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Abstract

This paper presents a finite element method for solving coupled Stokes–Darcy flow problems by combining the classical

Bernardi–Raugel finite elements and the recently developed Arbogast–Correa (AC) spaces on quadrilateral meshes. The novel

weak Galerkin methodology is employed for discretization of the Darcy equation. Specifically, piecewise constant approximants

separately defined in element interiors and on edges are utilized to approximate the Darcy pressure. The discrete weak gradients

of these shape functions and the numerical Darcy velocity are established in the lowest order AC space. The Bernardi–Raugel

elements (B R1, Q0) are used to discretize the Stokes equations. These two types of discretizations are combined at an interface,

where kinematic, normal stress, and the Beavers–Joseph–Saffman (BJS) conditions are applied. Rigorous error analysis along

with numerical experiments demonstrate that the method is stable and has optimal-order accuracy.

c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Many biological and engineering applications involve the coupling of free flow and porous-medium flow across

an interface. These applications include flow of oil through a porous filter medium, pollutant transport in rivers,

chemical transport in blood vessels, and food processing, just to name a few. Mathematically, such phenomena

can be modeled by the coupling of the standard Stokes equations or time-dependent Stokes equations or Navier–

Stokes equations with the Darcy equation (steady-state or time-dependent) [1–6] across known interfaces, for

which conservation of mass, balance of forces, and the Beavers–Joseph–Saffman (BJS) condition are specified

[7,8]. Specifically, cross-flow membrane filtration was investigated in [9], problems with highly heterogeneous

permeability were investigated in [10]. In this paper, we focus on the coupling of the steady-state Stokes and Darcy

equations.

Development of efficient and stable numerical solvers for Stokes–Darcy problems has been attracting a great

deal of attention from researchers in the communities of numerical analysis and scientific computing [11–16] (and

∗ Corresponding author.

E-mail addresses: gbharpe@sandia.gov (G. Harper), liu@math.colostate.edu (J. Liu), tavener@math.colostate.edu (S. Tavener),

tmwilde@sandia.gov (T. Wildey).

https://doi.org/10.1016/j.cma.2020.113469

0045-7825/ c⃝ 2020 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113469
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113469&domain=pdf
mailto:gbharpe@sandia.gov
mailto:liu@math.colostate.edu
mailto:tavener@math.colostate.edu
mailto:tmwilde@sandia.gov
https://doi.org/10.1016/j.cma.2020.113469


G. Harper, J. Liu, S. Tavener et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113469

references therein). There are a variety of finite element solvers for Stokes flow or Darcy flow independently, and

not all combinations are appropriate for the coupled problem. The main issue is incorporating these finite element

discretizations with the interface conditions, especially the BJS condition.

Note that the Stokes problem is usually stated as a mixed variational formulation, whereas the Darcy part may be

written in the primal or mixed formulation. When both parts are in the mixed variational formulations, conforming

mixed finite element methods can be developed [17–19].

In [20], divergence-conforming finite elements for the velocities were used for the whole domain, along

with hybridizable discontinuous Galerkin (HDG) for Stokes discretization and mixed finite elements for Darcy

discretization. In [21], the velocity is discretized by an H (div) virtual element, whereas the pressure is approximated

by discontinuous piecewise polynomials. This allows general polygonal meshes. The weak Galerkin (WG) finite

element methods developed in [22,23] allow general polygonal meshes also, but the discrete velocity is not in an

H (div)-conforming subspace.

Mortar finite element methods have been developed to allow non-matching grids on the interface [10,17,24].

The majority of existing methods are established in the monolithic way, but iterative coupling of Stokes and Darcy

solvers has been studied [10,25]. Additionally, for the Stokes part, there are approaches other than the traditional

velocity–pressure formulation. A new formulation based on stress, vorticity, and velocity was used in [26].

In this paper, we develop an efficient finite element method for coupled Stokes–Darcy flow problems. We intend

to have the least unknowns while maintaining flexibility in accommodation of complicated domain geometry, so we

consider quadrilateral meshes (extension to hexahedral meshes is basically technical). We use the Bernardi–Raugel

element pair (B R1, Q0) for Stokes flow [27] and the newly designed weak Galerkin (P0, P0; AC0) finite element

for Darcy flow [28]. Rigorous analysis along with numerical experiments are presented to demonstrate the optimal-

order accuracy and efficiency of this new solver. The following factors have been taken into consideration in the

development of this new method.

(i) Compared to simplicial (triangular and tetrahedral) meshes, quadrilateral and hexahedral meshes are equally

flexible in accommodation of complicated domain geometry but usually involve less degrees of freedom. For

many applications, quadrilateral and hexahedral meshes perform well in alignment of geometric and physical

features of the problems to be solved.

(ii) The classical Bernardi–Raugel finite element pair (B R1, Q0) (for Stokes flow) and the relatively new

Arbogast–Correa spaces (for elliptic problems) are designed for general convex quadrilaterals.

(iii) By utilizing the Arbogast–Correa spaces for discrete weak gradients and the numerical Darcy velocity, the

weak Galerkin finite element (P0, P0; AC0) serves as an efficient Darcy solver with the least unknowns.

(iv) When WG(P0, P0; AC0) for Darcy flow is coupled with (B R1, Q0) for Stokes flow, the Darcy pressure

unknowns on the interface edges behave similarly to Lagrange multipliers. This new feature brings simplicity

and clarity to the error analysis.

The rest of this paper is organized as follows. Section 2 states the problem, interface conditions, and variational

formulation. Sections 3 and 4 discuss the properties of the Bernardi–Raugel and Arbogast–Correa spaces, respec-

tively. Section 5 presents our new finite element scheme for the coupled flow problem. Section 6 starts with several

lemmas and then presents a rigorous analysis for the new finite element scheme. Section 7 provides numerical

verification. Section 8 concludes with some remarks.

2. The coupled Stokes–Darcy flow problem

Let Ω = Ω
S ∪Ω

D be a nonoverlapping domain decomposition, where Ω
S ,ΩD are bounded polygonal domains

for Stokes flow and Darcy flow, respectively. Furthermore, let

– Γ
S

D ,Γ
S

N be the Dirichlet and Neumann boundaries for the Stokes flow;

– Γ
D

D ,Γ
D

N be the Dirichlet and Neumann boundaries for the Darcy flow;

– Γ
I be the Stokes–Darcy interface.

For the Stokes flow, we consider the unknown velocity and pressure (uS , pS ), then the strain tensor ε(uS ) =
1
2
(∇uS + (∇uS )T ) and the Cauchy stress tensor σ = 2µε(uS ) − pSI, where I is the order-2 identity matrix and µ
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is the constant dynamic viscosity. The governing equations and boundary conditions are
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · σ = f in Ω
S ,

∇ · uS = 0 in Ω
S ,

uS = uS

D on Γ
S

D ,

σnS = tSN on Γ
S

N ,

(1)

where f is a given body force.

For the Darcy flow, we consider pD as the unknown pressure, K = µ−1k a known permeability matrix where k

is the usual hydraulic permeability tensor, fD a known extra term due to gravity or alike, s a source. The governing

equation and boundary conditions are
⎧
⎪⎨
⎪⎩

∇ · (−K(∇ pD − fD)) ≡ ∇ · uD = s in Ω
D,

pD = pD

D on Γ
D

D ,

uD · nD = uD

N on Γ
D

N .

(2)

A fundamental issue in the coupling of Stokes and Darcy flows arises during the formulation of interface

conditions. We adopt three interface conditions on Γ
I as follows [4,7,8,22,24].

