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Filling anomaly for general two- and three-dimensional C4 symmetric lattices
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In this paper, we derive symmetry indicator formulas for the filling anomaly on two-dimensional (2D) C4

symmetric square lattices with and without time reversal, inversion symmetry, or their product, in the presence

of spin-orbit coupling. We go beyond previous work by considering lattices with atoms occupying multiple

Wyckoff positions. We also provide an algorithm using the Smith normal form that systematizes the derivation.

The formulas determine the corner charge in 2D atomic or fragile topological insulators, as well as in three-

dimensional (3D) insulators and semimetals by studying their 2D slices in momentum space. We apply our

results to a 3D tight-binding model on a body-centered tetragonal lattice, whose projection into the 2D plane has

two atoms in the unit cell. Our symmetry indicators correctly describe the higher-order hinge states and Fermi

arcs in cases where the existing indicators do not apply.
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I. INTRODUCTION

The discovery of higher-order topological insulators

(HOTIs) has refined the notion of the bulk-boundary cor-

respondence [1–20]. Specifically, an order-d topological

insulator in D dimensions exhibits gapless modes on (D − d )-

dimensional surface, where d = 1 corresponds to the usual

bulk-boundary correspondence [21–23].

In this paper, we consider the case where d = D. An

order-D topological insulator in D dimensions exhibits zero-

dimensional corner-localized mid-gap states [1,5,24–28].

Unlike a Chern insulator [29,30], Z2 topological insulator

[31], or topological crystalline insulator [32,33], an order-D

topological insulator in D dimensions does not require an

obstruction to the existence of symmetric, maximally local-

ized Wannier functions. Instead, the corner charge can result

from an obstructed atomic limit (OAL) phase [32], where

the bulk is a band insulator that permits maximally localized

and symmetric Wannier functions, but such that the Wannier

centers cannot be continuously deformed into the positions of

the atoms without breaking symmetry or closing the bulk (or

surface [34]) band gap. This mismatch between the bulk atoms

and Wannier centers has been dubbed the filling anomaly [25].

In a symmetric finite-sized system at charge neutrality with

no polarization or surface states, a filling anomaly results in a

nonzero corner charge, quantized by crystal symmetry.

It is desirable to compute the filling anomaly and corner

charge from bulk properties. To this end, there have been

two recent approaches. The first, which applies to any lattice,

regardless of symmetry, is to generalize the modern theory

of polarization [35–37] by determining the corner charge

from a bulk multipole moment [38–45]. The second, which

is taken in this paper, is to develop a theory of symmetry

indicators, i.e., formulas derived in terms of the symmetry

representations of the Bloch wave functions at high-symmetry

momenta. Symmetry indicators have been very successful in

classifying topological crystalline insulators [9,32,33,46–53]

starting with the inversion eigenvalue formulas for two- (2D)

and three-dimensional (3D) Z2 topological insulators [54].

Recently, symmetry indicators have been derived for the

filling anomaly and corner charge in OALs in certain 2D

crystals [25,26]. However, the results do not necessarily apply

when there are multiple atoms in the unit cell. Specifically,

Refs. [25,26] limited their consideration to crystals for which

there exists a symmetric finite-size termination that does not

cut through any unit cells. Such a termination does not exist

for a crystal with atoms occupying multiple distinct maximal

Wyckoff positions. For such a crystal, a symmetric termina-

tion will cut through some unit cells (regardless of the choice

of unit cell), as shown in Fig. 1(b).

In this paper, we develop a method to compute symmetry

indicators for the filling anomaly in the general case of a

crystal with atoms occupying any number of Wyckoff posi-

tions. The method has two steps: we first compute the filling

anomaly in terms of the number of Wannier functions centered

at each Wyckoff position (which has also been done recently

in Ref. [45]). Second, we compute the number of Wannier

centers at each Wyckoff position in terms of symmetry indica-

tors using elementary band representations. The second step is

accomplished via an algorithm that automates the calculation

of symmetry indicators, introduced in this work. We apply

our method to the square lattice with and without time rever-

sal, inversion, and their product, corresponding to the layer

groups p4/m1′, p4/m′, p4, p4/m, and p41′; the results are in

Eqs. (23), (26), (32), (37), and (39), respectively. Our results

provide a necessary generalization of formulas in previous

work [25,26], which can give an incorrect result when there

are multiple atoms in the unit cell.

In addition to diagnosing band structures in 2D, the results

of our work can be used to compute 2D invariants for slices
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FIG. 1. Finite-symmetric square lattices with open boundary

conditions shown for (a) the simple square lattice and (b) a lattice

with atoms in multiple Wyckoff positions. Solid blue and hollow

green dots and pink squares correspond to different Wyckoff posi-

tions on the square lattice. Dashed gray lines indicate the primitive

unit cell. The large black square outlines the finite-sized system

(atoms on the boundary are included in the finite-sized system). In

(b), the finite-sized system has boundaries cutting through the unit

cell, as evidenced by the different number of solid and hollow dots,

while the unit cell contains one of each.

of the 3D Brillouin zone, which is crucial to diagnosing the

topology of 3D semimetals [55–57] and some 3D HOTIs [3].

We present an example of this in Sec. III.

The paper is organized as follows. In Sec. II, we review

the concept of the filling anomaly and its connection to corner

charge. We derive relations between the filling anomaly and

the number of Wannier centers at each Wyckoff position.

We then derive symmetry indicator formulas for the filling

anomaly (and therefore corner charge) that apply to the square

lattice. In Sec. III, we build a 3D body-centered tetragonal

(BCT) model. We analyze the HOTI phase and higher-order

semimetal phase in this model by applying our formulas to

each kz slice, which corresponds to a 2D system with two

distinct atoms in the primitive unit cell. We verify our new

formulas by numerically calculating the corner/hinge states.

Our example demonstrates why the previous formulas in

Refs. [25,26] do not hold for a BCT lattice. In Sec. IV, we

summarize our results and discuss future directions.

II. 2D SQUARE LATTICE

We consider gapped 2D spinful systems on the square

lattice with no gapless edge modes and no bulk polarization.

These systems are either (possibly obstructed) atomic limits

or fragile topological phases, where all strong symmetry indi-

cators vanish [33]. In addition to the π/2 rotation symmetry

of the square lattice, which we denote by C4, we consider

the presence of time reversal T (where T 2 = −1), inversion

I, and/or their product, corresponding to the following 2D

symmetry groups, known as layer groups: p4/m1′ (C4, T , I);

p4/m′ (C4, T I); p4/m (C4, I); p41′ (C4, T ); and p4 (C4 only),

where the symmetry operations in parentheses indicate the

generators, excluding translations. The layer groups are listed

in international notation, where 4 indicates the C4 rotation;

1′ indicates T , /m indicates I; and m′ indicates IT [58].

The layer group p41′ does not have a complete symmetry

indicator formula, as pointed out in Ref. [26]; we derive a

partial indicator in Sec. II E 4.

In this section, we describe the method for deriving the

symmetry indicator for the filling anomaly (Secs. II A–II C),

which can be generalized to any crystal symmetry group in

any dimension. In Sec. II D, we apply the method to the sym-

metry group p4/m1′ with spin-orbit coupling (SOC). We first

rederive the formula for the case of only one atom in the unit

cell [26] and then derive a new formula for the situation where

atoms occupy multiple Wyckoff positions. We generalize to

the layer groups p4/m′, p4, p4/m, and p41′ with SOC in

Sec. II E and summarize in Sec. II F.

A. Bulk-corner correspondence

Topologically trivial bands have symmetric and exponen-

tially localized Wannier functions [32,33]. When the Wannier

centers cannot be continuously moved to coincide with the

atom positions while obeying crystal symmetry, the system

is in an OAL phase [32]. Despite having exponentially lo-

calized Wannier centers, OALs are nontrivial in the sense

that they are separated by a gap-closing phase transition from

the trivial phase (where the Wannier centers coincide with

the atomic positions). Canonical examples include the Su-

Schrieffer-Heeger model in one dimension (1D) [59] and the

quadrupole insulator in 2D [5].

Due to the mismatch between the atomic positions and

Wannier centers, OALs can sometimes support mid-gap

corner-localized states. The connection between bulk Wannier

centers and mid-gap corner charge is called the bulk-corner

correspondence. The existence of mid-gap corner states in-

dicates that in a finite-sized system with open boundaries, the

number of filled bulk valence states is different from the filling

required for charge neutrality. Thus, if the Fermi energy lies

in the gap, an OAL with mid-gap corner states can either be

neutral or symmetric, but not both. The filling of the finite

system in the symmetric case subtracted from the filling in

the neutral case defines the filling anomaly [25]. A nontrivial

filling anomaly requires not only that the number of filled

states differs from the charge neutral filling, but also that

the difference cannot be accounted for by adding or remov-

ing electrons to the boundary in a symmetry-preserving way.

Thus, the filling anomaly remains robust even if the mid-gap

states are pushed up (down) in energy into the conduction

(valence) bands by a boundary potential.

In the symmetry groups with time reversal (p4/m1′ and

p41′), the filling anomaly is defined mod 8 because one can

add or remove eight electrons to the boundary of a finite-

sized system without breaking these symmetries (by adding

a Kramers pair of time-reversed partners to the four corners of

a square lattice). In the systems without time reversal (p4/m′,
p4/m, or p4), the filling anomaly is defined mod 4 because

one can add four electrons to the boundary of a finite-sized

system without breaking these symmetries, as electrons need

not come in Kramers pairs.

