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Entanglement transitions as a probe of quasiparticles and quantum thermalization
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We introduce a diagnostic for quantum thermalization based on mixed-state entanglement. Specifically, given
a pure state on a tripartite system ABC, we study the scaling of entanglement negativity between A and B. For
representative states of self-thermalizing systems, either eigenstates or states obtained by a long-time evolution
of product states, negativity shows a sharp transition from an area-law scaling to a volume-law scaling when the
subsystem volume fraction is tuned across a finite critical value. In contrast, for a system with quasiparticles,
it exhibits a volume-law scaling irrespective of the subsystem fraction. For many-body localized systems, the
same quantity shows an area-law scaling for eigenstates, and volume-law scaling for long-time-evolved product
states, irrespective of the subsystem fraction. We provide a combination of numerical observations and analytical
arguments in support of our conjecture. Along the way, we prove and utilize a “continuity bound” for negativity:
we bound the difference in negativity for two density matrices in terms of the Hilbert-Schmidt norm of their
difference.
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I. INTRODUCTION

Consider a system where eigenstate thermalization hy-
pothesis (ETH) [1–5] holds true. For a finite-energy-density
pure state of such a system, the reduced density matrix of
a subsystem is thermal when the ratio f of a subsystem to
the total system approaches zero. However, this is no longer
true when f is O(1), e.g., Rényi entropies do not match their
thermal counterpart [6–8]. This effect is most dramatic when
f > 1/2, a regime where entanglement entropy decreases
with increasing subsystem size, indicating that the rest of the
system is acting as a poor “thermal bath” for the subsystem.
Monogamy of entanglement suggests that if one were to di-
vide the subsystem further into two parts, these parts would be
highly entangled with each other in this regime. Equivalently,
one expects that when f > 1/2, the reduced density matrix of
the subsystem would have a large bipartite mixed-state entan-
glement. Motivated by such considerations, in this work we
study universal features of bipartite mixed-state entanglement
in states that are obtained by tracing out a subregion of a
pure state belonging to a many-body system at finite energy
density. We will contrast the universal behavior of mixed-state
entanglement for three different classes of systems: integrable
Hamiltonians, chaotic Hamiltonians, and Hamiltonians that
exhibit many-body localization.

Our precise setup is as follows: we divide a system
described by a pure state into three regions labeled by A, B, C
(with volumes VA,VB,VC , respectively). After tracing out C,
we obtain a mixed state defined over region AB ≡ A ∪ B. To
characterize the mixed-state bipartite entanglement between A
and B in the resulting state, we will employ the entanglement
measure called “entanglement negativity” [9–11]. This
measure has been previously applied to characterize mixed-
state entanglement in a wide variety of many-body systems,

including free bosonic and fermionic systems [12–18], one
dimensional conformal field theory [19–23], spin chains
[24–29], and topologically ordered phases [30–35].

In light of the aforementioned considerations, our setup
leads to several natural questions: Does there exist a sharp
transition in entanglement negativity as a function of VAB/V ,
the volume ratio of the region AB to the total system? How
does this behavior change when one considers product states
that have been evolved for a long time with an integrable or a
many-body localized (MBL) Hamiltonian [36–44] instead of a
chaotic Hamiltonian? Indeed, our setup allows for a transition
where the scaling of negativity changes as VAB/V is tuned. In
fact, this kind of entanglement transition has been noticed in
the study of random pure states [45–47]. When VAB/V < 1/2,
negativity EN between A, B is zero in thermodynamic limit,
while for VAB/V > 1/2, EN scales with the number of spins
in AB, i.e., exhibiting a volume entanglement. Below, we
first review and provide an intuitive understanding for this
transition using entanglement monogamy, and then show that
Rényi negativity, a proxy of entanglement negativity, can also
detect this transition.

Going beyond random pure states, here we first con-
sider finite-energy-density eigenstates of Hamiltonians that
are believed to satisfy ETH and find evidence of a simi-
lar transition (as a shorthand notation, we will denote these
states as “chaotic eigenstates”). We perform three different
calculations in support of this transition. First, using exact
diagonalization (ED) on finite size systems, we numerically
find signatures of such a transition for relatively small systems
even though the transition is defined only in the thermody-
namic limit. Second, by applying ETH and using a slight
generalization of the bound for bipartite negativity in a Gibbs
thermal state [48], we analytically prove the area law for
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subsystem negativity when VAB/V < 1/2. Finally, motivated
by earlier work, we consider a random tripartite ansatz for
chaotic eigenstate and calculate third Rényi negativity, and
find it also exhibits a transition from area law to volume law
at VAB/V = 1/2.

In sharp contrast, for integrable systems, either interacting
or noninteracting, we find that the negativity EN between
A and B for a finite-energy-density eigenstate follows the
volume-law scaling for any VAB/V . We focus on two differ-
ent systems: a one-dimensional spin-1/2 Heisenberg model
(interacting integrable) and free fermion Hamiltonians (non-
interacting integrable). For free fermion Hamiltonians, we
analytically derive the volume-law coefficient for subsystem
negativity, averaged over all eigenstates, when VAB/V � 1.
Using entanglement monotonicity of negativity [49], this
implies that the volume-law coefficient is nonzero for any
VAB/V . For the Heisenberg spin chain, we perform ED on
system sizes up to 18 sites and find signatures of transition in
negativity from a volume-law scaling to an area-law scaling
when introducing an integrability-breaking term for VAB/V <

1/2, in line with our aforementioned expectation.
In addition to subsystem negativity for eigenstates, we

also study the same quantity for pure states obtained from a
global quench. These states are more physical compared to
the eigenstates in the sense that they can be prepared in an ex-
perimental setup (see, e.g., Refs. [50–55]). Specifically, given
an initial product state, we study the subsystem negativity at
long time when the subsystem reduced density matrix has
reached a steady state. We find that the aforementioned scaling
behaviors for eigenstates apply to the steady-state behavior
of negativity as well; i.e., for nonintegrable Hamiltonians,
subsystem negativity has area-law to volume-law transition at
a finite critical VAB/V , while for integrable models, negativity
satisfies volume-law scaling for arbitrary VAB/V . Our argu-
ment for the integrable models relies only on the assumption
that the quasiparticle picture for entanglement [56] holds true.

Finally we discuss the long-time negativity under quantum
quench for a disordered Hamiltonian that hosts transition from
a many-body localized phase to a chaotic phase. We find
that the long-time negativity in the MBL phase exhibits a
volume-law scaling in negativity for arbitrary VAB/V , similar
to the aforementioned integrable models. This is consistent
with the emergent integrability in the MBL phase, and it is
a consequence that a product state evolved with an MBL
Hamiltonian does not look thermal locally despite possessing
a volume-law bipartite entanglement. Therefore, as disorder
increases, the negativity for VAB/V < 1

2 undergoes a transition
from an area law (chaotic phase) to a volume law (MBL
phase). We summarize our findings in Fig. 1.

The paper is organized as follows: In Sec. II we demon-
strate the phase transition in subsystem negativity as a
function of VAB/V for random Haar states. In Sec. III we
first numerically study subsystem negativity in local spin-
chain models and find that chaotic systems show an area
to volume-law transition in subsystem negativity, while inte-
grable models always have a volume-law scaling. We provide
analytical understanding of these results using eigenstate ther-
malization hypothesis, and an analysis of free fermions using
correlation matrix technique. In Sec. IV we discuss negativity
of time-evolved product states and show that the distinction
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FIG. 1. We study the entanglement negativity EN between two
subsystems A and B in a tripartite pure state ABC. Given finite-
energy-density eigenstates or time-evolved states at long time from
simple product states, negativity EN exhibits a transition from an
area-law phase to a volume-law phase by tuning the subsystem
volume fraction VAB/V in nonintegrable systems, in strong contrast
to integrable systems where EN exhibits a volume law for any VAB/V .
In many-body localized (MBL) systems, EN exhibits an area law in
eigenstates and a volume law in time-evolved states at long time from
simple product states for any VAB/V . Although the geometry depicted
here corresponds to a one-dimensional system, some of our results
generalize to arbitrary dimensions, as discussed in this paper.

between integrable and nonintegrable systems is similar to
that for their corresponding eigenstates. We derive and utilize
a continuity bound of negativity to understand the results for
nonintegrable models and a quasiparticle-based argument to
understand integrable models. In Sec. V we study states time
evolved with a disordered Hamiltonian. We find that in the
ergodic phase, the subsystem negativity is area law as ex-
pected from previous sections, while in the MBL regime, it is
volume law. Finally, in Sec. VI we compare our protocol with
the one based on mutual information and discuss examples
where mutual information and negativity qualitatively behave
differently. We conclude with a summary and discussion of
our results in Sec. VII.

II. NEGATIVITY TRANSITION IN A RANDOM STATE

Let us briefly introduce entanglement negativity [9–11].
Unlike most of the entanglement measures for mixed
states, negativity can be computed without requiring an
optimization of a function over an infinitely large set
of states. To define negativity, consider a density matrix
ρAB on the bipartite Hilbert space H = HA ⊗ HB: ρAB =∑

a,b;a′,b′ ρa,b;a′,b′ |a, b〉〈a′, b′|, taking its partial transpose on B

gives ρ
TB
AB = ∑

a,b;a′,b′ ρa,b;a′,b′ |a, b′〉〈a′, b|. Entanglement neg-
ativity is defined as EN = log (‖ρTB

AB‖1).
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In this section we consider a random pure state over a
tripartite system ABC and study the negativity between A and
B. We first review a result in Ref. [47], which shows that this
quantity undergoes a transition from zero to a volume-law
scaling as the ratio of the subsystem AB to C is tuned. We
will provide an intuitive understanding for the transition, and
then show that Rényi negativity, a proxy of entanglement
negativity, exhibits such a transition as well.

To be concrete, consider V spin-1/2 degrees of freedom
in a random pure state |ψ〉. We select VA spins for the sub-
system A, VB spins for the subsystem B, and the rest VC =
V − VA − VB spins for the subsystem C. Note that the results
on negativity only depend on the Hilbert space dimensions of
A, B, and C, and are independent of the precise geometry of
the tripartition. For simplicity, we set VA = VB = VAB/2. It was
proved that the spectrum of ρ

TB
AB, the reduced density matrix

on AB acted by partial transpose on B, follows a semicircle
law [45,46]. Based on this result, Ref. [47] calculated the
negativity EN between A and B. In the limit V → ∞, one finds

EN =
{

0 for VAB
V < 1

2
1
2 (VAB − VC ) log 2 + O(1) for VAB

V > 1
2

, (1)

i.e., EN exhibits a transition from zero to a volume-law scaling
at VAB/V = 1/2. This transition is consistent with the follow-
ing heuristic argument based on the notion of “entanglement
monogamy” [57,58]. For VAB/V < 1/2, entanglement entropy
between AB and C is SAB,C = VAB log 2 [59,60]. Intuitively,
this implies every degree of freedom in AB is maximally
entangled with C. The principle of entanglement monogamy
then suggests no entanglement can exist between A and B,
hence resulting in the vanishing negativity between A and B.
A different perspective is provided by considering the mutual
information between A and B: I (A:B) = SA + SB − SAB = 0,
indicating no correlation exists between A and B. This can
also be observed from the reduced density matrix ρAB on AB.
The maximal entanglement between AB and C implies that
ρAB is a normalized identity matrix 1AB

dAB
= 1A

dA
⊗ 1B

dB
, where

both classical and quantum correlations are absent. In other
words, the complement of AB can be regarded as an infinite
temperature heat bath to destroy any correlations in AB.

