

1 **Magnitude of the 39.8 ka Campanian Ignimbrite Eruption, Italy: a 2 review and reassessment using an ignimbrite isopach map**

3 **Aurora Silleni^{1,2*}, Guido Giordano¹, Roberto Isaia³, Michael H. Ort²**

4 ¹Dipartimento di Scienze, Università di Roma Tre, Rome, Italy

5 ²SES, Northern Arizona University, Flagstaff, USA, AZ

6 ³Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy

7 *** Correspondence:**

8 Corresponding Author

9 Aurora.Silleni@nau.edu

10 **Keywords: Campanian Ignimbrite; Campi Flegrei; Isopach maps; Ignimbrite volumes;
11 Pyroclastic density currents; Super-eruption.**

12 **Manuscript Length**

13 This manuscript consists of 9335 words, 8 figures and 3 tables.

14 **Abstract**

15 The 39.8 ka Campanian Ignimbrite eruption is the largest caldera-forming eruption of the Campi
16 Flegrei and had a global-scale impact on the environment and human populations. The cooling
17 following the eruption and its widespread tephra strongly affected the paleoenvironment and the
18 migration of hominids in Europe. Despite a large number of studies, the Campanian Ignimbrite
19 Dense Rock Equivalent (DRE) volume estimates range from 60 to 300 km³. Here we present a
20 review of the previous volume evaluations and a new calculation of the volume of the ignimbrite.
21 This estimate is constrained by the first total isopach map of the Campanian Ignimbrite PDC deposit
22 preserved on land, developed through a method that reconstructs the paleo-topography at the time of
23 the eruption. The method is reproducible for all strongly topographically controlled ignimbrites and
24 allows the calculation of well-defined uncertainties in the on-land ignimbrite deposits. The preserved
25 total extra-caldera bulk volume of the ignimbrite is estimated at 68.2 km³ ± 6.6 km³. The total PDC
26 deposit volume is then corrected for erosion, ash elutriation, the intracaldera deposit volume and the
27 volume of tephra deposited in the sea, and volumes of fallout are taken from other studies. The final
28 total volume estimate of the eruption ranges from 177 km³–265 km³ DRE. This value corresponds
29 to a mass of 4.6–6.9 × 10¹⁴ kg, a magnitude (M) of 7.7–7.8 and a volcanic explosivity index (VEI)
30 of 7. The new detailed estimate of the Campanian Ignimbrite eruption physical parameters, for the
31 first time constrained by the ignimbrite deposit, confirms the magnitude of this event.

32 **1 Introduction**

33 Pyroclastic density currents (PDCs) have large impacts on human communities and the environment;
34 they can cause catastrophic environmental and property damage and loss of life, as well as
35 accounting for a large proportion of deaths caused by direct volcanic activity. From 1500 to 2017 CE,
36 28% of volcano-induced mortality resulted from PDCs, second only to famine and epidemic disease

(Auker et al., 2013 and references therein; Brown et al., 2017). Moreover, global and regional climatic effects can result from the injection of ash and sulfur aerosols into the stratosphere during large explosive eruptions, leading to a “volcanic winter” (Rampino and Self, 1992; Stuiver et al., 1995; Thordarson and Self, 1996). The quantitative computation of the size of explosive eruptions is essential to understand their potential impact on humans, climate and ecosystems (e.g., Mason et al., 2004). Calculating the volume of large volcanic eruptions is also necessary to define their size (e.g., Newhall and Self, 1982; Pyle, 2000, 2015; Cros bewer et al., 2012) and to model the climate effects of these natural phenomena that occurred in the past.

Large (volcanic explosivity index ≥ 4 ; e.g., Cros bewer et al., 2012) caldera-forming eruptions produce both fall deposits and ignimbrites (Parfitt and Wilson, 2008), and typically the largest proportion of volcanic material is transported in PDCs and emplaced as ignimbrites (e.g., the Oruanui eruption; Wilson, 1991; the Otowi Member of the Bandelier Tuff; Cook et al., 2016). The tephra fall deposits are analyzed through field and statistical techniques to make isopach maps directly from thickness data (e.g., Walker and Croasdale, 1970; Walker, 1973; Rhoades et al., 2002; Burden et al., 2013; Engwell et al., 2015; Yang and Bursik, 2016; Cutler et al., 2020), from which numerical models can be used to calculate total volumes (Bonadonna et al., 1998; Bonadonna and Phillips, 2003; Bonadonna and Houghton, 2005; Folch et al., 2010; Costa et al., 2012; Folch, 2012). The resulting tephra volumes appear to be better constrained than ignimbrite volumes, where a clear “reference” method does not exist and uncertainties on such computations are significant (Mason et al., 2004).

Calculation of the volume of ignimbrites has been the subject of numerous studies (Walker, 1983; Aldiss and Ghazali, 1984; Henry and Price, 1984; Morgan et al., 1984; Ratté et al., 1984; Sparks et al., 1985; Scott et al., 1996; Wilson, 2001; Pérez et al., 2006; Giordano et al., 2010; Folkes et al., 2011; Best et al., 2013a, 2013b; Cook et al., 2016; Pacheco-Hoyos et al., 2018; Takarada and Hoshizumi, 2020), but it remains difficult to evaluate due to the irregularity of the ignimbrite surface, the variable thickness (controlled by the paleotopography; e.g., Yokoyama, 1974; Wilson 1991; Broxton and Reneau, 1996; Daag and van Westen, 1996), the effect of erosion (e.g., Yokoyama, 1985), the presence of overlying deposits, and the variable density of the deposits. The eruptive volume, and as a consequence the ignimbrite volume, is essential for computation of the magnitude (M ; Mason et al., 2004) and volcanic explosivity index (VEI; Newhall and Self, 1982) of an eruption. The calculation of the volume of ignimbrites, which form the main part of eruptions with $M > 5$, remains one of the outstanding issues in volcanology (e.g., the collapse caldera database (CCDB) project, Geyer and Martí, 2008; the LAMEVE project, Cros bewer et al., 2012).

The lack of a standardized accurate method for the calculation of ignimbrite volumes makes most of the existing figures for large-volume ignimbrites poorly constrained and, in many cases, unreplicable, resulting in a wide range of estimated volumes of the same ignimbrite (e.g., Cerro Galán, Folkes et al., 2011; Campanian Ignimbrite, Scarpati et al., 2014). The case study for this work is the Campanian Ignimbrite (CI; Barberi et al., 1978; Fisher et al., 1993; De Vivo et al., 2001; Fedele et al., 2008), associated with the most powerful caldera-forming eruption from the Campi Flegrei caldera (CF) (Fig. 1A) (Rosi and Sbrana, 1987; Perrotta et al., 2006; Scarpati et al., 2013). It is one of the largest late Quaternary explosive events and has been considered as an example of a super-eruption (Sparks et al., 2005). The 39.8 ka CI tephra (Plinian and co-ignimbrite products; Giaccio et al., 2017) represents the most widespread volcanic deposit and one of the most important temporal/stratigraphic markers for the Early Upper Paleolithic of Western Eurasia (Fedele et al., 2003; Pyle et al., 2006; Giaccio et al., 2008). The eruption may have affected human residents in different ways: by destroying the animal and human populations, by altering the species composition

83 and growth rhythm and by changing the availability of water (Fedele et al., 2002, 2003, 2007; Lowe
 84 et al., 2012). The abrupt volcanic cooling following the eruption produced a regional drop of 6°C to
 85 9°C in Eastern Europe and Northern Asia (Black et al., 2015). The cooling could have influenced the
 86 migration of the populations and have affected the daily life for Neanderthals and modern humans
 87 during the Middle to Upper Paleolithic transition (Fedele et al., 2002, 2003; Black et al., 2015; Marti
 88 et al., 2016).

89 In this work, we present a review of all articles that calculated the CI volume. Despite the large
 90 number of studies, the estimates of total Dense Rock Equivalent (DRE) volume of the CI eruption
 91 range from 60 to 300 km³ (Thunell et al., 1979; Cornell et al., 1983; Rosi et al., 1983, 1999; Fisher et
 92 al., 1993; Civetta et al., 1997; Fedele et al., 2003; Perrotta and Scarpati, 2003; Rolandi et al., 2003;
 93 Giaccio, 2006; Marianelli et al., 2006; Pyle et al., 2006; Pappalardo et al., 2008; Costa et al., 2012;
 94 Scarpati et al., 2014; Marti et al., 2016). Furthermore, none of these studies provides a solid method
 95 to determine the ignimbrite volume in the Apennine Mountains. The volume of dispersed tephra
 96 (both Plinian and co-ignimbrite) was better defined due to the many measurements across the vast
 97 region blanketed by the CI ash and a recent improvement of computational methods (Costa et al.,
 98 2012; Marti et al., 2016), as well as by the simpler nature of its mantling deposition. In contrast, the
 99 volume of the ignimbrite deposits has never been calculated by accurate direct measurements, but
 100 only by approximate thicknesses (Thunell et al., 1979; Fisher et al., 1993; Civetta et al., 1997;
 101 Giaccio, 2006). Here, we assess the ignimbrite volume using precise thickness measurements and
 102 reporting those on an isopach map. We demonstrate a rigorous method to create a complete isopach
 103 map of the CI, with a similar approach to that normally applied to tephra-fall deposits (e.g., Engwell
 104 et al., 2015) and it can be easily used on other ignimbrites in the world. The map is based on the
 105 mapping of the preserved ignimbrite deposits, without the fall deposits, and reconstruction of the
 106 paleotopography, especially mountainous areas. This allows us to provide an accurate estimate of the
 107 volume of the extra-caldera deposits of the CI pyroclastic density current preserved on land based on
 108 a verifiable method of calculation and with the relative uncertainties. Using this as a base, we correct
 109 for erosion, elutriation, intracaldera volume and underwater deposits to calculate the, up to date, most
 110 reliable total bulk and DRE volumes for this ignimbrite. We then estimate the co-ignimbrite volume
 111 and add the fallout volume from previous studies to calculate the total erupted volume for the
 112 eruption. The obtained eruptive volume significantly reduces the total uncertainty of the total volume
 113 calculation and should be used to better design and constrain the eruptive dynamics. Such data, well
 114 constrained and evaluated, from many volcanoes could help determine the frequency of eruptions of
 115 a given magnitude around the world.

116 2. Volcanological background

117 Volcanic activity in the Campi Flegrei began prior to 80 ka (Pappalardo et al., 1999; Scarpati et al.,
 118 2013) and caldera collapses occurred during the eruptions of the CI, the ~15 ka Neapolitan Yellow
 119 Tuff (NYT) eruptions (Orsi et al., 1996; Perrotta et al., 2006; Acocella, 2008; Vitale and Isaia, 2014)
 120 and the M 6.6 event Masseria del Monte Tuff correlated to the Y-3 marine tephra (Albert et al.,
 121 2019). Post-NYT activity in the caldera is well described by Di Vito et al. (1999), Isaia et al. (2009)
 122 and Smith et al. (2011).

123 The CI eruption emplaced both pyroclastic fall and PDC deposits in a complex sequence currently
 124 exposed in proximal, sporadic medial, distal and ultra-distal outcrops (Fig. 1) (Barberi et al., 1978;
 125 Rosi et al., 1988, 1996, 1999; Fisher et al., 1993; Perrotta and Scarpati, 1994, 2003; Orsi et al., 1996;
 126 De Vivo et al., 2001; Cappelletti et al., 2003; Perrotta et al., 2006; Fedele et al., 2008; Engwell et al.,
 127 2014; Scarpati et al., 2015a, 2015b; Sparice, 2015; Scarpati and Perrotta, 2016; Smith et al., 2016).

128 The first phase of the eruption generated Plinian columns up to 44 km high (Rosi et al., 1999; Marti
 129 et al., 2016), producing a widespread fall deposit dispersed by winds to the east (Rosi et al., 1999;
 130 Perrotta and Scarpati, 2003; Marti et al., 2016; Scarpati and Perrotta, 2016). A pyroclastic density
 131 current then spread over an area of 7,000 km² and surmounted ridges more than 1,000 m high
 132 (Barberi et al., 1978; Fisher et al., 1993). This stage caused the caldera collapse and the accumulation
 133 of lithic breccia deposits (Breccia Museo) in scattered outcrops along the caldera rim (Perrotta and
 134 Scarpati, 1994; Melluso et al., 1995; Rosi et al., 1996; Fedele et al., 2008). In distal outcrops, most of
 135 the CI is represented by a massive, gray ignimbrite (Barberi et al., 1978; Fisher et al., 1993; Scarpati
 136 and Perrotta, 2012; Scarpati et al., 2015a). Beyond about 80 km from the vent, deposits are made up
 137 of coarse to fine ash containing both co-Plinian and co-ignimbrite tephra (Thunell et al., 1979; Sparks
 138 and Huang, 1980; Engwell et al., 2014; Smith et al., 2016). The tephra marker related to this eruption
 139 is essential to correlate volcanological and archaeological sites in the Mediterranean area and Eastern
 140 Europe. Tephra-based correlations of human sites were used to date the Middle to Upper Paleolithic
 141 transition (Giaccio et al., 2008; 2017; Lowe et al., 2012).

142 The complex stratigraphy of this eruption differs between proximal and distal outcrops. Moreover, it
 143 is difficult to study the lateral correlations due to the absence of outcrops in medial areas (except for
 144 the Lago di Patria outcrop, Table 2 in Data Repository), because all quarry-pits have been refilled.
 145 The limited drill core data shows little evidence of lateral unit change. In our study, we refer to the
 146 stratigraphic units proposed by Fedele et al. (2008) (proximal area) and Cappelletti et al. (2003)
 147 (distal areas) (Online Supplementary Material). The first flow unit is the unconsolidated stratified ash
 148 flow (USAf) both in proximal and distal stratigraphy, which is followed by the main units of Piperno
 149 and Breccia Museo inside the caldera and the welded gray ignimbrite (WGI) and lithified yellow tuff
 150 (LYT) in medial and distal outcrops.

151 3. Estimating eruption volume

152 Most studies of eruptive volume focus their attention on the Plinian fallout and the ignimbrite phases
 153 of volcanic eruptions, but the total volume calculation is a complex result of many different
 154 components. The total volume erupted during a caldera-forming eruption, like the CI, is composed of
 155 the mass ejected during the phases that produced Plinian columns (V_{Pcol}), and pyroclastic density
 156 currents (V_{pdc}) (1):

$$157 \quad V = V_{Pcol} + V_{pdc} \quad (1)$$

158 Both V_{Pcol} and V_{pdc} refer to the primary deposits (respectively the Plinian fallout V_{Pfall} , the proximal
 159 pumice lapilli deposit, and the ignimbrite V_{ign}) and their associated co-Plinian fall ($V_{coPfall}$) and co-
 160 ignimbrite ash fall (V_{coign}), respectively. Indeed, fine ash suspended in the atmosphere can be co-
 161 Plinian rather than co-ignimbrite (Fierstein and Hildreth, 1992). In this work, the co-Plinian ash is
 162 defined as the fine-grained Plinian ash, decoupled from the coarser fallout and subject to atmospheric
 163 turbulence (Fierstein and Hildreth, 1992). The co-ignimbrite ash is considered to be the buoyant
 164 material that rises from the PDC through the entrainment, heating and expansion of ambient air
 165 (Woods and Wohletz, 1991), and may represent the counterpart to the crystal-enriched ignimbrite
 166 (Sparks and Walker, 1977). Consequently (2):

$$167 \quad V = (V_{Pfall} + V_{coPfall}) + (V_{ign} + V_{coign}) \quad (2)$$

168 The erosion and re-deposition can subsequently modify these components before measurement of the
 169 thicknesses occurs. In the following sections, we discuss different methods used in the past to

170 estimate the CI eruption volume. The CI is not a unique example and those methods have been
171 applied on many eruptions (e.g., Pyle, 1989).

172 **3.1 The previous estimates of the CI eruptive volume**

173 A synopsis of the previously determined estimates of the total volume is provided in Table 1.

174 Due to the difficulty to distinguish the contribution of the co-Plinian fall and the co-ignimbrite ash
175 fall in ultra-distal locations, some authors simply refer to the widespread Y-5 ash layer, which
176 comprises both (Table 1) (Thunell et al., 1979; Cornell et al., 1983; Rolandi et al., 2003; Costa et al.,
177 2012). Other previous studies distinguished the co-Plinian and co-ignimbrite contribution (Sparks
178 and Huang, 1980; Perrotta and Scarpati, 2003; Engwell et al., 2014; Marti et al., 2016; Smith et al.,
179 2016), but only some of them calculated the relative volumes (Perrotta and Scarpati, 2003; Marti et
180 al., 2016).

181 **3.1.1 From direct measurements**

182 The first volume estimate of the ignimbrite was presented by Thunell et al. (1979). Based on a
183 geometrical method that considers a covered area of over 6,000 km² with a thickness up to 100 m and
184 assuming radial flow of the PDC, they estimated the DRE volume was at least 30-40 km³. The DRE
185 volume of the Y-5 ash layer within the 1-cm isopach contour was also estimated at 30-40 km³ (65
186 km³ bulk). Their total DRE volume was 60-80 km³ for the eruption.

187 Cornell et al. (1983) calculated the ash-fall layer volume of Y-5 from an isopach map derived by
188 different cores drilled in the Mediterranean Sea (73 km³ bulk). They then included the ignimbrite
189 DRE volume proposed by Thunell et al. (1979) in their overall eruption volume estimate. On the
190 other hand, the bulk volume of the original pyroclastic current deposit was estimated by Fisher et al.
191 (1993) to be about 500 km³ by circumscribing a circle of deposits with a radius of 100 km, 100 m
192 thick at the center that thinned to zero at the perimeter of the circle, with no consideration of
193 topography.