In this work, we are interested in the filling anomaly that re-

sults from purely corner charge. Therefore, we limit ourselves

to systems without gapless surface states, which excludes

systems with a bulk polarization or a nontrivial topological

invariant.

To compute the corner charge, we note that the symmetri-

cally terminated square lattice with filling anomaly η has net
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FIG. 2. Maximal Wyckoff positions in the layer groups p4/m1′,

p4/m′, p4/m, p41′, and p4. The general position 4d is not shown.

charge ηe. Symmetry requires the charge ηe is symmetrically

sitting at the four corners, resulting in a corner charge Qc on

the square lattice [25],

Qc =
η

4
e. (1)

Since, as discussed above, η is defined either mod 8 or mod

4, it follows that Qc is defined mod 2e with time reversal and

mod e without.

B. Defining the filling anomaly

We now derive the filling anomaly in terms of the ion

positions and Wannier centers of the occupied valence bands.

Both the ion positions and Wannier centers are described by

Wyckoff positions; for a review of Wyckoff positions in the

context of band theory, we refer the reader to Refs. [32,49].

We use terminology specific to a finite square lattice of side

length L, but the method is general.

The first step is to count the number of electrons in the

charge neutral configuration. To do this, we need to know

the total number of ions in a finite-sized system with open

boundary conditions. Let w be one of the four Wyckoff po-

sitions on the 2D square lattice, 1a, 1b, 2c, or 4d , shown

in Fig. 2. For a finite-size lattice, we choose the convention

where the 1a position is at the corner. Define Nw(L) to be the

number of ions at the Wyckoff position w that reside inside or

on the boundary of a finite-sized square consisting of L × L

unit cells. For a periodic lattice of size L × L, the number

of ions is L2 multiplied by the multiplicity of the Wyckoff

position. However, for open boundary conditions, this is not

the case. As shown in Fig. 1(b), for an L × L square with open

boundary conditions,

Na(L) = L2,

Nb(L) = (L − 1)2,

Nc(L) = 2L(L − 1),

Nd (L) = 4(L − 1)2. (2)

The total number of electrons in the charge-neutral configura-

tion is then given by a sum over all Wyckoff positions:

Nneutral =
∑

w

Nw(L)aw, (3)

where aw denotes the number of valence electrons from the

ion at Wyckoff position w. (More generally, if there are

multiple ions not related by symmetry at the same Wyckoff

position, which can happen for Wyckoff positions with a

variable coordinate, such as the 4d position, then aw should

be the sum of valence electrons from each symmetry-distinct

ion in the Wyckoff position w.)

We now count the number of electrons required to sym-

metrically fill the Wannier centers of the valence bands in

a finite-size system with open boundary conditions. Each

Wannier center is labeled by a Wyckoff position w, and an ir-

reducible representation (irrep) ρw of the site-symmetry group

of w. (The site-symmetry group of w is the set of symmetry

operations that leave w invariant; therefore, Wannier functions

centered at w must transform as irreps of the site-symmetry

group. The irreps ρw describe the symmetry of the Wannier

functions.) Let nρw
count the number of Wannier functions

centered at w that transform as ρw and are not related by

symmetry; in the language of band representations [32,49],

nρw
counts the number of times the band representation la-

beled by ρw appears in the valence bands. Then the number of

electrons needed to symmetrically fill the Wannier functions

in a finite-size L × L square with open boundary conditions is

Nsymmetric =
∑

w

Nw(L)
∑

ρw

nρw
dim(ρw ), (4)

where dim(ρw ) is the dimension of the irrep ρw.

Equations (3) and (4) define the filling anomaly:

η = Nneutral − Nsymmetric mod 4(or 8)

=
∑

w

Nw(L)

(

aw −
∑

ρw

nρw
dim(ρw )

)

mod 4(or 8), (5)

where, as discussed in Sec. II A, mod 8 applies with time-

reversal symmetry and mod 4 applies without. Although this

formula for η includes an L-dependent term on the right-hand

side, the L dependence disappears due to our assumptions

that the system has no bulk charge polarization and no bulk

net charge, which would contribute terms of order L and L2,

respectively. Thus, η is independent of L. A similar method to

compute η was used in Refs. [25,26,45].

We now specify to the square lattice. The general Wyckoff

position, denoted 4d , has coordinates (x, y), where x, y �=
0, 1

2
. Ions on the 4d position always come in multiples of four,

even on a finite-size lattice, so that Nd (L) must be a multiple of

four as shown in Eq. (2). Therefore, if time-reversal symmetry

is absent, the term in Eq. (5) coming from the 4d Wyckoff po-

sition is a multiple of four and does not contribute to the filling

anomaly. If time-reversal symmetry is present, all electrons

come in Kramers pairs, causing the term in Eq. (5) coming

from the 4d Wyckoff position to be a multiple of eight, which

again does not contribute to the filling anomaly. Therefore,

when computing the filling anomaly, we need only concern

ourselves with the maximal Wyckoff positions 1a, 1b, and 2c,

shown in Fig. 2.

A second simplification for the square lattice is that

dim(ρw ) is independent of ρw and w for each symmetry

group we consider, as we now explain. The maximal Wyckoff

positions and their site-symmetry groups are listed in Table I

for all the layer groups we consider. In p4/m1′, Table I shows

the only possible site-symmetry groups are 4/m1′ or 2/m1′;
all irreps of these groups are two-dimensional, as shown in
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TABLE I. Site-symmetry groups for the maximal Wyckoff posi-

tions w of the layer groups p4/m1′, p4/m′, p4/m, p4, and p41′ in

international notation [58]. The site-symmetry groups for 1a and 1b

are the same groups that leave � = (0, 0) and M = (π, π ) invariant

in momentum space; similarly, the site-symmetry group for 2c leaves

X = (π, 0) invariant.

Layer group w Site-symmetry group

p4/m1′ 1a, 1b 4/m1′

2c 2/m1′

p4/m′ 1a, 1b 4/m′

2c 2/m′

p4/m 1a, 1b 4/m

2c 2/m

p4 1a, 1b 4

2c 2

p41′ 1a, 1b 41′

2c 21′

Table II. The same is true for p4/m′ and p41′. In p4, Table I

shows the only possible site-symmetry groups are 4 or 2;

all irreps of these groups are one dimensional, as shown in

Table III. The same is true for p4/m; its irreps are enumerated

in Table IV.

Thus, in all cases, dim(ρw ) is independent of both ρ and

w and the expression for η in Eq. (5) can be simplified on the

square lattice as

η
square−−−→
lattice

∑

w max

Nw(L)(aw − nwd ) mod 4(or 8), (6)

where the sum is over all maximal Wyckoff positions w; η

is defined mod 4 (mod 8) in the absence (presence) of time-

reversal symmetry, as in Eq. (5);

nw ≡
∑

ρw

nρw
; (7)

TABLE II. Characters of the irreps of the point groups 4/m1′,

2/m1′, 4/m′, and 41′ with SOC. Characters of 2/m′ and 21′ are

not shown because they each have only one (two-dimensional) ir-

rep with spin-orbit coupling. The irreps are labeled in the notation

of Ref. [60]. In all groups, T or T I requires all irreps consist

of two-dimensional pairs with complex-conjugate eigenvalues. The

characters of C2 ≡ C2
4 and mz ≡ C2

4I are always zero and not listed

here.

4/m1′ E C4 I

E 1
2 g 2

√
2 2

E 1
2 u 2

√
2 −2

E 3
2 g 2 −

√
2 2

E 3
2 u 2 −

√
2 −2

2/m1′ E I

Eg 2 2

Eu 2 −2

4/m′ or 41′ E C4

E 1
2

2
√

2

E 3
2

2 −
√

2

TABLE III. Characters of irreps of the point groups 4 and 2 with

SOC; ε = exp(π i/4).

4 E C4 C2

1E 1
2

1 ε i
1E 3

2
1 −ε∗ −i

2E 3
2

1 −ε i
2E 1

2
1 ε∗ −i

2 E C2

1E 1
2

1 i
2E 1

2
1 −i

and

d = dim(ρw ) =
{

2 if p4/m1′, p4/m′, p41′,
1 if p4/m, p4

(8)

is the dimension of each irrep (which is independent of the

choice of Wyckoff position and choice of irrep, as discussed

in the previous paragraph.)

Plugging the formulas for Nw(L) from Eq. (2) into (6)

yields

η
square−−−→
lattice

L2[N − d (na + nb + 2nc)]

− 2L[ab + ac − d (nb + nc)]

+ (ab − dnb) mod4(or8), (9)

where η is defined mod 4 (mod 8) in the absence (presence)

of time-reversal symmetry,

N = aa + ab + 2ac (10)

is the number of occupied bands, and d is defined in Eq. (8).

The bulk charge is determined by the number scaling with

L2 in Eq. (9) and must be zero in a system that is charge

neutral in the bulk:

N − d (na + nb + 2nc) = 0. (11)

TABLE IV. Characters of irreps of 4/m and 2/m with SOC;

ε = exp(π i/4).