(i) Conservation of mass:

uS · nS = −uD · nD. (3)

(ii) Balance of normal forces:

σnS · nS = −pD. (4)

(iii) Beavers–Joseph–Saffman (BJS) condition:

σnS · tS = − µα√
ktS · tS

uS · tS , (5)

where α is an experimentally determined dimensionless coefficient that depends only on the properties of the

porous medium, and k is the hydraulic permeability defined above. Mathematically, α is assumed to be smooth

and have positive upper and lower bounds [4,7,8].

Note that, the BJS condition contains the permeability component in the tangential direction on the interface, but

does not involve Darcy pressure or velocity.

As usual, we use H 1(ΩS ), H1(ΩS ), H2(ΩS ) to denote respectively the Sobolev spaces of scalar- and vector-

valued functions defined on Ω
S . Similarly, H 1(ΩD) is used to denote the Sobolev space of scalar-valued functions

defined on Ω
D. Furthermore, let H1

0,ΓS
D

be the subspace of functions in H1(ΩS ) that vanish on Γ
S

D , and similarly,

H 1

0,ΓD
D

be the subspace of functions in H 1(ΩD) that vanish on Γ
D

D . Then we define four bilinear forms

AS (uS , v) =
∫

ΩS

2µε(uS ) : ε(v) +
∫

ΓI

β(uS · tS )(v · tS ), (6)

BS (pS , v) =
∫

ΩS

pS (∇ · v), (7)

CI(pD, v) =
∫

ΓI

pD(v · nS ), (8)

AD(pD, q) =
∫

ΩD

(K∇ pD) · ∇q, (9)

for uS , v ∈ H1(ΩS ), pS ∈ L2
0(ΩS ), and pD, q ∈ H 1(ΩD). Here nS , tS are the unit normal and tangential vectors

on the interface Γ
I (pointing away from the Stokes domain Ω

S ). Note that AS incorporates the BJS condition.

Although it involves only the trial and test functions for Stokes flow, we have introduced

β = µα√
(ktS ) · tS

, (10)

so it additionally involves the physical parameter k for Darcy flow along the interface.
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Then we define two linear forms for v ∈ H1(ΩS ) and q ∈ H 1(ΩD),

FS (v) =
∫

ΩS

f · v +
∫

Γ
S
N

tSN · v, (11)

FD(q) =
∫

ΩD

s q −
∫

Γ
D
N

uD

N q −
∫

ΩD

(−KfD) · ∇q. (12)

The variational formulation seeks uS ∈ H1(ΩS ), pS ∈ L2
0(ΩS ), and pD ∈ H 1(ΩS ) with uS |

Γ
S
D

= uS

D ,

pD|
Γ

D
D

= pD

D , so that
⎧
⎪⎨
⎪⎩

AS (uS , v) −BS (pS , v) +CI(pD, v) = FS (v),

BS (r,uS ) = 0,

−CI(q,uS ) +AD(pD, q) = FD(q),

(13)

for all v ∈ H1

0,ΓS
D

, r ∈ L2
0(ΩS ), and q ∈ H 1

0,ΓD
D

.

3. Discretization of Stokes flow by Bernardi–Raugel elements

3.1. Bernardi–Raugel elements (B R1, Q0) for quadrilaterals

Let E be a quadrilateral with vertices Pi (xi , yi ) (i = 1, 2, 3, 4) starting at the lower-left corner and going

counterclockwise. Let ei (i = 1, 2, 3, 4) be the edge connecting Pi to Pi+1 with the modulo convention P5 = P1.

Let ni (i = 1, 2, 3, 4) be the outward unit normal vector on edge ei . A bilinear mapping from (x̂, ŷ) in the reference

element Ê = [0, 1]2 to (x, y) in such a generic quadrilateral is established as follows
{

x = x1 + (x2 − x1)x̂ + (x4 − x1)ŷ + ((x1 + x3) − (x2 + x4))x̂ ŷ,

y = y1 + (y2 − y1)x̂ + (y4 − y1)ŷ + ((y1 + y3) − (y2 + y4))x̂ ŷ.
(14)

On the reference element Ê , we have four standard bilinear functions

φ̂4(x̂, ŷ) = (1 − x̂)ŷ, φ̂3(x̂, ŷ) = x̂ ŷ,

φ̂1(x̂, ŷ) = (1 − x̂)(1 − ŷ), φ̂2(x̂, ŷ) = x̂(1 − ŷ).
(15)

After the bilinear mapping defined by (14), we obtain four scalar basis functions on E :

φi (x, y) = φ̂i (x̂, ŷ), i = 1, 2, 3, 4. (16)

These are used to define eight node-based local basis functions for Q1(E)2:
[
φ1

0

]
,

[
0

φ1

]
,

[
φ2

0

]
,

[
0

φ2

]
,

[
φ3

0

]
,

[
0

φ3

]
,

[
φ4

0

]
,

[
0

φ4

]
. (17)

Furthermore, we define four edge-based scalar functions on Ê :

ψ̂1(x̂, ŷ) = (1 − x̂)x̂(1 − ŷ), ψ̂2(x̂, ŷ) = x̂(1 − ŷ)ŷ,

ψ̂3(x̂, ŷ) = (1 − x̂)x̂ ŷ, ψ̂4(x̂, ŷ) = (1 − x̂)(1 − ŷ)ŷ.
(18)

They become univariate quadratic functions on respective edges of Ê , and for that reason they are sometimes

referred to as edge-based “bubble functions”. For a generic convex quadrilateral E , we utilize the bilinear mapping

to define

ψi (x, y) = ψ̂i (x̂, ŷ), i = 1, 2, 3, 4. (19)

Then we have four edge-based local basis functions on E (see Fig. 1):

bi (x, y) = ni ψi (x, y), i = 1, 2, 3, 4. (20)

Let Q1(E)2 be the set of vector-valued mapped bilinear functions on a quadrilateral E . Combining the Q1(E)2

functions and the bubble functions, the B R1(E) space on the quadrilateral is defined as

B R1(E) = Q1(E)2 + span(b1,b3,b3,b4). (21)
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Fig. 1. Four edge-based bubble functions used in the B R1 space.

The global finite element space is defined by combining all local spaces, but care must be taken to define the

global bubble functions in a consistent manner. This may be done by defining an orientation for each edge and

using that to assign a consistent direction to each bubble function’s normal vector.

3.2. Properties of the (B R1, Q0) element pair for Stokes flow

The (B R1, Q0) pair satisfies several appealing properties, which will be beneficial for the approximation of Stokes

flow. First, the addition of bubble functions allows for enrichment of interpolation. In [27], the global interpolation

operator, denoted here as Ph , is specified as the piecewise bilinear interpolant at mesh nodes and the bubble function

coefficients are so defined that the bulk flux is captured on each edge ei ,∫

ei

(Phv − v) · n = 0, ∀v ∈ H1
0(Ω ). (22)

For a polygonal domain Ω
S and a shape-regular mesh ES

h consisting of convex quadrilaterals, this implies that for

all E ∈ ES

h ,

(wh,∇ · (Phv − v))E = 0, ∀v ∈ H1
0(Ω ), ∀wh ∈ Q0(E). (23)

Another property described in [27] is the inf–sup condition. Let Vh be the global B R1 finite element space on the

mesh ES

h and let V0
h be the space of functions in Vh that vanish on all boundaries. Then the discretization satisfies

the inf–sup condition

γ ∥wh∥L2(ΩS ) ≤ sup
v∈V0

h

(wh,∇ · vh)ΩS

∥ε(vh)∥L2(ΩS )

, ∀wh ∈ Q0(ES

h ), (24)

where γ > 0 is a constant independent of mesh size h.