On the other hand, for VAB/V > 1/2, SAB,C = VC log 2,
implying every degree of freedom in C is maximally entan-
gled with AB. Since VAB > VC , there will be some degrees
of freedom in AB that are not entangled with C and thus
can participate in the entanglement between A and B. The
number of those degrees of freedom is VAB − VC , which sug-
gests the entanglement between A and B of equal size will
be 1

2 (VAB − VC ) log 2, which exactly matches the volume-law
component of negativity.

As a generalization of the aforementioned result on nega-
tivity [Eq. (1)], one can also consider Rényi negativity Rn, a
variant of entanglement negativity which has been studied in
various contexts [19,35,61–63]. Rn is defined as

Rn = bn log

{
tr
[(

ρ
TB
AB

)n]
trρn

AB

}
, (2)

where ρAB = trC |ψ〉〈ψ | is the reduced density matrix on AB,
and bn = 1

1−n , 1
2−n for odd n and even n respectively. Note

that bn is chosen such that when ρAB is pure, Rn = Sn, Sn/2

for odd n and even n, respectively, where Sn denotes the
nth Rényi entanglement entropy between A and B. Note
that entanglement negativity EN can be obtained from Rényi
negativity Rn of even integer n using an analytic continu-
ation: limeven n→1 Rn = EN . In the context of random pure

states, Ref. [47] also calculated the quantity tr(ρTB
AB)

3
although

the quantity R3 was not considered. Here we will consider
general n.

To calculate Rn for a random pure state |ψ〉, we decompose
the state as |ψ〉 = ∑

a,b,c ψ (a, b, c)|a, b, c〉, where a, b, and c
label bases in A, B, and C, respectively, and the wave function
ψ (a, b, c) is a random complex number. It follows that

trρn
AB =

∑
{ai,bi,ci|i=1,...,n}

n∏
i=1

[ψ (ai, bi, ci )ψ
∗(ai+1, bi+1, ci )]

(3)
and

tr
[(

ρ
TB
AB

)n]=
∑

{ai,bi,ci|i=1,...,n}

n∏
i=1

[ψ (ai, bi, ci )ψ
∗(ai+1, bi−1, ci )],

(4)
where i + n ≡ i. By taking the ensemble average over ran-
dom states ψ (a, b, c) for

∏n
i=1 [ψ (ai, bi, ci )ψ∗(ai+1, bi+1, ci )]

and
∏n

i=1 [ψ (ai, bi, ci )ψ∗(ai+1, bi−1, ci )], we calculate trρn
AB

and tr[(ρTB
AB)

n
] in the thermodynamic limit V → ∞ (see

Appendix A 1). Note that in this limit, taking average before
or after the logarithm gives the same result, i.e., log trρn

AB =
log trρn

AB, and log {tr[(ρTB
AB)

n
]} = log {tr[(ρTB

AB)
n
]} as proved in

Appendix A 2 using an approach presented in Ref. [6]. Finally,
one finds that in the thermodynamic limit, the volume-law
coefficient of the averaged Rényi negativity exactly equals
that of the entanglement negativity [Eq. (1)]:

lim
V →∞

Rn

V
= lim

V →∞
EN

V
for any integer n > 2. (5)

Therefore, Rn also exhibits the aforementioned transition as
the ratio of AB to C is tuned. The advantage of working with
Rényi negativity is that for a fixed, small Rényi index n, (say
n = 3), it is typically much easier to calculate than the EN

itself. Although for the case of a random pure state we are
able to carry out the computation for any n, we will encounter
a problem in Sec. III B where we will be limited to n = 3. The
fact that Rn qualitatively behaves similarly to EN for random
pure states, as well as several other problems [19,62] gives us
some confidence that it is a useful object to study.

Although entanglement transitions in random states are
instructive, these states lack a notion of locality. Therefore,
in the rest of the paper, we focus on the eigenstates as well as
time-evolved states for local Hamiltonians.

III. NEGATIVITY TRANSITIONS IN EIGENSTATES:
INTEGRABLE VERSUS NONINTEGRABLE SYSTEMS

We first consider a class of local spin-chain Hamiltonians
and numerically study negativity of their eigenstates using
a protocol identical to that in the last section. We find that
in nonintegrable systems, there is an area-law to volume-
law transition at VAB/V = 1/2, reminiscent of the random
states studied in the previous section, while for integrable
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systems, subsystem negativity always exhibits a volume-law
scaling for arbitrary VAB/V . To further support our numerical
result, using eigenstate thermalization hypothesis (ETH) in
nonintegrable systems, we analytically derive the area law in
the subsystem negativity for VAB/V < 1/2. Furthermore, we
propose an “ergodic tripartite states” ansatz to characterize
the volume-law coefficient of chaotic eigenstates, and show
that the third Rényi negativity R3 computed from such ansatz
exhibits an area-law to volume-law transition at VAB/V = 1/2,
analogous to negativity. As for the integrable systems, we
analytically calculate the subsystem negativity averaged over
all eigenstates in free fermions for any spatial dimensions and
find a volume-law scaling for arbitrary VAB/V .

A. Numerical observations

We consider a spin-1/2 chain of size L with periodic
boundary condition. The model Hamiltonian reads

H =
L∑

i=1

(
J1 
Si · 
Si+1 + J2Sz

i Sz
i+2

)
. (6)

We set J1 = 1 and impose periodic boundary conditions. At
J2 = 0, this Hamiltonian is integrable [64] while the term
proportional to J2 breaks integrability. In the former case,
the energy spectrum exhibits Poissonian statistics, while in
the latter case, it exhibits the Gaussian-orthogonal ensemble
(GOE) level statistics. In any finite-size system, instead of
an abrupt transition at J2 = 0, one would observe a crossover
between these two regimes as a function of J2, and we chose
J2 = 0.8 as a representative of the nonintegrable regime, a
point at which the level statistics is clearly GOE.

First consider the nonintegrable case, i.e., J2 = 0.8 and
perform an exact diagonalization using translation symmetry
and Sz = ∑L

i=1 Sz
i conservation. We divide the spin chain into

three contiguous subregions A, B, and C of size LAB/2, LAB/2,
and L − LAB as shown in Fig. 1 and calculate the negativ-
ity EN between A and B in each of the mixed states ρAB

corresponding to individual eigenstates. We then take an av-
erage of negativity over all eigenstates in the energy window
E/L ∈ (−0.05, 0). In the upper left panel of Fig. 2, we find
EN/L ∼ 0 for LAB/L < 1/2 while EN/L deviates from zero
and grows with LAB/L for LAB/L > 1/2, suggesting negativity
between A and B exhibits an area (volume) law for LAB/L <

1/2 (LAB/L > 1/2), similar to the behavior of a random pure
state. Right at the critical point, i.e., LAB/L = 1/2, one ob-
serves that EN/L decreases when increasing the system size
L, suggesting it might vanish as L → ∞ although it is hard
to conclude this unequivocally due to limited system sizes in
ED. The data shown here focus only on the eigenstates close
to infinite temperature, but we find that eigenstates at finite
temperatures exhibit the area-law to volume-law transition as
well (see Appendix B 1).

Next, consider the integrable point J2 = 0. We numeri-
cally find that negativity of finite-energy-density eigenstates
between A and B of equal size exhibits a volume law for any
LAB/L, indicating the absence of entanglement transition (see
Fig. 2, upper right panel). We also introduce an anisotropy in
the spin chain to break the SU(2) symmetry down to U(1) and
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FIG. 2. The subsystem negativity EN , negativity between two
subsystems A and B, of eigenstates in Sz = ∑L

i=1 Sz
i = 0 and momen-

tum k = 0 sector for the model defined in Eq. (6). Upper left/right
panel: in the nonintegrable (J2 = 0.8)/integrable (J2 = 0.0) system,
EN divided by the total system size L as a function of LAB/L averaged
over all eigenstates in the energy window E/L ∈ (−0.05, 0) with
error bars shown. Lower panel: EN/L plotted with E/L for integrable
(J2 = 0.0, marked with circles) and nonintegrable (J2 = 0.8, marked
with crosses) of all eigenstates at L = 18.

check that the the subsystem negativity is volume law for any
LAB/L as well (see Appendix B 2).

It’s also instructive to plot subsystem negativity for all
eigenstates with respect to their energy densities E/L (see
Fig. 2, lower panel). We find a distinct contrast between inte-
grable systems (J2 = 0) and nonintegrable systems (J2 = 0.8).
At a given fixed energy density, EN/L has a much broader
distribution at J2 = 0.0 compared to J2 = 0.8. This suggests
that in nonintegrable systems, subsystem negativity of finite-
energy-density eigenstates is possibly a universal (smooth)
function of energy density, in a way similar to expectation
values of local operators [3], or even entanglement measures
such as bipartite Rényi entropies [6,7]. Note that in both
integrable and nonintegrable models, although their low-
energy eigenstates (i.e., those eigenstates with zero energy
density above ground states) show a nonvanishing EN/L in
the figure, we expect such result is due to a finite-size effect.
Since these states do not possess an extensive bipartite entan-
glement, their subsystem negativity EN will naturally have a
vanishing volume-law coefficient in the thermodynamic limit
L → ∞.
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B. Nonintegrable systems: Bounds and scaling from eigenstate
thermalization

One intuition for the scaling transition in negativity be-
tween A and B comes from their mutual information I =
SA + SB − SAB, akin to the case of random pure states studied
in Sec. II. We recall that ETH implies a volume-law entangle-
ment entropy between two complementary subsystems R, R:
SR ∼ sth min(VR,VR), where sth is the thermal entropy density
corresponding to the temperature of eigenstates [65]. This
result then implies that the mutual information between A and
B must exhibit a transition as well: I ∼ 0 for VAB/V < 1/2 and
I ∼ sth(VAB − VC ) for VAB/V > 1/2, consistent with our nu-
merical observation in the area-law to volume-law transition
of negativity. However, one drawback of this analysis is that
negativity and mutual information do not necessarily exhibit
the same scaling behavior for a general quantum state, as we
will discuss further in Sec. VI. Therefore, we now turn to a
direct analysis of negativity to show that when the subsystem
volume fraction of AB is less the 1/2, negativity between A
and B obeys an area law. The argument is valid in any spatial
dimension and is independent of the precise geometry of the
tripartition, as long as the entire system is described by a
chaotic eigenstate.

