1− exp(−u2),

sup
x,y

‖x‖2=‖y‖2=1

x�Ay
‖x‖1 + ‖y‖1

≤ C

⎛
⎝ E

g∼N (0,I)
sup
x,y

‖x‖2=‖y‖2=1

〈(x,y), g〉
‖x‖1 + ‖y‖1 + u

⎞
⎠

where C is a universal constant, g is a length 2n Gaussian

vector with independent coordinates, and we have used that

‖(x,y)‖2 ≤ ‖(x,y)‖1 = ‖x‖1 + ‖y‖1. To finish the

argument, observe that

E
g∼N (0,I)

sup
x,y

‖x‖2=‖y‖2=1

〈(x,y), g〉
‖x‖1 + ‖y‖1

= E
g∼N (0,I)

‖g‖∞ ≤ O(
√
log n) .

Finally, to prove the corollary, note that we just showed

that with probability at least 1 − exp(−u2), all x,y ∈
Rn with ‖x‖1 = ‖y‖1 = 1 have x�Ay/‖x‖2‖y‖2 ≤
O(

√
log n + u) · (1/‖x‖2 + 1/‖y‖2). Multiplying by

‖x‖2‖y‖2 implies the corollary.

B. Proof of Lemma 6

1) Facts about the binomial distribution: In our result,

we need the following bound of Erdős [Erd45].

Theorem 15 ([Erd45], variant of [Dzi14]). Let a1, . . . , an ≥
1 be real numbers and ε1, . . . , εn be Rademacher random
variables (uniform distribution on {−1, 1}) then for all
integers k ≥ 1,

Pr[a1ε1 + · · · anεn ≥ k − 1] ≥ Pr[ε1 + · · ·+ εn ≥ k].

Furthermore, the following binomial inequality will be

useful:

Lemma 16 ([Ash90]). For all k and n,(
n

k

)
≥ 2nH(k/n)

√
8n

,

where H(·) is the binary entropy function.

Note that when k = n
2 (1 + δ), then

H(k/n) := −1 + δ

2
log2(

1
2 (1 + δ))− 1− δ

2
log2(

1
2 (1− δ))

≥ 1− 1

ln 2

(
1 + δ

2
· δ + 1− δ

2
· (−δ)

)
= 1− (log2 e)δ

2.

Combining with the above inequality gives

1

2n

(
n

k

)
≥ 1√

8n
e−nδ2 .

This allows us to show the following:

Claim 17. For all integers n ≥ k ≥ 0 with n sufficiently
large

1

2n

n∑
i=n+k

2

(
n

i

)
≥ 1

10000
exp

(
−10k2

n

)
. (10)

Proof: Note that here, δ = k
n . If k ≥ n− 2

√
n, then

−10k2/n ≤ −10n+ 40
√
n− 400 ≤ −9n

for n sufficiently large. Note that the LHS of 10 is at least

2−n > e−9n, and thus is at least the RHS.

On the other hand, if k ≤ n− 2
√
n, then by Lemma 16,

the sum of the first
√
n terms is at least

√
n

(
n

n+k
2 +

√
n

)
≥ √

n
1√
8n

exp

(
−n ·

(
k + 2

√
n

n

)2
)

= 1√
8
exp

(
−k2 + 4k

√
n+ 4n

n

)

≥ 1√
8
exp

(
−5k2 + 5n

n

)

=
1

e5
√
8
exp

(
−5k2

n

)
,



which implies the claim.

We recall here the statement of Lemma 6, and give a

proof with the above results:

Lemma 6. Assume that X is the uniform distribution on
{−1, 1} (i.e., the Rademacher distribution). There exists a
universal constant c > 0 with the following property: For
all x ∈ Rn such that ‖x‖1 = 1, with probability at least
n−0.001 over v ∼ Xn

〈v,x〉 ≥ cβ(x).

Proof: Recall, we have defined the following: let

L = 	log2 n/2100
. Let D = 22
500

and let E1, . . . , EL be

intervals such that Ei = (D−i, D−(i−1)] for all i < L and

EL = [0, D−(L−1)]. Let x = x(1) + · · · + xL such that

x
(i)
j = xj · 1[xj ∈ Ei]. We say x(i) is sparse if it has

at most L nonzero coordinates; otherwise it is dense. Let

F ⊂ {1, 2, . . . , L} be the set of dense indices. Let xsparse

be the sum of the sparse x(i)’s and xdense be the sum of

the dense ones, and define

β(x) =
√
log n‖xdense‖2 + ‖xsparse‖1.