4/m E C4 C2 I

1E 1
2 g 1 ε i 1

1E 3
2 g 1 −ε∗ −i 1

2E 3
2 g 1 −ε i 1

2E 1
2 g 1 ε∗ −i 1

1E 1
2 u 1 ε i −1

1E 3
2 u 1 −ε∗ −i −1

2E 3
2 u 1 −ε i −1

2E 1
2 u 1 ε∗ −i −1

2/m E C2 I

1E 1
2 g 1 i 1

2E 1
2 g 1 −i 1

1E 1
2 u 1 i −1

2E 1
2 u 1 −i −1
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The bulk polarization px = py ≡ p is determined by the num-

ber scaling with L in Eq. (9) and must also be zero:

2[ab + ac − d (nb + nc)] = 0 mod 4(or 8). (12)

The filling anomaly η is determined by the L-independent

term in Eq. (9):

η = ab − dnb = aa − dna mod 4(or 8), (13)

where the equality follows from Eqs. (11) and (12). Equations

(11), (12), and (13) were also obtained in Ref. [45].

C. Symmetry indicators for Wannier centers

The formulas in the previous section derive the filling

anomaly in terms of the crystal structure and Wannier centers.

We now derive nw in terms of the irreps of the little groups at

high-symmetry points of the bulk band structure. This is use-

ful because the irreps are easier to compute than the Wannier

centers. As we will see, because the irreps in momentum space

do not completely determine the Wannier centers [32,53,61–

64], nw can only be determined up to some modulus from

symmetry.

To this end, let A be the integer “EBR matrix” of the

symmetry group under consideration: each column of A is

labeled by an elementary band representation (EBR) and each

row a particular irrep of the little group of a particular high-

symmetry point. The entries in the matrix indicate the number

of times each momentum-space irrep appears in the EBR

[53,65,66].

A group of topologically trivial bands can be expressed as

a linear combination of EBRs [32] with integer coefficients

ñi. The irreps that appear at high-symmetry points in the band

structure satisfy

v = Añ, (14)

where v j is the number of times the jth irrep appears in the

band structure. We need to invert this equation to find nw in

terms of v, as we now explain.

Let the Smith normal form of A be given by

A = U −1DV −1, (15)

where D is a diagonal integer matrix with diagonal entries

(d1, . . . , dM , 0, . . . 0), i.e., the first M entries are positive

and the remaining entries are zero, and U,V are integer

matrices invertible over the integers. (Note: the stable topo-

logical crystalline insulator classification of the group is given

by ⊗M
i=1Zdi

, where Zdi
is the group of integers mod di

[33,50,53,65,66].)

We want to express the number of EBRs corresponding to

each Wyckoff position in terms of symmetry irreps. Since we

are only considering topologically trivial bands, we consider

only the vectors v for which there exists an integer vector ñ

that solves Eq. (14). Then the Smith normal form in Eq. (15)

implies Uv = (v′
1, . . . v

′
M, 0 . . . 0), where di divides v

′
i . For

such bands, one solution to Eq. (14) is given by ñ = V DpUv,

where Dp is the pseudoinverse of D, i.e., a diagonal matrix

with diagonal entries (1/d1, 1/d2, . . . , 1/dl , 0, . . . 0). This so-

lution is not generically unique: the most general solution

to Eq. (14) is ñ = V DpUv + V ñ0, where ñ0 is any integer

vector in the null space of D, i.e., the first M entries of ñ0 are

zero, so that Dñ0 = 0. Thus, given a particular v, ñi can only

be determined modulo gcd{Vi j | j>M}, where gcd indicates the

greatest common divisor.

However, we do not need each ñi separately: we seek nw in

Eq. (7), which is a sum of all ñi where the EBR indicated by

i is induced from an irrep of the site-symmetry group of the

Wyckoff position w; we use i ∈ w to denote this set of EBRs.

Then, following the previous paragraph, we can express nw as

nw =
∑

i∈w

[V DpUv]i mod gcd

{(

∑

i∈w

Vi j

)

| j>M

}

. (16)

We now use Eq. (16) to compute nw in p4/m1′ in terms of

the symmetry indicators. We do the same for p4/m′, p4/m,

p4, and p41′ in Sec. II E. The Smith normal form of the EBR

matrix for each of these groups is computed in Appendix A.

Symmetry indicators for na,b,c in p4/m1′

In p4/m1′, there are three high-symmetry points in the

Brillouin zone: � = (0, 0), M = (π, π ), and X = (π, 0). The

point (0, π ) is symmetry related to X , so does not add any new

information. The points � and M are invariant under the point

group 4/m1′, while X is invariant under 2/m1′; the irreps of

both groups are listed in Table II.

Define #K 1
2

u (#K 3
2

u) to be the number of times the irrep

E 1
2

u (E 3
2

u) appears in the valence band spectrum at the high-

symmetry point K = �, M and define #Ku = #K 1
2

u + #K 3
2

u.

Similarly, define #Xu to be the number of times the irrep Eu

appears in the valence band spectrum at X . Then, define [Kρ]

to be the difference between the number of times the irrep

indicated by ρ appears at the high-symmetry point K and

at �:

[Kρ] = #Kρ − #�ρ . (17)

Using this notation, we find from Eq. (16) (details in

Appendix A)

na =
N

2
− [Xu] −

3

2
[Mu] + 2

[

M 1
2

u

]

mod 4, (18)

nb = [Xu] +
1

2
[Mu] − 2

[

M 1
2

u

]

mod 4, (19)

nc =
1

2
[Mu] mod 2, (20)

where N = 2(na + nb + 2nc) is the total number of filled

bands, which was derived by imposing bulk charge neutrality

in Eq. (11).

D. Symmetry indicators for the filling anomaly

We are now ready to compute the filling anomaly η in

Eq. (6) in terms of the symmetry irreps by plugging in

Eqs. (18), (19), and (20) for the group p4/m1′ (the results for

other groups are in Sec. II E). In previous work [25,26], η was

computed on 2D lattices with only one maximal Wyckoff po-

sition occupied. The main advance of this work is to compute

η for square lattices with any number of atoms in the unit cell.

In Sec. II D 1, we compute η for the simple square lattice

with one atom in the unit cell, reproducing earlier results [26].

In Sec. II D 2, we derive η in the general case with multiple

atoms in the unit cell.
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1. Simple square lattices

We now reproduce the symmetry indicator formula in

Ref. [26] for a square lattice with one atom in the unit cell.

Without loss of generality, we can take that atom to be in

the 1a position. Then the formula for the filling anomaly in

Eq. (13) (with d = 2) simplifies to

η = −2nb mod 8. (21)

Plugging the expression for nb in Eq. (19) into (21), we obtain

the symmetry indicator formula

η = −2[Xu] − [Mu] + 4
[

M 1
2

u

]

mod 8. (22)

Noticing that [Mu] must be an even number in an (obstructed)

atomic limit phase because nc in Eq. (20) must be an integer,

we deduce that η is in fact a Z4 quantity. Eq. (22) was intro-

duced in Eq. (50) in Ref. [26].

2. General case: Atoms in multiple Wyckoff positions

We now consider the general case, shown in Fig. 1(b),

where there can be atoms at any Wyckoff positions. Thus, the

number of electrons from each ion aa,b,c can all be nonzero.

The number of filled bands is N = aa + ab + 2ac. Plugging

Eq. (18) into the expression for the filling anomaly in Eq. (13)

(with d = 2) we find the symmetry indicator formula for the

filling anomaly:

η = aa − N + 2[Xu] + 3[Mu] − 4
[

M 1
2

u

]

mod 8. (23)

Since time-reversal symmetry constrains aa and N to be even

numbers and, as discussed below Eq. (22), [Mu] is also even,

the filling anomaly is again a Z4 quantity. When N = aa,

which implies ab = ac = 0, Eq. (23) is equivalent to Eq. (22).

[To see this, notice that the equations are mod 8, [Mu] is even,

and when ab = ac = 0, Eq. (12) implies nb = nc mod 2,

from which Eqs. (19) and (20) together require that [Xu] is

also even.] When aa �= N , Eq. (23) is distinct from Eq. (22)

and has not appeared in previous literature.

In Sec. III, we build an explicit body-centered tetragonal

model with C4, T , and I symmetry. The Hamiltonian in the

kz = 0 and π planes of the model describes a square lattice

with p4/m1′ symmetry, but with atoms at multiple Wyckoff

positions, corresponding to the projection of the 3D model

onto a 2D plane. Therefore, the 2D bulk-corner correspon-

dence derived in this section applies to 2D planes of that

model, providing a numerical check of the analytical results.

E. Generalization to other layer groups

We now compute the filling anomaly in terms of the

symmetry indicators for the layer groups p4/m′, p4, and

p4/m and explain why p41′ does not have an analogous

formula. The formulas for na,b,c in this section are derived in

Appendix A.

1. p4/m′

For the layer group p4/m′, the high-symmetry points �

and M are invariant under the point group 4/m′, while X is

invariant under 2/m′. The irreps for these groups are listed

in Table II. The number of Wannier centers at each Wyckoff

position, na, nb and nc, are defined by Eq. (7) with irrep

dimension d = 2 in Eq. (8). Using Eq. (16), we find na and

nb can be determined mod 2:

na =
N

2
−

[

M 1
2

]

mod 2, (24)

nb =
[

M 1
2

]

mod 2, (25)

where [M 1
2
] = #M 1

2
− #� 1

2
, where #K 1

2
indicates the number

of times the irrep E 1
2

appears in the valence bands at the high-

symmetry point K = �, M. We find nc = 0 mod 1, i.e., nc is

not constrained by symmetry irreps.