First consider the special case of vanishing volume frac-
tion VAB/V → 0. In this limit, ETH implies that the reduced
density matrix on AB is essentially a thermal density matrix
ρAB ∼ e−βHAB , where HAB is the part of the Hamiltonian sup-
ported on AB. Since in such a thermal state, the negativity
between any two complementary subsystems satisfies an area
law as proved in Ref. [48], negativity between A and B for
VAB/V → 0 follows an area law as well.

For nonzero VAB/V , we prove the area law assuming sub-
system ETH [66], which states that, given a chaotic eigenstate
|ψ〉 with energy E for a local Hamiltonian H = HR + HR̄ +
HRR̄, when VR < VR̄, the reduced density matrix in R takes the
form

ρR = 1

N
∑

i

eSR̄ (E−ER
i )|i〉〈i|, (7)

where |i〉 is an eigenstate of HR, and eSR̄ (E−ER
i ) is the density

of state of HR̄ at energy E − ER
i . This equation indicates that

the probability in |i〉 is proportional to the number of states
in R̄ consistent with the energy conservation, as if the entire
system is described by a microcanonical ensemble. Here we
outline the proof, and the detailed derivation can be found in
Appendix C. We first expand SR̄(E − ER

i ) as

SR̄

(
E − ER

i

) =
∞∑

n=0

( − ER
i

)n

n!

∂nSR̄(E )

∂En
, (8)

then the reduced density matrix on R can be written as an
exponential of power series of HR:

ρR = 1

Z
eM, M =

∞∑
n=1

(−HR)ns(n)
th

n!V n−1
R̄

, (9)

where s(n)
th is the nth derivative of microcanonical entropy

density at E/VR̄. Dividing R into subsystems A and B, one
essentially needs to count the number of terms simultaneously
acting on these two regions to bound the negativity between

them [48]. A detailed calculation gives the upper bound on
negativity:

EN � 2Jg(E/VR̄, JNAB/VR̄)|∂VAB|. (10)

J is the upper bound of each local term in the Hamiltonian
H , g is defined as g(u, JNAB/VR̄) = ∑∞

n=0
(JNAB/VR̄ )n

(n)! | ∂n+1sth (u)
∂un+1 |,

which is a function with O(1) value, NAB is the number of
terms in H acting only on A and B excluding the terms across
their shared boundary, and most importantly, |∂VAB| is the
number of terms in H acting on A and B simultaneously,
which scales with the boundary area between A and B. This
completes the proof of the area law in negativity for any bipar-
tition of AB when VAB/V < 1/2. Note that g(u, JNAB/VR̄) is a
function obtained by taking an absolute value for each term in
the Taylor expansion of s′

th(u + JNAB/VR̄) about u(= E/VR̄).
As VAB/V → 0, g reduces to inverse temperature β of the
eigenstate, hence giving the upper bound 2βJ|∂VAB|, which
agrees with the bound given in Ref. [48] for a Gibbs thermal
state.

The above argument demonstrates the area law of nega-
tivity for VAB/V < 1/2, but it does not provide any insight
into the volume law for VAB/V > 1/2. Furthermore, there is
a subtlety: although the reduced density matrix for a chaotic
eigenstate is exponentially close to the one from subsystem
ETH in their trace distance, it does not necessarily imply
that their difference in nonlocal entanglement measures such
as negativity will also be vanishing in the thermodynamic
limit. A similar issue arises for the nth Rényi entropy of
chaotic eigenstates [6], in which case for n � 1, a variety of
arguments [6,7,67] provide a rather strong evidence that sub-
system ETH indeed provides the correct answer. Motivated by
this, we now discuss an alternative approach for subsystem
negativity of chaotic eigenstates, which is related to ETH
but allows one to study all fractions 0 < VAB/V < 1. The
basic idea is to generalize the “ergodic bipartition” ansatz for
chaotic eigenstates discussed in Ref. [6]. We write the Hamil-
tonian as H = HA + HAB + HB + HBC + HC + HCA, where
HA, HB, HC denote the part of H supported only on the spa-
tial region A, B,C, and HAB, HBC, HCA denote the interaction
between A and B, B and C, C and A. Introducing the chaotic
eigenstates |EA

a 〉, |EB
b 〉, |EC

c 〉 corresponding to the bulk Hamil-
tonians HA, HB, HC respectively, we propose the following
“ergodic tripartite state” ansatz for a single chaotic eigenstate:

|E〉 =
∑

EA
a +EB

b +EC
c ∈(E− 1

2 �,E+ 1
2 �)

ψ (a, b, c)
∣∣EA

a

〉 ⊗ ∣∣EB
b

〉 ⊗ ∣∣EC
c

〉
,

(11)

where ψ (a, b, c) are random complex numbers, and � is a
small energy window. Following the calculation in Ref. [6],
one can immediately show that such an ansatz satisfies ETH
for any operators of the form O = OAOBOC where OA, OB,
OC are supported on A, B, C, and they are not close to the
boundary between any two subsystems. Therefore, we expect
this is a good ansatz for calculating any bulk quantity such as
the volume-law coefficient of negativity between A and B.

To make progress, we calculate the third Rényi negativity
R3 between A and B for the tripartite state |E〉, as detailed
in Appendix D. As an example, we consider a system whose
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FIG. 3. Third Rényi negativity R3 of ergodic tripartite states
defined in Eq. (11) as a function of VAB/V at various inverse tem-
peratures for systems with Gaussian density of states. At β = 0, the
volume-law component of R3 exactly reproduces the prediction from
a random pure state, exhibiting a transition from zero to a volume-
law scaling at VAB/V = 1/2. At nonzero β, the ergodic tripartite
states exhibit such a transition at VAB/V = 1/2 as well, but there
are two more singularities in the volume-law coefficient: one slightly
above VAB/V = 1/2, and one slightly below VAB/V = 1.

density of states D(u) ∼ eV s(u) is a Gaussian, i.e., the thermal
entropy density is quadratic s(u) = log 2 − 1

2 u2. Note that
quantum spin chains with local interactions generically have
such Gaussian density of states [68,69]. We find that in the
thermodynamic limit V → ∞, R3/V is zero for VAB/V < 1/2
while nonzero for VAB/V > 1/2, faithfully capturing the area-
law to volume-law transition (Fig. 3). In particular, R3 for the
ergodic tripartite state at infinite temperature β = 0 exactly
reproduces the prediction from the random pure states. For
finite temperature β �= 0, curiously, there are two extra singu-
larities for the volume-law coefficient. It will be interesting to
investigate in the future whether the same feature applies to
negativity as well.

C. Integrable systems: Volume-law scaling for free fermions

In this section we will discuss free fermions in one spatial
dimension and show that the subsystem negativity is volume
law for any subsystem volume fraction, as suggested by the
aforementioned ED study of integrable spin chain. Although
we will present detailed calculation only in one spatial dimen-
sion, the same approach works in arbitrary dimensions, and
the scaling of subsystem negativity also remains a volume law.

Consider a one dimensional lattice of L sites with peri-
odic boundary condition, the most general Hamiltonian for
free fermions with translational symmetry and U (1) charge
conservation reads

H = −
L∑

x1,x2=1

[t (x1 − x2)c†
x1

cx2 + H.c.]. (12)

Dividing the system into three parts labeled by A (sites
from x = 1 to x = LA), B (sites from x = LA + 1 to x =
LA + LB), and C (sites from x = LA + LB + 1 to x = L), we
are interested in the negativity between A and B for energy
eigenstates.

Given a fermion eigenstate |ψ〉, which is a Gaussian state
characterized by the correlation matrix C0,xy = 〈c†

xcy〉, we
consider its reduced density matrix in AB: ρAB = trC |ψ〉〈ψ |,
where ρAB is again a Gaussian state characterized by the cor-
relation matrix C, a subblock of C0,xy by restricting x, y ∈ AB.

As first shown in Ref. [17], a fermionic Gaussian state
operated by the fermionic partial transpose remains a Gaus-
sian, which allows for an efficient calculation of negativity
using the correlation matrix technique. Specifically, let ρ

TB
AB

be the partial transposed density matrix, one defines the nor-
malized composite density matrix (remains a Gaussian) ρ̃ =
ρ

TB
AB(ρTB

AB)
†
/Z̃ , where Z̃ = tr[ρTB

AB(ρTB
AB)

†
] = trρ2

AB. The negativ-
ity reads [18]

EN = log[tr
√

ρ
TB
AB(ρTB

AB)†] = log(trρ̃
1
2 ) + 1

2 log(trρ2
AB), (13)

where the above two terms can be calculated from the corre-
lation matrices:

log(trρ̃
1
2 ) = trlog[C̃

1
2 + (1 − C̃)

1
2 ],

1

2
log

(
trρ2

AB

) = 1

2
trlog[C2 + (1 − C)2]. (14)

with C̃ and C being the correlation matrix of ρ̃ and ρAB

respectively.
The central idea of calculating the negativity averaged over

all eigenstates is to perform an expansion for Eq. (14) in
powers of �̃(= I − 2C̃) and �(= I − 2C) around �̃ = 0 and
� = 0, analogous to the calculation in Ref. [70], which studies
the entanglement entropy averaged over all eigenstates of
quadratic fermionic Hamiltonians. Therefore, negativity can
be calculated from the moments of �̃ and �.

In the limit LAB/L � 1, we find the subsystem negativity
averaged over all eigenstates follows a volume-law scaling
(see Appendix E for details):

EN = αLAB =
[LAB

4L

]
LAB. (15)

For finite LAB/L, the volume-law coefficient α is a power
series of LAB/L: α = ∑∞

n=1 αn( LAB
L )

n
with α1 = 1/4, similar to

the bipartite entanglement entropy of free fermions discussed
in Ref. [70]. By comparing the leading-order result [Eq. (15)]
with the exact numerical calculation of negativity, we find a
good agreement when LAB/L � 1 (see Fig. 4, left). Crucially,
despite the fact that we are unable to calculate all moments
of � and �̃ to obtain a closed-form expression for negativity,
a positive volume-law coefficient when LAB/L � 1 already
ensures volume-law scaling for EN at any LAB/L. This is
because being an entanglement monotone, negativity is non-
increasing under a partial trace [49]. It follows that negativity
is nondecreasing when increasing the subsystem size fraction
LAB/L. Therefore, volume law in LAB/L � 1 already implies
volume law at any LAB/L.