4. Discretization of Darcy flow by WG(P0, P0; AC0) elements

Compared to the continuous and discontinuous Galerkin methods, weak Galerkin finite element methods are

relatively new but have some noticeable features. For the Darcy equation, WG methods can be established based

on the primal formulation but possess local mass conservation and normal flux continuity [28–30]. WG methods

use reconstructed discrete weak gradients in certain subspaces that have desired approximation properties. This

approach produces a numerical Darcy velocity via post-processing based on a local L2-projection. It avoids the

hybridization procedure used in the classical mixed finite element methods. In this section, we briefly discuss the

new WG method (P0, P0; AC0) for Darcy flow on quadrilateral meshes [28].

5
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4.1. Lowest-order Arbogast–Correa spaces AC0 on quadrilaterals

Compared to the classical Raviart–Thomas elements [31] or the Arnold–Boffi–Falk elements [32], the Arbogast–

Correa elements constructed recently in [33] for convex quadrilaterals have better approximation properties and less

degrees of freedom. The ACk(k ≥ 0) spaces are constructed using both unmapped vector-valued polynomials and

rational functions obtained via the Piola transformation.

Let E be a convex quadrilateral and k ≥ 0 be an integer. The local Arbogast–Correa space on E is defined as

ACk(E) = Pk(E)2 + xP̃k(E) + Sk(E), (25)

where Pk(E)2 is the space of bivariate vector-valued polynomials defined on E with a total degree at most k, P̃k(E) is

the space of bivariate homogeneous scalar-valued polynomials with degree exactly k, and Sk(E) is a supplementary

space of vector-valued rational functions obtained via the Piola transformation.

For convenience, we write Sk = PE Ŝk , where PE is the Piola transformation. Let (x̂, ŷ) be the coordinates in

the reference element [0, 1]2. According to [33], for k = 0,

Ŝ0 = span{curl(x̂ ŷ)}. (26)

For k ≥ 1,

Ŝk = span{curl((1 − x̂2)x̂k−1 ŷ), curl(x̂k−1 ŷ(1 − ŷ2))}. (27)

Roughly speaking, Pk(E)2 accounts for the approximation of a vector field on a convex quadrilateral, xP̃k(E)

accounts for the approximation of divergence, and Sk offers a divergence-free supplement.

Given these discrete spaces, we have

dim(P2
k ) = (k + 1)(k + 2), dim(P̃k) = k + 1,

and

dim(Sk) = 1 if k = 0, dim(Sk) = 2 if k > 0.

If we set sk = dim(Sk), then

dim(ACk(E)) = (k + 1)(k + 3) + sk . (28)

Note that (k + 1)(k + 3) = dim(RTk), namely, the dimension of the kth order Raviart–Thomas (RT) space on

a triangle [31]. Thus, sk represents the additional degrees of freedom needed for augmenting the RT space on a

quadrilateral [33].

However, in this paper, only the lowest-order space AC0 is used. More interestingly, a set of local basis functions

for a general quadrilateral are
[

1

0

]
,

[
0

1

]
,

[
X

Y

]
, PE

[
x̂

−ŷ

]
, (29)

where X = x − xc, Y = y − yc are the normalized coordinates with (xc, yc) being the element center, (x̂, ŷ) are the

reference coordinates in the reference element [0, 1]2, and PE is the Piola transformation mentioned above.

We need a local projection operator Qh from L2(E)2 to the space AC0(E) for any quadrilateral E ∈ ED

h . Given

v ∈ L2(E)2, find Qhv ∈ AC0(E) such that

(Qhv,w)E = (v,w)E , ∀w ∈ AC0(E). (30)

For error analysis, we also need the global interpolation operator Π h such that for any v ∈ H (div,ΩD) and any

edge e in the mesh ED

h , there holds

⟨(Π hv) · n, 1⟩e = ⟨v · n, 1⟩e. (31)

4.2. Weak Galerkin elements WG(P0, P0; AC0) on quadrilaterals

Weak Galerkin finite elements use separate basis functions in element interiors and on interelement boundaries.

These basis functions are different than those basis functions used in the continuous or discontinuous Galerkin

methods. We call them discrete weak functions.

6
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Let k ≥ 0 be an integer and E be a convex quadrilateral with interior E◦ and boundary E∂ . Let Pk(E◦) be

the space of polynomials defined in E◦ with degree at most k, and similarly, Pk(E∂ ) be the space of piecewise

polynomials defined on E∂ with degree at most k. Let ACk(E) be the space of vector-valued polynomials discussed

in the previous section.

Let φ = {φ◦, φ∂} be a discrete weak function such that φ◦ ∈ Pk(E◦) and φ∂ ∈ Pk(E∂ ). Note that φ◦ is defined

for the element interior only; whereas, φ∂ is defined on the element boundary only. We define ∇wφ ∈ ACk(E) by
∫

E

(∇wφ) · w =
∫

E∂
φ∂ (w · n) −

∫

E◦
φ◦(∇ · w) ∀w ∈ ACk(E), (32)

or in slightly different notation

(∇wφ,w)E = ⟨φ∂ ,w · n⟩E∂ − (φ◦,∇ · w)E◦ . (33)

This paper focuses on the case k = 0. We deal with discrete weak functions that are constants separately defined

in element interiors and on edges. In this case, Eq. (33) is simply a size-4 SPD linear system for each quadrilateral.

Its solution contains 4 coefficients to be used for expressing ∇wφ as a linear combination of the local basis functions

of AC0 stated in (29).

We shall also need a local L2-projection Qh = {Q◦
h, Q∂

h}, where Q◦
h is the L2-projection that maps a function

in L2(E◦) to a constant in E◦, whereas Q∂
h is the L2-projection that maps a function in L2(e) to a constant on e

for each edge e on E∂ .

5. Combining WG(P0, P0; AC0) and (B R1, Q0) elements for coupled Stokes–Darcy flow

This section presents the finite element scheme for the coupled problem, but first we will introduce appropriate

notations and spaces.

Let ES

h , E
D

h be quasi-uniform quadrilateral meshes of ΩS ,ΩD, respectively, with size h, and let ΓI

h be a mesh

of ΓI , which is conforming with ES

h and ED

h .

Let VS

h ,WS

h be the global B R1 and piecewise constant spaces on ES

h for the unknowns (uS

h , pS

h ), respectively.

Then let V D

h be the WG(P0, P0) space on ED

h for the unknowns {p
D,◦
h , p

D,∂
h }. Furthermore, we use V

S,0
h , V

D,0
h to

denote the subspaces of VS

h , V D

h consisting of functions that vanish on Dirichlet boundaries, respectively.

