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Abstract

This paper presents a finite element method for solving coupled Stokes—Darcy flow problems by combining the classical
Bernardi—Raugel finite elements and the recently developed Arbogast—Correa (AC) spaces on quadrilateral meshes. The novel
weak Galerkin methodology is employed for discretization of the Darcy equation. Specifically, piecewise constant approximants
separately defined in element interiors and on edges are utilized to approximate the Darcy pressure. The discrete weak gradients
of these shape functions and the numerical Darcy velocity are established in the lowest order AC space. The Bernardi-Raugel
elements (BRj, Qg) are used to discretize the Stokes equations. These two types of discretizations are combined at an interface,
where kinematic, normal stress, and the Beavers—Joseph—Saffman (BJS) conditions are applied. Rigorous error analysis along
with numerical experiments demonstrate that the method is stable and has optimal-order accuracy.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Many biological and engineering applications involve the coupling of free flow and porous-medium flow across
an interface. These applications include flow of oil through a porous filter medium, pollutant transport in rivers,
chemical transport in blood vessels, and food processing, just to name a few. Mathematically, such phenomena
can be modeled by the coupling of the standard Stokes equations or time-dependent Stokes equations or Navier—
Stokes equations with the Darcy equation (steady-state or time-dependent) [1-6] across known interfaces, for
which conservation of mass, balance of forces, and the Beavers—Joseph—Saffman (BJS) condition are specified
[7,8]. Specifically, cross-flow membrane filtration was investigated in [9], problems with highly heterogeneous
permeability were investigated in [10]. In this paper, we focus on the coupling of the steady-state Stokes and Darcy
equations.

Development of efficient and stable numerical solvers for Stokes—Darcy problems has been attracting a great
deal of attention from researchers in the communities of numerical analysis and scientific computing [11-16] (and
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references therein). There are a variety of finite element solvers for Stokes flow or Darcy flow independently, and
not all combinations are appropriate for the coupled problem. The main issue is incorporating these finite element
discretizations with the interface conditions, especially the BJS condition.

Note that the Stokes problem is usually stated as a mixed variational formulation, whereas the Darcy part may be
written in the primal or mixed formulation. When both parts are in the mixed variational formulations, conforming
mixed finite element methods can be developed [17-19].

In [20], divergence-conforming finite elements for the velocities were used for the whole domain, along
with hybridizable discontinuous Galerkin (HDG) for Stokes discretization and mixed finite elements for Darcy
discretization. In [21], the velocity is discretized by an H (div) virtual element, whereas the pressure is approximated
by discontinuous piecewise polynomials. This allows general polygonal meshes. The weak Galerkin (WG) finite
element methods developed in [22,23] allow general polygonal meshes also, but the discrete velocity is not in an
H (div)-conforming subspace.

Mortar finite element methods have been developed to allow non-matching grids on the interface [10,17,24].
The majority of existing methods are established in the monolithic way, but iterative coupling of Stokes and Darcy
solvers has been studied [10,25]. Additionally, for the Stokes part, there are approaches other than the traditional
velocity—pressure formulation. A new formulation based on stress, vorticity, and velocity was used in [26].

In this paper, we develop an efficient finite element method for coupled Stokes—Darcy flow problems. We intend
to have the least unknowns while maintaining flexibility in accommodation of complicated domain geometry, so we
consider quadrilateral meshes (extension to hexahedral meshes is basically technical). We use the Bernardi—Raugel
element pair (BR;, Q) for Stokes flow [27] and the newly designed weak Galerkin (Py, Py; ACy) finite element
for Darcy flow [28]. Rigorous analysis along with numerical experiments are presented to demonstrate the optimal-
order accuracy and efficiency of this new solver. The following factors have been taken into consideration in the
development of this new method.

(i) Compared to simplicial (triangular and tetrahedral) meshes, quadrilateral and hexahedral meshes are equally
flexible in accommodation of complicated domain geometry but usually involve less degrees of freedom. For
many applications, quadrilateral and hexahedral meshes perform well in alignment of geometric and physical
features of the problems to be solved.