194 Rosi et al. (1999) calculated the bulk volume of the Plinian fallout as 15 km³ based on the method
195 proposed by Pyle (1989); in the CI eruption, the focus of the elliptical isopach distribution
196 corresponds to a central vent located in the Campi Flegrei caldera center (town of Pozzuoli). The
197 authors used thickness values from distal outcrops, up to 64 km from the vent. The same technique
198 was used by Perrotta and Scarpati (2003), who estimated a bulk volume of about 4 km³, the different
199 value of this work being the result of a different isopach model compared to the one used by Rosi et
200 al. (1999). In the same paper Perrotta and Scarpati (2003) attempted, for the first time, to discriminate
201 between the volumes of the co-Plinian and co-ignimbrite components. The coarse ash of ultra-distal
202 deposits was interpreted as the co-Plinian phase, while the fine ash represents the co-ignimbrite
203 component. The authors evaluated the thicknesses of the two parts and estimated 16 km³ bulk of co-
204 Plinian ash and 100 km³ bulk of co-ignimbrite ash.

205 These analyses were then improved by Pyle et al. (2006), who used ultra-distal thickness values all
206 over Eastern Europe. The authors estimated the minimum bulk volume of the CI fallout at 74 km³ or
207 31 km³ DRE (using magma density of 2,400 kg/m³ and 1,000 kg/m³ bulk deposit density) using
208 Pyle's (1989) general observation that many fallout deposits show exponential decay of thickness.
209 Pyle et al. (2006) compared these results with a second approach based on the rate of thinning of the
210 distal ash sheets (based on Pyle, 1989, 1990): given that the thickest ash layer in marine cores is in
211 the order of 10–20 cm, it is most likely that the total bulk ash volume associated with the eruption

212 was in the range 74–120 km³ (31–50 km³ DRE) (Pyle et al., 2006). Scarpati and Perrotta (2016)
 213 subdivided the fallout into five layers (A to E) on the basis of grain size, component variations and
 214 graded bedding. The volumes for each layer were calculated using the exponential fitting method of
 215 Pyle (1989), obtaining a primary fallout of about 5 km³ (~1 km³ DRE, using a magma density of
 216 2,400 kg/m³ proposed by Rosi et al., 1999) and a co-Plinian ash of about 15 km³ (~7 km³ DRE, using
 217 the same magma density as the primary fallout).

218 A first attempt to collate all the volume estimates was made by Fedele et al. (2003), who considered
 219 the sum of the conservative estimates reported in literature (the sum of the fallout, the PDC deposits
 220 and the Y-5 ash layer volumes; Thunell et al., 1979; Civetta et al., 1997; Rosi et al., 1999). The total
 221 DRE volume they proposed is 200 km³, using a bulk deposit density of around 1,250 kg/m³. Rolandi
 222 et al. (2003) proposed the same volume (200 km³ DRE, 320 km³ bulk), consisting of 180 km³ bulk of
 223 PDC (150 km³ in proximal area and 30 km³ in distal area, obtained by the analysis of seismic data,
 224 drill-holes, and considering the areal extent of the deposits) and 140 km³ bulk of the distal ash (80
 225 km³ in the Mediterranean Sea and 60 km³ as ultra-distal tephra, using an isopach map).

226 A similar value was proposed by Giaccio (2006), 215 km³ DRE (385 km³ bulk), who calculated the
 227 volume of the PDC using a complex truncated cone, with a concave surface and variable heights: 70
 228 m up to 10 km from the center, 50 m up to 20 km, 20 m up to 45 km and 0 m up to 100 km. At the
 229 same time, he proposed a revised isopach map for the fallout deposits, resulting in a volume estimate
 230 of 10 km³ (3 km³ DRE). Moreover, combining all available data on the distal tephra of CI from the
 231 literature (Cornell et al., 1983; Melekestsev et al., 1984; Paterne et al., 1986; McCoy and Cornell,
 232 1990; Cini Castagnoli et al., 1995; Seymour and Christianis, 1995; Narcisi and Vezzoli, 1999; Ton-
 233 That et al., 2001; Upton et al., 2002; Seymour et al., 2004), Giaccio (2006) calculated the volume of
 234 the distal fraction as 180 km³ (86 km³ DRE) and thus estimated a bulk volume of 575 km³ (300 km³
 235 DRE). The DRE volumes were calculated using a bulk density, ranging between 1,400 and 2,500
 236 kg/m³ for the ignimbrite, 1,200 kg/m³ for the distal ash and 800 kg/m³ for the fallout pumices.

237 **3.1.2 From petrological data and numerical modeling**

238 Civetta et al. (1997) is one of the first works that subdivided the volume of the CI eruption based on
 239 the pumice composition. The authors divided the magma into three different types: a most evolved
 240 one that consists of Plinian fallout and some ignimbrite up to 50 km from the vent (a volume of 25
 241 km³ DRE), a magma with intermediate composition that includes some of the ignimbrite out to its
 242 farthest extent (100 km³ DRE), and a least-evolved magma that includes much of the ignimbrite in
 243 the Campanian Plain (20 km³ DRE). All the volume calculations were made by circumscribing
 244 circles with a radius similar to the maximum distance reached from the vent by that magma type and
 245 a thickness that goes from the maximum thickness of ignimbrite of that given composition at the
 246 caldera center to zero at the perimeter of the circle.

247 Marianelli et al. (2006) proposed different crystallization depths suggested by the results of CI melt
 248 inclusion studies and then estimated the volume of the eruption directly from a magma chamber
 249 model, attributing 20 km³ DRE to the fallout deposits, and 130 km³ DRE to the ignimbrite. The
 250 method was not explained with more details in the article (Marianelli et al., 2006). Pappalardo et al.
 251 (2008) used petrological data to constrain the pre-eruptive magma storage dynamics analyzing the
 252 different magma compositions for each eruptive phase. In agreement with Civetta et al. (1997),
 253 Pappalardo et al. (2008) proposed a total volume of 200 km³ DRE based on a major and trace
 254 element modeling (20 km³ for the fallout and 180 km³ for the ignimbrite). The authors used the total
 255 porosity of each analyzed sample, which varies between 0.36 and 0.93, with an average of 0.58.

256 Costa et al. (2012) proposed a new tephra volume estimate based on the fit of an advection –
 257 diffusion tephra dispersion model to thickness data (more than 100 ultra-distal locations). They
 258 obtained a bulk volume of the tephra of 250–300 km³ (104–125 km³ DRE, the model assumes an
 259 average bulk deposit density of 1,000 kg/m³) and a total volume of the eruption of 430–680 km³ (180–
 260 280 km³ DRE).

261 Scarpati et al. (2014) estimated the PDC volume applying equation (3) (see below) assuming a co-
 262 ignimbrite volume (V_{coign}) of 100 km³ obtained by Perrotta and Scarpati (2003) and a mean vitric loss
 263 of 0.65. The method is based on the enrichment factor of Walker (1972, 1980) and the vitric loss of
 264 the ignimbrite proposed by Sparks and Walker (1977). The ignimbrite volume (V_{ign}) (3) is equal to:

$$265 \quad V_{ign} = \frac{V_{coign}}{\text{vitric loss}} - V_{coign} \quad (3)$$

266 This method is strongly influenced by the mean value of vitric loss used, which is normally estimated
 267 from sporadic point measurements. The bulk volume of the PDC deposits thus estimated is 54 km³
 268 (25 km³ DRE, using a density of 2,600 kg/m³). In the same study, the authors proposed a review of
 269 the previous volume estimations (Scarpatti et al., 2014).

270 The most recent work on the fallout volume was presented by Marti et al. (2016). The authors
 271 recognized two distinct plume phases: the Plinian (V_{Plin}) and the co-ignimbrite fall. They applied a
 272 computational inversion method that explicitly accounts for the two phases and for gravitational
 273 spreading of the umbrella cloud. Dividing the modeling in two different eruptive phases provides the
 274 best estimate, as they are two different spreading and source phenomena. The Plinian fallout bulk
 275 volume thus calculated is 54 km³ (22.6 km³ DRE, using a magma density of 2,500 kg/m³) and the co-
 276 ignimbrite bulk volume as 153.9 km³ (61.6 km³ DRE), for a total bulk volume of 207.9 km³ (84.2
 277 km³ DRE).

278 To summarize, the range in volumes is wide (an order of magnitude, 54–500 km³, in bulk volume)
 279 due to the different methods used, which is a problem in view of the importance of such figures in
 280 calculating the impact on climate and the environment. While the computational methods for the
 281 fallout deposits have improved significantly in the past ten years and the related figures for the CI
 282 fallout phase appear strong and solidly based on field data (Costa et al., 2012; Marti et al., 2016), the
 283 volume figures for the CI ignimbrite are still poorly constrained by field data and lack well-assessed
 284 (epistemic) uncertainties. The ignimbrite volume also affects the estimate of the volume of elutriated
 285 co-ignimbrite ash, which is the dominant fallout phase across Europe and the main fraction of ash
 286 injected into the stratosphere by the eruption (e.g., Costa et al., 2018).

287 4. Methods

288 4.1 Investigated CI eruptive unit

289 In order to reduce this wide range in volume estimates, we focus on constraining the volume of the
 290 ignimbrite deposits of the CI, as this is the most poorly constrained at present. We use volumes
 291 calculated by Perrotta and Scarpati (2003) and Marti et al. (2016) for the initial pyroclastic Plinian
 292 fall phase and the co-ignimbrite fallout to estimate the total erupted volume. Our CI isopach map is
 293 based on previous published data, new fieldwork and the assessment of the paleo-topographic control
 294 exerted on the deposits thickness distribution.

295 **4.2 Density measurements**

296 More than 40 samples from different outcrops scattered around the Campanian Plain were analyzed
 297 to determine their density. Samples were cut in cylinders (with radius between 0.9 and 2 cm and
 298 height between 0.8 and 5.7 cm) or cubes (sides from 0.8 to 2.5 cm) and analyzed using a
 299 Micromeritics AccuPyc II 1340 helium pycnometer. The instrument provides a standard deviation for
 300 each measurement that was used to evaluate the density errors. The resulting density was used to
 301 interpret total and open porosity. Open porosity was estimated with geometric (V_g) and matrix
 302 volume (V_{mx}): $100*(V_g - V_{mx})/V_g$, while closed porosity was determined using the DRE of the WGI
 303 and Piperno powder, which was obtained by the pycnometer. The total porosity (ϕ_t) was calculated
 304 directly by summing closed and open porosity. The density is used to determine the DRE volume.

305 **4.3 Database and fieldwork**

306 Published data regarding CI thickness and outcrop locations were collected from 42 papers
 307 (presented in Data Repository, Table 1). The data were inserted in a GIS Open-Source QGIS 3.4
 308 (<https://www.qgis.org/it/sitel>) database including 238 localized outcrops. The database includes the
 309 location name, the lithological description, the geographic coordinates, the elevation a.s.l., the
 310 thickness of the flow units (specifying whether total or minimum outcrop thickness), the maximum
 311 lithic dimensions and the degree of welding. Where both base and top of the CI are exposed, the
 312 thickness is classified as total and elsewhere it is considered a minimum thickness. The database
 313 reports raw thickness data and adjustments due to erosion are explained later on.

314 This database has been augmented by our field data acquired in 97 locations (presented in Data
 315 Repository, Table 2), both in proximal and distal areas (Fig. 1A). At these new field sites,
 316 information on total or minimum thickness, to verify the local stratigraphy, and the relation of the
 317 ignimbrite to topography was collected.

318 **4.4 Defining the CI PDC deposit extent**

319 The 0-m isopach is an outer limit beyond which the CI is not present, and it delimits the current areal
 320 distribution of the ignimbrite outcrops. The isopach was reconstructed through a first phase of
 321 revision of the geological maps already existing at the scale 1:50,000 or 1:100,000 (Servizio
 322 Geologico d'Italia, 1963, 1965, 1966, 1967, 1971a, 1971b, 1975; ISPRA, 2009, 2010, 2011a, 2011b,
 323 2011c, 2011d, 2014a, 2014b, 2016, 2018). The contact was traced between the CI and older units and
 324 extrapolated where CI does not crop out. In this circumstance, the ignimbrite is generally covered by
 325 younger deposits, so it is necessary to assess if the CI was emplaced in these locations. To do this, a
 326 statistical and morphological analysis of the slope of the top of the CI was applied and a comparison
 327 between the topography and the average slope of the CI top was carried out. Where the slope angle is
 328 comparable, the area was included in the 0-m isopach, even if CI does not crop out. The underlying
 329 basement (mostly Meso-Cenozoic calcareous or flysch rocks) has generally higher slope angles than
 330 the CI (for example the Apennine flanks), so the CI produces a morphologically distinct slope. The
 331 isopach was traced to leave out high-slope areas and no primary CI deposition was interpreted. The
 332 slope analysis was performed on a slope map developed using a 10-m resolution Digital Elevation
 333 Model (DEM) (Tarquini et al., 2007; Tarquini et al., 2012; Tarquini and Nannipieri, 2017). The
 334 statistical and morphological analysis of the upper surface of the CI used 48,804 points distributed
 335 throughout the areal extent of the deposits (both in proximal and distal areas).

336 **4.5 The isopachs**

337 To determine the isopach locations, two different methods were used, one in the proximal area to
 338 medial (from the caldera to the base of the Apennine Mountains, including the Campanian Plain) and
 339 one in the distal area. The almost complete lack of outcrops in the Campanian Plain and the valley-
 340 ponded depositional style in the ridge-valley topography of the Apennine Mountains (Rosi et al.,
 341 1983, 1996; Perrotta et al., 2010; Langella et al., 2013; Scarpati et al., 2014, 2015a; Sparice, 2015;
 342 Fedele et al., 2016) make these different approaches necessary.

343 In the proximal-medial area, data from the literature (Ortolani and Aprile, 1985; Scandone et al.,
 344 1991; Bellucci, 1994; Rolandi et al., 2003; Milia and Torrente, 2007; Torrente et al., 2010; ISPRA,
 345 2011d), consisting of more than 300 thickness values of CI from boreholes, outcrops and geological
 346 sections were used to fit isopachs on the map (Online Supplementary Material). In the distal area, the
 347 isopach locations were based upon our field observations and a reconstruction of the pre-CI
 348 topography (Fig. 2), which was a separate analysis based on series of ~150 profiles in the Apennine
 349 Mountains, drawn to outline the trend of the valleys (Fig. 2B). The coastline of the Mediterranean
 350 Sea at the time of the CI emplacement (39.8 ka) was lower than today. Based upon limited sea-level
 351 correlation work in the Mediterranean basin (Lambeck and Bard, 2000; Antonioli et al., 2004;
 352 Antonioli, 2012), we assumed a sea level between 75 m and 87 m below the present level.

353 Topographic cross-sections were traced orthogonally to the center of the valley and to the contour
 354 lines, including the flanks of the reliefs and the 0-m isopach. The slopes of the valley above the CI 0-
 355 m isopach were extended and gradually deepened toward the valley center in order to reconstruct the
 356 paleo-valley with an inclination of the sides similar to the current slope, always taking into
 357 consideration the geological and morphological features (Fig. 2B), and assuming that the Meso-
 358 Cenozoic mountain slopes have not significantly changed since 40 ka. The base elevation of the
 359 paleo-valleys is constrained by field data where the CI base has been measured.

360 These reconstructed valleys culminate generally in a V shape, not considering the CI that filled them,
 361 with the bottom elevation, for each profile, representing the paleo-valley floor. All these elevations
 362 represent the ancient pattern of the valley bottom, for this reason, they were modified if they were
 363 inconsistent with the progressive downslope decrease in elevation towards the sea.

364 Finally, the neo-incision of rivers in the profiles was “filled in”, so as to remove the linear erosion of
 365 the last 39.8 kyr, drawing a line that reproduces the original ignimbrite deposit before that the erosion
 366 occurred (Fig. 2B). The CI thickness is calculated from these modified profiles, and it is from the top
 367 of the deposit obtained by the profiles into the paleo-valley slope. However, the thickness is always
 368 constrained by field data of the CI thickness and by the geological maps. These thickness values are
 369 then reported on the isopach map.

370 All the isopachs were traced in accordance with fieldwork, looking both to the base CI elevation and
 371 the CI thickness, the geology of Meso-Cenozoic valley sides and, finally, the present-day drainage
 372 network compared to the paleo-valleys during the eruption (Fig. 2). Where these data were not
 373 consistent, an adjustment in some profiles was necessary. In some cases, a correction was made for
 374 an over-thickening in the valleys caused by an over-deepening of the extended valley sides, not
 375 consistent with field observations. In these cases, the thickness was modified in coherence with
 376 fieldwork.

377 We use, as a starting point for the volume estimate, the ignimbrite deposits volume obtained from the
 378 detailed isopach map. This information is lacking in previous estimates of the CI volume. We refer to

379 all PDC units of the CI as the CI, without distinguishing them; in the medial and distal outcrops, the
 380 CI is mainly composed of WGI.

381 5. Results

382 5.1 The isopach map

383 The morphological analysis shows that 64% (31,057) of the points have slopes lower than 5°.
 384 Moreover, 88% of the points have slopes lower than 15° and 99% have a surface slope lower than
 385 55° (Fig. 3). The CI slope values are consistent with field observations during this work and in
 386 agreement with the observation on the slope of the top surface of the valley-ponded Taupo
 387 Ignimbrite, which is around 8° (Wilson and Walker, 1985).

388 Based on these results, the 0-m isopach was traced to enclose all the mapped CI and areas that
 389 probably have the CI below the recent sedimentary cover, they have a slope less than 15° and they
 390 are in contact with mapped CI outcrop. The 15° slope is consistent with the results, and it allows the
 391 inclusion of all the possible CI extent. With this approach, some CI-containing valleys are isolated
 392 from the main CI deposits (Fig. 4). The isolated valleys contain some CI outcrops, but they are
 393 confined by high slope or basement deposits nearby, and they are separated from the main ignimbrite
 394 by post-emplacement erosion. The total area enclosed by the 0-m isopach of the CI is 3,216 km² (Fig.
 395 4). To understand also the total area of the region inundated by the PDC, and avoid underestimation,
 396 a shape was drawn comprising all the maximum areal extension of the isopach 0-m. The enveloped
 397 area is 6,095 km² (Online Supplementary Material), similar to the 6,000 km² estimate of Thunell et
 398 al. (1979).