The filling anomaly is determined by Eq. (13) taken mod 4

with d = 2. Substituting in Eq. (24) yields

η1 = aa − N + 2
[

M 1
2

]

mod 4, (26)

where the subscript is to distinguish the filling anomaly in

p4/m′ from that computed in p4/m1′ in Eq. (23). In the case

where atoms only occupy one Wyckoff position (1a), aa = N

and this equation reduces to

η1 = 2
[

M 1
2

]

mod 4. (27)

Equation (27) was introduced in the context of higher-order

Fermi arcs [55] with C4 and Mx,y symmetries: the anticom-

muting reflection symmetries there play the same role as T I

in p4/m′ in generating two-dimensional irreps.

2. p4

For the layer group p4, the high-symmetry points � and

M are invariant under the point group 4, while X is invariant

under 2; the irreps for these groups are listed in Table III. The

number of Wannier centers at each Wyckoff position, na, nb,

and nc, are defined by Eq. (7) with irrep dimension d = 1

in Eq. (8). Using Eq. (16), we find that na and nb can be

determined mod 4, while nc can be determined mod 2:

na = N − [X2] + 3
2
([M1] + [M3]) + 2[M2] mod 4, (28)

nb = [X2] − 1
2
([M1] + [M3]) − 2[M2] mod 4, (29)

nc = − 1
2
([M1] + [M3]) mod 2. (30)

Here we use the notation [M j] = #M j − #� j , where j =
1, 2, 3, 4 corresponds to the irrep with C4 eigenvalue

exp[i π
2

( j − 1
2

)], and [X1] = #X1 − #�1 − #�3, [X2] = #X2 −
#�2 − #�4, where X1,2 corresponds to the irrep with C2 eigen-

values +i, −i. As in previous sections, #K j indicates the

number of times the irrep j appears in the valence bands at

the high-symmetry point K .

The expression for the filling anomaly is given by Eq. (13)

taken mod 4 with d = 1:

η2 = aa − na mod 4 (31)

= aa − N + [X2] − 3
2
([M1] + [M3]) − 2[M2] mod 4,

(32)

where Eq. (32) results from plugging Eq. (28) into (31).

3. p4/m

For the layer group p4/m, the high-symmetry points �

and M are invariant under the point group 4/m, while X is
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invariant under 2/m; the irreps for these groups are listed in

Table IV. The number of Wannier centers at each Wyckoff

position, na, nb, and nc, are defined by Eq. (7) with irrep

dimension d = 1 in Eq. (8). From Eq. (16), we find that na

and nb can be determined mod 4 while nc can be determined

mod 2. The formulas are

na = N − [Xu] − 3
2
[Mu] + 2([M1u] + [M2u]) mod 4, (33)

nb = [Xu] + 1
2
[Mu] − 2([M1u] + [M2u]) mod 4, (34)

nc = 1
2
[Mu] mod 2. (35)

Here we use the notation [M j,ξ ] = #M j,ξ − #� j,ξ , where the

irrep of 4/m labeled by j, ξ has C4 eigenvalue exp[i π
2

( j − 1
2

)],

j = 1, 2, 3, 4, and inversion eigenvalue +1,−1 correspond-

ing to ξ = g, u. In addition, [X1,ξ ] = #X1,ξ − #�1,ξ − #�3,ξ

and [X2,ξ ] = #X2,ξ − #�2,ξ − #�4,ξ , where X1,ξ , X2,ξ corre-

spond to the irreps of 2/m with C2 eigenvalues +i, −i and

inversion eigenvalues +1,−1 corresponding to ξ = g, u. We

denote [Kξ ] =
∑

j[K j,ξ ].

The filling anomaly is determined by Eq. (13) taken mod 4

with d = 1:

η3 = aa − na mod 4 (36)

= aa − N + [Xu] + 3
2
[Mu] − 2([M1u] + [M2u]) mod 4,

(37)

where Eq. (37) results from plugging Eq. (33) into (36).

4. p41′

The group p41′ does not have a symmetry indicator for-

mula, as we now explain. The filling anomaly is given by

Eq. (13) taken mod 8 with d = 2 [from Eq. (8)]:

η4 = aa − 2na mod 8. (38)

However, na is given by Eq. (24) (as explained in Appendix

A 5, the symmetry indicator formula for na is the same in

p41′ as in p4/m′) and is only defined mod 2. It follows from

plugging Eq. (24) into (38) that the symmetry indicator for-

mula for η4 is only defined mod 4, even though η4 should be

determined mod 8. Thus, we say that the symmetry indicator

formula does not exist because the symmetry indicators do

not provide enough information to completely determine the

filling anomaly in this group. The mod 8 filling anomaly η4

can only be partially determined mod 4:

η4 mod 4 = aa − N + 2
[

M 1
2

]

mod 4. (39)

F. Summary of 2D results

Equations (23), (26), (32), and (37) are the symmetry indi-

cator formulas that express the filling anomaly in OALs in

terms of the symmetry invariants. Together, these formulas

encompass all square lattices with time reversal, inversion

symmetry, and/or their product, and any number of atoms in

the unit cell.

All the formulas derived in this section are additive, and

can be applied to an insulating band structure with any number

of filled valence bands, as long as it is charge neutral, polar-

ization free, and all the strong symmetry indicators are trivial.

Because of the additivity, the formulas also apply to fragile

topological phases, as discussed in Ref. [5].

We now discuss some connections to previous work. As we

have mentioned earlier, the formulas for the filling anomaly in

Refs. [25,26] do not accommodate multiple atoms in the unit

cell. In Ref. [45], the filling anomaly η was computed in terms

of nw in the general case of having multiple atoms in the unit

cell, but η was not expressed in terms of the symmetry indica-

tors. Finally, the real-space invariants computed in Ref. [66]

are related to the nw computed here and are computed using

the EBR matrix, but there is not a one-to-one correspondence

between them. Reference [67] also discusses real-space topo-

logical invariants that go beyond symmetry indicators.

In Appendix B, we derive the symmetry indicator formula

for the filling anomaly for a finite-sized square lattice with a

boundary normal to the (1,1) direction. It turns out that the

formulas are the same as we have derived in this section,

where the boundary is normal to the (1,0) direction. The re-

sults in this section can be generalized to a finite-sized square

lattice with a boundary normal to any direction by defining

a square supercell with a side parallel to the boundary. Since

the supercell necessarily contains multiple atoms, the results

in Sec. II D 2 apply; in order to get the correct irreps at

high-symmetry points, the band structure must be computed

relative to the supercell. Nonsquare terminations can also obey

C4 symmetry (for example, an octagon); while the general

logic described in this section applies, the counting in Eq. (2)

will be different.

Interestingly, we have found numerically that the corner

states survive even if the global C4 symmetry is broken. Al-

though rigorously the corner states are not protected if the

lattice symmetry is broken globally, physically this makes

sense because the localized states on one corner should not

depend on how the lattice is terminated at other corners. A

different method to compute the presence of gapless boundary

states in related systems was discussed in Ref. [68].

III. 3D MODEL ON THE BODY-CENTERED

TETRAGONAL LATTICE

We now apply the results derived in the previous section to

classify the topology of a 3D tight-binding Hamiltonian. We

are interested in the HOTI and higher-order Fermi arc (HOFA)

phases. The topology of these phases can be understood by

studying 2D slices of the Brillouin zone with fixed kz. For

example, the HOTI phase can be viewed as Wannier center

pumping between the two time-reversal invariant planes (kz =
0 and π ) [3], while the HOFA phase requires each 2D fixed-kz

slice on the Fermi arc to have a nontrivial filling anomaly [55].

The difference between the previous works and this paper

is that we consider a C4 symmetric body-centered tetragonal

(BCT) model, whose 2D slices in momentum space necessar-

ily contain atoms at different Wyckoff positions, as we will

show in the next section. Therefore, the results obtained in

Secs. II D 2 and II E are necessary to correctly identify the

filling anomaly of 2D slices in momentum space.

A. Tight-binding model

We build an explicit BCT tight-binding model in space

group 87 (I4/m) with a spin- 3
2

degree of freedom on each site.
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FIG. 3. (a) Conventional unit cell of a body-centered tetragonal lattice; there are two sublayers at z = 0, 1

2
(solid and hollow dots). The

eigenstates in the plane (kx, ky, kz = kz0 ) generically have weight on both sublattices. Therefore, the 2D Hamiltonian H (kx, ky, kz0 ) describes

atoms on a square lattice with two sites in the unit cell (b). (c) Spectrum for a rod (finite in the x and y directions, infinite in z) in the

HOTI phase; gapless hinge states cross at kz = π , forming an eightfold degeneracy. (d) Spectrum for a rod in the DSM(i) phase, showing

fourfold-degenerate HOFA states between the surface Dirac point (projected at kz = 0) and bulk Dirac point. The HOFA regions have filling

anomaly η = 2 mod 4, while the crossing at kz = π has filling anomaly η = 4 mod 8. (e) Phase diagram of our model, controlled by one

parameter, m/t .