(ii) The classical Bernardi—Raugel finite element pair (BR;, Qg) (for Stokes flow) and the relatively new
Arbogast—Correa spaces (for elliptic problems) are designed for general convex quadrilaterals.

(iii) By utilizing the Arbogast—Correa spaces for discrete weak gradients and the numerical Darcy velocity, the
weak Galerkin finite element (Py, Po; ACp) serves as an efficient Darcy solver with the least unknowns.

(iv) When WG(Py, Py; ACy) for Darcy flow is coupled with (BR;y, Qg) for Stokes flow, the Darcy pressure
unknowns on the interface edges behave similarly to Lagrange multipliers. This new feature brings simplicity
and clarity to the error analysis.

The rest of this paper is organized as follows. Section 2 states the problem, interface conditions, and variational
formulation. Sections 3 and 4 discuss the properties of the Bernardi—Raugel and Arbogast—Correa spaces, respec-
tively. Section 5 presents our new finite element scheme for the coupled flow problem. Section 6 starts with several
lemmas and then presents a rigorous analysis for the new finite element scheme. Section 7 provides numerical
verification. Section 8 concludes with some remarks.

2. The coupled Stokes—Darcy flow problem

Let 2 = 25U NP be a nonoverlapping domain decomposition, where 25, 27 are bounded polygonal domains
for Stokes flow and Darcy flow, respectively. Furthermore, let
- FS, F;? be the Dirichlet and Neumann boundaries for the Stokes flow;
- FE, Flz? be the Dirichlet and Neumann boundaries for the Darcy flow;
— I'" be the Stokes—Darcy interface.

For the Stokes flow, we consider the unknown velocity and pressure (uS, p®), then the strain tensor s(u®) =
2(vu® + (Vu$)T) and the Cauchy stress tensor o = 2ue(uS) — pS1, where I is the order-2 identity matrix and p
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is the constant dynamic viscosity. The governing equations and boundary conditions are
—V.o=f in 05,
V.-u$=0 in S,
u’=ul on I},
on® = tﬁ on F;\? ,
where f is a given body force.

For the Darcy flow, we consider p? as the unknown pressure, K = 1 ~'k a known permeability matrix where k
is the usual hydraulic permeability tensor, f© a known extra term due to gravity or alike, s a source. The governing
equation and boundary conditions are

V- (-K(VpP —fP)=v.uP =5 in 0P,

pP=pl on IP, )
D oD _,D D

u”-n- =uy on Iy.

A fundamental issue in the coupling of Stokes and Darcy flows arises during the formulation of interface
conditions. We adopt three interface conditions on I'T as follows [4,7,8,22,24].

(i) Conservation of mass:

u®-n° = —u? . n". 3)

(ii) Balance of normal forces:

on® .n® = —pP. 4

(iii) Beavers—Joseph—Saffman (BJS) condition:
MY 4SS
VktS - t5 ’
where « is an experimentally determined dimensionless coefficient that depends only on the properties of the

porous medium, and k is the hydraulic permeability defined above. Mathematically, « is assumed to be smooth
and have positive upper and lower bounds [4,7,8].

on® - t5 = —

®)

Note that, the BJS condition contains the permeability component in the tangential direction on the interface, but
does not involve Darcy pressure or velocity.

As usual, we use H'(2°), H'(125), H3(25) to denote respectively the Sobolev spaces of scalar- and vector-
valued functions defined on 2. Similarly, H'(£27) is used to denote the Sobolev space of scalar-valued functions
defined on 27P. Furthermore, let H(l) s be the subspace of functions in HI(QS ) that vanish on 'S, and similarly,

D

Hj p be the subspace of functions in H'(£2”) that vanish on I'D. Then we define four bilinear forms
D