Now we have four discrete bilinear forms defined on these finite element spaces:

AS

h (uS

h , vh) =
∑

E∈ES
h

2µ

∫

E

ε(uS

h ) : ε(vh) +
∑

e∈ΓI
h

∫

e

β(uS

h · tSe )(vh · tSe ), (34)

BS

h (pS

h , vh) =
∑

E∈ES
h

∫

E

pS

h (∇ · vh), (35)

CI

h (pD

h , vh) =
∑

e∈ΓI
h

∫

e

p
D,∂
h (vh · nS ), (36)

AD

h (pD

h , qh) =
∑

E∈ED
h

∫

E

(K∇w pD

h ) · ∇wqh, (37)

and two discrete linear forms

FS

h (vh) =
∑

E∈ES
h

∫

E

f · vh +
∑

e∈ΓS
N ,h

∫

e

tSN · vh, (38)

FD

h (qh) =
∑

E∈ED
h

∫

E◦
sq◦

h −
∑

e∈ΓD
N ,h

∫

e

uD

N q∂h −
∑

E∈ED
h

∫

E

Qh(−KfD) · ∇wqh, (39)

where Qh is the local projection from L2(ΩD)2 to the broken AC0 space.

7
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Our finite element scheme for the coupled Stokes–Darcy flow problem seeks uS

h ∈ VS

h , pS

h ∈ WS

h , and pD

h ∈ V D

h

such that uS

h |
Γ

S
D

= Ph(uS

D), pD

h |
Γ

D
D

= Q∂
h(pD

D ), and for any vh ∈ V
S,0
h , rh ∈ WS

h , and qh ∈ V
D,0

h , there holds

⎧
⎪⎨
⎪⎩

AS

h (uS

h , vh) −BS

h (pS

h , vh) +CI

h (pD

h , vh) = FS

h (vh),

BS

h (rh,uS

h ) = 0,

−CI

h (qh,uS

h ) +AD

h (pD

h , qh) = FD

h (qh).

(40)

For implementation, we consider five groups of (trial and test) shape functions in the following order:

– (1) Stokes velocity: B R1 nodal basis functions;

– (2) Stokes velocity: B R1 edge-based bubble functions;

– (3) Stokes pressure: Q0 elementwise constants;

– (4) Darcy pressure: P0 constants for element interiors;

– (5) Darcy pressure: P0 constants for edges.

Accordingly, the global stiffness matrix has five row-wise and five column-wise segments, and hence it has a total

of 25 blocks. The two discrete bilinear forms AS

h (·, ·), CI

h (·, ·) involving the interface conditions make contributions

to the (1,1)-, (1,2)-, (1,5)-, (2,1)-, (2,2)-, (2,5)-, (5,1)-, (5,2)-blocks.

Note that the assembly for each of the discrete bilinear forms AS

h ,B
S

h and AD

h is handled almost as with the

independent Stokes or Darcy problem. An important part of this implementation is the handling of the interface

term CI

h and the BJS condition within the AS

h term.

After a numerical Darcy pressure pD

h is obtained from solving the sparse monolithic system, we define the

numerical Darcy velocity by postprocessing the numerical Darcy pressure by

uD

h = Qh(−K(∇w pD

h − fD)). (41)

The numerical Darcy velocity is used in the upcoming section to show the weak Galerkin discretization provides

conservation properties for the flow in the Darcy domain.

6. Analysis

This section presents a rigorous analysis for the new finite element scheme. For ease presentation, we adopt the

following assumptions.

(i) K = κI. For analysis on Darcy solvers with a general permeability, see [34].

(ii) fD = 0. Then uD = −κ∇ pD and uD

h = −κ∇w pD

h due to (i) and (41).

(iii) Homogeneous pure Dirichlet boundary conditions are imposed for both Stokes and Darcy parts.

We define the following energy semi-norms for vh ∈ VS

h and qh ∈ V D

h :

|∥vh∥|2h = AS

h (vh, vh), |∥qh∥|2h = AD

h (qh, qh), (42)

which induce an energy semi-norm on the space VS

h × V D

h :

|∥(vh, qh)∥|2h = |∥vh∥|2h + |∥qh∥|2h . (43)

6.1. Properties of operators and subspaces

For the Stokes part, we shall need πh as the local L2-projection operator from L2
0(Ω ) to WS

h .

Lemma 1 (WG Commuting Identity). For any E ∈ ED

h and any q ∈ H 1(E), there holds

Qh(∇q) = ∇w(Qhq). (44)

Proof. See [28,29].

Under the assumption K = κI, Lemma 1 implies that

Qh(K∇ pD) = K(Qh∇ pD) = K∇w(Qh pD).

8
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Lemma 2 (WG Conversion to Trace). For any E ∈ ED

h and any qh ∈ V D

h , there holds

(w,∇wqh)E = ⟨w · n, q∂h − q◦
h ⟩E∂ , ∀w ∈ AC0(E). (45)

Proof. This is obtained by applying the definition of discrete weak gradient ∇wqh , the Gauss divergence theorem,

and the fact that q◦
h is a constant in E◦. We also extend q◦

h to each edge on E∂ when needed.

Lemma 3 (Lower Bound for Discrete Weak Gradient). There holds

h− 1
2 ∥q∂h − q◦

h∥E∂ ≲ ∥∇wqh∥E , ∀E ∈ ED

h , ∀qh ∈ V
D,0

h . (46)

Proof. Choose w ∈ AC0 so that (w · n)|e = q∂h − q◦
h |e for each edge e ⊂ E∂ . We apply Lemma 2 and a

Cauchy–Schwarz inequality to obtain

∥q∂h − q◦
h∥2

E∂
= ⟨w · n, q∂h − q◦

h ⟩E∂ = (w,∇wqh)E

≤ ∥w∥E ∥∇wqh∥E

≈ h
1
2 ∥w · n∥E∂ ∥∇wqh∥E .

(47)

For the last step, we have used an estimate similar to that in [30] Lemma 5. A cancellation of ∥q∂h − q◦
h∥E∂ yields

the desired result.

Lemma 4 (Conservation of Mass for Darcy Flow). For any E ∈ ED

h , there holds
∫

E∂
uD

h · n =
∫

E

f. (48)

Proof. This statement is common in the literature for weak Galerkin methods for Darcy flow, but the only difference

here is we choose vh = 0, rh = 0, and qh = {χE◦ , 0} in (40). The remainder of the proof follows from applying

the conversion to trace and definition of the Darcy velocity (see also [28,29]).

Lemma 5 (Bulk Flux Continuity for Darcy Flow). For any two elements E1, E2 ∈ ED

h which share an interior edge

e, their respective local velocities uD

h,1,uD

h,2 satisfy
∫

e

uD

h,1 · n1 +
∫

e

uD

h,2 · n2 = 0. (49)

Proof. This is another common statement for weak Galerkin methods for Darcy flow, and just as in Lemma 4, we

choose vh = 0, rh = 0, but qh = {0, χe}. The remainder of the proof may be obtained by applying a conversion to

trace and definition of numerical Darcy velocity (see also [28,29]).

6.2. Existence and uniqueness

In this subsection, we prove the existence and uniqueness of the finite element scheme (40). It suffices to show

the uniqueness, since the discrete linear system is finite-dimensional and square. This will be accomplished by

setting the source terms to zero and then showing that all parts of the discrete solution are zero. Thus, we consider

the special system
⎧
⎪⎨
⎪⎩

AS

h (uS

h , vh) −BS

h (pS

h , vh) +CI

h (pD

h , vh) = 0,

BS

h (rh,uS

h ) = 0,

−CI

h (qh,uS

h ) +AD

h (pD

h , qh) = 0.

(50)

We set vh = uS

h , rh = pS

h , and qh = pD

h , and sum the equations to obtain

|∥(uS

h , pD

h )∥|2
h

= AS

h (uS

h ,uS

h ) + AD

h (pD

h , pD

h ) = 0.