IV. NEGATIVITY TRANSITIONS IN A QUANTUM
QUENCH

We now show that similar to its behavior in eigenstates,
subsystem negativity of long-time-evolved states also distin-
guishes an integrable system from a nonintegrable system: the
former exhibits a volume-law scaling for any VAB/V while
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FIG. 4. Subsystem negativity EN as a function LAB/L in one-
dimensional free fermion model [defined in Eq. (12)] with nearest-
neighboring hopping. Left: averaged EN over randomly chosen 105

eigenstates at L = 200. Right: Long-time EN of the state |ψ (t )〉 for
large t evolved from a product state at t = 0 (|ψ0〉 = ∏L−1

i=1,3,... c†
i |0〉

where |0〉 is a vacuum state) at L = 100. The data shown are the
averaged EN in the time interval [1000,1200]. Leading order refers
to EN = 1

4
LAB

L LAB [Eq. (15)].

the later exhibits an entanglement transition from area law to
volume law at a certain finite VAB/V . The numerical evidence
for these statements can be seen in Fig. 5, where we consider
the spin chain Hamiltonian [Eq. (6)] with the initial state
|ψ0〉 as a Néel state and study the subsystem negativity for
its time-evolved state |ψ (t )〉 = e−iHt |ψ0〉. We also study the
long-time negativity for a initial product state evolved by a
free fermion Hamiltonian and find it exhibits a volume law
as well (see Fig. 4, right). In the following, we will provide
analytical understanding for these numerical results. We note
that our arguments below do not depend on the dimensionality

0.2 0.4 0.6 0.8 1.0
LAB/L

0.0

0.1

0.2

0.3

E
N
/L

J2 = 0.0, L = 12

J2 = 0.0, L = 14

J2 = 0.0, L = 16

J2 = 0.0, L = 18

J2 = 0.0, L = 20

J2 = 0.8, L = 12

J2 = 0.8, L = 14

J2 = 0.8, L = 16

J2 = 0.8, L = 18

J2 = 0.8, L = 20

FIG. 5. Comparison of a nonintegrable Hamiltonian (J2 = 0.8)
and an interacting integrable Hamiltonian (J2 = 0.0) defined in
Eq. (6) for negativity EN between two subsystems A and B in a
time-evolved state |ψ (t )〉 at large t . While the former exhibits an
area-law to volume-law transition at a finite LAB/L ≈ 1/2, the latter
exhibits a volume-law scaling for any LAB/L. The data shown are the
average of negativity over the time interval [20,30].

of the systems and are independent of the precise geometry of
the tripartition.

A. Nonintegrable systems: A rigorous bound

Before presenting analytical understanding of subsystem
negativity for quantum quench in nonintegrable systems, we
first present a continuity bound of negativity valid for arbitrary
density matrices, which will be essential for our discussion
later.

Continuity bound for negativity: Continuity bounds for
various entanglement measures, such as the Fannes-Audenart
inequality [71–73] and the Fannes-Alicki inequality [74], have
found various applications in quantum information theory
[75]. Here we derive a continuity bound for the entanglement
negativity EN .

Given arbitrary density matrices ρ and ω acting on a d-
dimensional bipartite Hilbert space H = HA ⊗ HB, we prove
that

|EN (ρ) − EN (ω)| � log(1 +
√

d‖ρ − ω‖2), (16)

where EN (ρ) = log (‖ρTB‖1), and || ||2 denotes the 2-norm
(also known as the Hilbert-Schmidt norm). To derive this
bound, notice that | ‖ρTB‖1 − ‖ωTB‖1| � ‖ρTB − ωTB‖1 �√

d‖ρTB − ωTB‖2, where we first utilize a reverse triangular
inequality for the matrix 1-norm, and then utilize an
inequality between the 1-norm and 2-norm [76]. Finally,
using the fact that tr[M2] = tr[(MTB )2] for any matrix
M, one finds | ‖ρTB‖1 − ‖ωTB‖1| �

√
d‖ρ − ω‖2 ≡ �.

To proceed, we can assume ‖ρTB‖1 � ‖ωTB‖1 without
any loss of generality. A simple manipulation shows
that log (‖ρTB‖1) − log (‖ωTB‖1) � log (1 + �/‖ωTB‖1) �
log (1 + �), where the last inequality is due to ‖ωTB‖1 � 1
for any density matrix ω. This completes the proof of Eq. (16),
and we will now employ this bound for proving the area-law
subsystem negativity up to a finite critical VAB/V .

Application to quantum quenches: For the quantum quench
in nonintegrable systems, we analytically show that the area
law for subsystem negativity persists up to a finite VAB/V .
To start, given a time-evolved state |ψ (t )〉 = e−iHt |ψ0〉, its
reduced density matrix on AB is

ρAB(t ) =
∑
mn

cmc∗
ne−i(Em−En )t trC (|m〉〈n|), (17)

where cm is the overlap between the eigenstates |m〉 and the
initial state: cm = 〈m||ψ0〉, and Em denotes the energy of |m〉.
Define the diagonal ensemble ω by taking an infinite time
average of ρ(t ) = |ψ (t )〉〈ψ (t )|

ω = lim
T →∞

1

T

∫ T

0
dt ρ(t ) = ρ(t ) =

∑
m

|cm|2|m〉〈m|, (18)

and ωAB = trCω as the corresponding reduced density matrix
on AB, we utilize Eq. (16) combined with the concavity of
logarithm and find

|EN (ρAB(t )) − EN (ωAB)| � log(1 +
√

dAB ‖ρAB − ωAB‖2),

(19)

where dAB = eVAB log 2 is the Hilbert space dimension of AB. To
further bound the time average of the 2-norm, we now employ
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a result derived in Ref. [77], which is valid for any Hamilto-
nian without degenerate energy spectrum (hence valid for the
nonintegrable Hamiltonians): ‖ρAB − ωAB‖2 �

√
dABe− 1

2 S2(ω),
where S2(ω) is the second Rényi entropy of the diagonal
ensemble ω. Combining this result with Eq. (19), we thus
obtain the bound

|EN (ρAB(t )) − EN (ωAB)| � log(1 + dABe− 1
2 S2(ω) ). (20)

Since S2(ω) in nonintegrable systems is extensive [78]:
i.e., S2(ω) = αV with 0 < α � log 2, Eq. (20) implies that
in the regime VAB/V < f ∗ = α/(2 log 2) for almost all times,
the difference between EN (ρAB(t )) and EN (ωAB), are exponen-
tially small in the total system volume. Therefore for almost
all times t ,

lim
V →∞

[EN (ρAB(t )) − EN (ωAB)] = 0 for
VAB

V
< f ∗, (21)

where f ∗ = α/(2 log 2).
Since all eigenstates satisfy area-law subsystem negativ-

ity for VAB/V � 1/2 as argued in Eq. (10), the subsystem
negativity of reduced density matrix from the diagonal ensem-
ble, i.e., EN (ωAB) = log (‖ωTB

AB‖1), also follows an area law
[79], which hence indicates the area-law scaling of EN (t ) for
VAB/V < f ∗ � 1/2 due to Eq. (21).

B. Integrable systems: Volume-law scaling from quasiparticles

For quantum quenches in integrable systems, the quasipar-
ticle picture, as first introduced in Ref. [56], has successfully
described the growth of many-body entanglement [80–86].
In particular, Ref. [83] showed that such picture allows for
an exact prediction of time-evolved negativity under a quan-
tum quench in a space-time scaling limit, whose validity
is further supported by numerically studying negativity be-
tween two subsystems embedded in an infinite system of
one-dimensional free bosons and free fermions. Here we in-
stead consider finite subsystem size fraction LAB/L, and adopt
the quasiparticle picture to provide a heuristic argument for
volume-law subsystem negativity for any LAB/L at long time.
Although we specialize to one space dimension below, our
argument generalizes to higher dimensions.

In the description of the quasiparticle picture, since an
initial state typically has a finite-energy-density with respect
to the postquench Hamiltonian, each point in space is a source
of quasiparticle pairs, and the two particles in each pair are en-
tangled while propagating with opposite momentum. Because
a quasiparticle pair contributes to the entanglement between
two spatial regions A and B only when one particle is in A and
its partner is in B, the total amount of entanglement between
A and B can be obtained by counting the number of such
quasiparticle pairs.

Now we apply the quasiparticle picture to study the
subsystem negativity. Given a one-dimensional chain with
periodic boundary condition (x + L ≡ x), let A be the spa-
tial interval (−LAB/2, 0), B = (0, LAB/2), and C be the rest
of the chain (see Fig. 6), at t = 0, quasiparticle pairs with
different momenta k are generated uniformly in space. It
is not hard to see that only when a pair is generated
within the spatial interval I = (−LAB/4, LAB/4)

⋃
(L/2 −

LAB/4, L/2 + LAB/4) (marked by dashed lines), the two
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FIG. 6. A one-dimensional ring divided into subregion A (red),
B (blue), and C (green) to study negativity between A and B. Only
those quasiparticle pairs generated in the dashed regions can be
shared between A and B to contribute entanglement between these
two regions.

particles can reside in A and B simultaneously at some later
times to entangle A and B. Now we consider a pair of quasi-
particles with velocities v(k) and v(−k) = −v(k), generated
at x in the interval (−LAB/4, LAB/4). These two particles
initially both belong to either A or B, and they begin to
entangle A and B at t1 = |x/v| until one of the particles
first moves into C at t2 = (LAB/2 − |x|)/|v|. Due to the pe-
riodic boundary condition, in a time period T = L/|v|, the
time duration for two particles simultaneously in A and B
is 2(t2 − t1) in a period. Thus the entanglement between A
and B contributed from the quasiparticle pair averaged over
the period T is s(k)2(t2 − t1)/T , where s(k) is the amount of
entanglement carried by the pair. Since all quasiparticle pairs
emitted from I = (−LAB/4, LAB/4)

⋃
(L/2 − LAB/4, L/2 +

LAB/4) with all possible momenta contribute to entanglement,
one finds long-time averaged negativity between A and B
within the quasiparticle picture reads

EN,qp = 2
∫

dk

2π

∫ − LAB
4

− LAB
4

dx s(k)

(
LAB

L
− 4|x|

L

)
= 2

∫
dk

2π
s(k)

(LAB

4L

)
LAB,

(22)

which scales with the subsystem volume LAB with a volume-
law coefficient ∼LAB/L for any subsystem volume fraction. In
sum, the quasiparticle picture allows us to predict a volume-
law scaling of negativity at long time in a quantum quench:
EN ∼ L2

AB/L. Such volume-law scaling results from the fact
that the number of quasiparticle pairs that can entangle A
and B scales with LAB, and the fraction of time duration
in which a pair entangles A and B in a period scales with
LAB/L. Note that Ref. [83] also studied subsystem negativity
for systems with quasiparticles and instead found it vanishes
at long time. This is because they considered a different limit:
limL→∞ LAB/L = 0.