AS@®,v) = f 2e(u®) : e(v) + / B - t%)(v - %), (6)
0ns rz

B3(p®,v) = f pe(V ), (7
oS

v = [P end) ®)
T

AP = [ K9pP)- e, ©)
D

for us, v e H'(2%), pS € L(z)(!?s), and pP, g € H'(2P). Here n®, t5 are the unit normal and tangential vectors
on the interface I'F (pointing away from the Stokes domain £2°). Note that A° incorporates the BJS condition.
Although it involves only the trial and test functions for Stokes flow, we have introduced

o
_ , 10
p /(ktS) - t5 (10)

so it additionally involves the physical parameter k for Darcy flow along the interface.
3
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Then we define two linear forms for v € H'(£25) and ¢ € H'(27),

]—'S(v):/ f-v—i—/ ty v, an
QS ryg
FP@=[ sa=[ wRa- [ xm).va. (12

The variational formulation seeks u® e H'(2%), p® € L3(2°), and pP e H'(025) with uslpg = u3,
pD|F[z>> = pb, so that

As(usv V) _Bs(psa V) +CI(pD7 V) - fS(V)’
BS(r, u) = 0, (13)
—C%(q,u®) +AP(pP.q) = FP(g),

1 2c0S 1
for all v e Ho,Fg’ reLjf2°),and g € HO.FE'

3. Discretization of Stokes flow by Bernardi—-Raugel elements
3.1. Bernardi—Raugel elements (BR1, Qo) for quadrilaterals

Let E be a quadrilateral with vertices P;(x;, y;)(i = 1,2,3,4) starting at the lower-left corner and going
counterclockwise. Let ¢;(i = 1, 2, 3, 4) be the edge connecting P; to P;; with the modulo convention Ps = P;.

Let n; (i = 1,2, 3, 4) be the outward unit normal vector on edge ¢;. A bilinear mapping from (X, ¥) in the reference
element E = [0, 1]° to (x, ¥) in such a generic quadrilateral is established as follows

x =x1+ (2 — X)X + (x4 —x)F + ((x1 + x3) — (02 + x4))%,

y=y1+ 2= y0X + (4 —y0)F + (1 4+ y3) — (2 + ya)IJ. (4
On the reference element E , we have four standard bilinear functions
du(£.5) = (1= D)3, di(£. 9) = 35, as)
P1(x, 9) =1 =51 =), $2(x, 9) = x(1 = P).
After the bilinear mapping defined by (14), we obtain four scalar basis functions on E:
$i(x,y)=hR, 9. i=1234 (16)

These are used to define eight node-based local basis functions for Q;(E)*:

e Hs e b s HLa e e ] a”

Furthermore, we define four edge-based scalar functions on E:
Yi(R, $) = (1 = DA =), Va3, §) = 2(1 = )3,
Uik, §) = (1 = D3, Ya®, 9) = (1 =D = 3.
They become univariate quadratic functions on respective edges of E, and for that reason they are sometimes

referred to as edge-based “bubble functions”. For a generic convex quadrilateral E, we utilize the bilinear mapping
to define

(18)

Vile, ) =&, 9, i=1,2,34 (19
Then we have four edge-based local basis functions on E (see Fig. 1):
b;(x,y)=m ¢¥i(x,y), i=1,234. (20)

Let Q1(E) be the set of vector-valued mapped bilinear functions on a quadrilateral E. Combining the Q,(E)?
functions and the bubble functions, the BR;(E) space on the quadrilateral is defined as

BR\(E) = Q(E)* + span(by, b3, b3, by). 21
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Fig. 1. Four edge-based bubble functions used in the BR; space.

The global finite element space is defined by combining all local spaces, but care must be taken to define the
global bubble functions in a consistent manner. This may be done by defining an orientation for each edge and
using that to assign a consistent direction to each bubble function’s normal vector.

3.2. Properties of the (BR1, Qo) element pair for Stokes flow

The (BR;, Qo) pair satisfies several appealing properties, which will be beneficial for the approximation of Stokes
flow. First, the addition of bubble functions allows for enrichment of interpolation. In [27], the global interpolation
operator, denoted here as P, is specified as the piecewise bilinear interpolant at mesh nodes and the bubble function
coefficients are so defined that the bulk flux is captured on each edge e;,

/(th —v)-n=0, Vv € H)(£2). (22)

For a polygonal domain £2° and a shape-regular mesh 8;? consisting of convex quadrilaterals, this implies that for
all E € &,

(wp, V-Ppv—=v)p =0, Vve H(')(Q), Yw, € Qo(E). (23)

Another property described in [27] is the inf—sup condition. Let V;, be the global B R, finite element space on the
mesh £ and let V) be the space of functions in V}, that vanish on all boundaries. Then the discretization satisfies
the inf-sup condition

(wp, V- V) gs

Yllwnll2os) < sup . Ywy € Qo(&), 24)

vev? leVillL2os)

where y > 0 is a constant independent of mesh size h.