9
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This immediately implies ε(uS

h ) = 0, uS

h · t = 0, and ∇w pD

h = 0. The fact that the Dirichlet boundary in the Stokes

domain is nonempty implies uS

h = 0. The discrete inf–sup condition (24) then implies that pS

h = 0.

It remains to show that ∇w pD

h = 0 implies the numerical pressure pD

h is zero. By Lemma 3, ∇w pD

h = 0 implies

that p∂h = (p◦
h)|e on each edge e of E for any E ∈ ED

h . It is easy to see these are all the same constant on a given

E . The fact that each E ∈ ED

h shares an edge with another element in ED

h implies that p∂h and p◦
h are the same

constant over the entire mesh. Since the Dirichlet boundary for the Darcy flow is nonempty, we conclude that this

constant is zero. Furthermore, from this we conclude |∥(·, ·)∥|h is a norm on V
S,0
h × V

D,0
h .

6.3. Error equations

We split the errors of finite element solutions as discrete errors and projection errors. The discrete errors are

defined as

eSh = PhuS − uS

h , eSh = πh pS − pS

h , eDh = Qh pD − pD

h . (51)

The projection errors are defined as

uS − PhuS , pS − πh pS , pD − Qh pD.

In this subsection, we establish error equations to express the above discrete errors in terms of the projection errors,

which are known to be controlled by the regularity of the exact solutions and the approximation capacity of the

finite element subspaces constructed.

Lemma 6 (Error Equations). Let (uS , pS , pD) be the exact solutions to the coupled Stokes–Darcy flow problem (13)

with homogeneous Dirichlet boundary conditions on the whole boundary (except the interface). Let (uS

h , pS

h , pD

h )

be the numerical solutions obtained from the finite element scheme (40). Then for any vh ∈ V
S,0
h , rh ∈ W

S,0
h , and

qh ∈ V
D,0

h , there holds

⎧
⎪⎨
⎪⎩

AS

h (eSh , vh) −BS

h (eSh , vh) +CI

h (eDh , vh) = GS (uS , pS , pD, vh),

BS

h (rh, eSh ) = 0,

−CI

h (qh, eSh ) +AD

h (eDh , qh) = GD(uD, qh),

(52)

where
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

GS (uS , pS , pD, vh) = AS

h (PhuS − uS , vh)

−BS

h (πh pS − pS , vh) + CI

h (Qh pD − pD, vh),

GD(uD, qh) =
∑

E∈ED
h

(Π huD − QhuD,∇wqh)E .
(53)

Proof. To handle Darcy pressure error, we use the 3rd equation in the finite element scheme (40) to obtain

AD

h (eDh , qh) = AD

h (Qh pD, qh) − AD

h (pD

h , qh)

= AD

h (Qh pD, qh) − FD

h (qh) − CI

h (qh,uS

h ).

By Lemma 1, the first term in the last line is converted to

AD

h (Qh pD, qh) =
∑

E∈ED
h

(K∇w(Qh pD),∇wqh)E

=
∑

E∈ED
h

(Qh(K∇ pD),∇wqh)E

= −
∑

E∈ED
h

(QhuD,∇wqh)E .

(54)

10
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To deal with Darcy source term s = ∇ · (−K∇ pD), we consider qh ∈ V
D,0

h . Then

FD

h (qh) =
∑

E∈ED
h

(s, q◦
h )E◦ =

∑

E∈ED
h

(
∇ · (−K∇ pD), q◦

h

)
E◦

=
∑

E∈ED
h

(∇ · uD, q◦
h )E◦ =

∑

E∈ED
h

(∇ · (Π huD), q◦
h )E◦ .

Note that Π huD is in the global AC0 space. By the definition of discrete weak gradient, we have

FD

h (qh) =
∑

E∈ED
h

⟨(Π huD) · n, q∂h ⟩E∂ −
∑

E∈ED
h

(Π huD,∇wqh)E .

The interpolant in the global AC0 space has normal continuity. So the terms for the interior edges vanish, and the

terms for Dirichlet edges satisfy q∂h = 0. The only surviving terms lie on the interface edges. Thus we have

FD

h (qh) =
∑

e∈ΓI
h

⟨(Π huD) · nD, q∂h ⟩e −
∑

E∈ED
h

(Π huD,∇wqh)E .
(55)

Combining the above results yields

AD

h (eDh , qh) =
∑

E∈ED
h

(Π huD − QhuD,∇wqh)E

−
∑

e∈ΓI
h

⟨(Π huD) · nD, q∂h ⟩e − CI

h (qh,uS

h ).
(56)

Therefore, subtracting CI

h (qh, eSh ) from AD

h (eDh , qh) yields

AD

h (eDh , qh) − CI

h (qh, eSh ) = AD

h (eDh , qh) − CI

h (qh,PhuS − uS

h )

= AD

h (eDh , qh) + CI

h (qh,uS

h ) − CI

h (qh,PhuS )

=
∑

E∈ED
h

(Π huD − QhuD,∇wqh)E −
∑

e∈ΓI
h

⟨(Π huD) · nD, q∂h ⟩e

−
∑

e∈ΓI
h

⟨(PhuS ) · nS , q∂h ⟩e

=
∑

E∈ED
h

(Π huD − QhuD,∇wqh)E +
∑

e∈ΓI
h

⟨(PhuS − Π huD) · nD, q∂h ⟩e.

(57)

By the flux-capturing property of the B R1 interpolation operator (22), the flux capturing property of the AC0

interpolation operator (31), and the first interface condition, the second sum vanishes, and one is led to the 3rd

error equation in (52)

AD

h (eDh , qh) − CI

h (qh, eSh ) = AD

h (eDh , qh) − CI

h (qh,PhuS − uS

h )

=
∑

E∈ED
h

(Π huD − QhuD,∇wqh)E +
∑

e∈ΓI
h

⟨(uD − Π huD) · nD, q∂h ⟩e

=
∑

E∈ED
h

(Π huD − QhuD,∇wqh)E

= GD(uD, qh).

(58)

To handle Stokes velocity error, we use the 1st equation in the finite element scheme (40). We remark that while

the Stokes discretization is conforming, we proceed carefully due to the CI

h term to obtain

AS

h (eSh , vh) = AS

h (PhuS , vh) − AS

h (uS

h , vh)

= AS

h (PhuS , vh) − FS

h (vh) − BS

h (pS

h , vh) + CI

h (pD

h , vh).
(59)

11
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Similarly, we utilize Stokes 1st equation to rewrite the forcing term and obtain

FS

h (vh) =
∑

E∈ES
h

(f, vh)E =
∑

E∈ES
h

(−∇ · σ, vh)E

=
∑

E∈ES
h

(σ,∇vh)E − ⟨σn, vh⟩E∂

=
∑

E∈ES
h

2µ(ε(uS ), ε(vh))E − (pS ,∇ · vh)E − ⟨σn, vh⟩E∂ .

(60)

All normal contributions of stress cancel across the interior edges, leaving only the interface edges, where σnS is

once again decomposed into normal and tangential components, yielding

FS

h (vh) =
∑

E∈ES
h

2µ(ε(uS ), ε(vh))E − (pS ,∇ · vh)E

+
∑

e∈EI
h

⟨βuS · tS , vh · tS⟩e + ⟨pD, vh · nS⟩e.
(61)

So we have

FS

h (vh) =
∑

E∈ES
h

2µ(ε(uS ), ε(vh))E +
∑

e∈EI
h

⟨βuS · tS , vh · tS⟩e

−BS

h (pS , vh) + CI

h (pD, vh).