In addition to predicting a volume-law subsystem negativ-
ity at long time, the quasiparticle picture also predicts the
time evolution of negativity. As found in Ref. [83], s(k),
the entanglement negativity carried by a quasiparticle pair
with momentum k, can be fixed by the entropy contribu-
tion of k-momentum mode in S(1/2), i.e., the Rényi entropy
at index 1/2, in the generalized Gibbs ensemble (GGE).
Intuitively, this is because entanglement negativity between
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FIG. 7. Negativity EN compared with Rényi mutual information
I (1/2) and the prediction of negativity EN,qp from quasiparticle picture
between two subsystems A and B both of size LAB/2 as a function
of time t by evolving a product state |ψ0〉 at t = 0 with a nearest-
neighboring hopping fermion model [Eq. (12)]. The initial state is
chosen as |ψ0〉 = ∏L−1

i=1,3,... c†
i |0〉 where |0〉 is a vacuum state. We

choose the total system size L = 200 and subsystem size LAB = 100.
Inset: dynamics of EN , I (1/2), and EN,qp up to an extremely long
time t � LAB. The dashed red line is given by Eq. (22), i.e., the
infinite-time average of EN,qp.

complementary systems in a pure state identically equals
S(1/2). This implies that EN = I (1/2)/2 whenever quasiparticle
picture holds [83], where I (1/2)(≡ S(1/2)

A + S(1/2)
B − S(1/2)

AB ) is
the Rényi mutual information at index 1/2. Here we test this
claim in our setup for a quench in a one-dimensional free
fermion model. We compare three different quantities: EN ,
I (1/2)/2, and EN,qp predicted from the quasiparticle picture
(Fig. 7). We find excellent agreement between these three
quantities up to a timescale t ∼ LAB while after that time,
they start to deviate from each other as shown in the in-
set of Fig. 7. At extremely long time, i.e., t � LAB, EN,qp

typically oscillates between I (1/2)/2 and EN . Such deviation
from the quasiparticle picture has also been observed in
Ref. [83]. Nonetheless, the quasiparticle picture provides a
simple understanding of the volume-law subsystem negativity
in integrable systems.

V. DISTINGUISHING MBL FROM ETH PHASE USING
NEGATIVITY TRANSITION

Finally we discuss how signatures in subsystem negativ-
ity distinguish MBL phase from ETH phase. Deep in the
MBL phase, all eigenstates are localized, exhibiting area-law
scaling in the entanglement entropy between two comple-
mentary systems [37,87–89]. Furthermore, eigenstates can be
efficiently described by matrix product states of finite bond
dimension [90]. Therefore, negativity between two subsystem
A and B naturally follows an area-law scaling for any LAB/L.
Despite the presence of localized eigenstates, initial product
states under time evolution in the MBL phase at long time
exhibit volume-law scaling of bipartite entanglement entropy
[91], which can be understood as a dephasing mechanism
given by an effective “l-bits” Hamiltonian [38,40,89]. Here we
study the long-time-evolved state and find that the negativity
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FIG. 8. Comparison of the ETH Hamiltonian (w = 1) and the
MBL Hamiltonian (w = 5) in subsystem negativity EN (upper panel)
and mutual information I (lower panel) as a function LAB/L for
a time-evolved state |ψ〉 at t = 1000. The data for L = 12, 14, 16
presented are averaged over 200, 100, 100 random samples.

between two subsystems exhibits a volume-law scaling as
well. To obtain MBL phase, we introduce on-site random
fields on spins in Eq. (6) to obtain the model Hamiltonian

H =
L∑

i=1

(
J1 
Si · 
Si+1 + J2Sz

i Sz
i+1 − hiS

z
i+1

)
, (23)

where hi is randomly drawn from [−w,w], and we set J1 =
1, J2 = 0.8. Choosing the initial state as a Néel state |ψ0〉, we
study the negativity of the state |ψ (t )〉 = e−iHt |ψ0〉 at large
t . We compare w = 1 (ETH phase) and w = 5 (MBL phase)
in the long-time negativity EN between A and B with the same
tripartition as the spin chains and free fermions studied earlier.
We find a signature of volume-law scaling in EN for the MBL
phase, similar to the cases of integrable systems discussed
before, in contrast to the area-law to volume-law transition
in the ETH phase (see upper panel in Fig. 8).

To build intuition for the volume-law subsystem negativ-
ity in the MBL phase, we consider the mutual information
between A and B. As argued in Ref. [92], the bipartite en-
tanglement entropy for a single region of size � scales as
S ∼ � − �2/L where L is the total system size. This implies
that the mutual information between A and B is a volume
law for any LAB/L, unlike the ETH phase where there is an
area-law to volume-law transition at a finite critical LAB/L.
We find evidence in support of this claim in our ED study (see
lower panel in Fig. 8). Given that mutual information seems
to follow the same scaling as subsystem negativity in all the
other examples we have considered so far, this indicates that
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the subsystem negativity also satisfies a volume law for all
LAB/L.

We note that subsystem negativity for models that exhibit
the MBL transition was also previously studied in Ref. [93].
However, the focus of Ref. [93] was different: they consid-
ered the scaling of subsystem negativity as a function of the
separation between two disjoint blocks at the transition.

VI. COMPARISON WITH MUTUAL INFORMATION

In all systems studied so far in this paper, the subsystem
negativity and the mutual information both essentially have
the same scaling form as a function of the subsystem volume
fraction. Since mutual information is not a mixed-state entan-
glement measure, it is natural to ask whether there are physical
situations related to quantum thermalization where these two
quantities can qualitatively behave differently, and therefore
necessitate a mixed-state entanglement (such as subsystem
negativity) based protocol? We now motivate a few physical
scenarios where that is indeed the case.

First, consider separable states ρ = ∑
i piρ

A
i ⊗ ρB

i , where∑
i pi = 1 with pi � 0, and ρA

i , ρB
i are density matrices on

A, B. Such states manifestly have zero negativity, but they
allow for a volume-law mutual information between A and B
as we show below. Such a construction relies on the intuition
that mutual information measures the amount of information
gained regarding one system by observing the other. Therefore
one can imagine that when the index i runs over a range that
is exponentially large in the total system volume, observing
a subsystem (say, A) gives a great amount of knowledge
for the other (B), which can result in a volume-law mutual
information. A concrete example is given by the so-called
thermo-mixed double state [94], which has been proposed as
a typical mixed state of a two-sided black hole:

ρTMD =
∑

n

e−βEn

Z
[|n〉〈n|]A ⊗ [|n〉〈n|]B, (24)

where Z = ∑
n e−βEn . It is not difficult to see that the mutual

information I (A, B) = SA + SB − SAB = Sth, where Sth is the
extensive thermal entropy of a canonical ensemble for Hamil-
tonian H = ∑

n En|n〉〈n| at inverse temperature β. Hence
ρT MD constitutes a class of states whose negativity and mutual
information behave qualitatively differently.

As an example motivated by condensed matter physics,
consider eigenstates of a “quantum disentangled liquid”
(QDL) [95–97]. The Hilbert space of QDL consists of two
kinds of particles, “heavy” and “light,” with the property
that a projective measurement of the heavy (light) particles
results in a wave function of the light (heavy) particles that
has an area-law (volume-law) bipartite entanglement. As an
example, consider the following wave function where the
sets {R} and {r} denote coordinates of the heavy and light
particles, respectively: |ψ〉 = ∑

R Det(eiki .Rj )
√

p({R})|φR〉|R〉.
Here Det(eiki .Rj ) denotes a slater determinant wave function
with volume-law entanglement, state |φR〉 is a state in the
Hilbert space of light particles with area-law entanglement,
and p({R}) is some probability distribution over the configu-
rations of the heavy particles. As a specific example, let’s now

assume that the states |φR〉 are all product states of the form
|φR〉 = |φR〉A|φR〉B where |φR〉A and |φR′ 〉A are orthonormal
whenever {R} and {R′} are distinct. Similarly, |φR〉B and |φR′ 〉B

are also orthonormal. This assumption may be difficult to jus-
tify for systems with geometrically local interactions [98], and
may require k-local interspecies interactions (since the state of
region A will likely depend only on heavy degrees of freedom
in the vicinity of A). Nonetheless, if it holds, then the density
matrix for light particles is given by ρ = ∑

R p(R)|φR〉〈φR|,
which is clearly separable. The mutual information, on the
other hand, is given by −∑

R p(R) log p(R), which is volume
law since the number of distinct states in the set {R} scale
exponentially with the system size.

As a final example, consider an initial state which does
not have a sharply defined energy density with respect to a
nonintegrable Hamiltonian H . To be concrete, let’s assume
that the initial state has a support over two distinct energy
densities which correspond to inverse temperatures β1 and β2.
Unitary evolution of this state with H for sufficiently long time
will lead to a reduced density matrix of a region AB (with
VAB/V � 1) that may be approximated as ρAB ≈ pe−β1HAB

ZAB (β1 ) +
(1 − p) e−β2HAB

ZAB (β2 ) . Here ZAB denotes the partition function, and
0 < p < 1. By a similar argument we utilized before [79],
one finds that the negativity of this state is area law. However,
the mutual information is generically expected to be volume
law. This can be seen by explicitly calculating the mutual
second Rényi entropy between A and B, or alternatively by
noticing that the logarithm of ρAB yields a highly nonlocal
Hamiltonian.

VII. DISCUSSION AND SUMMARY

In this work, using analytical arguments and exact digo-
nalization studies, we provided evidence that the subsystem
negativity EN between two regions A, B in a tripartite system
is a useful quantity to distinguish three classes of systems: (1)
systems that satisfy ETH and can therefore act as their own
heat bath, (2) systems with well-defined quasiparticles, and
(3) systems that many-body localize. For self-thermalizing
eigenstates, EN exhibits the area-law scaling for VAB/V <

1/2 and the volume-law scaling for VAB/V > 1/2. In strong
contrast, for eigenstates of an integrable system, either nonin-
teracting or interacting, we find a volume-law scaling in EN

for arbitrary VAB/V . In support of our numerical evidence,
we analytically calculated the volume-law coefficient of
negativity, averaged over all free fermion eigenstates, and
showed that it satisfies a volume-law scaling. We also
provided evidence that similar distinction holds for long-time-
evolved states starting from a product state, and used the
quasiparticle picture to understand the volume-law scaling in a
system with quasiparticles. Finally, we provided evidence that
for an MBL phase in one spatial dimension, EN of long-time-
evolved states shows a volume-law scaling for any VAB/V ,
similar to the integrable models. We also calculated a Rényi
version of subsystem negativity analytically for random Haar
states and found that they show a transition from being zero
to following a volume law as the “subsystem volume” (=
logarithm of the subsystem Hilbert space dimension) across
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half of the total system volume. The eigenstates of MBL of
course show an area-law scaling for any VAB/V . See Fig. 1
for a summary.