The space group I4/m is generated by body-centered lattice

translations, a C4 rotation about the z axis, inversion, and

time-reversal symmetry. The matrix forms of these generators

are given below in terms of the spin- 3
2

generators Jx,y,z (whose

matrix forms are defined in Appendix C) and decomposed into

Pauli matrices σ0,x,y,z and τ0,x,y,z:

C4 = e−iπJz/2 = τzσze
−iπσz/4, (40)

I = τ0σ0, (41)

T = e−iπJy K = −iτxσyK, (42)

where K is complex conjugation. It will be convenient to

introduce τ± = 1
2
(τx ± iτy).

We define a Cartesian coordinate system by the unit vec-

tors ex = (1 0 0)a, ey = (0 1 0)a, ez = (0 0 1)c, where a and

c are lattice constants. We align the base of the conventional

tetragonal unit cell diagonally with respect to the x and y axes

[see Fig. 3(a)]. In this basis, the primitive translation vectors of

the BCT lattice are given by e1 = 1
2
(ey + ez ), e2 = 1

2
(ex + ez ),

e3 = 1
2
(ex + ey). The conventional unit cell has two atoms,

indicated by solid and hollow circles in Fig. 3(a), which form

two sublattices. The primitive unit cell has one atom.

We take the lattice constants c > a. Therefore, each atom

has four nearest neighbors on the same sublattice and eight

next-nearest neighbors on the opposite sublattice. Our model

only includes hopping between each site and these 12 nearest

and next-nearest neighbors, illustrated in Fig. 3(a). One of

each of these hopping terms is given below [and drawn in

Fig. 3(a)] and the others are related by symmetry:

V0→e1
= V1 = 1

4
[τz(tσz − γ σy) + βτ+σ0 + β∗τ−σ0],

V0→e3
= V2 = − 1

4
(2tτzσz + γ τyσ0). (43)

The symmetry-related hopping terms in other directions are

written explicitly in Appendix D. There is also an onsite mass

term:

Vonsite = mτzσz. (44)

The parameters m, t , and γ are real, and β is complex; β∗

is the complex conjugate of β. The Hamiltonian is written in

momentum space in both the primitive and conventional bases

in Appendix D.

B. Topological phases

We now classify the topology of this model by consider-

ing the Hamiltonian in 2D slices of the 3D Brillouin zone.

Specifically, for fixed kz0, H (kx, ky, kz0) can be regarded as

the Hamiltonian of a 2D system. Since eigenstates generi-

cally have weight on both sublattices, this 2D Hamiltonian

describes atoms on a square lattice with two sites in the unit

cell, as shown in Fig. 3(b). If the 2D Hamiltonian has no

gapless edge states or polarization, then we can apply our

results from Secs. II D 2 and II E to determine the corner

charge of this 2D model when the 3D system is truncated in

the x and y directions but infinite in the z direction.

We find that our model has several topological phases

depending on the ratio m/t . The parameters β and γ do not

change the topological phase. We list all the different phases

in Fig. 3(e) with respect to m/t : there is one HOTI phase and

two Dirac semimetal (DSM) phases, which we now describe.

1. Z8 HOTI

When 0 < m/t < 2, a Z8 HOTI with the nontrivial sym-

metry indicator � = 4 is realized. This phase was introduced

in Refs. [3,9]. While all the kz slices are either atomic limits

or fragile phases in 2D, the 3D phase is stable topological

because the 2D Wannier centers move as a function of kz,
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TABLE V. Symmetry indicators of occupied bands na,b,c and η

in the kz = 0 and π planes of our BCT model in the HOTI phase.

The filling anomalies η are computed by plugging the values in the

table into Eq. (23), while na,b,c are computed from Eqs. (18), (19),

and (20). The irreps are derived in Appendix D 3, Table VIII. Notice

that [Xu] need not be even because although the (1,1) boundary

shares the same symmetry indicator formula as the (1,0) boundary,

the constraints from zero bulk charge polarization and zero bulk net

charge are different, as derived in Appendix B.

kz aa N [Xu] [Mu] [M 1
2 u] na nb nc η

0 2 4 1 0 0 1 1 0 0

π 2 4 −1 0 0 3 −1 0 4

which leads to helical modes on 1D hinges where the x- and

y-normal surfaces meet.

Here, we derive this 3D phase on the BCT lattice by com-

puting the filling anomaly in the kz = 0 and π planes. Since

these two planes are invariant under time reversal, they are

described by the layer group p4/m1′, for which we derived the

symmetry indicator formula for the filling anomaly in Eq. (23)

of Sec. II D.

The symmetry indicators are shown in Table V, from which

the filling anomaly can be computed with Eq. (23). We find

that η = 4 mod 8 in the kz = π plane and η = 0 in the kz = 0

plane. The nontrivial value in the kz = π plane is responsible

for the eightfold-degenerate mid-gap states we observe in

Fig. 3(c) in the kz = π plane for a finite-size rod geometry,

which is finite in the x and y directions and infinite in the z

direction. Since η = 0 in the kz = 0 plane, to continuously

connect the mid-gap states with the rest of the band structure

requires kz-dependent modes that traverse the bulk band gap;

these are exactly the helical hinge modes required by the 3D

HOTI phase. Interestingly, Table V shows that nb = −1; thus,

this slice is a fragile topological 2D insulator. [This by itself

is not enough to show that the slice is fragile because na,b are

only defined mod 4 (and nc mod 2); some algebra shows that

there is no solution where na,b,c > 0.]

We now reiterate the importance of our analysis in cor-

rectly describing this phase: our formula (23) correctly

captures the filling anomaly in the kz = π plane (and lack of

filling anomaly in the kz = 0 plane), which agrees with both

our numerical results and the helical edge modes predicted

by the 3D formula in Ref. [3]. Earlier formulas for the filling

anomaly give an incorrect result. Specifically, Eq. (22) of

Ref. [26] yields η = 6 in the kz = 0 plane and η = 2 in the

kz = π plane. This discrepancy occurs because Ref. [26] does

not accommodate atoms at multiple Wyckoff positions. While

η = 2 and 6 are consistent with a helical mode, they do not

agree with the state counting in our numerics, where there are

always the same number of occupied and empty bands [and

hence only consistent with η = 0 and 4, as we correctly obtain

from Eq. (23)].

2. HOFA in Dirac semimetals

When −4 < m/t < 0, the model is in one of two DSM

phases and has two Dirac points along � − Z in the bulk. The

band structure for the DSM(i) phase on a rod finite in the x

TABLE VI. In the two DSM phases, the bulk Dirac point is pro-

jected to kz = k0. For the two regions 0 < kz < k0 and k0 < kz < π ,

the filling anomalies η are computed by plugging the values in the

table into Eq. (26), while na,b are computed from Eqs. (24) and

(25) [nc is always zero mod 1, as discussed below Eq. (25)]. The

symmetry indicators are derived from the irreps listed in Table IX of

Appendix D 3.

kz aa N [M 1
2
] na nb nc η

0 < kz < k0 2 4 0 2 0 0 2

k0 < kz < π 2 4 1 1 1 0 0

and y directions and infinite in z is shown in Fig. 3(d). For

both of the phases, there are HOFA hinge states connecting

the projection of the two bulk Dirac points. The HOFA hinge

states pass through kz = 0, where there are also projected gap-

less mirror Chern surface states. The difference between the

two phases is that the phase DSM(i) has filling anomaly η = 4

mod 8 at kz = π while the plane kz = π in phase DSM(ii) is

trivial.

The HOFA hinge states occur in the planes between the

two Dirac points. Since these planes are not time-reversal

invariant, but are invariant under the product of time reversal

and inversion, they are described by the layer group p4/m′,
for which we derived the symmetry indicator formula for

the filling anomaly in Eq. (26) of Sec. II E 1. Applying this

formula, we find η = 2 in the planes between the bulk Dirac

points, as derived in Table VI.

The HOFA are not correctly described by formulas in pre-

vious work derived by assuming atoms at only one maximal

Wyckoff position: for example, Eq. (27) yields η = 0 in these

planes, which would indicate a lack of hinge modes.

In the DSM(i) phase, aside from the HOFA, there are two

groups of corner-localized hinge states that cross at kz = π .

These states can be pushed into the valence or conduction

bands by adding some symmetry-protecting potentials, how-

ever, the filling anomaly at kz = π remains nontrivial. These

states are not present in the DSM(ii) phase which has η = 0

in the kz = π plane.

Further, we note that the gapless surface states at kz = 0 are

unavoidable, even if the protecting mirror symmetry is broken,

because the HOFA states are fourfold degenerate while the

only possible degeneracy of mid-gap states at a time-reversal

symmetric plane is eight (corresponding to a Kramers pair

of time-reversed partners at each corner.) This discrepancy

between the HOFA degeneracy and the required degeneracy

at kz = 0 can only be resolved by having gapless surface or

bulk states projected to the point.

IV. DISCUSSION

In this paper, we introduced a general method to derive

the symmetry indicator formula for the filling anomaly that

applies to crystals with any number of atoms in the unit cell.