399 The isopach map traced in the proximal area does not include the intracaldera deposits. The
 400 maximum thickness in proximal areas is 80 m (Fig. 5), mainly based on outcrops near the caldera
 401 rim; the CI thins gradually away from the caldera margin. The detailed isopach maps show the area
 402 of thickening or thinning in the Campanian Plain and in the Apennines (Fig. 6). The isopach for the
 403 distal reaches has a maximum thickness of 50 m in the Valle dei Maddaloni (Fig. 6C). In distal areas,
 404 a series of confined valleys show local thickening.

405 5.2 Density of the CI deposits

406 The bulk density (ρ) of the WGI samples ranges from $745 \pm 15 \text{ kg/m}^3$ to $1,330 \pm 3 \text{ kg/m}^3$, with an
 407 average of $980 \pm 11 \text{ kg/m}^3$ (see section 4.2 to methods on how the errors were calculated). Error-free
 408 measures for all samples follow a Gaussian distribution with a standard deviation of the Gaussian
 409 probability density function of 127 kg/m^3 . The bulk density of the Piperno unit ranges from $1,275 \pm 8$
 410 kg/m^3 to $1,302 \pm 2 \text{ kg/m}^3$, with an average of $1,287 \pm 4 \text{ kg/m}^3$ (presented in Data Repository, Table
 411 3). The total WGI porosity ranges from $49 \pm 5\%$ to $71 \pm 5\%$ and the average is $61.6 \pm 5\%$. The
 412 average for the Piperno unit it is $50 \pm 1\%$. The total porosity matches with the range used by
 413 Pappalardo et al. (2008). The ρ DRE is $2,607 \pm 31 \text{ kg/m}^3$, which is in agreement with the magma
 414 density used by Scarpati et al. (2014). The DRE volume is determined multiplying the bulk volume
 415 by $(100 - \phi_t)/100$.

416 5.3 Deposits volume calculation

417 Data were plotted in a semi-logarithmic plot (Fig. 7) in which thickness (T) and area (A) follow the
 418 relation: $T = T_{\max} \cdot \exp(-k_1 A)$ (Wilson, 1991). T_{\max} of the CI from this relation is 71.3 m (the measured
 419 value in the field is 80 m), k_1 is equal to 10^{-3} m^{-2} and r^2 is 0.929. These values were obtained plotting
 420 thickness and area with the same unit (m).

Following this equation, the volume is the definite integral of the function, where the area of each isopach was calculated directly from the QGIS software. Table 2 displays the values of the area and the volume for each isopach extrapolated by the function (Fig. 7). Summing all the isopach volumes, the total volume of the preserved extra-caldera CI deposits on land is $68.2 \pm 6.6 \text{ km}^3$ ($26.8 \pm 2.6 \text{ km}^3$ DRE). The sources of error and the uncertainties were calculated separately for the proximal and medial area and for the distal one; their calculation is explained in the Online Supplementary Material. The CI volume was compared to other ignimbrites, whose bulk volumes span three orders of magnitude: the Lund Ignimbrite ($4,400 \text{ km}^3$; Best et al., 2013a), the Greens Canyon Tuff (GCT, 600 km^3 ; Best et al., 2013a), the Petroglyph Cliff (40 km^3 ; Best et al., 2013a), the Oruanui Ignimbrite (300 km^3 ; Wilson, 1991) and the Pozzolane Rosse ignimbrite (RED, 35 km^3 ; Giordano et al., 2010; Giordano and Doronzo, 2017) (Fig. 7).

To understand the extra-caldera volume subdivision in proximal and distal areas, the isopach map is divided into two parts, one comprising all the Campanian Plain, and the other from the first Apennine ridges to the final runout (Fig. 5). The resulting extra-caldera volumes are $48.6 \pm 1.7 \text{ km}^3$ in the proximal area (~70%) and $19.6 \pm 4.9 \text{ km}^3$ in the distal area (~30%).

6. Discussion

The linear relations between \log_{10} thickness and area presented in Fig. 7 show all the ignimbrites have r^2 values above 0.9. k_1 varies between 10^{-4} m^{-2} and 10^{-3} m^{-2} for each ignimbrite, but it seems that bigger ignimbrites (Lund and Oruanui ignimbrites) have lower k_1 values. The concavity of this curve gives information on the aspect ratio of the deposits: concave-upward curves (i.e. convex) refer to low-aspect-ratio deposits while concave-downward curves apply to high-aspect-ratio ignimbrites (Wilson, 1991). The CI shows an intermediate aspect ratio, with the first part of the curve upward and the second downward, which reflects the field evidence, noticed during the fieldwork, of both low and high aspect ratio behavior of the CI. GCT and RED show a similar change in concavity. The RED shows similar features to the CI in the field: both ignimbrites encountered topographic barriers perpendicular to the flow, such that the RED climbed topographic barriers as high as 400 m (Giordano et al., 2010) while the CI overtopped 1,000-m barriers. Such interaction has an important role in the flow dynamics (e.g., Bursik and Woods, 2000; Andrews and Manga, 2011) and it is associated with a decrease in carrying capacity and an increase of the sedimentation rate (Giordano, 1998). The change of the curve concavity could directly show the sedimentation rate fluctuations.

6.1 Extracaldera volume

The data from this work were compared with Ruberti et al. (2020), who proposed contour maps of the lower and the upper surfaces of the CI for the northwestern sector of the proximal-medial area, based on 1,000 lithostratigraphic logs from boreholes. The extrapolated thicknesses from their maps were compared with the isopach map of this work by drawing a new proximal isopach map based on their contour maps. The volume calculated from this new isopach map is 46.5 km^3 , 2.1 km^3 less than the volume we estimated. This difference is included in the 6.6 km^3 of the total volume error and uncertainties here presented. The data proposed by Ruberti et al. (2020) were not inserted in the isopach map reported in this work to avoid error propagation due to data coming from contour maps rather than deposit thickness measurements. However, a greater thickness in the Volturno Plain compared to this work could be considered, as proposed by Ruberti et al. (2020).

The error and uncertainties associated with our volume estimate of the terrestrial CI ignimbrite deposits ($68.2 \pm 6.6 \text{ km}^3$) are less than 10% (Online Supplementary Material), a good precision

464 considering that many published estimates of eruption volume may be barely more precise than one
 465 order of magnitude (Mason et al., 2004). The accuracy of the applied method is also due to the
 466 development of the 0-m isopach areal extent. Cutler et al. (2020) demonstrated that the inclusion of
 467 zero values improved the modeling and the volume calculations for tephra layers of Mount St Helens.
 468 Moreover, the complexity of the isopach shapes, instead of simplified oblate shapes, allows better
 469 consideration of raw thickness data and lessens inaccurate volume estimates (Engwell et al., 2015).
 470 This method can now be applied to ignimbrite deposits, with a good parallelism between flow and
 471 fall volume calculations.

472 The volume we presented above is not the total volume of the CI PDC deposits, but the preserved
 473 extra-caldera ignimbrite volume and several corrections must be applied to this value (Mason et al.,
 474 2004; Folkes et al., 2011). Each factor has relative uncertainties, but here we constrain them to a
 475 well-defined preserved extra-caldera volume and we analyze each minimum and maximum volume.
 476 A significant amount of pyroclastic material was deposited in the sea and within the caldera,
 477 significant erosion has occurred in the last 39.8 kyrs, and a large amount of co-ignimbrite ash
 478 elutriated or rose into the air as a column.

479 The reconstructed isopachs do not consider the linear erosion due to river incision of the CI so the
 480 possible areal erosion must be calculated. The linear erosion is related to the selective erosion due to
 481 rivers, while the areal erosion comprises all the regional processes that occurred in the area. The
 482 deposits of WGI show a mainly valley-ponded deposit pattern; in many areas where the ignimbrite
 483 was deposited in narrow valleys (for instance near Roccamonfina), the only unit that mantles the
 484 topography is USAF, while the upper surface of WGI is mainly horizontal (Fig. 3) (Sparice, 2015).
 485 This suggests that USAF is a facies emplaced over a wider area than WGI, comprising also
 486 topographic highs with mantling and veneer features, but was then subjected to significant areal
 487 erosion (Wilson, 1991). The thickness of USAF is mainly between 10 cm and 1 m; in rare cases, it
 488 can reach 3 m (Fedele et al., 2016). A median thickness of 1 m is assumed as eroded material for all
 489 the enveloped area ($6,095 \text{ km}^2$, projected area) not covered by valley-pond facies, as a reference for
 490 the areal erosion. To calculate the erosion, we used the real surface of the enveloped area. The real
 491 surface is the actual surface of an area, not its projection, and it considers also the mountain slopes.
 492 From the DEM, the real surface was computed at $9,575 \text{ km}^2$. The volume associated with the areal
 493 erosion, on the real surface, is $9.6 \text{ km}^3 (V_e)$ (3.7 km^3 DRE, using the average density of WGI). This is
 494 a correction based on field observations (USAF mantling the topography) and an average calculation
 495 (the thickness and the area) could vary if the eroded thickness, or involved area, are substantially
 496 different from those assumed here.

497 The CF caldera is located near and below the current sea-level but, about 40 ka, the coastline was
 498 farther to the southwest corresponding to a level between 75 and 87 m below its present position
 499 (Lambeck and Bard, 2000; Antonioli et al., 2004; Antonioli, 2012) (Fig. 8). Based on the distribution
 500 on land of the ignimbrite, the assumed radial spreading (Thunell et al., 1979; Fisher et al., 1993; Ort
 501 et al., 2003), and the position of the CF caldera relative to the coastline (Fig. 8), a roughly equal
 502 amount of material should be present both on land and offshore. The bathymetry offshore shows
 503 depressions and valleys south of the caldera that could be areas of ignimbrite deposit accumulation
 504 (Fig. 8). Flow deposits of Kos and Krakatau demonstrate that PDCs can travel considerable distances
 505 above sea water (Carey et al., 1996; Allen and Cas, 2001; Dufek and Bergantz, 2007) and it is known
 506 the Campanian PDC flowed over the water of the Bay of Naples to deposit on the Sorrento Peninsula
 507 ($\sim 35 \text{ km}$ from Pozzuoli Bay to Sorrento) (Fisher et al., 1993).

508 The occurrence of turbidity currents in the Mediterranean basin coeval with the eruption was
 509 confirmed by analyses of the core CT85-5 in the Tyrrhenian Sea ($40^{\circ}19'02''\text{N}$, $11^{\circ}15'42''\text{E}$), more
 510 than 200 km west of the CF caldera (Cini Castagnoli et al., 1995; Giaccio, 2006; Giaccio et al., 2006;
 511 Hajdas et al., 2011). The 45-cm-thick Cl tephra recognized within the core was used as an important
 512 time marker. The nearby CT85-6 confirmed the presence of the Cl tephra, but it was less studied as
 513 its record is shorter and the Cl tephra is not reported fully (Hajdas et al., 2011). The Cl layer contains
 514 shallow water gastropods and internal lamination, which indicate that at least 10 cm of the section are
 515 from turbiditic origin (Cini Castagnoli et al., 1995; Giaccio, 2006; Hajdas et al., 2011). These
 516 volcaniclastic currents related to the Cl eruption are reported throughout the Tyrrhenian basin
 517 (McCoy and Cornell, 1990; Giaccio, 2006) and interpreted as the results of large syn-eruptive
 518 transport of the Cl material as the PDCs entered the water. The turbidity currents can be reasonably
 519 considered as primary products of the eruption (Giaccio, 2006). Milia et al. (2020) report the
 520 presence of a debris flow related to the Cl eruption in the CET2 core ($39^{\circ}55.23'\text{N}$, $14^{\circ}07.56'\text{E}$) and
 521 an erosive surface in the nearby CET1 core ($39^{\circ}54.69'\text{N}$, $14^{\circ}06.65'\text{E}$), both located in the lower
 522 bathyal zone offshore of the Campania margin. These authors recognized the Cl's impact in the area
 523 and the possible generation of a tsunami related to the eruption.

524 For these reasons, a large amount of underwater material is realistic and, because of the nearly equal
 525 radial area covered by sea versus on land, is considered equal to the on-land material, so each is
 526 considered to have a volume of $68.2 \text{ km}^3 \pm 6.6 \text{ km}^3 (V_m)$. However, the total volume that entered the
 527 water during and after the eruption was equal to the preserved volume on land plus the eroded
 528 volume ($68.2 \text{ km}^3 + 9.6 \text{ km}^3$).

529 **6.2 Intracaldera volume**

530 Wells were drilled since the 1940s to understand the deep geothermal system in Campi Flegrei,
 531 reaching depths of 1,600-3,000 m below ground surface (Rosi and Sbrana, 1987). A strong
 532 hydrothermal alteration was recognized, with four main zones marked by distinctive mineral
 533 assemblages. These wells reached the Cl units, but the extensive hydrothermal alteration prevented
 534 its identification. Due to the high uncertainties of correlating Cl deposits inside the caldera, the
 535 isopach map was traced without the intracaldera area and the intracaldera volume was not estimated
 536 in this work.

537 More recently, a 506-m borehole was drilled west of Naples, penetrating both the NYT and Cl
 538 (Mormone et al., 2015; De Natale et al., 2016). The hydrothermal alteration in the proximity of Cl
 539 (around 439 and 501 m) was recognized and made the correlation with the deposits extremely
 540 difficult. However, through lithological, mineralogical and $^{40}\text{Ar}/^{39}\text{Ar}$ dating the authors recognized
 541 around 250 m of intracaldera Cl (De Natale et al., 2016). This thickness value was previously
 542 observed through geological and geophysical features (Torrente et al., 2010). The ignimbrite volume
 543 inside the caldera was then estimated at less than 16 km^3 , using a caldera dimension of 64 km^2 (De
 544 Natale et al., 2016).

545 There are some uncertainties due to the caldera's true shape. Vitale and Isaia (2014) proposed a 12-
 546 km-wide polygonal caldera, which corresponds to an area of 144 km^2 , while De Natale et al. (2016)
 547 suggested a minimum area of 64 km^2 . Considering an average thickness of 250 m of intracaldera
 548 deposits (De Natale et al., 2016), and an area varying from 64 to 144 km^2 , the intracaldera volume
 549 (V_{intr}) ranges between 16 km^3 and 43.2 km^3 (7.9 - 21.4 km^3 DRE, using the proximal unit density of
 550 the Piperno).

551 **6.3 Distal tephra volume**

552 The CI tephra is an important correlation tool and time marker for Quaternary stratigraphy in
 553 different basins and archaeological sites in Western Eurasia. The tephra layer is visible in numerous
 554 sedimentary records, including marine (Keller et al., 1978; Paterne et al., 1986, 1999; Ton-That et al.,
 555 2001), terrestrial sequences (Veres et al., 2013), cave-entrance environments (Fedele et al., 2003;
 556 Giaccio et al., 2008), lacustrine records (Narcisi, 1996) and archaeological sites (e.g., Badino et al., in
 557 press and references therein). The occurrence of the CI tephra in archaeological sites helps to address
 558 the human bio-cultural evolution at the Middle-Upper Paleolithic transition in Italy (Castelcivita,
 559 Serino and Grotta del Cavallo sites; Gambassini, 1997; Giaccio et al., 2008 and references therein;
 560 Lowe et al., 2012; Wood et al., 2012; Zanchetta et al., 2018), in Montenegro (Crvena Stijena; Morley
 561 and Woodward, 2011; Mihajlovic and Whallon, 2017), in Greece (Douka et al., 2014; Zanchetta et
 562 al., 2018) and in Russia (Kostenki; Giaccio et al., 2008 and references therein). In very distal sites, it
 563 can be found as a cryptotephra not visible to the naked eye, but clearly useful as an absolute and
 564 relative chronological and stratigraphic marker (Lowe et al., 2012).

565 Defining the distribution of the ultra-distal deposits is a difficult task due to the limitation of the field
 566 data available and to the thinning of the ash layers. Underestimation of the deposit volume can be
 567 derived by simple extrapolation from proximal, medial and distal data to the ultra-distal region. The
 568 case of the CI is complicated by the presence of both co-Plinian fallout ash and co-ignimbrite fallout
 569 ash, both transported far from the vent through to Eastern Europe and Russia (Thunell et al., 1979;
 570 Cornell et al., 1983; Narcisi and Vezzoli, 1999; Fedele et al., 2003; Giaccio et al., 2006; Pyle et al.,
 571 2006; Engwell et al., 2014; Smith et al., 2016).

572 Nevertheless, the ultra-distal tephra volume is necessary to define the total CI eruptive volume.
 573 Sparks and Huang (1980) recognized the bimodal grain-size of the ultra-distal deposits of the CI,
 574 interpreting the coarse lower unit as formed during the Plinian phase, and the finer upper unit as the
 575 co-ignimbrite phase. These features were also observed by Wulf et al. (2004) at Monticchio Lake.
 576 Sparks and Huang (1980) estimated that the fine layer represents, on average, 65% of the tephra
 577 volume and increases in proportion away from the vent, from 20% at 450 km to 95% of the deposit at
 578 1,660 km from the vent. However, an absolute volume for each phase was not defined. The
 579 decreasing of Plinian material with distance from the source was also observed by Engwell et al.
 580 (2014), who used the grain-size data to investigate the dispersal of the co-Plinian and the co-
 581 ignimbrite phases. The authors calculated that $40 \pm 5\%$ of the volume of tephra within 850 km of the
 582 vent is related to the Plinian phase (as a consequence, around 60% relates to the co-ignimbrite phase,
 583 in agreement with Sparks and Huang, 1980). Furthermore, they recognized the difficulty in
 584 quantifying the absolute volume of the two phases, due to the complexity of separating the two layers
 585 in more distal deposits.