Note that if we drop x(L), β changes by at most√
log n‖x(L)‖1 ≤ n

√
log n · n−2400+1, a negligeably small

term. Thus, we can without loss of generality assume that

x(L) = 0.

Since β(x) = ‖xsparse‖1+
√
log n‖xdense‖2, we have for

any x, at least one of ‖xsparse‖1 or
√
log n‖xdense‖2 is at

least 1
2β(x). Assume we know that with probability at least

2n−0.001, 〈v,xsparse〉 = Ω(‖xsparse‖1); and with probabil-

ity at least 2n−0.001, 〈v,xdense〉 = Ω(
√
log n‖xdense‖2).

Then, we know with probability at least n−0.001, one of

〈v,xsparse〉 and 〈v,xdense〉 is at least Ω(β(x)) and the other

is at least 0 and thus their sum is at least β(x). We split the

remainder of the proof into two parts.
Part 1, 〈v,xsparse〉 = Ω(‖xsparse‖1): Let x′ be the 2L

largest coordinates of xsparse. Note that ‖x′‖1 is at least

D2 times the sum of the next 2L largest coordinates of

xsparse and at least D4 times the sum of the next 2L largest

coordinates after that, etc. Thus, ‖x′‖1 ≥ 1
2‖xsparse‖.

Now with probability 1/22L, because v has

i.i.d. Rachemacher entries, 〈v,x′〉 = ‖x′‖1, and

with probability at least 1/2, 〈v,xsparse − x′〉 ≥ 0.

Thus, with probability at least 1/22L+1 ≥ 2n−0.001,

〈v,xsparse〉 ≥ 1
2‖xsparse‖1.

Part 2, 〈v,xdense〉 = Ω(
√
log n‖xdense‖2): Since

xdense =
∑

i∈F x(i), we have that

Pr

[
〈v,xdense〉 ≥

√
log n

1000D
‖xdense‖2

]
(11)

≥
∏
i∈F

Pr

[
〈v,x(i)〉 ≥

√
log n · ‖x(i)‖22

1000D‖xdense‖2

]
(12)

Consider i ∈ F , and let mi ≥ L + 1 be the support size

of x(i). Since x
(i)
j Di ≥ 1 for all j in the support of x(i),

we have by Theorem 15 and Claim 17, that for any integer

k ∈ [0,mi]

Pr

[
〈v,x(i)〉 ≥ k

Di

]
≥

mi∑
i=

mi+k

2 +1

(
mi

i

)

≥ 1

10000
exp

(
−10mi

(
k + 2

mi

)2
)
.

Observe that ‖x(i)‖2 ≤ √
mi‖x(i)‖∞ ≤ √

miD
−(i−1).

Thus,

Pr

[
〈v,x(i)〉 ≥ k

D
√
mi

‖x(i)‖2
]

≥ 1

10000
exp

(
−10mi

(
k + 2

mi

)2
)
.

Let

k =

⌈
1

1000

√
mi log n · ‖x(i)‖2

‖xdense‖2

⌉
.

Then, note that

k + 2

mi
≤ 3

mi
+

1

1000

√
log n

mi
· ‖x(i)‖2
‖xdense‖2

Thus, since (a+ b)2 ≤ 2a2 + 2b2,

−10mi ·
(
k + 2

mi

)2

≥ −180

mi
− log n

5 · 104 · ‖x(i)‖22
‖xdense‖22

.

Therefore,

Pr

[
〈v,x(i)〉 ≥

√
log n

1000D
· ‖x(i)‖22
‖xdense‖2

]

≥ 1

104
exp

(
−180

mi
− log n

5 · 104 · ‖x(i)‖22
‖xdense‖22

)
.

Applying Eq. 12, and noting that each mi ≥ L ≥ |F |.

Pr

[
〈v,xdense〉 ≥

√
log n

1000D
‖xdense‖2

]

≥ 1

104L
exp

(
−
∑
i∈F

180

mi
− log n

5 · 104
)

=
1

104Le180
n−10−5

≥ n−2−90

n−10−5

≥ n−0.001,

For n sufficiently large. This concludes the proof.