We introduced an algorithm using the Smith normal form that

makes the derivation systematic. We applied this method to

derive the filling anomaly on the 2D square lattice with time

reversal, inversion, and/or their product. We further showed
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TABLE VII. EBRs in p4/m1′. The Wyckoff positions w are

listed in the first column. Each EBR is induced from an irrep ρ of the

site-symmetry group of a Wyckoff position: as shown in Table I, the

site-symmetry group of the 1a and 1b positions is 4/m1′, while the

site-symmetry group of the 2c position is 2/m1′. Irreps of 4/m1′ can

be labeled by a pair of C4 eigenvalues, exp(±ipπ/2), where p = 1

2

or 3

2
, and their inversion eigenvalue ξ ; the pairs of (p, ξ ) correspond

to the subscripts 1

2
g, 1

2
u, 3

2
g, 3

2
u in Table II. Irreps of 2/m1′ can be

distinguished by only their inversion eigenvalue ξ corresponding to

the subscript g or u in Table II. The labels p (where applicable) and ξ

are indicated in the second column. The remaining columns indicate

the irreps of the EBR in momentum space: � and M are invariant

under 4/m1′, while X is invariant under 2/m1′.

w ρ � X M

1a (p, ξ ) (p, ξ ) (ξ ) (p, ξ )

1b (p, ξ ) (p, ξ ) (−ξ ) (−p, ξ )

2c ξ (p, ξ ), (−p, ξ ) (ξ ), (−ξ ) (p,−ξ ), (−p,−ξ )

where our results go beyond earlier work that did not apply

to crystals with atoms occupying multiple maximal Wyckoff

positions.

We verified our results by correctly predicting the helical

hinge modes and HOFAs in a 3D BCT tight-binding model,

by analyzing 2D slices of the Brillouin zone. This model

served as a concrete example where previous results break

down, showing the importance of our extension to crystals

with atoms in multiple maximal Wyckoff positions.

Our method can be easily generalized to other Cn (n =
2, 3, 4, 6) symmetric 2D lattices and higher-dimensional lat-

tices. It will also be interesting to apply our results to other

topological semimetals, such as those in [69] which occur

on nonsymmorphic lattices and therefore necessarily have

multiple atoms in the unit cell.

Note added. Recently, Ref. [70] appeared on the arXiv,

which also computes the filling anomaly in terms of symmetry

indicators for general lattices with Cn symmetry. Our results

agree where they overlap.
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APPENDIX A: SYMMETRY INDICATOR FORMULAS

FOR THE NUMBER OF OCCUPIED EBRS AT EACH

WYCKOFF POSITION

In this Appendix, we explain how the formulas for na,b,c in

the main text are derived from the Smith normal form.

1. p4/m1′

We first consider the group p4/m1′. The band representa-

tions induced from the three maximal Wyckoff positions 1a,

1b, and 2c (shown in Fig. 2) are listed in Table VII. Each band

representation is expressed as a vector v in the basis:

(

E�
1
2

g
, E�

1
2

u
, E�

3
2

g
, E�

3
2

u
, EX

g , EX
u , EM

1
2

g
, EM

1
2

u
, EM

3
2

g
, EM

3
2

u

)

, (A1)

where EK
ρ indicates the number of times the irrep ρ occurs

at the high-symmetry point K in the momentum-space band

representation. Note � and M are invariant under 4/m1′, while

X is invariant under 2/m1′; their irreps are defined in Table II.

Each group of topologically trivial bands, isolated in en-

ergy from all other bands, can be written as an integer linear

combination of EBRs. The coefficients form a vector n in the

following basis:

(

E1a
1
2

g
, E1a

1
2

u
, E1a

3
2

g
, E1a

3
2

u
, E1b

1
2

g
, E1b

1
2

u
, E1b

3
2

g
, E1b

3
2

u
, E2c

g , E2c
u

)

, (A2)

where Ew

ρ indicates the number of times the EBR induced

from the two-dimensional irrep ρ of the site-symmetry group

of the Wyckoff position w appears in the linear combination.

In this basis, we use Table VII, which lists all EBRs and their

momentum-space irreps, to construct the EBR matrix defined

in Sec. II C:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1

1 0 1 0 0 1 0 1 1 1

0 1 0 1 1 0 1 0 1 1

1 0 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 1 1 0

0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A3)

Each column of A indicates the momentum-space irreps of a

particular EBR, where the columns are ordered according to

the list of EBRs in (A2) and the rows are ordered according to

the list of momentum-space irreps in (A1). For example, the

first column corresponds to the band representation induced

by E1a
1
2

g
and the first entry, “1”, indicates that the irrep E�

1
2

g

appears one time in this EBR (as listed in Table VII).

Following Sec. II C, we apply the Smith decomposition to

the EBR matrix A:

A = U −1DV −1, (A4)

where U and V , which are invertible over integers, are found

to be

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 −1 0 1 0 −1 0 0

1 1 1 0 0 0 −1 −1 −1 0

0 0 1 −1 0 1 0 −1 −1 0

1 0 −1 2 0 −2 −1 2 1 0

−1 −1 −1 −1 1 1 0 0 0 0

−1 −1 −1 −1 0 0 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A5)
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V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 1 −1 −1

0 1 0 0 0 0 −1 −2 −1 −1

0 0 1 0 0 0 −1 −1 −1 −1

0 0 0 1 0 0 0 0 −1 −1

0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 1 −1 −2 1 0

0 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 2 0 1

0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A6)

and the diagonal matrix D is

D = diag(1, 1, 1, 1, 1, 1, 1, 4, 0, 0). (A7)

The eighth entry, 4, which is the only nonzero, nonunity entry

of D, indicates the Z4 symmetry indicator classification of

this group [33]. The zero entries impose the constraint that

an insulator must have the same number of occupied bands at

all high-symmetry points.

To see this last point, consider a vector v in the basis of

Eq. (A1), which satisfies v = Añ for some integer vector ñ that

represents a sum of EBRs in the basis of Eq. (A2). According

to the Smith decomposition in Eq. (A4), Uv = DV −1ñ. Since

the ninth and tenth entries on the diagonal of D are zero, it

follows that [Uv]9,10 = 0. Plugging in the entries of U from

Eq. (A5) and using the basis of v in Eq. (A1) yields two

equations:

0 = −E�
1
2

g
− E�

1
2

u
− E�

3
2

g
− E�

3
2

u
+ EX

g + EX
u ,

0 = −E�
1
2

g
− E�

1
2

u
− E�

3
2

g
− E�

3
2

u
+ EM

1
2

g
+ EM

1
2

u
+ EM

3
2

g
+ EM

3
2

u
.

(A8)

The first line specifies that there must be the same number of

occupied bands at � as at X and the second line specifies that

there must be the same number of occupied bands at � and

at M.

The pseudoinverse of D is

Dp = diag(1, 1, 1, 1, 1, 1, 1, 1/4, 0, 0). (A9)

We can now plug U , V , and Dp into Eq. (16) to find na,b,c in

Eqs. (18)–(20).

Physically, the ambiguity in the modulus of na,b,c comes

from the fact that the Wannier centers are not gauge invariant;

this point is elaborated on in Ref. [66]. For example, one can

check (by using v = Añ) that the irreps at high-symmetry

points for the band representations represented by ñ =
(1111000000), ñ = (0000111100), and ñ = (0000000011)

are identical. This corresponds to the fact that the Wannier

centers for these three band representations can all be con-

tinuously moved to the general Wyckoff position 4d without

breaking symmetries. Therefore, they are physically indistin-

guishable by symmetry indicators.

2. p4/m′

The group p4/m′ contains C4 and T I symmetries, but not

T or I separately. A basis for its irreps and EBRs can be

read from the previous subsection by forgetting about inver-

sion symmetry. Specifically, the basis for the irrep labels in

momentum space is
(

E�
1
2

, E�
3
2

, EX
1
2

, EM
1
2

, EM
3
2

)

, (A10)

which is the same as Eq. (A1) without the g, u labels for the

inversion eigenvalue, and the basis for the multiplicity of each

EBR is
(

E1a
1
2

, E1a
3
2

, E1b
1
2

, E1b
3
2

, E2c
1
2

)

, (A11)

which is the same as Eq. (A2) without the g, u labels. The

EBR matrix is:

A =

⎛

⎜

⎜

⎜

⎝

1 0 1 0 1

0 1 0 1 1

1 1 1 1 2

1 0 0 1 1

0 1 1 0 1

⎞

⎟

⎟

⎟

⎠

. (A12)

The Smith decomposition [Eq. (A4)] yields the matrices

D = diag(1, 1, 1, 0, 0), (A13)

U =

⎛

⎜

⎜

⎜

⎝

0 0 0 1 0

0 1 0 0 0

1 0 0 −1 0

−1 −1 1 0 0

−1 −1 0 1 1

⎞

⎟

⎟

⎟

⎠

, (A14)

V =

⎛

⎜

⎜

⎜

⎝

1 0 0 −1 −1

0 1 0 −1 −1

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

⎞

⎟

⎟

⎟

⎠

. (A15)

We then apply Eq. (16) to derive Eqs. (24) and (25) for na

and nb. Applying Eq. (16) to nc shows that it is only deter-

mined mod 1, which does not provide any new information.

3. p4

In the case of p4, the site-symmetry groups of the maximal

Wyckoff positions are defined in Table I and their irreps are

defined in Table III. The basis of irreps in momentum space is
(

1E�
1
2

, 1E�
3
2

, 2E�
1
2

, 2E�
3
2

, 1EX
1
2

, 2EX
1
2

, 1EM
1
2

, 1EM
3
2

, 2EM
1
2

, 2EM
3
2

)

.