We note that there are several other diagnostics that
distinguish between integrable systems and nonintegrable
systems, including level statistics [99,100], spectral form
factor [101–104], average entanglement entropy of eigen-
states [105], growth of operator space entanglement entropy
from simple local operators [106–109], diagonal entropy in
quantum quenches [110,111], mutual information in quantum
quenches [112], entanglement revival [86], tripartite mutual
information of local operators or unitary time-evolution op-
erator [113,114], and out-of-time-order correlator [115–118].
Our diagnostic is sensitive to the presence or absence of quasi-
particles but not scrambling, and requires time evolution only
up to a timescale that is polynomial in system size. The fact
that it probes the presence of quasiparticles is most evident
in our calculation for the subsystem negativity in integrable
systems using the quasiparticle picture (Sec. IV). To see that
the protocol is not sensitive to scrambling, consider discrete
time evolution in a random Clifford circuit [119]. Here there
are no well-defined quasiparticles, but there is no scrambling
either. In the steady state, the density matrix of a subregion AB
with VAB/V < 1/2 is identity, and therefore, ρAB is separable.
In this sense, our diagnostic is closer in spirit to operator space
entanglement and mutual information, although as discussed
in Sec. VI, there are cases where mutual information is not a
good measure, and the operator space entanglement is known
to be not a mixed-state entanglement measure either [107].

Although for nonthermalizing systems we found that
they always obey a volume law, and thus do not show a
transition from area to volume law at VAB/V = 1/2, there
is still a possibility that they exhibit a weaker singular-
ity in the coefficient of the volume law at VAB/V = 1/2.
An example of such a weaker singularity in an integrable
system is provided by the bipartite entanglement in a one-
dimensional random quadratic fermion Hamiltonians studied
in Ref. [120], whose closed form expression was argued to
be S = [1 − 1+ f −1(1− f ) log(1− f )

log(2) ]LA log(2) where LA is the sub-
system size and f is the subsystem fraction. Expanding this
expression around f = 1/2, one notices that its nth derivatives
for odd n � 3 are discontinuous at f = 1/2. Therefore, the
mutual information between two regions A and B in one di-
mension would be singular at LAB/L = 1/2 despite remaining
a volume law for all LAB/L. One may ask whether an analo-
gous singularity exists in subsystem negativity.

A basic point that remains to be understood is the mag-
nitude of the volume-law coefficient in both integrable (for
all VAB/V ) and nonintegrable (for VAB/V > 1/2) systems.
Relatedly, it will be of interest to extend our calculation
for the third Rényi negativity in a tripartite ergodic state
(Sec. III B) to arbitrary Rényi index so that it can be analyti-
cally continued to obtain an expression for the entanglement
negativity.

Another question which needs further investigation is: For
the long-time state evolved from a simple product state in
nonintegrable systems, what is the critical subsystem size
fraction for the area-law to volume-law transition of sub-
system negativity? As discussed in Sec. IV A, utilizing the

FIG. 9. Dominating terms in trρn
AB .

results from Refs. [77,78], we show only the persistence of
area-law scaling up to VAB/V = f ∗ = α/(2 log 2), where α

is the volume-law coefficient of the second Rényi entropy of
the diagonal ensemble. It would be interesting to pinpoint the
exact critical fraction f ∗ in the future.

Another related direction we did not address is: to what
extent can the features of subsystem negativity in quantum
quench of integrable models be captured by Generalized
Gibbs Ensemble (GGE) (see Ref. [121] for a review). It is
known that GGE faithfully describes the long-time expec-
tation values of local observables. It is then natural to ask
whether GGE captures the nonlocal entanglement measured
by negativity between two subsystem as well. It is natural to
suspect that the extensive number of conserved quantities is
responsible for the extensive negativity. The bound on neg-
ativity in Ref. [48] is proportional to the number of terms
in the entanglement Hamiltonian of AB that cuts across the
entanglement boundary between A and B [see, e.g., Eq. (10)],
which may seem to suggest that GGE implies an extensive
negativity. However, this approach only leads to an upper
bound, and is thus not directly helpful to show an extensive
negativity.

Finally, it will be worthwhile to find experimental proto-
cols to construct states with low mixed-state entanglement but
large mutual information, perhaps along the lines discussed in
Sec. VI.
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APPENDIX A: RENYI NEGATIVITY OF RANDOM PURE STATES

1. Calculation of volume-law coefficients

We consider a system consisting of V spins and define a pure state |ψ〉 = ∑
i ψi|i〉, where |i〉 is an arbitrary orthonormal

basis, and {ψi} is randomly sampled from the probability distribution: P({ψi}) ∼ δ(1 − ∑
i |ψ |2). Dividing the system into three

parts labeled by A, B, and C with VAB/2, VAB/2, and VC number of spin-1/2 particles, we here calculate the Rényi negativity Rn

between A and B. Rn with integer order n (n > 2) is defined as

Rn = bn log

{
tr
[(

ρ
TB
AB

)n]
trρn

AB

}
, (A1)

where ρAB = trC |ψ〉〈ψ | is the reduced density matrix on AB, and bn = 1
1−n , 1

2−n for odd n and even n, respectively.
Before proceeding to the calculation, we recall that given P({ψi}) ∼ δ(1 − ∑

i |ψ |2), as the total Hilbert space dimension
d → ∞, one has 〈ψ∗

i ψ j〉 = 1
d δi j , 〈ψiψ j〉 = 0, and any 2N-point functions of finite N follow the Wick’s theorem:〈

N∏
n=1

(
ψinψ

∗
jn

)〉 =
∑

σ

N∏
n=1

〈ψinψ
∗
jσ (n)

〉, (A2)

where N! possible permutations σ are summed over. Using these results, we calculate the ensemble average trρn
AB =∑

{ai,bi,ci|i=1,...,n}
∏n

i=1 [ψ (ai, bi, ci )ψ∗(ai+1, bi+1, ci )], where all possible Wick contracting terms contribute. As V → ∞ at a
fixed subsystem fraction, only one type of term (may have degeneracy) dominates. The leading-order contractions for VAB < 1

2V
and VAB > 1

2V are shown in Figs. 9(a) and 9(b), which give

dntrρn
AB =

{
2VA+VB+nVC for VAB < 1

2V

2n(VA+VB )+VC for VAB > 1
2V

. (A3)

Now we calculate tr[(ρTB
AB)

n
] = ∑

{ai,bi,ci|i=1,...,n}
∏n

i=1 [ψ (ai, bi, ci )ψ∗(ai+1, bi−1, ci )]. For VAB < 1
2V , the dominating term is

given by Fig. 10(a), giving dntr[(ρTB
AB)

n
] = 2VA+VB+nVC . On the other hand, the leading-order contraction pattern for VAB > 1

2V
depends on the parity of n. For even n, the pattern is given by Fig. 10(b). which results in a weight 2( n

2 +1)(VA+VB )+ n
2 VC . Note

that one can vertically shift this contraction pattern by one replica to generate another contraction pattern of the same weight,
contributing a factor of 2 degeneracy. Thus dntr[(ρTB

AB)
n
] = 2 · 2( n

2 +1)(VA+VB )+ n
2 VC .

For odd n at VAB > 1
2V , the leading-order contraction is given by Fig. 10(c), giving the weight 2

n+1
2 (VA+VB )+ n+1

2 VC . Note that the
degeneracy is n since there are n possible choices for the horizontal contraction.

In sum,

for even n, dntr
[(

ρ
TB
AB

)n] =
{

2VA+VB+nVC for VAB < 1
2V

2 × 2( n
2 +1)(VA+VB )+ n

2 VC for VAB > 1
2V

, (A4)

for odd n, dntr
[(

ρ
TB
AB

)n] =
{

2VA+VB+nVC for VAB < 1
2V

n2
n+1

2 (VA+VB )+ n+1
2 VC for VAB > 1

2V
. (A5)

FIG. 10. Dominating terms in tr[(ρTB
AB)

n
].
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Combining the above equations, one finds the following:
For even n:

Rn =
{

0 forVAB < VC
1
2 (VAB − VC ) log 2 − 1

n−2 log 2 forVAB > VC
; (A6)

For odd n:

Rn =
{

0 forVAB < VC
1
2 (VAB − VC ) log 2 − 1

n−1 log n forVAB > VC
. (A7)

In other words, Rn for n > 2 has the same volume-law coefficient as entanglement negativity.

2. Proof that |log trρn
AB − log trρn

AB| and |log{tr[(ρTB
AB)n]} − log{tr[(ρTB

AB)n]}| are exponentially small in the system volume

The proof presented here is analogous to Ref. [6], which we outline below. First we write

trρn
AB = trρn

AB + (
trρn

AB − trρn
AB

) = trρn
AB(1 + x), (A8)

where x = trρn
AB

trρn
AB

− 1. It follows that

log trρn
AB = log trρn

AB + log(1 + x), (A9)

where the last term is the difference between two kinds of averages, and we calculate the variance of x to show such difference
is exponentially small. By definition x = 0, and the variance is

x2 =
(

trρn
AB

trρn
AB

− 1

)2

= (trρn
AB)2(

trρn
AB

)2 − 1. (A10)

Given trρn
AB = ∑

{ai,bi,ci|i=1,...,n}
∏n

i=1 [ψ (ai, bi, ci )ψ∗(ai+1, bi+1, ci )], we first consider the case for VAB/V < 1/2. Taking an
ensemble average, Wick’s theorem implies that the next-leading order term must be exponentially small in the system volume.
Therefore,

trρn
AB = d−n2n(VA+VB )+VC

[
1 + O(e−α1V )

]
(A11)

and (
trρn

AB

)2 = d−2n
(
2n(VA+VB )+VC

)2[
1 + O(e−α2V )

]
. (A12)

On the other hand, (trρn
AB)2 gives two copies:

(trρn
AB)2 =

∑
{ai,bi,ci|i=1,...,n}

n∏
i=1

[ψ (ai, bi, ci )ψ
∗(ai+1, bi+1, ci )]

∑
{a′

i,b
′
i,c

′
i|i=1,...,n}

n∏
i=1

[
ψ

(
a′

i, b′
i, c′

i

)
ψ∗(a′

i+1, b′
i+1, c′

i

)]
. (A13)

Taking an average, the leading-order contraction of this 4n-point function will be the leading-order contraction of the 2n-point
function from each copy, i.e., two copies decouple at the leading order. Consequently,

(trρn
AB)2 = (

trρn
AB

)2[
1 + O

(
e−αV

)]
(A14)

and

x2 = (trρn
AB)2(

trρn
AB

)2 − 1 = O
(
e−αV

)
, (A15)

where α is a positive O(1) constant. This implies there is no fluctuation in x as V → ∞. Therefore, log trρn
AB − log trρn

AB =
log(1 + x) is exponentially small. Using the same approach, it is straightforward to perform a similar calculation for the partially

transposed moment to prove |log {tr[(ρTB
AB)

n
]} − log {tr[(ρTB

AB)
n
]}| is exponentially small in the system volume as well.
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FIG. 11. Subsystem (Rényi) negativity of a single energy eigenstate at inverse temperature β = 0.2 in the nonintegrable spin chain.