586 Smith et al. (2016) used the CI tephra glass composition to map the dispersal of the Plinian and co-
 587 ignimbrite components over the dispersal region. Based on the glass composition, the authors
 588 recognized that the PDC component is dominant in the ultra-distal deposits, and the PDC produced
 589 the most voluminous deposits of the eruption.

590 Summarizing, a significant part of the pyroclastic current was elutriated or rose into the atmosphere
 591 as a co-ignimbrite cloud during the eruption and dispersed to the east (Thunell et al., 1979; Cornell et
 592 al., 1983; Perrotta and Scarpati, 2003; Pyle et al., 2006; Engwell et al., 2014; Scarpati and Perrotta,
 593 2016). The co-ignimbrite phase was a substantial part of the total volume; but it remains difficult to
 594 define the associated absolute volume rather than as a percentage of the tephra layer.

595 **6.4 The volume, mass and magnitude of the CI eruption**596 The bulk ignimbrite volume (V_{ign}) (4 and 5) without the co-ignimbrite phase can be estimated as
597 follows:

598
$$V_{ignmin} = V_{pr} + V_m + V_{intr} + 2V_e = 61.6 + 61.6 + 16 + 9.6 + 9.6 = 158.4 \text{ km}^3 \quad (4)$$

599 and

600
$$V_{ignmax} = V_{pr} + V_m + V_{intr} + 2V_e = 74.8 + 74.8 + 43.2 + 9.6 + 9.6 = 212.0 \text{ km}^3 \quad (5)$$

601 The total bulk PDC volume obtained using (4) and (5) is $158.4 - 212.0 \text{ km}^3$ (Table 3). The co-
602 ignimbrite volume (V_{coign}) is estimated using the formula (6) based on the crystal concentration
603 method proposed by Scarpati et al. (2014) (3):

604
$$V_{coign} = \frac{\text{Vitric loss} * V_{ign}}{1 - \text{Vitric loss}} = \frac{0.65 * V_{ign}}{1 - 0.65} = 294.2 - 393.7 \text{ km}^3 \quad (6)$$

605 The co-ignimbrite volume, using a vitric loss of 0.65, ranges between 294.2 km^3 and 393.7 km^3
606 ($115.8 \text{ km}^3 - 155.0 \text{ km}^3$ DRE), producing the highest of all previous estimates. However, V_{coign} could
607 change significantly based upon the value of vitric loss used. Walker (1972) proposed a vitric loss of
608 0.55 for a WGI outcrop at Altavilla, near Benevento. Using this datum, the co-ignimbrite bulk
609 volume decreases to between 193.6 km^3 and 259.1 km^3 . In this work, we use 0.65, as proposed by
610 Scarpati et al. (2014), which is an average of more samples located in several distal sites all over the
611 CI distribution, and from different units but it is not far from 0.55 proposed by Walker (1972).
612 Because the calculation of the V_{coign} is beyond the purpose of this work, an alternative is to use the
613 minimum and maximum co-ignimbrite volume reported in the literature, which are between 72 km^3
614 and 153.9 km^3 bulk ($31 \text{ km}^3 - 61.6 \text{ km}^3$ DRE; respectively from Pyle et al., 2006 and Marti et al.,
615 2016), but it is worth considering that this may be a significant underestimate.616 The total volume of the material erupted during the PDC phase of the CI eruption ranges between
617 452.6 km^3 and 605.7 km^3 ($175.8 \text{ km}^3 - 242.6 \text{ km}^3$ DRE) (Table 3). This estimate is based on the
618 preserved deposits of the CI. Among the previous estimates presented in the literature, the closest to
619 our PDC volume are those proposed by Giaccio (2006) and Pappalardo et al. (2008).620 Using the previously published fallout volume (the minimum and the maximum proposed; Perrotta
621 and Scarpati, 2003; Marti et al., 2016), in combination with our PDC volume, gives a total eruptive
622 volume of all eruptive phases of 456.6 km^3 to 659.7 km^3 ($177.5 \text{ km}^3 - 265.2 \text{ km}^3$ DRE) (Table 3).
623 However, any of the previous estimates for the fallout volume could be used in our total volume
624 estimate. These values are similar to some previously proposed total volumes (Cornell et al., 1983;
625 Fedele et al., 2003; Giaccio, 2006; Pyle et al., 2006; Pappalardo et al., 2008; Costa et al., 2012), but
626 they are constrained, for the first time, by direct thickness measurements of the ignimbrite deposit.

627 The mass associated with this volume, using our density estimate is (7):

628
$$\text{mass}_{min} = 177.5 \text{ km}^3 * 2,608 \text{ kg/m}^3 = 4.63 * 10^{14} \text{ kg} \quad (7)$$

629 And (8):

630
$$\text{mass}_{max} = 265.2 \text{ km}^3 * 2,608 \text{ kg/m}^3 = 6.92 * 10^{14} \text{ kg} \quad (8)$$

631 and the magnitude (M) (9) (Mason et al., 2004):

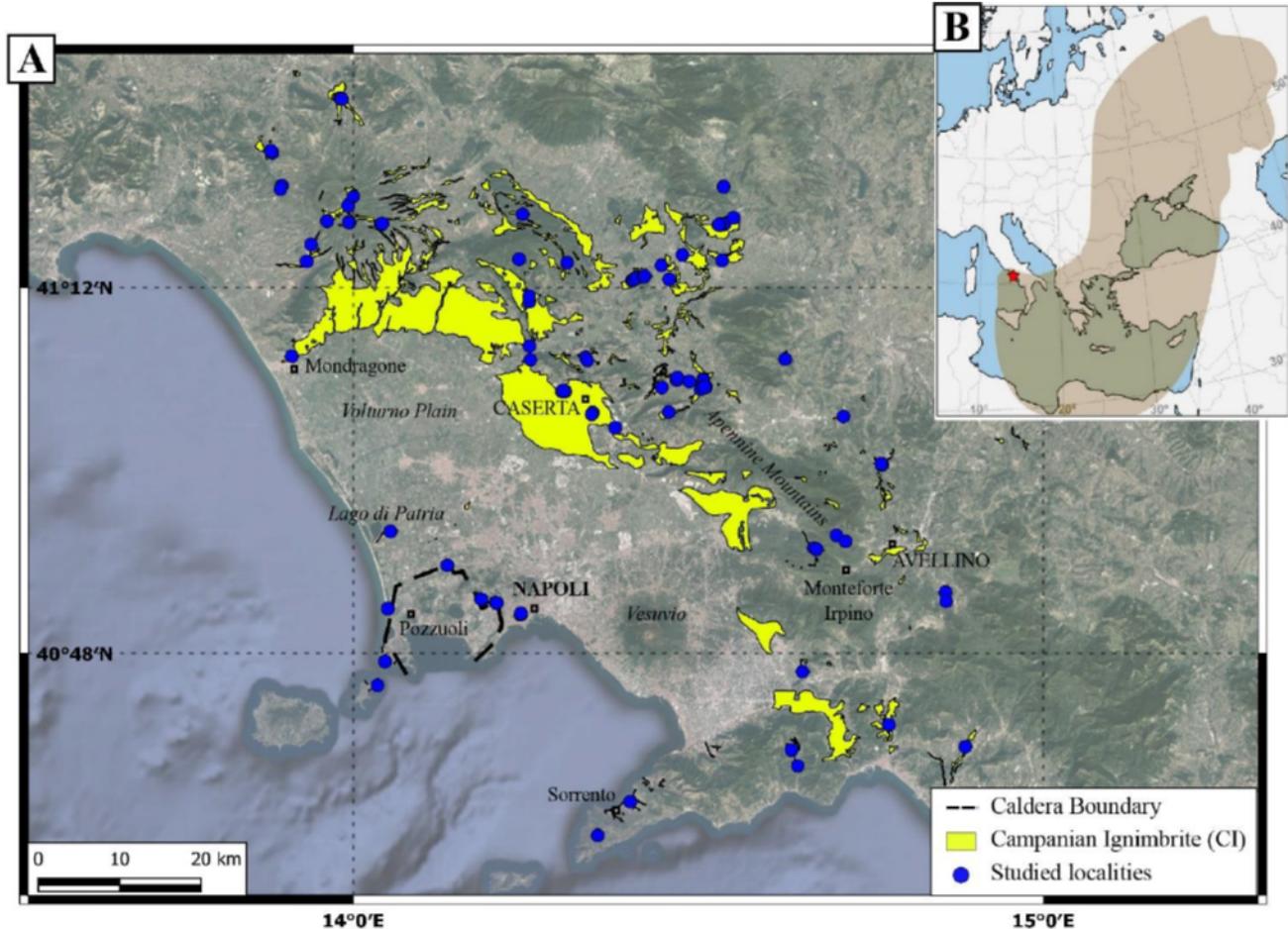
632
$$M = \log_{10}(\text{mass}) - 7 = 7.7 - 7.8 \quad (9)$$

633 This value is consistent with a VEI 7 and a $M = 7.7 - 7.8$ and confirms this eruption as the largest
 634 Quaternary event in Europe, as proposed previously in the LAMEVE project ($M = 7.7$; Cros bewer et
 635 al., 2012).

636 **7. Conclusions**

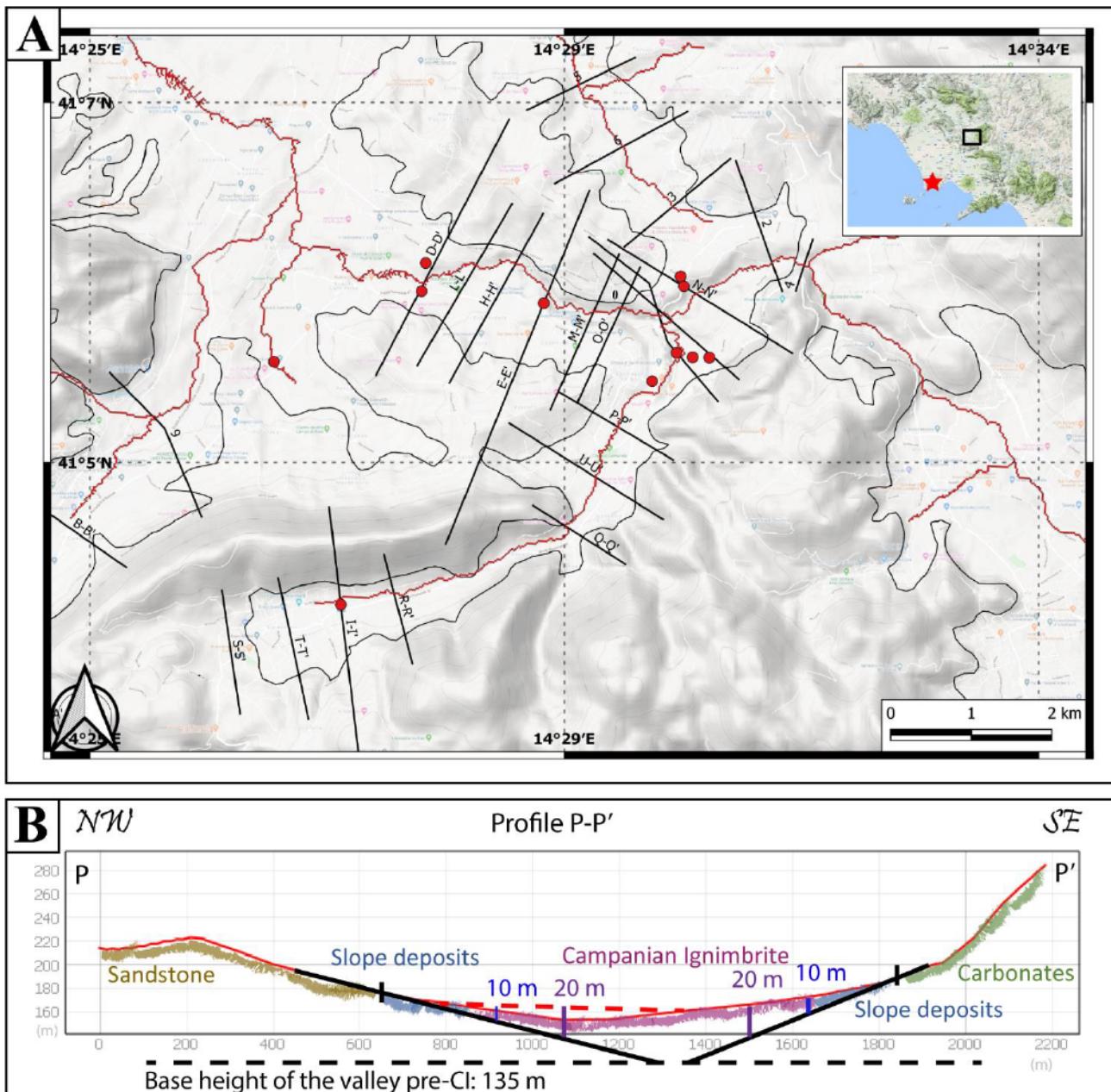
637 The CI eruption is the largest eruptive event of the CF caldera and a fundamental chronological
 638 marker in all Central and Eastern Europe. Here we presented a review of previous estimates in the
 639 scientific literature and proposed a new method to trace ignimbrite isopachs based on the
 640 extrapolation of the paleo-topography. It works well in valley-ponded ignimbrites such as the CI, and
 641 allows the calculation of well-defined uncertainties in the on-land total volume. Before the present
 642 study, no complete isopach map of the ignimbrite was available, due to the high irregularities of the
 643 deposits. A new isopach map of the extracaldera sub-aerial CI pyroclastic flow deposits yields a
 644 volume of $68.2 \text{ km}^3 \pm 6.6 \text{ km}^3$, based directly on deposit thickness values. The greater part of this
 645 volume is in the proximal area ($48.6 \pm 1.7 \text{ km}^3$, ~70%) while only around the 30% of the volume is in
 646 the distal region within the Apennine Mountains ($19.6 \pm 4.9 \text{ km}^3$). The method, similar to those used
 647 for tephra deposits, can be used on other ignimbrites, to produce more accurate volume estimates.

648 Evidence suggests that the same amount of material should be both on land and offshore (assuming
 649 radial spreading of the flow). The generated submarine currents could have deposited a large amount
 650 of volcaniclastic deposits in all the submarine canyons in the Gulf of Naples and in the Tyrrhenian
 651 Sea and possibly had a strong impact on the underwater dynamics of that area. Combining separate
 652 estimates of the marine volume, the volume removed by erosion, the intracaldera volume, and the co-
 653 ignimbrite ash volume yields a total volume of 453 km^3 to 606 km^3 (176 km^3 – 243 km^3 DRE) for the
 654 PDC deposits. These values are in agreement with Giaccio (2006) and Pappalardo et al. (2008),
 655 although it is the first time that they are calculated by direct measurements with constrained error
 656 estimates. This work deals with the importance of constraining eruptive volume with field data,
 657 presenting a rigorous method to develop ignimbrite isopachs that avoids the inaccuracy of
 658 approximate techniques and defines step-by-step techniques for isopach construction and the error
 659 corrections. This is the first attempt to estimate ignimbrite volume in a comparable way to tephra
 660 fallout volume and by direct thickness data. The development of isopach maps for ignimbrite
 661 deposits, especially in complex topographic areas, is the most accurate instrument to calculate
 662 ignimbrite volumes, and is better than approximate techniques using average thicknesses or conical
 663 shapes. A rigorous definition of the 0-m isopach, the isopachs and each correction factor is necessary
 664 to avoid inexact volumes. Field data remain an essential tool to constrain primary properties of
 665 PDCs.

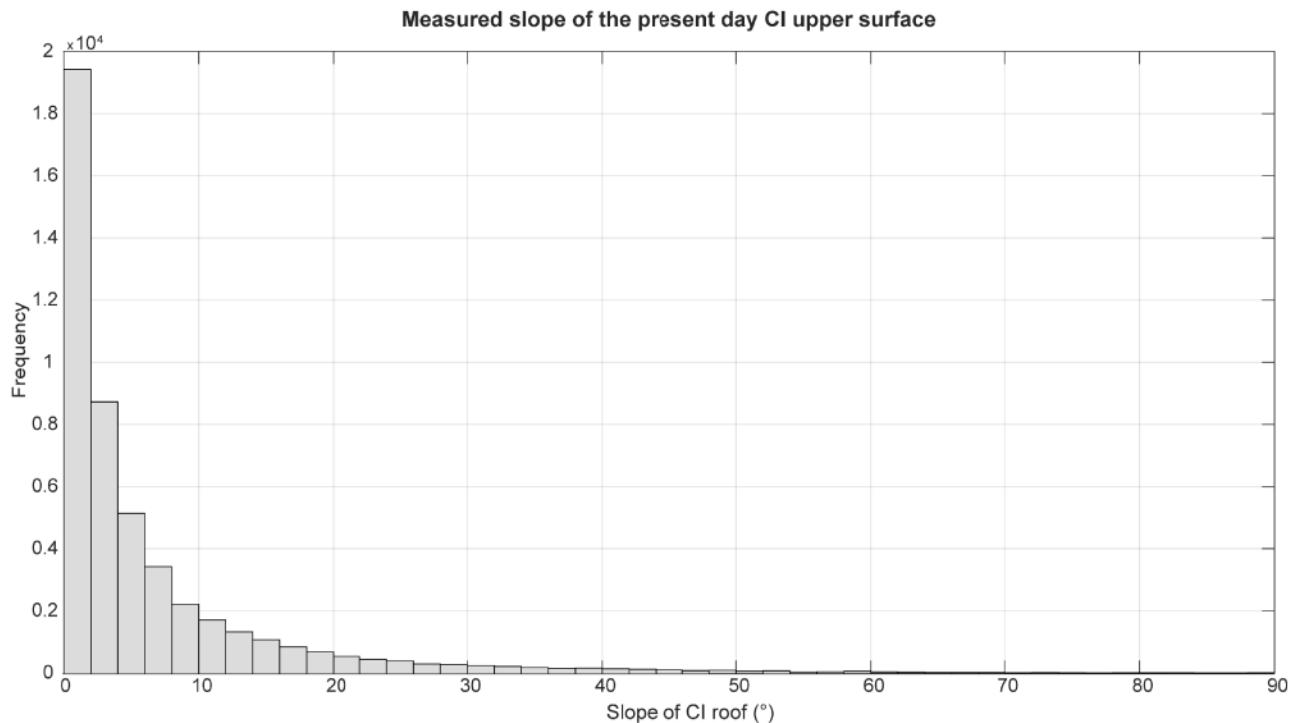

666 The total (including Plinian fallout) final volume estimate is 457 km^3 – 660 km^3 (177 km^3 – 265 km^3
 667 DRE). This volume corresponds to a mass of $4.6 - 6.9 \times 10^{14} \text{ kg}$, to a magnitude of $7.7 - 7.8$ and to a
 668 VEI 7. This was a high-impact event that likely had significant effects on the climate and populations
 669 of the Paleolithic European region and is a proof that the Campi Flegrei volcano was able to generate
 670 a devastating eruption of this dimension.