(A16)

The basis of EBRs is
(

1E1a
1
2

, 1E1a
3
2

, 2E1a
1
2

, 2E1a
3
2

, 1E1b
1
2

, 1E1b
3
2

, 2E1b
1
2

, 2E1b
3
2

, 1E2c
1
2

, 2E2c
1
2

)

.

(A17)

Then, the EBR matrix is

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1

1 0 1 0 0 1 0 1 1 1

0 1 0 1 1 0 1 0 1 1

1 0 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 1 1 0

0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A18)

Notice this EBR matrix in Eq. (A18) is identical to Eq. (A3),

although their bases have different meanings. We again use

Eq. (16) to find the symmetry indicator formulas for na, nb,

and nc in Eqs. (28), (29), and (30).
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4. p4/m

In the case of layer group p4/m, the site-symmetry groups

of the maximal Wyckoff positions are defined in Table I and

their irreps are defined in Table IV. The basis of momentum-

space irreps is
(

1E�
1
2

g
, 1E�

3
2

g
, 2E�

1
2

g
, 2E�

3
2

g
, 1E�

1
2

u
, 1E�

3
2

u
, 2E�

1
2

u
,2 E�

3
2

u
,

1EX
1
2

g
, 2EX

1
2

g
, 1EX

1
2

u
, 2EX

1
2

u
, 1EM

1
2

g
, 1EM

3
2

g
, 2EM

1
2

g
,

2EM
3
2

g

1EM
1
2

u
, 1EM

3
2

u
, 2EM

1
2

u
, 2EM

3
2

u

)

. (A19)

The basis of EBRs is

(

1E1a
1
2

g
,1 E1a

3
2

g
,2 E1a

1
2

g
,2 E1a

3
2

g
,1 E1a

1
2

u
,1 E1a

3
2

u
,2 E1a

1
2

u
,2 E1a

3
2

u
,

1E1b
1
2

g
,1 E1b

3
2

g
,2 E1b

1
2

g
,2 E1b

3
2

g
,1 E1b

1
2

u
,1 E1b

3
2

u
,2 E1b

1
2

u
,2 E1b

3
2

u
,

1E2c
1
2

g
,2 E2c

1
2

g
,1 E2c

1
2

u
,2 E2c

1
2

u

)

. (A20)

Then, the EBR matrix is

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1

0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A21)

After Smith decomposition [Eq. (A4)], the diagonal matrix is

D = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 0, 0, 0, 0) (A22)

and

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 −1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 0

0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 −1 0 −1

0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 0 −1 0

0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 −2 −1 0 −1 0

0 0 0 0 0 1 0 0 0 0 −1 0 0 0 −2 0 0 −1 0 −1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −2 1 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 1 −2 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A23)

The matrix U is too unwieldy to present here.
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FIG. 4. Square lattice whose boundary is rotated 45◦ relative to

the primitive unit cell, which is indicated by the dashed square.

(a) Atoms occupy one Wyckoff position. (b) Atoms occupy multiple

Wyckoff positions.

We again use Eq. (16) to find the symmetry indicator for-

mulas for na, nb, and nc in Eqs. (33), (34), and (35).

5. p41′

In p41′, the site-symmetry groups of the maximal Wyckoff

positions are listed in Table I. Table II shows that their irreps

are identical to those of p4/m′. Thus, the EBR matrix and its

Smith normal form is the same as for p4/m′ in Appendix A 2

and na and nb are given by Eqs. (24) and (25), respectively,

while nc is determined only modulo one.

APPENDIX B: FILLING ANOMALY WHEN

THE BOUNDARY IS ROTATED BY 45◦ RELATIVE

TO THE UNIT CELL

We derive an expression for the filling anomaly for a fi-

nite square lattice whose boundaries are rotated 45◦ relative

to the primitive unit cell, as shown in Fig. 4. We choose

the convention where the 1a position is at the center of the

finite-size lattice. We consider the general case where there

may be atoms at any number of Wyckoff positions [shown in

Fig. 4(b)]; the case where there is only one Wyckoff position

occupied by atoms [shown in Fig. 4(a)] is a special case.

The Wyckoff positions are defined with respect to the

primitive unit cell. To compute the filling anomaly, we need

only consider the maximal Wyckoff positions, as we argued in

Sec. II B. The donated electrons from each maximal Wyckoff

position are denoted by aa, ab, and ac. The number of filled

bands is N = aa + ab + 2ac.

The number of atoms Nw(L) at each Wyckoff position w in

this terminated square lattice with L atoms along each side is

given by

Na(L) = (L − 1)2 + L2,

Nb(L) = 2L(L − 1),

Nc(L) = 4(L − 1)2. (B1)

[Notice these are different than in Eq. (2), where Nw(L) is

computed with the boundary parallel to the unit cell.] From

Eqs. (6) and (B1), we find the filling anomaly:

η = 2(N − dna − dnb − 2dnc)L2

− 2(aa + ab + 4ac − dna − dnb − 4dnc)L

+ (aa − dna + 4ac − 4dnc) mod 4(or 8). (B2)

The bulk charge is determined by the number scaling with L2

in this expression and must be zero:

2(aa − dna) + 2(ab − dnb) + 4(ac − dnc) = 0, (B3)

where we have used the expression for N in Eq. (10). The bulk

polarization parallel to the boundaries is determined by the

coefficient of L. Since we are interested in polarization-free

systems, the term proportional to L must vanish:

2(aa − dna)+2(ab − dnb)+8(ac − dnc)=0 mod 4(or 8).

(B4)

The last term in Eq. (B4) vanishes mod 4 or mod 8. In addi-

tion, the last term in Eq. (B3) clearly vanishes mod 4, but also

vanishes when taken mod 8, which applies in the presence

of time-reversal symmetry, because time reversal requires that

ac be even and d = 2 [d is defined in Eq. (8).] Thus, the only

constraint from Eqs. (B3) and (B4) is

2(aa − dna) + 2(ab − dnb) = 0 mod 4(or 8). (B5)

Notice that this constraint differs from the constraint in

Eq. (12), which applies when the boundary is parallel to the

unit cell. As a result, [Xu] need not be even, as we found in

Table V.

The filling anomaly η is determined by the L-independent

term

η = aa − dna mod 4(or 8), (B6)

where we have simplified the L-independent term from

Eq. (B2) by taking it mod 4 (or mod 8). Notice Eq. (B6) is

identical to Eq. (13), which is derived for the case where the

boundary is parallel to the unit cell. Therefore, the symme-

try indicators will be the same in the two cases. However,

notice that the constraint equations for zero bulk charge and

polarization are different in the two cases. Thus, the symmetry

indicators may not always be valid for both terminations.

APPENDIX C: SPIN- 3

2
MATRICES

Here we explicitly define the spin- 3
2

matrices that are used

in Eqs. (40) and (42):

Jx =

⎛

⎜

⎜

⎜

⎝

0
√

3
2

0 0√
3

2
0 1 0

0 1 0
√

3
2

0 0
√

3
2

0

⎞

⎟

⎟

⎟

⎠

, (C1)

Jy =

⎛

⎜

⎜

⎜

⎝

0 −i
√

3
2

0 0

i
√

3
2

0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2

0

⎞

⎟

⎟

⎟

⎠

, (C2)

Jz =

⎛

⎜

⎜

⎝

3
2

0 0 0

0 1
2

0 0

0 0 − 1
2

0

0 0 0 − 3
2

⎞

⎟

⎟

⎠

. (C3)

APPENDIX D: DETAILS OF BCT TIGHT-BINDING MODEL

In this Appendix, we provide additional details about the

BCT model studied in Sec. III. The BCT model has the
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symmetry of space group 87 I4/m, as well as time-reversal

symmetry T .

The unit cell and hoppings are illustrated in Figs. 3(a) and

3(b). The model includes hopping to the four nearest and eight

next-nearest (if c > a) atoms. The relation between the two

hopping terms shown in Eq. (43) and the other ten hopping

terms are

V0→e1−ez
= (C2I )−1V0→e1

C2I,

V0→e2
= C−1

4 V0→e1
C4,

V0→e2−ez
= C4IV0→e1

(C4I )−1,

V0→e3−ey
= C−1

4 V0→e3
C4, (D1)

and

V0→r = V
†

0→−r, (D2)

where the matrix forms of the symmetry generators are given

in Eqs. (40), (41), and (42), and C2 ≡ C2
4 .

The primitive lattice has one site in the unit cell. Since each

site has a spin- 3
2

degree of freedom, the Hamiltonian, defined

by Eqs. (43), (D1), and (D2), is a 4 × 4 matrix, given by

H p =t

(

cos
kx

2
cos

kz

2
+ cos

ky

2
cos

kz

2
−2 cos

kx

2
cos

ky

2

)

τzσz

+ γ sin
kz

2
τz

(

sin
kx

2
σx + sin

ky

2
σy

)

+ γ sin
kx

2
sin

ky

2
τyσ0

+ β

(

cos
ky

2
− cos

kx

2

)

cos
kz

2
τ+σ0

+ β∗
(

cos
ky

2
− cos

kx

2

)

cos
kz

2
τ−σ0 + mτzσz, (D3)

where kx, ky, kz correspond to the momenta reciprocal to ex,

ey, ez.