APPENDIX B: ADDITIONAL NUMERICAL DATA OF SUBSYSTEM NEGATIVITY

1. Finite temperature eigenstates in a nonintegrable spin chain

Here we report numerical data on negativity between A and B of finite temperature eigenstates in the nonintegrable spin chain
[Eq. (6) with J2 = 0.8] in Fig. 11.

2. Eigenstates in a U(1) symmetric integrable spin chain

In the main text, we numerically show that the finite-energy-density eigenstates of the Heisenberg chain [Eq. (6) with J2 = 0]
exhibit volume-law subsystem negativity. Here we consider an integrable XXZ chain by introducing anisotropy in the Heisenberg
chain to break the SU(2) symmetry down to U(1), and provide numerical evidence that subsystem negativity of eigenstates
and long-time states in a global quench remains volume law. Specifically we consider H = ∑L

i=1 Sx
i Sx

i+1 + Sy
i Sy

i+1 + �Sz
i Sz

i+1 +
J2Sz

i Sz
i+2, and investigate an integrable point (� = 0.4, J2 = 0) compared with a chaotic Hamiltonian (� = 1, J2 = 0.8). See

Fig. 12 for results.
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FIG. 12. Comparison of subsystem negativity between a U(1) symmetric integrable spin chain (� = 0.4, J2 = 0) and a chaotic (noninte-
grable) spin chain (� = 1, J2 = 0.8). Top panel: subsystem negativity of all energy eigenstates. Bottom panel: long-time averaged subsystem
negativity in a global quench from the Néel state.
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APPENDIX C: PROOF OF AREA-LAW SUBSYSTEM NEGATIVITY FOR VAB
V < 1

2 IN CHAOTIC EIGENSTATES

Given a chaotic eigenstate |ψ〉 with energy E for a local Hamiltonian H = HR + HR̄ + HRR̄, subsystem ETH [66] suggests
that for VR < VR̄, the reduced density matrix in R takes the form

ρR = 1

N
∑

i

eSR̄ (E−ER
i )|i〉〈i|, (C1)

where |i〉 is an eigenstate of HR, and eSR̄ (E−ER
i ) is the density of state of HR̄ at energy E − ER

i . This equation indicates that the
probability weight in |i〉 is proportional to the number of states in R̄ consistent with the energy conservation. Using the expression
of ρR, we will bound the negativity between two complementary subsystems A, B in R. To proceed, we expand SR̄(E − ER

i ):

SR̄(E − ER
i ) =

∞∑
n=0

( − ER
i

)n

n!

∂nSR̄(E )

∂En
. (C2)

Since microcanonical entropy is extensive, i.e., SR̄(E ) = VR̄sth(E/VR̄), one finds

∂nSR̄(E )

∂En
= 1

V n−1
R̄

∂nsth(E/VR̄)

∂ (E/VR̄)n = 1

V n−1
R̄

s(n)
th (u), (C3)

where u ≡ E/VR̄. Therefore,

ρR = 1

Z
eM, where M =

∞∑
n=1

s(n)
th (−HR)n

n!V n−1
R̄

. (C4)

To proceed, we now recall a result from Ref. [48]: given a thermal state ρ ∼ e−β(HA+HB+HAB ), negativity between A and B is
bounded by EN � β(JK + ‖HAB‖), where ‖ · · · ‖ denotes the operator norm, i.e., the largest singular value of an operator. K is
the number of terms when expanding HAB = ∑

α HA
α HB

α , and J is the upper bound of the interaction strength ‖HA
α ‖‖HB

α ‖ � J .
Using the triangular inequality, one also has ‖HAB‖ � JK so

EN � 2βJK, (C5)

which results an area law for a local Hamiltonian. To apply this equation, we write HR = HA + HB + HAB, where HA(HB) contains
the terms acting on region A(B), and HAB denotes the interaction between A and B. It follows that the nth order term in M reads

(−HR)n

V n−1
R̄

= (−HA − HB − HAB)n

V n−1
R̄

. (C6)

Taking thermodynamic limit while fixing the subsystem volume fraction, the above quantity can be reduced to

(−HR)n

V n−1
R̄

= 1

V n−1
R̄

[(−HAB)(−HA − HB)n−1 + (−HA − HB)(−HAB)(−HA − HB)n−2 + · · · (−HA − HB)n−1(−HAB)]. (C7)

Hence the nth order term in M contributes to the upper bound by

|s(n)
th |
n!

n

(
NAB

VR̄

)n−1

Jn|∂VAB|, (C8)

where J is the upper bound of interaction strength in HR = HA + HB + HAB, NAB is the number of terms in HA + HB, and |∂VAB|
is the number of terms in HAB. Finally one finds the upper bound of negativity:

EN � 2J
∞∑

n=1

(JNAB/VR̄)n−1

(n − 1)!
|∂

nsth(u)

∂un
||∂VAB| = 2J

∞∑
n=0

(JNAB/VR̄)n

(n)!
|∂

n+1sth(u)

∂un+1
||∂VAB|. (C9)

Define the function g(u, JNAB/VR̄) = ∑∞
n=0

(JNAB/VR̄ )n

(n)! | ∂n+1sth (u)
∂un+1 |, one finds

EN � 2Jg(E/VR̄, JNAB/VR̄)|∂VAB|. (C10)

This completes the proof of area law in negativity. Note that g(E/VR̄, JNAB/VR̄) is a function obtained by taking absolute value
for each term in the Taylor series of s′

th(E/VR̄ + JNAB/VR̄) about E/VR̄. Since functions g and s′
th, when expressed as power

series of JNAB/VR̄, have the same coefficient up to a minus sign, they share the same interval of convergence using a ratio test.
Therefore, assuming s(u) is an analytic function in (umin, umax), where umin/max are the lowest or highest energy density of the
Hamiltonian, s′

th(E/VR̄ + JNAB/VR̄) and g(E/VR̄, JNAB/VR̄) will be convergent as long as E/VR̄ + JNAB/VR̄ is in (umin, umax).
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APPENDIX D: SUBSYSTEM RÉNYI NEGATIVITY OF ERGODIC TRIPARTITE STATES

Here we calculate the third Rényi negativity R3 between two subsystems using the ergodic tripartite state ansatz: |E〉 =∑′
a,b,c ψ (a, b, c)|a〉 ⊗ |b〉 ⊗ |c〉. The prime symbol in the summation imposes the energy conservation: faua + fbub + fcuc = u,

where fα , uαi denote the subsystem fraction and the energy density of the subsystem α ∈ {A, B,C}, and u denotes the energy
density of |E〉. To calculate the third Rényi negativity R3:

R3 = 1

1 − 3
log

{
tr
[(

ρ
TB
AB

)3]
trρ3

AB

}
, (D1)

one introduces three replicas and computes the moments

trρ3
AB =

′∑
{ai,bi,ci|i=1,...,n}

ψ (a1, b1, c1)ψ (a2, b2, c2)ψ (a3, b3, c3)ψ∗(a2, b2, c1)ψ∗(a3, b3, c2)ψ∗(a1, b1, c3) (D2)

and

tr
[(

ρ
TB
AB

)3] =
′∑

{ai,bi,ci|i=1,...,n}
ψ (a1, b1, c1)ψ (a2, b2, c2)ψ (a3, b3, c3)ψ∗(a2, b3, c1)ψ∗(a3, b1, c2)ψ∗(a1, b2, c3), (D3)

where the energy conservation needs to be imposed on each individual replicas: fauai + fbubi + fcuci = u for i = 1, 2, 3. Taking
the average for the moments gives 3! = 6 possible Wick’s contraction patterns, and for example, a contraction denoted by 321
for trρ3

AB gives

ψ (a1, b1, c1)ψ (a2, b2, c2)ψ (a3, b3, c3)ψ∗(a2, b2, c1)ψ∗(a3, b3, c2)ψ∗(a1, b1, c3); (D4)

i.e., the first ψ contracts with the third ψ∗, the second ψ contracts with the second ψ∗, the third ψ contracts with the first ψ∗.
Using the contraction rule,

ψαψ∗
β = 1

d
δ(α = β ), (D5)

where d denotes the total Hilbert space dimension, the contraction pattern 321 gives a term in d3trρ3
AB:

X321 =
′∑

{ai,bi,ci|i=1,...,n}
δ(c1 = c2)δ(a2 = a3)δ(b2 = b3) =

′∑
ua1 ,ua2 ,ub1 ,ub2 ,uc1 ,uc3

eV{ fa[s(ua1 )+s(ua2 )]+ fb[s(ub1 )+s(ub2 )]+ fc[s(uc1 +s(uc3 )]},

(D6)
where s(e) is the entropy density at the energy density e, and the energy density for each subsystem is still subject to the energy
constraint. In the thermodynamic limit V → ∞, one finds

X321 = eV{ fa[s(u∗
a1

)+s(u∗
a2

)]+ fb[s(u∗
b1

)+s(u∗
b2

)]+ fc[s(u∗
c1

+s(u∗
c3

)]}, (D7)

where ∗ is used to denote the saddle point of the energy density. Thus,

d3trρ3
AB = max{X123, X231, X312, X213, X321, X132}. (D8)

One can perform a similar analysis for d3tr[(ρTB
AB)

3
]:

d3tr
[(

ρ
TB
AB

)3] = max{Y123,Y231,Y312,Y213,Y321,Y132}. (D9)

Therefore, for a given energy density of the ergodic tripartite state and given subsystem volume fractions fa, fb, fc, comparing the
saddle point value of each contraction patterns gives the volume-law coefficient of R3. While we only concern the volume-law
coefficient, we note that saddle point values from different contraction patterns can coincide, which induces an extra O(1)
constant.

Here we compute R3 assuming that the many-body density of states D(u) ∼ eV s(u) is a Gaussian, i.e., the entropy function

is quadratic s(u) = log 2 − 1
2 u2. For tr[(ρTB

AB)
3
], we compare the saddle point values from six possible contraction patterns as

a function of f = VAB/V . While at β = 0 [Fig. 13(a)], the exchange of the saddle point values occurs at f = 1/2, for β �= 0,
saddle point values exchange at two different subsystem fractions: one is slightly above f = 1/2, and the other one is slightly

below f = 1 [Fig. 13(b)]. Choosing the maximal contraction patterns gives Figs. 14(a) and 14(b), indicating that tr[(ρTB
AB)

3
] has

two singularities for β �= 0 but only one singularity for β = 0. On the other hand, trρ3
AB has only one singularity at f = 1/2

independent of the temperature as shown in Figs. 15(a) and 15(b). R3 as a function of f at different inverse temperatures is
shown in the main text (Fig. 3). R3 at β = 0 exactly matches the result from the random pure state, where the singularity at
f = 1/2 corresponds to the area-law to volume-law transition. The same feature carries over to the finite temperature ergodic
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FIG. 13. Saddle point value 1
V logY for all possible contraction patterns.

tripartite states (β �= 0). However, at β �= 0, there are two extra singularities in R3 inheriting from the singularities of tr[(ρTB
AB)

3
].