(62)

Therefore,

AS

h (eSh , vh) = AS

h (PhuS , vh) −
∑

E∈ES
h

2µ(ε(uS ), ε(vh))E

−
∑

e∈EI
h

⟨βuS · tS , vh · tS⟩e + BS

h (pS − pS

h , vh) − CI

h (pD − pD

h , vh)

= AS

h (PhuS − uS , vh) + BS

h (pS − πh pS + πh pS − pS

h , vh)

−CI

h (pD − Qh pD + Qh pD − pD

h , vh)

= AS

h (PhuS − uS , vh) + BS

h (eSh , vh) − CI

h (eDh , vh)

−BS

h (πh pS − pS , vh) + CI

h (Qh pD − pD, vh)

= GS (uS , pS , pD, vh) + BS

h (eSh , vh) − CI

h (eDh , vh),

(63)

which yields the 1st error equation in (52).

6.4. Error estimation

For the approximation capacity of the finite element spaces used for the scheme in this paper, one has the

following results. For any quadrilateral element E , there holds

∥uS − PhuS∥k ≲ h2−k∥uS∥H2(E), k = 0, 1;
∥pS − πh pS∥0 ≲ h∥pS∥H1(E).

(64)

Additionally, we shall frequently use the following standard trace inequality for any scalar- or vector-valued

H 1-function

hE∥φ∥2
e ≲ ∥φ∥2

0 + h2
E |φ|21. (65)

Based on these facts, we have

∥(uS − PhuS ) · t∥e ≲ h
3
2
E∥uS∥H2(E). (66)

12
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We shall also use the following bounds for norms of a function v ∈ H1(ΩS ):

∥∇ · v∥L2(ΩS ) ≲ ∥ε(v)∥L2(ΩS ) ≤ ∥∇v∥L2(ΩS ) ≤ ∥v∥H1(ΩS ). (67)

Theorem 1 (Energy Norm Error Estimate). Let (uS , pS , pD) ∈ H2(ΩS )× H 1(ΩS )× H 2(ΩD) be the full-regularity

solutions to (1–5) under the assumptions from the beginning of this section. Let (uS

h , pS

h , pD

h ) ∈ V
S,0
h × WS

h × V
D,0

h

be the numerical solutions of (40). Then

|∥(eSh , eDh )∥|
h
≲ h

(
∥uS∥H2(ΩS ) + ∥pS∥H1(ΩS ) + ∥pD∥H2(ΩD)

)
,

∥eSh ∥ ≲ h
(
∥uS∥H2(ΩS ) + ∥pS∥H1(ΩS ) + ∥pD∥H2(ΩD)

)
.

(68)

Proof. Taking vh = eSh , rh = eSh , and qh = eDh in the error equations (52) and summing them yields

|∥(eSh , eDh )∥|2
h

= |∥eSh ∥|2
h
+ |∥eDh ∥|2

h
= AS

h (eSh , eSh ) + AD

h (eDh , eDh )

= GS (uS , pS , pD, eSh ) + GD(uD, eDh ).
(69)

Part (1) Handling GS (uS , pS , pD, eSh ). Recall that

GS (uS , pS , pD, vh) = AS

h (PhuS − uS , vh) − BS

h (πh pS − pS , vh) + CI

h (Qh pD − pD, vh).

The three terms on the right-hand side of GS will be estimated individually.

(i) For AS

h (PhuS − uS , eh), by applying triangle inequalities, Cauchy–Schwarz inequalities, trace inequalities,

and the following fact that is derived from (67):

∥ε(PhuS − uS )∥L2(ΩS ) ≲ ∥PhuS − uS∥H1(ΩS ),

we obtain⏐⏐AS

h (PhuS − uS , eSh )
⏐⏐

=

⏐⏐⏐⏐⏐⏐⏐

∑

E∈ES
h

2µ(ε(PhuS − uS ), ε(eSh ))E +
∑

e∈EI
h

⟨β(PhuS − uS ) · tS , eSh · tS⟩e

⏐⏐⏐⏐⏐⏐⏐

≤ 2µ

⎛
⎜⎝

∑

E∈ES
h

∥ε(PhuS − uS )∥2
E

⎞
⎟⎠

1
2
⎛
⎜⎝

∑

E∈ES
h

∥ε(eSh )∥2
E

⎞
⎟⎠

1
2

+

⎛
⎜⎝

∑

e∈EI
h

∥(PhuS − uS ) · tS∥2
e

⎞
⎟⎠

1
2
⎛
⎜⎝

∑

e∈EI
h

∥β 1
2 eSh · tS∥2

e

⎞
⎟⎠

1
2

≲ h∥uS∥H2(ΩS )|∥eSh ∥|
h
+ h

3
2 ∥uS∥H2(ΩS )|∥eSh ∥|

h
.

(70)

For BS

h (pS − πh pS , eSh ), we apply similar techniques to obtain

⏐⏐BS

h (pS − πh pS , eSh )
⏐⏐ =

⏐⏐⏐
∑

E∈ES
h

(pS − πh pS ,∇ · eSh )E

⏐⏐⏐

≤

⎛
⎜⎝

∑

E∈ES
h

∥pS − πh pS∥2
E

⎞
⎟⎠

1
2
⎛
⎜⎝

∑

E∈ES
h

∥∇ · eSh ∥2
E

⎞
⎟⎠

1
2

≤ ∥pS − πh pS∥L2(ΩS )∥∇ · eSh ∥L2(ΩS )

≲ h∥pS∥H1(ΩS )∥ε(eSh )∥L2(ΩS )

≤ h∥pS∥H1(ΩS )|∥eSh ∥|
h
.

(71)
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Finally, for CI

h (pD − Qh pD, eSh ), we estimate its interface terms by using the techniques for duality pairing in [35].

This yields

⏐⏐CI

h (pD − Qh pD, eSh )
⏐⏐ =

⏐⏐⏐⏐⏐⏐⏐

∑

e∈EI
h

⟨pD − Qh pD, eSh · n⟩e

⏐⏐⏐⏐⏐⏐⏐
≤ ∥pD − Qh pD∥

H
− 1

2 (ΓI
h

)
∥eSh · n∥

H
1
2 (ΓI

h
)

≤ h∥pD∥
H

1
2 (ΓI )

∥eSh ∥H1(ΩS
h

)

≤ h∥pD∥H1(ΩD)|∥eSh ∥|
h
,

(72)

where the inequalities for eSh are due to a trace inequality and then the Korn’s inequality.

Part (2) Handling GD(uD, eDh ). Recall that

GD(uD, qh) =
∑

E∈ED
h

(Π huD − QhuD,∇wqh)E .

This involves two approximations to uD. Each converges with first order. Based on the approximation capacity of

Π h,Qh (and triangle inequalities), we have, for each element E ,

∥Π huD − QhuD∥E ≤ ∥Π huD − uD∥E + ∥uD − QhuD∥E ≲ h∥uD∥H1(E).

Then by the Cauchy–Schwarz inequality, we have

GD(uD, eDh ) =
∑

E∈ED
h

(Π huD − QhuD,∇weDh )E

≤

⎛
⎜⎝

∑

E∈ED
h

∥Π huD − QhuD∥2
E

⎞
⎟⎠

1
2
⎛
⎜⎝

∑

E∈ED
h

∥∇weDh ∥2
E

⎞
⎟⎠

1
2

≲ h∥uD∥H1(ΩD)

1√
κ

|∥eDh ∥|
h
,

(73)

where in the last step we have used the fact |∥eDh ∥|2
h

≥ κ
∑

E∈ED
h

∥∇weDh ∥2
E .