671 **2 Article types**

672 Original Research


673 **3 Manuscript Formatting**674 **3.1 Figure legends**

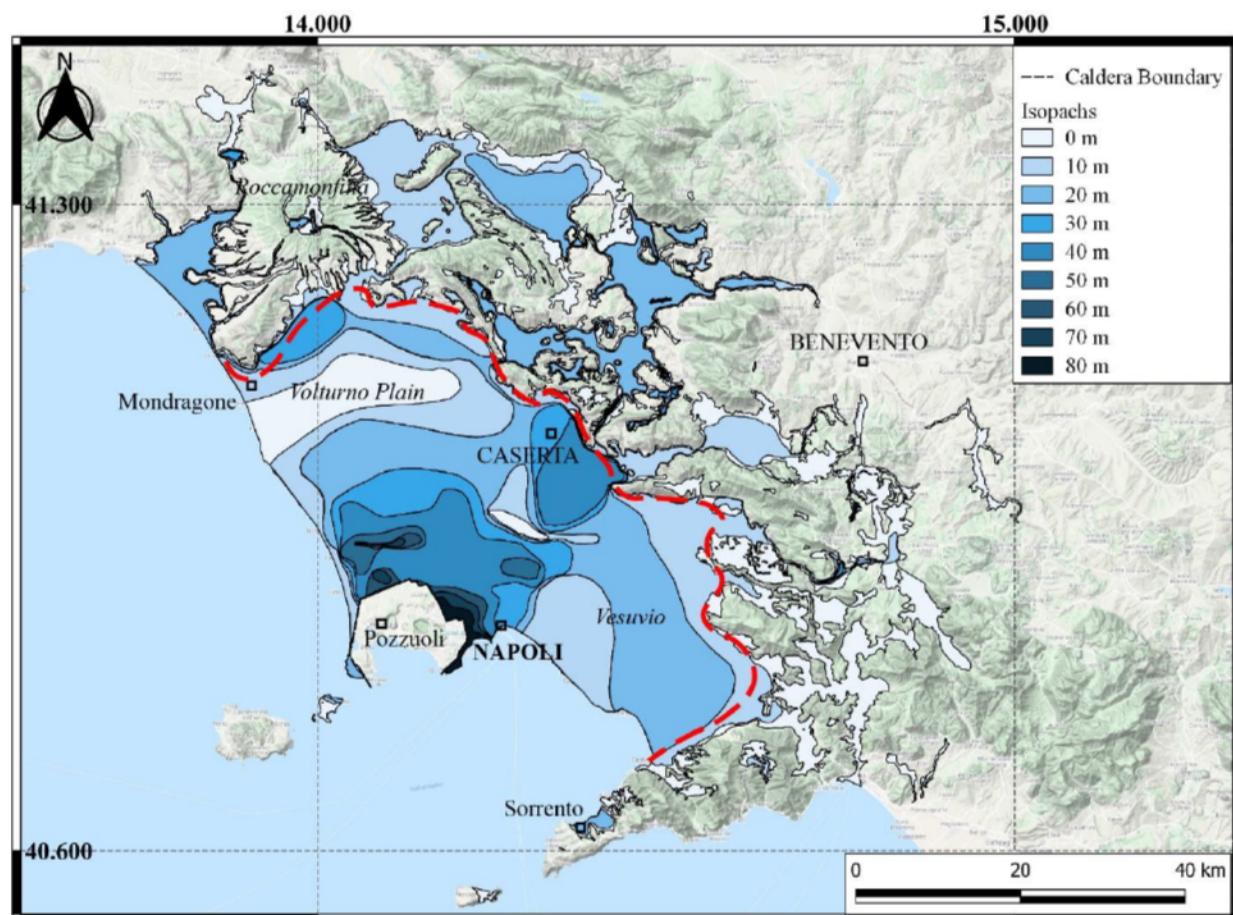
675


676

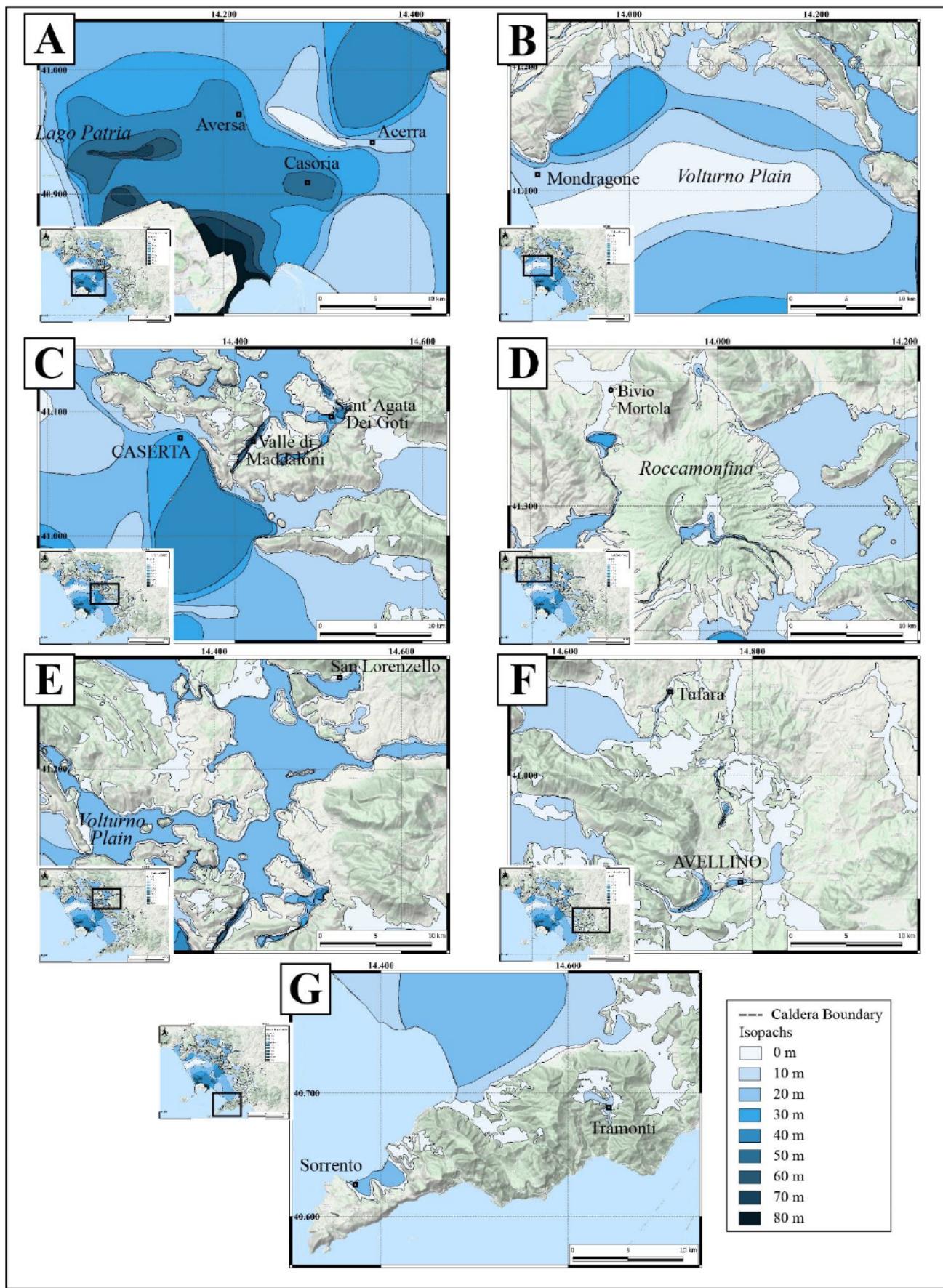
677 **Figure 1.** The Campanian Ignimbrite distribution. (A) The Campanian Ignimbrite distribution in the
 678 Campanian region (the base map is from Google Satellite), defined merging fieldwork and
 679 geological maps (Servizio Geologico d'Italia, 1963, 1966, 1967, 1971a, 1971b, 1975; ISPRA, 2009,
 680 2010, 2011a, 2011b, 2011c, 2011d, 2014a, 2014b, 2016, 2018). Blue dots indicate the location of the
 681 studied exposures (coordinates are reported in the data repository). (B) Dispersal area of the CI
 682 tephra from the Campi Flegrei caldera (red star), modified from Giaccio et al. (2017). The maps
 683 were generated using the QGIS Open-Source 3.4 (<https://www.qgis.org/it/site/>).

684

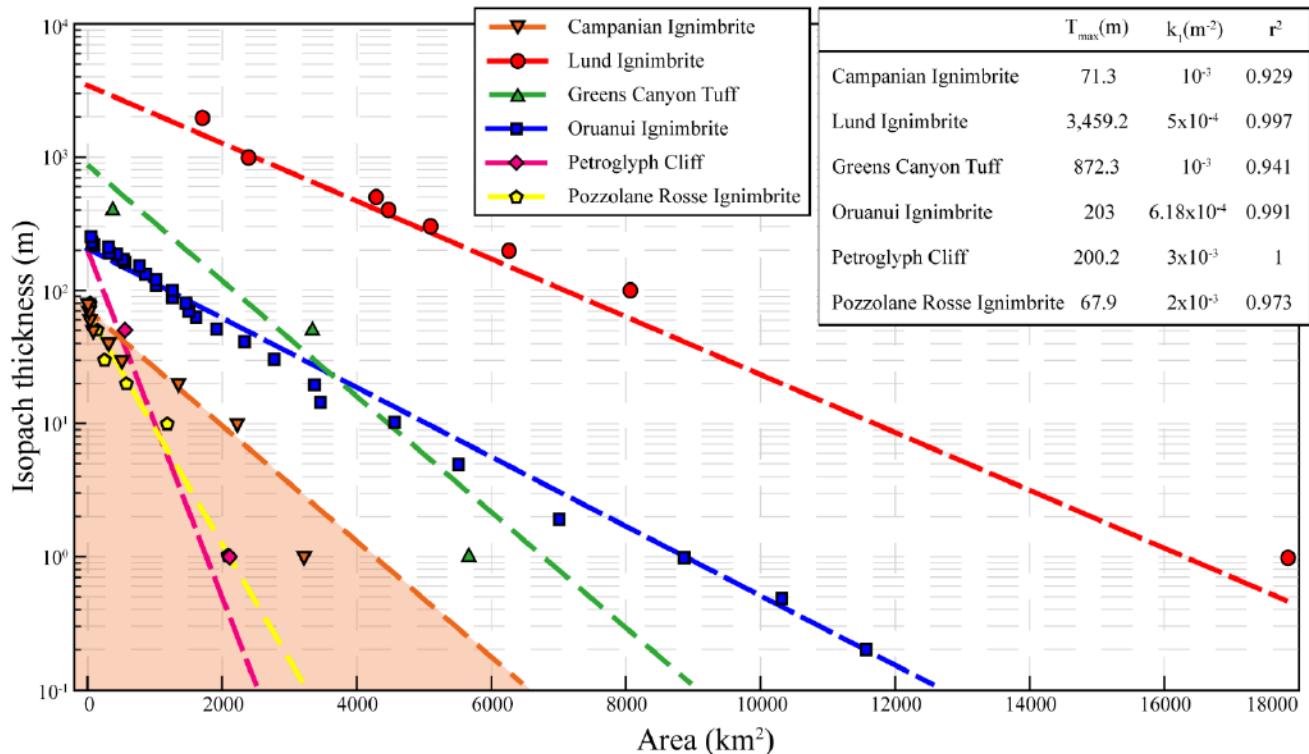
685 **Figure 2.** The topographic reconstruction in the Sant'Agata dei Goti area (reported in the right
 686 corner, the red star is the vent). (A) A series of profiles traced to study the paleo-valley; the red dots
 687 are the studied outcrops where the CI is exposed. The red lines represent the river network developed
 688 through the QGIS software, while the black line is the 0-m isopach. (B) Reconstruction of the paleo-
 689 valley in profile P-P', the base elevation is constrained to the CI base observed by fieldwork and to
 690 the current slope of the valley. The resulting thickness is coherent with fieldwork, so where
 691 thicknesses are too high, they were not considered and the isopachs were traced up to a realistic
 692 thickness. The numbers represent the thickness of the CI in meters. The different colors represent
 693 different types of deposits, while the dashed red line, is the linear erosion that occurred in 39 kyrs.


694

695 **Figure 3.** Frequency of the slope of the upper surface of the CI. At least 80% of the exposed CI upper
696 surface slopes less than 10° . The areas with slope greater than 35° are related to river incisions and
697 CI escarpments.

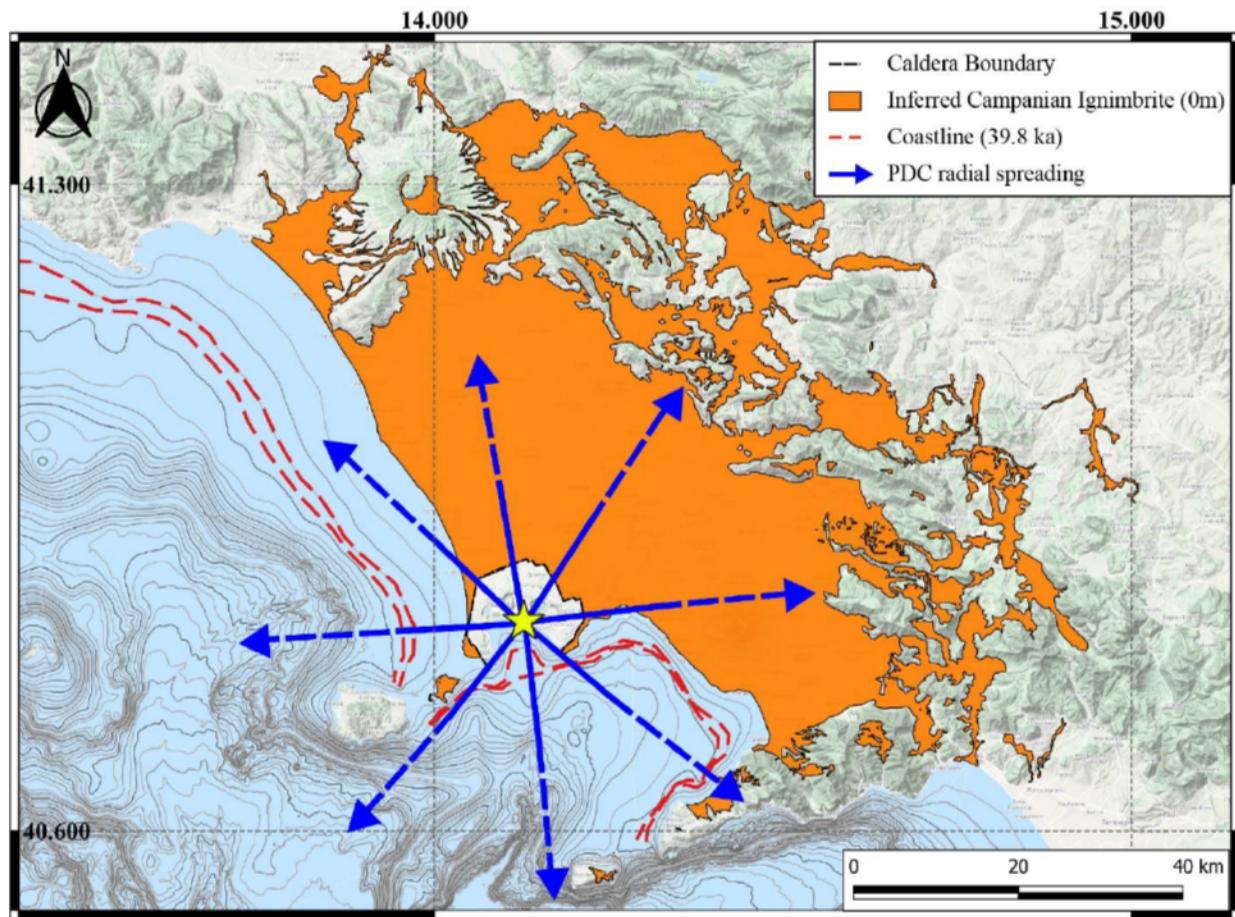

698

699 **Figure 4.** Reconstruction of the areal extent of the ignimbrite deposits, enclosed within the 0-m
700 isopach is shown in orange. The total area covered by the preserved deposits of CI is $3,216 \text{ km}^2$, the
701 envelopment with a shape is equal to $6,095 \text{ km}^2$ (Online Supplementary Material). The isolated areas
702 from the source are due to the erosion of veneer facies.