1. Hamiltonian and symmetry operators in conventional

unit cell

The conventional unit cell contains two sublattices, as in-

dicated in Fig. 3(a). Since each site hosts a spin- 3
2

degree

of freedom, the Hamiltonian in the conventional unit cell in

reciprocal space is an 8 × 8 matrix, which takes the form

H c =
(

m − 2t cos
kx

2
cos

ky

2

)

ρ0τzσz

+ γ sin
kx

2
sin

ky

2
ρ0τyσ0

+ t

(

cos
kx

2
+ cos

ky

2

)

cos
kz

2
ρxτzσz

+ γ sin
kz

2
ρxτz

(

sin
kx

2
σx + sin

ky

2
σy

)

+ β

(

cos
ky

2
− cos

kx

2

)

cos
kz

2
ρxτ+σ0

+ β∗
(

cos
ky

2
− cos

kx

2

)

cos
kz

2
ρxτ−σ0, (D4)

TABLE VIII. Symmetry eigenvalues at high-symmetry points in

the HOTI phase. �, X , M reside in the kz = 0 plane, while Z , T ,

R reside in the kz = π plane. The filling anomaly for each plane is

calculated in Table V.

HSP E 1
2 g E 1

2 u E 3
2 g E 3

2 u

� 2 0 0 0

X 1 1 0 0

M 1 0 1 0

Z 1 1 0 0

T 2 0 0 0

R 0 1 1 0

where again kx, ky, kz correspond to the basis reciprocal to

ex, ey, ez, and we have introduced an additional set of Pauli

matrices ρi to indicate the sublattice degree of freedom. As in

the main text and in the Hamiltonian in Eq. (D3), σi and τi act

on the hybrid spin and orbital degrees of freedom.

In this basis, the symmetry operators are implemented by

the matrices

Cc
4 =

(

C4

C4

)

, I
c =

(

I

I

)

, (D5)

where the superscript c indicates the conventional unit-cell

basis. C4 and I are defined for the primitive lattice in Eqs. (40)

and (41).

2. Parameters for numerical calculations

There is an unexpected antiunitary symmetry in the kz = π

plane. This symmetry is artificial because it can be broken by

adding small next-next-nearest hopping terms that preserve all

the symmetries. The extra terms do not change the topology

and do not break any symmetry, but will help to eliminate

unphysical gapless surface states which are protected by the

artificial symmetry. These small next-nearest hopping terms

are

V0→ex
= b(τzσz −

√
3τxσ0),

V0→ey
= b(τzσz +

√
3τxσ0),

V0→ez
= −2bτzσz. (D6)

We consider a system that is finite in the x and y directions,

i.e., its boundaries are normal to ex and ey, as shown in

Fig. 3(b). We terminate the boundary to respect C4 symmetry.

In our numerical calculations, the parameters are set to be

t = 1, β = 1 + i, γ = 1, b = 0.2. The parameters are taken

in such a way that when m = 0, there is a quadratic band

touching at �. The rod states are calculated for a square of

size 15ex by 15ey. In Fig. 3(c), m = −0.5, realizing the HOTI

phase. In Fig. 3(d), m = 1, realizing the DSM(i) phase.

The phase diagram in Fig. 3(e) is derived with b = 0.

This small value of b = 0.2 only slightly changes the phase

transition points of m/t .
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TABLE IX. Symmetry eigenvalues at high-symmetry points in

the DSM(i) phase. �, X , M reside in the kz = 0 plane, while Z , T ,

R reside in the kz = π plane. The kz = 0 plane has mirror Chern

number Cm = 2, while the kz = π plane is in a fragile topological

phase and has filling anomaly η = 4. There is a bulk Dirac point

in the plane kz = k0. At kz planes between 0 and k0, the symmetry

eigenvalues correspond to the last two columns E 1
2

and E 3
2

for �,

X , M as required by the conservation of angular momentum (or

equivalently the compatibility relation). At kz planes between k0 and

π , the symmetry eigenvalues correspond to the last two columns E 1
2

and E 3
2

for Z , T , R.

HSP E 1
2 g E 1

2 u E 3
2 g E 3

2 u E 1
2

E 3
2

� 1 0 1 0 1 1

X 1 1 0 0 2 0

M 1 0 1 0 1 1

Z 2 0 0 0 2 0

T 1 1 0 0 2 0

R 0 1 1 0 1 1

3. Symmetry eigenvalues in the HOTI phase and DSM(i) phase

We list the symmetry eigenvalues computed from our

model in the HOTI phase in Table VIII. The results are used

to calculate the filling anomaly in Table V.

The symmetry eigenvalues computed in the DSM(i) phase

are listed in Table IX. The results are used to calculate the

filling anomaly in Table VI. In addition, the kz = 0 plane has

mirror Chern number Cm = 2. The mirror Chern number can

be evaluated by calculating the Chern numbers of the +i and

−i sectors. The symmetry indicator formula for the Chern

number is [71]

iC =
∏

i∈occ.

(−1)F ξi(�)ξi(M )ζi(Y ), (D7)

where F is twice the total spin and can be replaced with the

number of filled bands N in our spinful case; ξi is the C4

eigenvalue of the ith band; and ζi is the C2 eigenvalue of the

ith band. Time-reversal symmetry ensures that the number of

filled band in each mirror sector is N/2. Time-reversal symme-

try also constrains the mirror Chern number: Cm = 1
2
(C+i +

C−i ) = C+i. We can determine C+i by counting the numbers

of irreps that contain mirror eigenvalue +i and plug them into

Eq. (D7). For example, EX
1
2

u
has two components: ζ (X ) = i

and ζ (X ) = −i. Since this irrep has inversion eigenvalue I =
−1, only the C2 eigenvalue ζ (X ) = −i corresponds to the

sector with mirror eigenvalue +i. Thus, (−i)
#EX

1
2

u = (i)
−#EX

1
2

u

in Eq. (D7). The other irreps come into the equation similarly.

From these facts, we obtain the symmetry indicator formula

for the mirror Chern number for our layer group p4/m1′ at

this kz = 0 plane (C4, T , and I):

Cm = N +
(

#EX
1
2

g
− #EX

1
2

u

)

+
1

2

∑

i=�,M

(

#E i
1
2

g
− #E i

1
2

u

)

−
3

2

∑

i=�,M

(

#E i
3
2

g
− #E i

3
2

u

)

mod 4. (D8)

FIG. 5. A square-lattice termination that breaks global C4 sym-

metry, i.e., if the crystal is rotated about a bulk C4 center (blue or

green dot), the rotated lattice does not coincide with the original

lattice. This lattice should be compared to Fig. 1(b), which shows

a C4 symmetric termination. Solid blue and hollow green dots and

pink squares indicate atoms at the Wyckoff positions 1a, 1b, and 2c,

respectively. Dashed gray lines indicate the primitive unit cell.

Plugging in the symmetry eigenvalues from Table VIII, we

find Cm = 2 at kz = 0, and Cm = 0 at kz = π . For the HOTI

phase, the mirror Chern number Cm = 0 for both kz = 0 and

π planes, as we can verify by plugging the symmetry eigen-

values from Table IX into Eq. (D8).

There are a pair of bulk Dirac points at (0, 0,±k0). The

symmetry eigenvalues at a k plane between 0 and k0 can be

obtained by “forgetting” the inversion eigenvalues of �, X ,

and M. The symmetry eigenvalues at a k plane between k0 and

π can be obtained by “forgetting” the inversion eigenvalues of

Z , T , and R.

4. Numerical calculation for a rod geometry with boundaries

that break global C4 symmetry

The corner states are protected by the global C4 symmetry.

Thus, rigorously, a C4 symmetric termination of the lattice

is required to protect the corner states. However, in practice

we find that the corner states survive on a lattice termination

that is not globally C4 symmetric if it has C4 symmetry in the

bulk (see Fig. 5 for an example of such a lattice termination).

Physically, this is reasonable because if the corners are far

apart, the local spectrum at one corner should not depend on

the termination at another corner.

In Fig. 6, we numerically compute the rod states of our

model with the same parameters as in Appendix D 2 (t = 1,

β = 1 + i, γ = 1, b = 0.2), but with boundaries that do not

cut through unit cells, breaking the global C4 symmetry. The

spectrum is similar to Figs. 3(c) and 3(d) (where global C4

symmetry is preserved) for the same system size. However,

the degeneracy of corner states is not robust in this case: it can

split by a perturbation that breaks C4 symmetry.
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FIG. 6. Spectrum for a rod (finite in the x and y directions, infinite in z) in (a) the HOTI phase and in (d) the DSM(i) phase. Every kz slice in

this rod has an integer number (15 × 15) of unit cells, breaking the global C4 symmetry. The number of electrons at charge neutrality is 1800.

The energy of each state near E = 0 is plotted for the following kz slices in the HOTI and DSM(i) phases: (b) HOTI phase, kz = π/2, η = 0

mod 4, (c) HOTI phase, kz = π , η = 4 mod 8; (e) DSM(i) phase, kz = π/4, η = 2 mod 4; (f) DSM(i) phase, kz = 3π/4, η = 0 mod 4.
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