Combining these results, noting that ∥uD∥1 ≲ ∥pD∥2 and dividing both sides by |∥(eSh , eDh )∥|
h

yields the first

inequality in (68).

Part (3) Handling ∥eSh ∥. First, we remark that solving the first error equation (52) for BS

h yields
⏐⏐BS

h (eSh , vh)
⏐⏐ =

⏐⏐AS

h (eSh , vh) + CI

h (eDh , vh) − GS (uS , pS , pD, vh)
⏐⏐ .

This holds true for each vh ∈ V
S,0
h , so we may additionally restrict v|ΓI ≡ 0, for which we denote by v ∈ V0

h ⊂ V
S,0
h

to obtain⏐⏐BS

h (eSh , vh)
⏐⏐ =

⏐⏐AS

h (eSh , vh) − GS (uS , pS , pD, vh)
⏐⏐

≲ |∥eSh ∥|
h
|∥vh∥|h + h

(
∥uS∥H2(ΩS ) + ∥pS∥H1(ΩS ) + ∥pD∥H2(ΩD)

)
|∥vh∥|h

≲ h
(
∥uS∥H2(ΩS ) + ∥pS∥H1(ΩS ) + ∥pD∥H2(ΩD)

)
|∥vh∥|h .

(74)

The inf–sup condition for BS

h is well-known in the case of Stokes flow [27], and it applies to vh ∈ V0
h . Therefore,

we have

∥eSh ∥L2(ΩS ) ≲ sup
v∈V0

h

|BS

h (eSh , vh)|
|∥vh∥|h

≲ h
(
∥uS∥H2(ΩS ) + ∥pS∥H1(ΩS ) + ∥pD∥H2(ΩD)

)
,

(75)

which concludes the proof.
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Table 1

Example 1: Errors and convergence rates.

n |∥(eSh , eDh )∥|
h

Rate ∥uS − uS

h ∥L2 Rate ∥pS − pSh ∥L2 Rate ∥pD − pDh ∥L2 Rate

8 7.8259e−01 – 1.2155e−02 – 1.0935e−01 – 2.7940e−01 –

16 4.0407e−01 0.95 2.7537e−03 2.14 5.3808e−02 1.02 1.4024e−01 0.99

32 2.0363e−01 0.98 6.6788e−04 2.04 2.6794e−02 1.00 7.0189e−02 0.99

64 1.0201e−01 0.99 1.6564e−04 2.01 1.3383e−02 1.00 3.5103e−02 0.99

128 5.1031e−02 0.99 4.1328e−05 2.00 6.6898e−03 1.00 1.7553e−02 0.99

Remarks. In addition to the results proved above, we expect first-order convergence of Darcy velocity in the

H (div)-norm. Although it is not formally proved here, rigorous analysis for the case of single-phase Darcy flow

only can be found in [28]. We anticipate a similar result for the Stokes–Darcy problem, provided the Stokes solution

to which the Darcy solution is coupled converges at an appropriate rate. We provide numerical support for our claim

in Example 2 in Section 7.

In addition to the H (div)-convergence discussed above, our numerical experiments in the following section

suggest

• L2-norm of Stokes velocity errors exhibits 2nd order convergence;

• L2-norm of Darcy pressure errors exhibits 1st order convergence.

7. Numerical experiments

This section presents numerical experiments to demonstrate accuracy and efficiency of our new finite element

solver for coupled Stokes–Darcy flow problems.

Example 1 (Known Analytical Solutions). First we consider an example that has known analytical solutions. The

example is taken from [22]. Specifically, the domain for Stokes flow is Ω
S = (0, π) × (0, 1), the domain for Darcy

flow is Ω
D = (0, π) × (−1, 0), and the interface is Γ

I = (0, π) × {y = 0}. Fluid viscosity is set as µ = 1, the

permeability matrix is K = I, and fD = 0.

For the Stokes part, the exact solutions for velocity and pressure are

uS (x, y) =
[

cos(x)v′(y)

sin(x)v(y)

]
, pS (x, y) = sin(x) sin(y),

where v(y) = 1

π2 sin2(πy) − 2. Clearly, ∇ · uS = 0. For the Darcy part, one has

pD(x, y) = sin(x)(ey − e−y), uD(x, y) = −
[

cos(x)(ey − e−y)

sin(x)(ey + e−y)

]
.

The BJS coefficient α = 1. The three interface conditions can be easily verified.

Example 1 is tested on a sequence of uniform rectangular meshes that have n partitions in each of x, y-directions.

In this case, the local AC0 space is the same as the classical RT[0] space. The numerical results in Table 1

demonstrate the proved first order convergence in the discrete error energy norm, in addition to the Stokes pressure

error L2-norm. We remark that although it was not proved, for this numerical example, we observe second order

convergence in the Stokes velocity error L2-norm and first order convergence in the Darcy pressure error L2-norm.

Example 2 (Trapezoidal Meshes and H (div)-Approximation). This example demonstrates that our new solver applies

well to general convex quadrilateral meshes, as shown in Fig. 2. We observe optimal order H (div)-approximation

in Darcy velocity since the new Arbogast–Correa space is used. This example is adopted from the one in [4] on

p. 383 with a slight modification in the Stokes velocity to ensure that the BJS condition is satisfied with non-zero

data.

Specifically, ΩS = (0, 1) × (1, 2), ΩD = (0, 1) × (0, 1), the interface is Γ
I = (0, 1) × {y = 1}. For Darcy flow,

the permeability matrix is K = κI with κ = 1. In addition, fD = 0. An exact solution for the pressure is given as

pD(x, y) = 2

π
cos

(π
2

x
)

cos
(π

2
y
)

+ (1 − x)y, (76)
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Fig. 2. Example 2: A trapezoidal mesh with a slant parameter 0.35. See [36] also.

Table 2

Example 2: Convergence rates of CG(B R1, Q0) + WG(P0, P0; AC0) solver on trapezoidal meshes with slant parameter 0.35.

n ∥uS − uS

h ∥L2 Rate ∥pD − pDh ∥L2 Rate ∥uD − uD

h ∥L2 Rate ∥∇ · (uD − uD

h )∥L2 Rate

23 7.8401e−03 – 3.8603e−02 – 6.4434e−02 – 2.1566e−01 –

24 2.0155e−03 1.95 1.9485e−02 0.98 3.2998e−02 0.96 1.0819e−01 0.99

25 5.1152e−04 1.97 9.7684e−03 0.99 1.6644e−02 0.98 5.4139e−02 0.99

26 1.2908e−04 1.98 4.8884e−03 0.99 8.3532e−03 0.99 2.7075e−02 0.99

27 3.2461e−05 1.99 2.4450e−03 0.99 4.1838e−03 0.99 1.3538e−02 0.99

which produces a Darcy velocity

uD(x, y) =

⎡
⎢⎣

sin
(π

2
x
)

cos
(π

2
y
)

+ y

cos
(π

2
x
)

sin
(π

2
y
)

− (1 − x)

⎤
⎥⎦ , (77)

and accordingly, the fluid source is

s(x, y) = π cos
(π

2
x
)

cos
(π

2
y
)
. (78)

We use the above pD,uD to specify a Dirichlet boundary condition on the bottom side and a Neumann boundary

condition on the lateral sides. For Stokes flow, we have µ = 1. The exact solutions for velocity and pressure are

known as

uS =

⎡
⎢⎣

1 − sin
(π

2
x
)

cos
(π

2
y
)

−(1 − x) + cos
(π

2
x
)

sin
(π

2
y
)

⎤
⎥⎦ , pS = 1 − x . (79)

The body force fS is derived accordingly. Clearly, ∇ · uS = 0. The velocity exact solution is used to pose Dirichlet

boundary conditions on the left and right-sides of Ω
S . A Neumann condition is posed on the top side. The BJS

constant α = 1. It can be verified that all three interface conditions are satisfied.