703

704 **Figure 5.** Isopach map of the preserved extra-caldera deposits of the Campanian Ignimbrite. This
705 map refers only to the ignimbrite deposits; it excludes the Plinian fallout and the co-ignimbrite ash.
706 The different colors for each isopach are reported in the map key. The red dashed line divides the
707 proximal and the distal area.



709 **Figure 6.** Detailed isopach maps of selected areas of the Campanian Ignimbrite (excludes fallout):
710 (A) north of the caldera, between Lago Patria and Acerra; (B) northern part of the Campanian
711 Plain; (C) Apennine ridges east of the Campi Flegrei caldera and the Valley of Maddaloni; (D)
712 Roccamonfina and Mortola, in the north of the studied area; (E) Volturno plain and San Lorenzello
713 area, northeast of the caldera; (F) distal area of Avellino, southeast of the caldera; (G) Sorrento
714 peninsula, in the southern part of the studied area. See section 4.5 to detailed methods on how the
715 isopachs were traced.

716

717 **Figure 7.** Thickness (in log scale) versus the cumulative area enclosed in that thickness of each
718 isopach of different ignimbrites (the CI in orange; the Lund Ignimbrite in red, Best et al., 2013a; the
719 Greens Canyon Tuff in green, Best et al., 2013a; the Oruanui Ignimbrite in blue, Wilson, 1991; the
720 Petroglyph Cliff in pink, Best et al., 2013a; and the Pozzolane Rosse Ignimbrite in yellow, Giordano
721 and Doronzo, 2017). The dashed lines represent the fit of each ignimbrite. The values of the fitting
722 (T_{\max} , k_1 , and r^2) are reported in the upper right corner. The plotted CI points are those obtained by
723 the isopach map. The CI volume is the integrated area displayed in orange.

724

725 **Figure 8.** Bathymetry of the submerged area of the Campi Flegrei Caldera. The red line is the 40 ka
 726 coastline, equivalent to -75 – -87 m of the present one. The blue arrows indicate the possible radial
 727 spreading of the PDC based on outcrops disposed radially from the center of the Caldera (yellow
 728 star) and turbidity currents in the Tyrrhenian Sea. Accumulation of volume south of the caldera is
 729 credible, due to the large submarine depressions and valleys.

730

3.2 Tables

731

Table 1. Bulk and DRE (*) volume calculations proposed for the CI eruption by different authors. Y-
 732 5 refers to those studies that did not identify the co-Plinian and co-ignimbrite contribution. The
 733 methods are described in the text. The used density (kg/m^3) is reported bulk or DRE (*), i: ignimbrite,
 734 a: ash, p: pumices.

735

Volume calculations (km^3)

Plinian fallout	Co-Plinian ash	PDC	Co-ignimbrite ash	Y-5	Total	Authors	Used density (kg/m^3)
5.33 (0.88*)	14.67 (6.88*)					Scarpatti and Perrotta, 2016	1,000 (2,400*)
4	16		100			Perrotta and Scarpatti, 2003	
		54 (25*)	100 (42*)			Scarpatti et al., 2014	2,600*
		30-40*		100 (30-40*)	60-80*	Thunell et al., 1979	

15				Rost et al., 1999
	73	>150		Cornell et al., 1983
54 (22.6*)	153.9 (61.6*)	207.9 (84.2*)	Marti et al., 2016	2,500*
	72-120 (31-50*)	105-210*	Pyle et al., 2006	2,400*
25*	120*	145*	Civetta et al., 1997	
20*	130*	150*	Marianelli et al., 2006	
		200*	Fedele et al., 2003	~1,250
	180	140	320 (200*)	Roland et al., 2003
20*	180*	200*	Pappalardo et al., 2008	Average porosity: 0.58
		250-300 (104-125*)	430-680 (180-280*)	Costa et al., 2012
10 (3*)	385 (215*)	180 (86*)	575 (300*)	Giaccio, 2006
		500		Fisher et al., 1993

736

737 **Table 2.** The values of thickness (m), area (km²), cumulative area (km²), volume (km³), cumulative
738 volume (km³) and the percentage of volume for each isopach.

739

Thickness (m)	Area (km ²)	Cumulative area (km ²)	Volume (km ³)	Cumulative volume (km ³)	Volume (%)
>80	12.6	12.6	0.9	0.9	1.3
70-79	12.3	24.9	0.9	1.8	1.3
60-69	19.1	44.0	1.3	3.1	1.9
50-59	31.3	75.3	2.1	5.2	3.1
40-49	234.0	309.4	13.8	19.0	20.2
30-39	194.5	503.9	9.2	28.2	13.6
20-29	854.0	1,357.9	24.7	53.0	36.3
10-19	862.0	2,219.9	10.6	63.6	15.5
0-9	995.7	3,215.6	4.6	68.2	6.8
Total	3,215.6		68.2		

740

741 **Table 3.** The volume of the CI eruption. The various parts of the PDC volume estimate are explained
742 in the text. The fallout volume considered in this work is the maximum and the minimum proposed in
743 literature by Perrotta and Scarpati (2003) and Marti et al. (2016).

744

	Bulk Volume (km ³)	DRE Volume (km ³)
Preserved extra-caldera ignimbrite volume (V_{pr})	62 – 75	24 – 29
Marine volume (V_m)	62 – 75	24 – 29

Intracaldera volume (V_{intr})	16 – 43	8 – 21
Areal erosion volume (V_e)	10	4
Co-ignimbrite ash volume (V_{coign})	294 – 394	116 – 155
Total PDC volume (V_{pdc})	453 – 606	176 – 243
Fallout volume (V_{fall}) (Perrotta and Scarpati, 2003; Marti et al., 2016)	4 – 54	2 – 23
Total CI volume (V)	457 – 660	177 – 265

745

746 **4 Nomenclature**747 **Abbreviations and acronyms**

748 a.s.l.: above sea level; CCDB: Collapse Caldera Database; CE: Common Era; CF: Campi Flegrei; CI:
 749 Campanian Ignimbrite; DEM: Digital Elevation Model; DRE: Dense Rock Equivalent; ka: thousands
 750 of years ago; kyrs: thousand years; GCT: Greens Canyon Tuff; LAMEVE: Large Magnitude
 751 Explosive Volcanic Eruptions, <https://www.bgs.ac.uk/vogripa/view/controller.cfc?method=lameve>;
 752 LYT: Lithified Yellow Tuff; M: Magnitude; NYT: Neapolitan Yellow Tuff; PDC: Pyroclastic
 753 Density Current; RED: Pozzolane Rosse Ignimbrite; USAF: Unconsolidated Stratified Ash Flow; V:
 754 total volume; V_{coign} : co-ignimbrite ash fall volume; V_{Pcol} : volume ejected during the phases that
 755 produced Plinian columns; V_{coPlall} : co-Plinian fall volume; V_e : areal erosion volume; VEI: Volcanic
 756 Explosivity Index; V_g : geometric volume; V_{ign} : ignimbrite volume; V_{intr} : intracaldera volume; V_m :
 757 marine volume; V_{mx} : matrix volume; V_{pdc} : pyroclastic density current volume; V_{Prall} : proximal
 758 pumice lapilli deposits volume; V_{pr} : preserved extra-caldera bulk volume; WGI: Welded Gray
 759 Ignimbrite; ρ : bulk density; ϕ_t : total porosity.

760 **5 Conflict of Interest**

761 *The authors declare that the research was conducted in the absence of any commercial or financial
 762 relationships that could be construed as a potential conflict of interest.*

763 **6 Author Contributions**

764 AS conducted fieldwork, analysis, wrote the draft of this manuscript and made the figures. GG
 765 designed the research and helped in the development of the method. RI contributed to data collection.
 766 All the authors contributed to the fieldwork, reviewed and edited the draft.

767 **7 Funding**

768 AS and GG gratefully acknowledge The Grant of Excellence Departments, MIUR-Italy. Partial
 769 support was provided by NSF EAR1761713 to MHO and AS.

770 **8 Acknowledgments**

771 AS and GG gratefully acknowledge The Grant of Excellence Departments, MIUR-Italy. AS thanks
 772 Emanuele Sciarri and Rose Gallo for their help in the fieldwork. Partial support was provided by
 773 NSF EAR1761713 to MHO and AS. We thank Danilo M. Palladino and Antonio Costa for
 774 discussions that improved an earlier version of this paper. Colin J. N. Wilson, Samantha Engwell, as
 775 well as an anonymous reviewer and the editor Pablo Tierz are acknowledged for helpful comments
 776 that have highly improved the manuscript.

777 **9 References**

778 Acocella, V. (2008). Activating and reactivating pairs of nested collapses during caldera-forming
 779 eruptions: Campi Flegrei (Italy). *Geophys. Res. Lett.* 35, L17304. doi:10.1029/2008GL035078

780 Albert, P. G., Giaccio, B., Isaia, R., Costa, A., Niespolo, E. M., Nomade, S., et al. (2019). Evidence
 781 for a large-magnitude eruption from Campi Flegrei caldera (Italy) at 29 ka. *Geology* 47, 595–
 782 599. doi:10.1130/G45805.1

783 Aldiss, D. T., and Ghazali, S. A. (1984). The regional geology and evolution of the Toba volcano-
 784 tectonic depression, Indonesia. *J. Geol. Soc. London* 141, 487–500.
 785 doi:10.1144/gsjgs.141.3.0487

786 Allen, S. R., and Cas, R. A. F. (2001). Transport of pyroclastic flows across the sea during the
 787 explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. *Bull. Volcanol.* 62, 441–456.
 788 doi:10.1007/s004450000107

789 Andrews, B. J., and Manga, M. (2011). Effects of topography on pyroclastic density current runout
 790 and formation of coignimbrites. *Geology* 39, 1099–1102. doi:10.1130/G32226.1

791 Antonioli, F. (2012). Sea level change in Western-Central Mediterranean since 300 kyr: comparing
 792 global sea level curves with observed data. *Alp. Mediterr. Quat.* 25, 15–23.

793 Antonioli, F., Bard, E., Potter, E. K., Silenzi, S., and Impronta, S. (2004). 215-ka history of sea-level
 794 oscillations from marine and continental layers in Argentarola Cave speleothems (Italy). *Glob.*
 795 *Planet. Change* 43, 57–78. doi:10.1016/j.gloplacha.2004.02.004

796 Auker, M. R., Sparks, R. S. J., Siebert, L., Crosweller, H. S., and Ewert, J. (2013). A statistical
 797 analysis of the global historical volcanic fatalities record. *J. Appl. Volcanol.* 2, 2.
 798 doi:10.1186/2191-5040-2-2

799 Badino, F., Pini, R., Ravazzi, C., Margaritora, D., Arrighi, S., Bortolini, E., et al. An overview of
 800 Alpine and Mediterranean palaeogeography, terrestrial ecosystems and climate history during
 801 MIS 3 with focus on the Middle to Upper Palaeolithic transition. *Quat. Int.* In press.
 802 doi:10.1016/j.quaint.2019.09.024

803 Barberi, F., Innocenti, F., Lirer, L., Munno, R., Pescatore, T., and Santacroce, R. (1978). The
 804 Campanian Ignimbrite: a Major Prehistoric Eruption in the Neapolitan area (Italy). *Bull.*
 805 *Volcanol.* 41, 10–31. doi:10.1007/BF02597680

806 Bellucci, F. (1994). Nuove conoscenze stratigrafiche sui depositi vulcanici del sottosuolo del settore

807 meridionale della Piana Campana. *Boll. Soc. Geol. It.* 113, 395–420.

808 Best, M. G., Christiansen, E. H., Deino, A. L., Gromme, S., Hart, G. L., and Tingey, D. G. (2013a).
809 The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin,
810 USA: Multicyclic super-eruptions. *Geosphere* 9, 864–950. doi:10.1130/GES00902.1

811 Best, M. G., Gromme, S., Deino, A. L., Christiansen, E. H., Hart, G. L., and Tingey, D. G. (2013b).
812 The 36–18 Ma Central Nevada ignimbrite field and calderas, Great Basin, USA: Multicyclic
813 super-eruptions. *Geosphere* 9, 1562–1636. doi:10.1130/GES00945.1

814 Black, B. A., Neely, R. R., and Manga, M. (2015). Campanian Ignimbrite volcanism, climate, and the
815 final decline of the Neanderthals. *Geology* 43, 411–414. doi:10.1130/G36514.1

816 Bonadonna, C., Ernst, G. G. J., and Sparks, R. S. J. (1998). Thickness variations and volume
817 estimates of tephra fall deposits: the importance of particle Reynolds number. *J. Volcanol.*
818 *Geotherm. Res.* 81, 173–187. doi:10.1016/S0377-0273(98)00007-9

819 Bonadonna, C., and Houghton, B. F. (2005). Total grain-size distribution and volume of tephra-fall
820 deposits. *Bull. Volcanol.* 67, 441–456. doi:10.1007/s00445-004-0386-2

821 Bonadonna, C., and Phillips, J. C. (2003). Sedimentation from strong volcanic plumes. *J. Geophys.*
822 *Res.* 108, 2340. doi:10.1029/2002jb002034

823 Brown, S. K., Jenkins, S. F., Sparks, R. S. J., Odber, H., and Auker, M. R. (2017). Volcanic fatalities
824 database: analysis of volcanic threat with distance and victim classification. *J. Appl. Volcanol.* 6,
825 15. doi:10.1186/s13617-017-0067-4

826 Broxton, D., and Reneau, S. (1996). "Buried early Pleistocene landscapes beneath the Pajarito
827 Plateau, Northern New Mexico," in The Jemez Mountains Region. New Mexico Geological
828 Society 47th Field Conference Guidebook, eds F. Goff, B. S. Kues, M. A. Rogers, L. D.
829 McFadden and J. N. Gardner, 325–334.

830 Burden, R. E., Chen, L., and Phillips, J. C. (2013). A statistical method for determining the volume of
831 volcanic fall deposits. *Bull. Volcanol.* 75, 707. doi:10.1007/s00445-013-0707-4

832 Bursik, M. I., and Woods, A. W. (2000). The effects of topography on sedimentation from particle-
833 laden turbulent density currents. *J. Sediment. Res.* 70, 53–63. doi:10.1306/2DC408FE-0E47-
834 11D7-8643000102C1865D

835 Cappelletti, P., Cerri, G., Colella, A., de'Gennaro, M., Langella, A., Perrotta, A., et al. (2003). Post-
836 eruptive processes in the Campanian Ignimbrite. *Mineral. Petrol.* 79, 79–97.
837 doi:10.1007/s00710-003-0003-7

838 Carey, S. N., Sigurdsson, H., Mandeville, C., and Bronto, S. (1996). Pyroclastic flows and surges
839 over water: an example from the 1883 Krakatau eruption. *Bull. Volcanol.* 57, 493–511.
840 doi:10.1007/BF00304435

841 Cini Castagnoli, G., Albrecht, A., Beer, J., Shen, C., Callegari, E., Taricco, C., et al. (1995). Evidence
842 for enhanced ^{10}Be deposition in Mediterranean sediments 35 Kyr BP. *Geophys. Res. Lett.* 22,
843 707–710. doi:10.1029/95GL00298

844 Civetta, L., Orsi, G., Pappalardo, L., Fisher, R. V., Heiken, G., and Ort, M. H. (1997). Geochemical
 845 zoning, mingling, eruptive dynamics and depositional processes - the Campanian Ignimbrite,
 846 Campi Flegrei caldera, Italy. *J. Volcanol. Geotherm. Res.* 75, 183–219. doi:10.1016/S0377-
 847 0273(96)00027-3

848 Cook, G. W., Wolff, J. A., and Self, S. (2016). Estimating the volume of a large pyroclastic body: the
 849 Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico. *Bull. Volcanol.* 78, 10.
 850 doi:10.1007/s00445-016-1000-0

851 Cornell, W., Carey, S. N., and Sigurdsson, H. (1983). Computer simulation of transport and
 852 deposition of the campanian Y-5 ash. *J. Volcanol. Geotherm. Res.* 17, 89–109.
 853 doi:10.1016/0377-0273(83)90063-X

854 Costa, A., Folch, A., Macedonio, G., Giaccio, B., Isaia, R., and Smith, V. C. (2012). Quantifying
 855 volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. *Geophys. Res.*
 856 *Lett.* 39, L10310. doi:10.1029/2012GL051605

857 Costa, A., Suzuki, Y. J., and Koyaguchi, T. (2018). Understanding the plume dynamics of explosive
 858 super-eruptions. *Nat. Commun.* 9, 654. doi:10.1038/s41467-018-02901-0

859 Cros bewer, H. S., Arora, B., Brown, S. K., Cottrell, E., Deligne, N. I., Guerrero, N. O., et al. (2012).
 860 Global database on large magnitude explosive volcanic eruptions (LaMEVE). *J. Appl. Volcanol.*
 861 1, 4. doi:10.1186/2191-5040-1-4

862 Cutler, N. A., Streeter, R. T., Engwell, S. L., Bolton, M. S., Jensen, B. J. L. and Dugmore, A. J.
 863 (2020). How does tephra deposit thickness change over time? A calibration exercise based on
 864 the 1980 Mount St Helens tephra deposit. *J. Volcanol. Geotherm. Res.* 399, 106883.
 865 doi:10.1016/j.jvolgeores.2020.106883

866 Daag, A., and van Westen, C. J. (1996). Cartographic modelling of erosion in pyroclastic flow
 867 deposits of Mount Pinatubo, Philippines. *ITC Journal* 2, 110-124.