It would be interesting to investigate in the future to see whether this is a unique feature of Rényi negativity which is not shared
by negativity.

APPENDIX E: ENTANGLEMENT NEGATIVITY IN FREE FERMION SYSTEMS

1. Negativity of energy eigenstate |ψ〉
Considering a one dimensional lattice of L sites with periodic boundary condition, we study the free fermion Hamiltonian

with translation symmetry and U (1) charge conservation: H = −∑L
x1,x2=1 t (x1 − x2)c†

x1
cx2 + H.c., where the hopping amplitude

t (x1 − x2) = t∗(x2 − x1), and the operators ci, c†
i satisfy the fermionic algebra. Such Hamiltonian can be diagonalized as H =∑

k εkd†
k dk by Fourier transforming the operators cx = 1√

L

∑
k eikxdk . Divide the system into three parts labeled by A (the sites

from x = 1 to x = LA), B (the sites from x = LA + 1 to x = LA + LB), and C (the sites from x = LA + LB + 1 to x = L), we study
the negativity between A and B for energy eigenstates. A free fermion eigenstate |ψ〉 is fully characterized by its correlation
matrix C0,xy = 〈c†

xcy〉, where the expectation value is with respect to an eigenstate |ψ〉. Note that C0 is a Hermitian matrix, and
its kth eigenvalue specifies the occupation number on kth single particle modes for |ψ〉, which can only be 0 or 1.

To calculate negativity between A and B, we consider the reduced density matrix in AB: ρAB = trC |ψ〉〈ψ |, which is a Gaussian
state characterized by the correlation matrix C restricted in the region AB of size LAB = LA + LB:

Cx1x2 = 〈
c†

x1
cx2

〉 = 1

L

∑
k

eik(x2−x1 )
〈
d†

k dk
〉
. (E1)

The spatial coordinates x1, x2 are restricted in AB: x1, x2 ∈ {1, 2, . . . , LAB}. Note that eigenvalues of the matrix C are bounded
between 0 and 1 since C is a subblock from the correlation matrix C0 (see Appendix E 3 a for the proof). Below we apply the
correlation matrix method to calculate the negativity between A and B [18]. Let ρ

TB
AB be the partial transposed density matrix,

one defines the normalized composite density matrix (remains a Gaussian) ρ̃ = ρ
TB
AB(ρTB

AB)
†
/Z̃ , where Z̃ = tr[ρTB

AB(ρTB
AB)

†
] = trρ2

AB.
The negativity reads [18]

EN = log
[
tr
√

ρ
TB
AB

(
ρ

TB
AB

)†] = log
(
trρ̃

1
2
) + 1

2
log

(
trρ2

AB

)
, (E2)

FIG. 14. Maximum of saddle point value 1
V logY among all possible contraction patterns.
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FIG. 15. Maximum of saddle point value 1
V log X among all possible contraction patterns.

where the above two terms can be individually calculated using the correlation matrix method:

log
(
trρ̃

1
2
) = trlog[C̃

1
2 + (1 − C̃)

1
2 ],

1

2
log

(
trρ2

AB

) = 1

2
trlog[C2 + (1 − C)2].

(E3)

C̃ and C are the correlation matrices of ρ̃ and ρAB respectively. To obtain C̃, we first define � = I − 2C:

� =
(

�AA �AB

�BA �BB

)
(E4)

and the transformed matrices

�± =
(−�AA ±i�AB

±i�BA �BB

)
, (E5)

then the correlation matrix is C̃ = 1
2 (1 − �̃), where �̃ is

�̃ = (I + �+�−)−1(�+ + �−). (E6)

Below we apply this formalism to calculate the negativity averaged over all eigenstates for free fermions. To proceed, we find it
more convenient to work with � and �̃, which gives

log
(
trρ̃

1
2
) = trlog

[(
1

2
(1 − �̃)

) 1
2

+
(

1

2
(1 + �̃)

) 1
2

]
,

1

2
log

(
trρ2

AB

) = 1

2
trlog

[(
1

2
(1 − �)

)2

+
(

1

2
(1 + �)

)2]
.

(E7)

2. Volume-law coefficient of negativity in LAB
L � 1 limit

Here we calculate the volume-law coefficient of negativity in LAB
L � 1 limit averaged over all eigenstates. The central idea is

to perform the expansion about �̃ = 0 in powers of �̃:

log(trρ̃
1
2 ) = log 2

2
LAB −

∞∑
n=1

antr�̃2n = log 2

2
LAB − tr�̃2

8
− 3tr�̃4

64
− 5tr�̃6

192
+ O(tr�̃8). (E8)

Note this is a convergent series since the eigenvalues of �̃ is bounded between −1 and 1. First we calculate tr�̃2:

tr�̃2 = tr[(I + �+�−)−1(�+ + �−)]2. (E9)

Since the eigenvalues of �+�− are bounded between 0 and 1 (see Appendix E 3 b for the proof), we can expand the matrix
(I + �+�−)−1 = ∑∞

m=0 (−�+�−)m = I − �+�− + (�+�−)2 + · · · , and hence

tr�̃2 =
∞∑

m1,m2=0

tr[(−�+�−)m1 (�+ + �−)(−�+�−)m2 (�+ + �−)]. (E10)

In the thermodynamic limit L → ∞ with LAB/L fixed, taking the average over all eigenstates, one can show tr�̃2 is in the form
LAB[b1(LAB/L) + b2(LAB/L)2 + · · · ]. When LAB

L � 1, we only need to consider the leading order L2
AB/L, which corresponds to
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m1 = m2 = 0 term in the series:

tr�̃2 = tr(�+ + �−)2 = 4tr(�AA)2 + 4tr(�BB)2
. (E11)

Since

tr(�AA)2 =
∑

x1,x2∈A

�AA
x1x2

�AA
x2x1

= 1

L2

∑
x1,x2∈A

∑
k1,k2

e−ik1(x1−x2 )e−ik2(x2−x1 )nk1 nk2 , (E12)

where nk ≡ 1 − 2〈d†
k dk〉 ∈ {±1}. Taking average over all eigenstates gives nk1 nk2 = δk1k2 . Therefore, one finds

tr(�AA)2 = L2
A

L
, (E13)

and similarly

tr(�BB)2 = L2
B

L
. (E14)

Setting LA = LB = 1
2 LAB gives

tr�̃2 = 2
(LAB

L

)
LAB. (E15)

Thus,

log
(
trρ̃

1
2
) =

[
log 2

2
− 1

4

LAB

L
+ O

((LAB

L

)2)]
LAB. (E16)

Similarly, one can expand 1
2 log (trρ2

AB) = 1
2 trlog {[ 1

2 (1 − �)]
2 + [ 1

2 (1 + �)]
2} about � = 0:

1

2
log

(
trρ2

AB

) = − log 2

2
LAB −

∞∑
n=1

(−1)ntr�2n

2n
. (E17)

Taking average over all eigenstates, to the leading order in LAB
L as L → ∞, one finds

1

2
log (trρ2

AB) = − log 2

2
LAB + 1

2
tr�2 + · · · =

[
− log 2

2
+ 1

2

LAB

L
+ O

((LAB

L

)2)]
LAB, (E18)

where we have performed the similar calculation to obtain tr�2 = L2
AB
L . Combining Eqs. (E2), (E16), and (E18), we find as L →

∞ with LAB
L fixed, the negativity averaged over all eigenstates follows a volume-law scaling, where the volume-law coefficient α

is a power series of LAB
L :

EN = αLAB =
[

1

4

LAB

L
+

∞∑
n=2

αn

(LAB

L

)n
]

LAB. (E19)

3. Some useful mathematical results

a. Bounds on the eigenvalues of C

Given a L × L Hermitian matrix C0 with all eigenvalues being 0 or 1, consider the l × l subblock matrix C obtained by
restricting the row and column index i = 1, 2, . . . , l in C0, all eigenvalues λi of C satisfy 0 � λi � 1.

Proof. First, we show λi � 0 (i.e., C is positive semidefinite). To see this, consider 〈v|C|v〉, where |v〉 is a normalized
vector with l components: |v〉 = (v1, v2, . . . , vl )T , one can embed |v〉 in a larger vector space of L dimension so that
|v〉 → |v0〉 = (v1, v2, . . . , vl , 0, . . . , 0)T , which implies 〈v|C|v〉 = 〈v0|C0|v0〉. The fact that C0 is a positive semidefinite matrix
means 〈v0|C0|v0〉 � 0 for any |v0〉. Thus 〈v|C|v〉 � 0 for all |v〉, and C is positive semidefinite.

Second, consider a normalized vector |v〉, we show that the norm ‖C|v〉‖ � 1, which implies eigenvalues of C satisfies |λi| �
1. To see this, we again consider |v〉 = (v1, v2, . . . , vl )T → |v0〉 = (v1, v2, . . . , vl , 0, . . . , 0)T . Then ‖C|v〉‖ = ‖PC0|v0〉‖, where
P is the projector from the L dimensional vector space back to the l-dimensional vector space. Since projection can not increase
the norm of a vector, one finds ‖C|v〉‖ = ‖PC0|v0〉‖ � ‖C0|v0〉‖. Because the eigenvalues of C0 are less than or equal to one, it
follows that ‖C|v〉‖ � 1, implying the eigenvalues of C satisfy 0 � |λi| � 1.

Combining the above two results proves 0 � λi � 1.
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b. Bounds on the eigenvalues of �+�−

Here we prove all eigenvalues λi of �+�− satisfy 0 � λi � 1.

Proof. Given the Hermitian matrix � = ( A B
B† C

) in the block matrix form with A = A† and C = C†, �+ is defined as (−A iB
iB† C

)

and �− = �
†
+. We notice that �+ can be written as �+ = S�S using a unitary matrix S = (iI 0

0 I
), and thus �+�− = S�SS†�S† =

S�2S†. Since S is unitary, �+�− and �2 have exactly the same spectrum. Note that the spectrum of � is bounded between −1
and 1 due to � = I − 2C, where C is the correlation matrix with eigenvalues bounded between 0 and 1. Hence the eigenspectrum
of �+�− and �2 is bounded between 0 and 1.
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