For numerical experiments, we use a family of trapezoidal meshes (with a slant parameter 0.35) as shown in

Fig. 2. This type of meshes was introduced in [36]. Table 2 shows the results obtained from using the new solver

developed in this paper. One can clearly observe 2nd order convergence in Stokes velocity and 1st order convergence

in Darcy pressure, velocity, and div of velocity. However, Table 3 exhibits no convergence at all when the unmapped

Raviart–Thomas space is used on trapezoidal meshes.

Example 3 (Lid-Driven Cavity + Heterogeneous Permeability). This example couples the well-known lid-driven

cavity problem for Stokes flow and Darcy flow in a heterogeneous permeability field. Here the Stokes domain is

Ω
S = (0, 2) × (0, 1) whereas the Darcy domain is Ω

D = (0, 2) × (−1, 0).

For the Stokes part, µ = 1. There is no body force. Dirichlet boundary conditions are posed. Specifically, for

the top-side (y = 1), one has uS

D = [1, 0]T ; for the left- and right-sides, a no-slip boundary condition (u = 0) is

posed.
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Table 3

Example 2: No convergence for the combination of CG(B R1, Q0) and WG(Q0, Q0; RT[0]) on

trapezoidal meshes with a slant parameter 0.35.

n ∥uS − uS

h ∥L2 ∥pD − pDh ∥L2 ∥uD − uD

h ∥L2 ∥∇ · (uD − uD

h )∥L2

23 7.9157e−03 3.9068e−02 1.4909e−01 2.8331e+00

24 2.0827e−03 2.0143e−02 1.4671e−01 6.2122e+00

25 6.0593e−04 1.1058e−02 1.4924e−01 1.3150e+01

26 2.8866e−04 7.2183e−03 1.5137e−01 2.7046e+01

27 2.4347e−04 5.9187e−03 1.5264e−01 5.4833e+01

Fig. 3. Example 3: Numerical velocity and pressure obtained from using CG(B R1, Q0) + WG(P0, P0; AC0) on a rectangular mesh with

h = 1/20. Velocity is plotted at element centers and the magnitude is doubled for better visual effect.

For the Darcy part, a heterogeneous permeability K = κI is given. Specifically, ΩD is divided uniformly into

10 × 5 blocks. Labeling from left to right and top to bottom, these six blocks have a very low permeability value

κ = 10−6: (2, 2), (2, 4), (2, 7), (2, 9), (3, 2), (3, 5). For the remaining blocks, κ = 1 instead. There is no source, and

fD = 0. A no-flow boundary condition (uD · n = 0) is posed on the left-, right-, and bottom-sides of the domain.

The BJS coefficient α = 1.

There is no known analytical solution for comparison, but our new finite element scheme can capture the main

physics features. Shown in Fig. 3 are the velocity and pressure profiles obtained on a uniform rectangular mesh

with h = 1/20. Here are some qualitative observations.

(i) Smooth flow exchange between the free flow (Stokes) and the porous-medium flow (Darcy) across the known

interface (y = 0): for x > 1, fluid travels from the Stokes domain to the Darcy domain; for x < 1, fluid

travels back from the Darcy domain to the Stokes domain;

(ii) Pressure singularity at the two corners (0, 1), (2, 1) for Stokes flow;

(iii) Detours of flow path around the six low permeability blocks for Darcy flow.

Example 4 (Three-Domain Coupling). This is a standard filtration example that has been tested by others in [6,13].

We test this example to show the presented methodology in this paper may be extended to more general domain

couplings. We consider coupling of three domains horizontally, which may also be referred to as Stokes–Darcy–

Stokes coupling. Specifically, Ω1 = (−1, 0) × (0, 1), Ω2 = (0, 1) × (0, 1), Ω3 = (1, 2) × (0, 1). The two interfaces

are I1 = {x = 0} × (0, 1) and I2 = {x = 1} × (0, 1). Stokes flow is considered in Ω1 and Ω3 with µ = 1. whereas

Darcy flow is considered in Ω2 with permeability κ = 1. The BJS coefficient α = 1.

A Dirichlet boundary condition with a parabolic profile uD = [4y(1 − y), 0]T is specified on the entry (x = −1)

and a natural boundary condition is applied downstream at x = 2. No-slip boundary conditions are imposed along
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Fig. 4. Example 4 (Stokes–Darcy–Stokes coupling in three domains): Profiles of numerical velocity and pressure obtained with h = 1/16:

(top) κ = 1.0; (bottom) κ = 1E-6. Note Stokes velocity is plotted at nodes but Darcy velocity is plotted at element centers.

the lateral boundaries of the Stokes domains, and normal flux conditions uD · n = 0 are applied along the lateral

boundaries of the Darcy domain. All body forces and source term are set to zero.

In Fig. 4, we show the numerical results with h = 1/16 for the cases of κ = 1.0 (top) and κ = 1E-6 (bottom).

Comparing the two cases, we see that the magnitude of the drop in the pressure across each Stokes domain is

approximately the same, but the magnitude of the pressure drop across the Darcy domain is inversely proportional

to the magnitude of the permeability. In addition, we observe some slight differences in the velocity fields in the

Stokes domains near the Stokes–Darcy interfaces. This is due to the fact that the tangential component of the Stokes

velocity is inversely proportional to the square root of the permeability through the BJS condition.

8. Concluding remarks

In this paper, we have developed a new finite element method for coupled Stokes–Darcy problems on quadrilateral

meshes that combines the classical Bernardi–Raugel element pair (B R1, Q0) for Stokes flow with the new weak

Galerkin element (P0, P0; AC0) for Darcy flow. The new method has some noticeable features.

(i) As proved theoretically and demonstrated numerically, this new method has first order accuracy in the energy

norm and first order accuracy for Stokes pressure in the L2-norm.

(ii) This new finite element scheme does not use Lagrange multipliers explicitly, but the weak Galerkin edge-based

pressure unknowns on the interface behave similarly to Lagrange multipliers to impose continuity of flux, as

shown in Eq. (36).

(iii) This new finite element method offers local mass conservation and normal flux continuity for the Darcy flow.
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(iv) This new method has fewer unknowns, compared to many other existing methods (for 2-dim problems), but

is flexible in accommodation of complicated domain geometry. The total number of unknowns is

2#StokesNodes + #StokesEdges + #StokesElements

+#DarcyElements + #DarcyEdges.

The new method can be extended to 3-dim coupled Stokes–Darcy flow problems on cuboidal hexahedral meshes

based on combination of the Bernardi–Raugel element pair (B R1, Q0) for hexahedra and the weak Galerkin

element (P0, P0; AT0), where AT0 is the lowest-order Arbogast–Tao space [37]. This also means that a dimension-

independent implementation may be realized in a finite element library such as deal.II, which now contains the

Bernardi–Raugel element in version 9.1 [38]. Further extension of this approach to higher order solvers is possible

by using the Taylor–Hood elements or the WG(Pk, Pk; ACk) finite elements. All these are currently under our

investigation and will be reported in our future work.
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