868 De Natale, G., Troise, C., Mark, D., Mormone, A., Piochi, M., Di Vito, M. A., et al. (2016). The
 869 Campi Flegrei Deep Drilling Project (CFDDP): New insight on caldera structure, evolution and
 870 hazard implications for the Naples area (Southern Italy). *Geochim. Geophys. Geosyst.* 17,
 871 4836–4847. doi:10.1002/2015GC006183

872 De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera, F. J., et al. (2001). New
 873 constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). *Mineral.*
 874 *Petrol.* 73, 47–65. doi:10.1007/s007100170010

875 Di Vito, M. A., Isaia, R., Orsi, G., Sounthon, J., de Vita, S., D'Antonio, M., et al. (1999). Volcanism
 876 and deformation since 12,000 years at the Campi Flegrei caldera (Italy). *J. Volcanol. Geotherm.*
 877 *Res.* 91, 221–246. doi:10.1016/S0377-0273(99)00037-2

878 Douka, K., Higham, T. F., Wood, R., Boscato, P., Gambassini, P., Karkanas, P., et al. (2014). On the
 879 chronology of the Uluzzian. *J. Hum. Evol.* 68, 1-13. doi:10.1016/j.jhevol.2013.12.007

880 Dufek, J., and Bergantz, G. W. (2007). Dynamics and deposits generated by the Kos Plateau Tuff
 881 eruption: Controls of basal particle loss on pyroclastic flow transport. *Geochim., Geophys.*

882 *Geosystems* 8, Q12007. doi:10.1029/2007GC001741

883 Engwell, S. L., Aspinall, W. P., and Sparks, R. S. J. (2015). An objective method for the production
884 of isopach maps and implications for the estimation of tephra deposit volumes and their
885 uncertainties. *Bull. Volcanol.* 77, 61. doi:10.1007/s00445-015-0942-y

886 Engwell, S. L., Sparks, R. S. J., and Carey, S. N. (2014). Physical characteristics of tephra layers in
887 the deep sea realm: the Campanian Ignimbrite eruption. *Geol. Soc. London, Spec. Publ.* 398,
888 47–64. doi:10.1144/SP398.7

889 Fedele, F. G., Giaccio, B., Isaia, R., and Orsi, G. (2002). Ecosystem Impact of the Campanian
890 Ignimbrite Eruption in Late Pleistocene Europe. *Quat. Res.* 57, 420–424.
891 doi:10.1006/qres.2002.2331

892 Fedele, F. G., Giaccio, B., Isaia, R., and Orsi, G. (2003). The Campanian Ignimbrite Eruption,
893 Heinrich Event 4, and Palaeolithic Change in Europe: a High-Resolution Investigation. *AGU*
894 *Geophys. Monograph* 139, 301–325. doi:10.1029/139GM20

895 Fedele, F. G., Giaccio, B., Isaia, R., Orsi, G., Carroll, M. R., and Scaillet, B. (2007). “The Campanian
896 Ignimbrite Factor: Towards a Reappraisal of the Middle to Upper Palaeolithic ‘Transition’,” in
897 *Living Under the Shadow: Cultural Impacts of Volcanic Eruptions*, eds J. Grattan and R.
898 Torrence (Walnut Creek, CA: Left Coast Press), 19–41.

899 Fedele, L., Scarpati, C., Lanphere, M., Melluso, L., Morra, V., Perrotta, A., et al. (2008). The Breccia
900 Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and
901 relationship with the Campanian Ignimbrite eruption. *Bull. Volcanol.* 70, 1189–1219.
902 doi:10.1007/s00445-008-0197-y

903 Fedele, L., Scarpati, C., Sparice, D., Perrotta, A., and Laiena, F. (2016). A chemostratigraphic study
904 of the Campanian Ignimbrite eruption (Campi Flegrei, Italy): Insights on magma chamber
905 withdrawal and deposit accumulation as revealed by compositionally zoned stratigraphic and
906 facies framework. *J. Volcanol. Geotherm. Res.* 324, 105–117.
907 doi:10.1016/j.jvolgeores.2016.05.019

908 Fierstein, J., and Hildreth, W. (1992). The plinian eruptions of 1912 at Novarupta, Katmai National
909 Park, Alaska. *Bull. Volcanol.* 54, 646–684. doi:10.1007/BF00430778

910 Fisher, R. V., Orsi, G., Ort, M. H., and Heiken, G. (1993). Mobility of a large-volume pyroclastic
911 flow—emplacement of the Campanian ignimbrite, Italy. *J. Volcanol. Geotherm. Res.* 56, 205–
912 220. doi:10.1016/0377-0273(93)90017-L

913 Folch, A. (2012). A review of tephra transport and dispersal models: Evolution, current status, and
914 future perspectives. *J. Volcanol. Geotherm. Res.* 235–236, 96–115.
915 doi:10.1016/j.jvolgeores.2012.05.020

916 Folch, A., Costa, A., Durant, A., and Macedonio, G. (2010). A model for wet aggregation of ash
917 particles in volcanic plumes and clouds: 2. Model application. *J. Geophys. Res.* 115, B09202.
918 doi:10.1029/2009JB007176

919 Folkes, C. B., Wright, H. M. N., Cas, R. A. F., de Silva, S. L., Lesti, C., and Viramonte, J. G. (2011).

920 A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW
 921 Argentina. *Bull. Volcanol.* 73, 1427–1454. doi:10.1007/s00445-011-0459-y

922 Gambassini, P. (1997). *Il Paleolitico di Castelcivita: culture e ambiente*. Napoli: Electa.

923 Geyer, A., and Martí, J. (2008). The new worldwide collapse caldera database (CCDB): A tool for
 924 studying and understanding caldera processes. *J. Volcanol. Geotherm. Res.* 175, 334–354.
 925 doi:10.1016/j.jvolgeores.2008.03.017

926 Giaccio, B. (2006). L'eruzione dell'Ignimbrite Campana (c. 40 ka BP), oscillazioni climatiche sub-
 927 orbitali e cambiamenti bioculturali dell'OIS 3 europeo. [doctoral dissertation/PhD thesis].
 928 [Naples (IT)]: University of Naples Federico II.

929 Giaccio, B., Hajdas, I., Isaia, R., Deino, A. L., and Nomade, S. (2017). High-precision ^{14}C and
 930 $^{40}\text{Ar}/^{39}\text{Ar}$ dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-
 931 cultural processes at 40 ka. *Sci. Rep.* 7, 45940. doi:10.1038/srep45940

932 Giaccio, B., Hajdas, I., Peresani, M., Fedele, F. G., and Isaia, R. (2006). “The Campanian Ignimbrite
 933 tephra and its relevance for the timing of the Middle to Upper Paleolithic shift,” in *When
 934 Neanderthals and modern humans met*, ed N. J. Conard (Tübingen, Germany: Kerns Verlag.),
 935 343–375.

936 Giaccio, B., Isaia, R., Fedele, F. G., Di Canzio, E., Hoffecker, J. F., Ronchitelli, A., et al. (2008). The
 937 Campanian Ignimbrite and Codola tephra layers: Two temporal/stratigraphic markers for the
 938 Early Upper Palaeolithic in southern Italy and eastern Europe. *J. Volcanol. Geotherm. Res.* 177,
 939 208–226. doi:10.1016/j.jvolgeores.2007.10.007

940 Giordano, G. (1998). The effect of paleotopography on lithic distribution and facies associations of
 941 small volume ignimbrites: the WTT Cupa (Roccamonfina volcano, Italy). *J. Volcanol.
 942 Geotherm. Res.* 87, 255–273. doi:10.1016/S0377-0273(98)00096-1

943 Giordano, G., and Doronzo, D. M. (2017). Sedimentation and mobility of PDCs: a reappraisal of
 944 ignimbrites’ aspect ratio. *Sci. Rep.* 7, 4444. doi:10.1038/s41598-017-04880-6

945 Giordano, G. and the CARG team (2010). "Stratigraphy and volcano-tectonic structures of the Colli
 946 Albani volcanic field," in *The Colli Albani Volcano*, eds R. Funiciello and G. Giordano, vol.
 947 Geol. Soc. London, Special Publication of IAVCEI 3, 43–97.

948 Hajdas, I., Taricco, C., Bonani, G., Beer, J., Bernasconi, S. M., and Wacker, L. (2011). Anomalous
 949 radiocarbon ages found in Campanian Ignimbrite deposit of the Mediterranean deep-sea core
 950 CT85-5. *Radiocarbon* 53, 575–583. doi:10.1017/S003382200039059

951 Henry, C. D., and Price, J. G. (1984). Variations in caldera development in the Tertiary volcanic field
 952 of Trans-Pecos Texas. *J. Geophys. Res.* 89, 8765–8786. doi:10.1029/JB089iB10p08765

953 Isaia, R., Marianelli, P., and Sbrana, A. (2009). Caldera unrest prior to intense volcanism in Campi
 954 Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios.
 955 *Geophys. Res. Lett.* 36, L21303. doi:10.1029/2009GL040513

956 ISPRA (2009). Geological Map n. 432 “Benevento”; scale 1:50,000. National Geological Survey of

957 Italy, Università degli studi di Urbino, Istituto di Geologia Applicata, Urbino, Italy.

958 ISPRA (2010). Geological Map n. 431 “Caserta Est”; scale 1:50,000. National Geological Survey of
959 Italy, Regione Campania, Settore Difesa Suolo, Napoli, Italy.

960 ISPRA (2011a). Geological Map n. 465 “Isola di Procida”; scale 1:50,000. National Geological
961 Survey of Italy, Regione Campania, Settore Difesa Suolo, Napoli, Italy.

962 ISPRA (2011b). Geological Map n. 448 “Ercolano”; scale 1:50,000. National Geological Survey of
963 Italy, CNR Consiglio Nazionale delle Ricerche, Italy.

964 ISPRA (2011c). Geological Map n. 467 “Salerno”; scale 1:50,000. National Geological Survey of
965 Italy, (<http://www.isprambiente.gov.it/MEDIA/carg/campania.html>).

966 ISPRA (2011d). Geological Map n. 446-447 “Napoli”; scale 1:50,000. National Geological Survey
967 of Italy, Regione Campania - Settore Difesa Suolo, Napoli, Italy.

968 ISPRA (2014a). Geological Map n. 450 “S.Angelo dei Lombardi”; scale 1:50,000. National
969 Geological Survey of Italy, CNR Consiglio Nazionale delle Ricerche, Italy.

970 ISPRA (2014b). Geological Map n. 466-485 “Sorrento-Termini”; scale 1:50,000. National
971 Geological Survey of Italy, CNR Consiglio Nazionale delle Ricerche, Italy.

972 ISPRA (2016). Geological Map n. 449 “Avellino”; scale 1:50,000. National Geological Survey of
973 Italy, Regione Campania, Italy.

974 ISPRA (2018). Geological Map n. 464 “Isola d’Ischia”; scale 1:25,000. National Geological Survey
975 of Italy, Regione Campania, Settore Difesa Suolo, Napoli, Italy.

976 Keller, J., Ryan, W. B. F., Ninkovich, D., and Altherr, R. (1978). Explosive volcanic activity in the
977 Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. *Bull. Geol. Soc. Am.*
978 89, 591–604. doi:10.1130/0016-7606(1978)89<591:EVAITM>2.0.CO;2

979 Lambeck, K., and Bard, E. (2000). Sea-level change along the French Mediterranean coast for the
980 past 30000 years. *Earth Planet. Sci. Lett.* 175, 203–222. doi:10.1016/S0012-821X(99)00289-7

981 Langella, A., Bish, D. L., Calcaterra, D., and Cappelletti, P. (2013). “L’Ignimbrite Campana (IC),” in
982 *Le pietre storiche della Campania dall’oblio alla riscoperta*, eds M. De Gennaro, D. Calcaterra
983 and A. Langella (Napoli: Luciano Editore), 155–177.

984 Lowe, J., Barton, N., Blockley, S., Ramsey, C. B., Cullen, V. L., Davies, W., et al. (2012). Volcanic
985 ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards.
986 *Proc. Natl. Acad. Sci.* 109, 13532–13537. doi:10.1073/pnas.1204579109

987 Marianelli, P., Sbrana, A., and Proto, M. (2006). Magma chamber of the Campi Flegrei supervolcano
988 at the time of eruption of the Campanian Ignimbrite. *Geology* 34, 937–940.
989 doi:10.1130/G22807A.1

990 Marti, A., Folch, A., Costa, A., and Engwell, S. L. (2016). Reconstructing the plinian and co-
991 ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite.
992 *Sci. Rep.* 6, 21220. doi:10.1038/srep21220

993 Mason, B. G., Pyle, D. M., and Oppenheimer, C. (2004). The size and frequency of the largest
 994 explosive eruptions on Earth. *Bull. Volcanol.* 66, 735–748. doi:10.1007/s00445-004-0355-9

995 McCoy, F.W., and Cornell, W. (1990). "Volcaniclastic sediments in the Tyrrhenian Basin," in
 996 Proceedings of the Ocean Drilling Program, Scientific Results 107, eds K. A. Kastens, J. Maslale
 997 et al. (Swindon, UK: ODP, Texas A&M University, College Station, UK distributors, IPOD
 998 Committee, NERC), 291-305. doi:10.2973/odp.proc.sr.107.119.1990

999 Melekestsev, I. V., Kirianov, V. Y., and Praslov, N. D. (1984). Catastrophic eruption in the
 1000 Phleorean Fields region (Italy) - possible source for a volcanic ash in late Pleistocene sediments
 1001 on the European part of the USSR. *Vulcanol. i Seismol.* 3, 35–44.

1002 Melluso, L., Morra, V., Perrotta, A., Scarpati, C., and Adabbo, M. (1995). The eruption of the
 1003 Breccia Museo (Campi Flegrei, Italy): Fractional crystallization processes in a shallow, zoned
 1004 magma chamber and implications for the eruptive dynamics. *J. Volcanol. Geotherm. Res.* 68,
 1005 325–339. doi:10.1016/0377-0273(95)00020-5

1006 Mihailović, D., and Whallon, R. (2017). Crvena Stijena revisited: the late Mousterian assemblages.
 1007 *Quat. Int.* 450, 36-49. doi:10.1016/j.quaint.2016.12.026

1008 Millia, A., Morabito, S., and Petrosino, P. (2020). Late Pleistocene–Holocene climatic and volcanic
 1009 events in the bathyal area of the Eastern Tyrrhenian Sea and the stratigraphic signature of the 39
 1010 ka Campanian Ignimbrite eruption. *Global Planet. Change* 185, 103074.
 1011 doi:10.1016/j.gloplacha.2019.103074

1012 Millia, A., and Torrente, M. M. (2007). The influence of paleogeographic setting and crustal
 1013 subsidence on the architecture of ignimbrites in the Bay of Naples (Italy). *Earth Planet. Sci.
 1014 Lett.* 263, 192–206. doi:10.1016/j.epsl.2007.08.004

1015 Morgan, L. A., Doherty, D. J., and Leeman, W. P. (1984). Ignimbrites of the Eastern Snake River
 1016 Plain: Evidence for major caldera-forming eruptions. *J. Geophys. Res.* 89, 8665–8678.
 1017 doi:10.1029/JB089iB10p08665

1018 Morley, M. W., and Woodward, J. C. (2011). The Campanian Ignimbrite at Crvena Stijena
 1019 rockshelter in Montenegro. *Quat. Res.* 75, 683-696. doi:10.1016/j.yqres.2011.02.005

1020 Mormone, A., Troise, C., Piochi, M., Balassone, G., Joachimski, M., and De Natale, G. (2015).
 1021 Mineralogical, geochemical and isotopic features of tuffs from the CFDDP drill hole:
 1022 Hydrothermal activity in the eastern side of the Campi Flegrei volcano (southern Italy). *J.
 1023 Volcanol. Geotherm. Res.* 290, 39–52. doi:10.1016/j.jvolgeores.2014.12.003

1024 Narcisi, B. (1996). Tephrochronology of a late quaternary lacustrine record from the Monticchio
 1025 maar (Vulture volcano, southern Italy). *Quat. Sci. Rev.* 15, 155–165. doi:10.1016/0277-
 1026 3791(95)00045-3

1027 Narcisi, B., and Vezzoli, L. (1999). Quaternary stratigraphy of distal tephra layers in the
 1028 Mediterranean - An overview. *Glob. Planet. Change* 21, 31–50. doi:10.1016/S0921-
 1029 8181(99)00006-5

1030 Newhall, C. G., and Self, S. (1982). The volcanic explosivity index (VEI) an estimate of explosive

1069 Perrotta, A., Scarpati, C., Luongo, G., and Morra, V. (2006). "Chapter 5 The Campi Flegrei caldera
1070 boundary in the city of Naples," in *Developments in Volcanology*, eds B. De Vivo (Elsevier), 9,
1071 85–96. doi:10.1016/S1871-644X(06)80019-7

1072 Perrotta, A., Scarpati, C., Luongo, G., and Morra, V. (2010). Stratigraphy and volcanological
1073 evolution of the southwestern sector of Campi Flegrei and Procida Island, Italy. *Geol. Soc. Am. Spec. Pap.* 464, 171–191. doi:10.1130/2010.2464(09)

1075 Pyle, D. M. (1989). The thickness, volume and grainsize of tephra fall deposits. *Bull. Volcanol.* 51,
1076 1–15. doi:10.1007/BF01086757

1077 Pyle, D. M. (1990). "New volume estimates for the Minoan eruption of Santorini," in *Thera and the
1078 Aegean World III*, eds D. A. Hardy, J. Keller, V. Galanopoulos, N. C. Flemming and T. H.
1079 Druitt (London: The Thera Foundation), 113–121.

1080 Pyle, D. M. (2000). "Sizes of volcanic eruptions," in *The Encyclopedia of Volcanoes*, eds H.
1081 Sigurdsson, B. F. Houghton, S. R. McNutt, H. Rymer and J. Stix (London: Academic Press),
1082 263–269.

1083 Pyle, D. M. (2015). "Sizes of volcanic eruptions," in *The Encyclopedia of Volcanoes*, ed H.
1084 Sigurdsson, B. F. Houghton, S. R. McNutt, H. Rymer and J. Stix (London: Academic Press),
1085 257–264. doi:10.1016/B978-0-12-385938-9.00013-4

1086 Pyle, D. M., Ricketts, G. D., Margari, V., van Andel, T. H., Sinitzyn, A. A., Praslov, N. D., et al.
1087 (2006). Wide dispersal and deposition of distal tephra during the Pleistocene "Campanian
1088 Ignimbrite/Y5" eruption, Italy. *Quat. Sci. Rev.* 25, 2713–2728.
1089 doi:10.1016/j.quascirev.2006.06.008

1090 Rampino, M. R., and Self, S. (1992). Volcanic winter and accelerated glaciation following the Toba
1091 super-eruption. *Nature* 359, 50–52. doi:10.1038/359050a0

1092 Ratté, J. C., Marvin, R. F., Naeser, C. W., and Bikerman, M. (1984). Calderas and ash flow tuffs of
1093 the Mogollon Mountains, southwestern New Mexico. *J. Geophys. Res.* 89, 8713.
1094 doi:10.1029/JB089iB10p08713

1095 Rhoades, D. A., Dowrick, D. J., and Wilson, C. J. N. (2002). Volcanic hazard in New Zealand:
1096 scaling and attenuation relations for tephra fall deposits from Taupo Volcano. *Nat. Hazards* 26,
1097 147–174. doi:10.1023/A:1015608732356

1098 Rolandi, G., Bellucci, F., Heizler, M. T., Belkin, H. E., and De Vivo, B. (2003). Tectonic controls on
1099 the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. *Mineral. Petrol.*
1100 79, 3–31. doi:10.1007/s00710-003-0014-4

1101 Rosi, M., and Sbrana, A. (1987). Phlegraean Fields. *CNR, Quad. La Ricerca Sci.* 114, 1–175.

1102 Rosi, M., Sbrana, A., and Principe, C. (1983). The Phlegraean Fields: structural evolution, volcanic
1103 history and eruptive mechanisms. *J. Volcanol. Geotherm. Res.* 17, 273–288. doi:10.1016/0377-
1104 0273(83)90072-0

1105 Rosi, M., Sbrana, A., and Vezzoli, L. (1988). Correlazioni tefrostratigrafiche di alcuni livelli di

1106 Ischia, Procida e Campi Flegrei. *Mem. della Soc. Geol. Ital.* 41, 1015–1027.

1107 Rosi, M., Vezzoli, L., Aleotti, P., and Censi, M. (1996). Interaction between caldera collapse and
1108 eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy. *Bull.*
1109 *Volcanol.* 57, 541–554. doi:10.1007/BF00304438

1110 Rosi, M., Vezzoli, L., Castelmenzano, A., and Grieco, G. (1999). Plinian pumice fall deposit of the
1111 Campanian Ignimbrite eruption (Phlegraean Fields, Italy). *J. Volcanol. Geotherm. Res.* 91, 179–
1112 198. doi:10.1016/S0377-0273(99)00035-9

1113 Ruberti, D., Vigliotti, M., Rolandi, R., and Di Lascio, M. (2020). "Effect of paleomorphology on
1114 facies distribution of the Campania Ignimbrite in the northern Campania Plain, southern Italy,"
1115 in *Vesuvius, Campi Flegrei, and Campanian Volcanism*, eds B. De Vivo, H. E. Belkin and G.
1116 Rolandi (Elsevier Inc.), 207–229. doi:10.1016/B978-0-12-816454-9.00009-2

1117 Scandone, R., Bellucci, F., Lirer, L., and Rolandi, G. (1991). The structure of the Campanian Plain
1118 and the activity of the Neapolitan volcanoes (Italy). *J. Volcanol. Geotherm. Res.* 48, 1–31.
1119 doi:10.1016/0377-0273(91)90030-4

1120 Scarpati, C., and Perrotta, A. (2012). Erosional characteristics and behavior of large pyroclastic
1121 density currents. *Geology* 40, 1035–1038. doi:10.1130/G33380.1

1122 Scarpati, C., and Perrotta, A. (2016). Stratigraphy and physical parameters of the Plinian phase of the
1123 Campanian Ignimbrite eruption. *Bull. Geol. Soc. Am.* 128, 1147–1159. doi:10.1130/B31331.1

1124 Scarpati, C., Perrotta, A., Lepore, S., and Calvert, A. (2013). Eruptive history of Neapolitan
1125 volcanoes: constraints from $^{40}\text{Ar} - ^{39}\text{Ar}$ dating. *Geol. Mag.* 150, 412–425.
1126 doi:10.1017/S0016756812000854

1127 Scarpati, C., Sparice, D., and Perrotta, A. (2014). A crystal concentration method for calculating
1128 ignimbrite volume from distal ash-fall deposits and a reappraisal of the magnitude of the
1129 Campanian Ignimbrite. *J. Volcanol. Geotherm. Res.* 280, 67–75.
1130 doi:10.1016/j.jvolgeores.2014.05.009

1131 Scarpati, C., Sparice, D., and Perrotta, A. (2015a). Facies variation in the Campanian Ignimbrite.
1132 *Rend. Online Soc. Geol. Ital.* 33, 83–87. doi:10.3301/ROL:2015.20

1133 Scarpati, C., Sparice, D., and Perrotta, A. (2015b). The ground layer of the Campanian Ignimbrite: an
1134 example of deposition from a dilute pyroclastic density current. *Bull. Volcanol.* 77, 97.
1135 doi:10.1007/s00445-015-0985-0

1136 Scott, W. E., Hoblitt, R. P., Torres, R. C., Self, S., Martinez, M. M. L., and Nillios, T. (1996).
1137 "Pyroclastic flows of the June 15, 1991, climactic eruption of Mount Pinatubo," in *Fire and*
1138 *mud: Eruptions and Lahars of Mount Pinatubo, Philippines*, eds C.G. Newhall, and R.
1139 Punongbayan (Seattle: University of Washington Press), 545–570.

1140 Servizio Geologico d'Italia (1963). Carta geologica d'Italia scala 1:100.000, foglio 174 – Ariano
1141 Irpino "Geological map of Italy at 1:100.000 scale, sheet number 174 – Ariano Irpino". Servizio
1142 Geologico d'Italia, Rome.

1143 Servizio Geologico d'Italia (1965). Carta geologica d'Italia scala 1:100.000, foglio 197 – *Amalfi*
 1144 “Geological map of Italy at 1:100.000 scale, sheet number 197 – Amalfi”. Servizio Geologico
 1145 d’Italia, Rome.

1146 Servizio Geologico d’Italia (1966). Foglio Geologico n°172 - Caserta. Carta Geologica d’Italia, scala
 1147 1:100.000, II ediz., Istituto Poligrafico e Zecca dello Stato, Roma.

1148 Servizio Geologico d’Italia (1967). Carta geologica d’Italia scala 1:100.000, fogli 160 – *Cassino*
 1149 “Geological map of Italy at 1:100.000 scale, sheet number 160 – Cassino”. Servizio Geologico
 1150 d’Italia, Rome.

1151 Servizio Geologico d’Italia (1971a). Carta geologica d’Italia scala 1:100.000, foglio 171 – *Gaeta e*
 1152 *Vulcano di Roccamonfina* “Geological map of Italy at 1:100.000 scale, sheet number 171 –
 1153 *Gaeta e Vulcano di Roccamonfina”. Servizio Geologico d’Italia, Rome.*

1154 Servizio Geologico d’Italia (1971b). Carta geologica d’Italia scala 1:100.000, foglio 161 – *Isernia*
 1155 “Geological map of Italy at 1:100.000 scale, sheet number 161 – Isernia”. Servizio Geologico
 1156 d’Italia, Rome.

1157 Servizio Geologico d’Italia (1975). Carta geologica d’Italia scala 1:100.000, foglio 173 – *Benevento*
 1158 “Geological map of Italy at 1:100.000 scale, sheet number 173 – Benevento”. Servizio
 1159 Geologico d’Italia, Rome.

1160 Seymour, K. S., and Christianis, K. (1995). Correlation of a tephra layer in western Greece with a late
 1161 Pleistocene eruption in the Campanian province of Italy. *Quat. Res.* 43, 46–54.
 1162 doi:10.1006/qres.1995.1005

1163 Seymour, K. S., Christianis, K., Bouzinos, A., Papazissimou, S., Papatheodorou, G., Moran, E., et al.
 1164 (2004). Tephrostratigraphy and tephrochronology in the Philippi peat basin, Macedonia,
 1165 Northern Hellas (Greece). *Quat. Int.* 121, 53–65. doi:10.1016/j.quaint.2004.01.023

1166 Smith, V. C., Isaia, R., Engwell, S. L., and Albert, P. G. (2016). Tephra dispersal during the
 1167 Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the
 1168 large caldera-forming eruption. *Bull. Volcanol.* 78, 45. doi:10.1007/s00445-016-1037-0

1169 Smith, V. C., Isaia, R., and Pearce, N. J. G. (2011). Tephrostratigraphy and glass compositions of
 1170 post-15 kyr Campi Flegrei eruptions: Implications for eruption history and chronostratigraphic
 1171 markers. *Quat. Sci. Rev.* 30, 3638–3660. doi:10.1016/j.quascirev.2011.07.012

1172 Sparice, D. (2015). Definizione delle litofacies e ricostruzione dell’architettura dell’Ignimbrite
 1173 Campana. [doctoral dissertation/PhD thesis]. [Naples (IT)]: University of Naples Federico II.

1174 Sparks, R. S. J., Francis, P. W., Hamer, R. D., Pankhurst, R. J., O’Callaghan, L. O., Thorpe, R. S., et
 1175 al. (1985). Ignimbrites of the Cerro Galan caldera, NW Argentina. *J. Volcanol. Geotherm. Res.*
 1176 24, 205–248. doi:10.1016/0377-0273(85)90071-X

1177 Sparks, R. S. J., and Huang, T. C. (1980). The volcanological significance of deep-sea ash layer
 1178 associated with ignimbrites. *Geol. Mag.* 117, 425–436. doi:10.1017/S0016756800028533

1179 Sparks, R. S. J., and Walker, G. P. L. (1977). The significance of vitric-enriched air-fall ashes

1180 associated with crystal-enriched ignimbrites. *J. Volcanol. Geotherm. Res.* 2, 329–341.
 1181 doi:10.1016/0377-0273(77)90019-1

1182 Sparks, R. S. J., Self, S., Grattan, J., Oppenheimer, C., Pyle, D. M., and Rymer, H. (2005). Super-
 1183 eruptions: global effects and future threats. London. *Report of a Geological Society of London*
 1184 *Working Group*, (London, UK: The Geological Society).

1185 Stuiver, M., Grootes, P. M., and Braziunas, T. F. (1995). The GISP2 $\delta^{18}\text{O}$ Climate Record of the Past
 1186 16,500 Years and the Role of the Sun, Ocean, and Volcanoes. *Quat. Res.* 44, 341–354.
 1187 doi:10.1006/qres.1995.1079

1188 Takarada, S. and Hoshizumi, H. (2020). Distribution and Eruptive Volume of Aso-4 Pyroclastic
 1189 Density Current and Tephra Fall Deposits, Japan: A M8 Super-Eruption. *Front. Earth Sci.*
 1190 8:170. doi: 10.3389/feart.2020.00170

1191 Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., et al. (2007).
 1192 TINITALY/01: a new Triangular Irregular Network of Italy. *Ann. Geophys.* 50, 407 - 425.

1193 Tarquini, S., and Nannipieri, L. (2017). The 10 m-resolution TINITALY DEM as a trans-disciplinary
 1194 basis for the analysis of the Italian territory: Current trends and new perspectives.
 1195 *Geomorphology* 281, 108-115. doi:10.1016/j.geomprph.2016.12.022

1196 Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., and Nannipieri, L. (2012). Release of
 1197 a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and
 1198 anaglyph-mode exploration via the web. *Comput. Geosci.* 38, 168-170.
 1199 doi:10.1016/j.cageo.2011.04.018

1200 Thordarson, T., and Self, S. (1996). Sulfur, chlorine and fluorine degassing and atmospheric loading
 1201 by the Roza eruption, Columbia River Basalt Group, Washington, USA. *J. Volcanol. Geotherm.*
 1202 *Res.* 74, 49–73. doi:10.1007/s004450050136

1203 Thunell, R., Federman, A., Sparks, R. S. J., and Williams, D. (1979). The Age, Origin, and
 1204 Volcanological Significance of the Y-5 Ash Layer in the Mediterranean. *Quat. Res.* 12, 241–
 1205 253. doi:10.1016/0033-5894(79)90060-7

1206 Ton-That, T., Singer, B., and Paterne, M. (2001). $^{40}\text{Ar}/^{39}\text{Ar}$ dating of latest Pleistocene (41 ka)
 1207 marine tephra in the Mediterranean Sea: implications for global climate records. *Earth Planet.*
 1208 *Sci. Lett.* 184, 645–658. doi:10.1016/S0012-821X(00)00358-7

1209 Torrente, M. M., Millia, A., Bellucci, F., and Rolandi, G. (2010). Extensional tectonics in the
 1210 Campania Volcanic Zone (eastern Tyrrhenian Sea, Italy): new insights into the relationship
 1211 between faulting and ignimbrite eruptions. *Boll. Soc. Geol. It.* 129, 297–315.
 1212 doi:10.3301/IJG.2010.07

1213 Upton, J., Cole, P. D., Shaw, P., Szakacs, A., and Seghedi, I. (2002). “Correlation of tephra layers
 1214 found in southern Romania with the Campanian Ignimbrite (~37 ka),” in The Quaternary
 1215 Research Association and First Postgraduate Paleo-environmental Symposium (Amsterdam:
 1216 Universiteit van Amsterdam), 36.

1217 Veres, D., Lane, C. S., Timar-Gabor, A., Hambach, U., Constantin, D., Szakacs, A., et al. (2013).

1218 The Campanian Ignimbrite/Y5 tephra layer - A regional stratigraphic marker for Isotope Stage 3
 1219 deposits in the Lower Danube region, Romania. *Quat. Int.* 293, 22–33.
 1220 doi:10.1016/j.quaint.2012.02.042

1221 Vitale, S., and Isaia, R. (2014). Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy):
 1222 insight into volcano-tectonic processes. *Int. J. Earth Sci.* 103, 801–819. doi:10.1007/s00531-
 1223 013-0979-0

1224 Walker, G. P. L. (1972). Crystal Concentration in Ignimbrites. *Contrib. Mineral. Petrol.* 36, 135–
 1225 146. doi:10.1007/BF00371184

1226 Walker, G.P.L. (1973). Explosive volcanic eruptions — a new classification scheme. *Geol. Rundsch.*
 1227 62, 431–446. doi:10.1007/BF01840108

1228 Walker, G. P. L. (1980). The Taupo pumice: Product of the most powerful known (ultraplinian)
 1229 eruption? *J. Volcanol. Geotherm. Res.* 8, 69–94. doi:10.1016/0377-0273(80)90008-6

1230 Walker, G. P. L. (1983). Ignimbrite types and ignimbrite problems. *J. Volcanol. Geotherm. Res.* 17,
 1231 65–88. doi:10.1016/0377-0273(83)90062-8

1232 Walker, G. P. L., and Croasdale, R. (1970). Two Plinian-type eruptions in the Azores. *J. Geolog. Soc.*
 1233 127, 17–55. doi:10.1144/gsjgs.127.1.0017

1234 Wilson, C. J. N. (1991). Ignimbrite morphology and the effects of erosion: a New Zealand case
 1235 study. *Bull. Volcanol.* 53, 635–644. doi:10.1007/BF00493690

1236 Wilson, C. J. N. (2001). The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview.
 1237 *J. Volcanol. Geotherm. Res.* 112, 133–174. doi:10.1016/S0377-0273(01)00239-6

1238 Wilson, C. J. N., and Walker, G. P. L. (1985). The Taupo eruption, New Zealand. 1. General aspects.
 1239 *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 314, 199–228. doi:10.1098/rsta.1985.0019

1240 Wood, R. E., Douka, K., Boscato, P., Haesaerts, P., Sinitsyn, A., and Higham, T. (2012). Testing the
 1241 ABO_x-SC method: dating known-age charcoals associated with the Campanian Ignimbrite.
 1242 *Quat. Geochronol.* 9, 16–26. doi:10.1016/j.quageo.2012.02.003

1243 Woods, A. W., and Wohletz, K. (1991). Dimensions and dynamics of co-ignimbrite eruption
 1244 columns. *Nature*, 350, 225–227. doi:10.1038/350225a0

1245 Wuif, S., Kraml, M., Brauer, A., Keller, J., and Negendank, J. F. W. (2004). Tephrochronology of the
 1246 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). *Quat. Int.*
 1247 122, 7–30. doi:10.1016/j.quaint.2004.01.028

1248 Yang, Q., and Bursik, M. (2016). A new interpolation method to model thickness, isopachs, extent,
 1249 and volume of tephra fall deposits. *Bull. Volcanol.* 78, 68–21. doi:10.1007/s00445-016-1061-0

1250 Yokoyama, S. (1974). Mode of movement and emplacement of Ito pyroclastic flow from Aira
 1251 caldera, Japan. *Science Reports, Tokyo Kyoiku Daigaku* 12, 17–62.

1252 Yokoyama, S. (1985). Geomorphological aspects of large-scale pyroclastic flow deposits: a review.
 1253 *Transactions, Japanese Geomorphological Union* 6, 131–152.

1254 Zanchetta, G., Giaccio, B., Bini, M., and Sarti, L. (2018). Tephrostratigraphy of Grotta del Cavallo,
1255 Southern Italy: Insights on the chronology of Middle to Upper Palaeolithic transition in the
1256 Mediterranean. *Quat. Sci. Rev.* 182, 65-77. doi:10.1016/j.quascirev.2017.12.014

1257 **10 Data Availability Statement**

1258 The datasets generated and analyzed for this study can be found in the Data Repository
1259 <https://mfr.osf.io/render?url=https%3A%2F%2Fosf.io%2Fc8nea%2Fdownload>. QGIS data are
1260 available on request to the corresponding author.