4. Discretization of Darcy flow by WG(Py, Py; ACy) elements

Compared to the continuous and discontinuous Galerkin methods, weak Galerkin finite element methods are
relatively new but have some noticeable features. For the Darcy equation, WG methods can be established based
on the primal formulation but possess local mass conservation and normal flux continuity [28-30]. WG methods
use reconstructed discrete weak gradients in certain subspaces that have desired approximation properties. This
approach produces a numerical Darcy velocity via post-processing based on a local L>-projection. It avoids the
hybridization procedure used in the classical mixed finite element methods. In this section, we briefly discuss the
new WG method (Py, Py; ACy) for Darcy flow on quadrilateral meshes [28].

5



G. Harper, J. Liu, S. Tavener et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113469
4.1. Lowest-order Arbogast—Correa spaces AC\ on quadrilaterals

Compared to the classical Raviart—-Thomas elements [31] or the Arnold-Boffi—Falk elements [32], the Arbogast—
Correa elements constructed recently in [33] for convex quadrilaterals have better approximation properties and less
degrees of freedom. The ACy(k > 0) spaces are constructed using both unmapped vector-valued polynomials and
rational functions obtained via the Piola transformation.

Let E be a convex quadrilateral and k > 0O be an integer. The local Arbogast—Correa space on E is defined as

ACL(E) = P(E)? 4+ XP(E) + S(E), (25)

where P (E)? is the space of bivariate vector-valued polynomials defined on E with a total degree at most k, Py(E)is
the space of bivariate homogeneous scalar-valued polynomials with degree exactly k, and S;(FE) is a supplementary
space of vector-valued rational functions obtained via the Piola transformation.

For convenience, we write S; = ngk, where Pr is the Piola transformation. Let (X, y) be the coordinates in
the reference element [0, 1]2. According to [33], for k =0,

A

So = span{curl(x$)}. (26)
For k > 1,
Sk = spanfeurl((1 — £H)*'$), curl 151 — $2))}. 27

Roughly speaking, P;(E)> accounts for the approximation of a vector field on a convex quadrilateral, X[N’k(E )
accounts for the approximation of divergence, and S; offers a divergence-free supplement.
Given these discrete spaces, we have

dim(P?) = (k + 1)(k +2), dim(P) =k + 1,
and
dim(Sy) =1 if k=0, dim(Sy) =2 if k> 0.
If we set s, = dim(Sy), then
dim(ACk(E)) = (k + D(k + 3) + . (28)

Note that (k + 1)(k + 3) = dim(RT;), namely, the dimension of the kth order Raviart-Thomas (RT) space on
a triangle [31]. Thus, s; represents the additional degrees of freedom needed for augmenting the RT space on a
quadrilateral [33].

However, in this paper, only the lowest-order space ACy is used. More interestingly, a set of local basis functions
for a general quadrilateral are

L) 0] )] @

where X = x — x., Y = y — y, are the normalized coordinates with (x., y.) being the element center, (x, ) are the
reference coordinates in the reference element [0, 1], and Pf is the Piola transformation mentioned above.

We need a local projection operator Q;, from L*(E)? to the space ACy(E) for any quadrilateral E € EF. Given
v e L*(E)?, find Q,v € ACy(E) such that

Quv, W) =(v,W)g, Vw € ACy(E). 30)

For error analysis, we also need the global interpolation operator IT, such that for any v € H(div, £27) and any
edge e in the mesh & D there holds

((Hhv)'n,l)e:(V'n,l>e. (31)
4.2. Weak Galerkin elements WG(Py, Py; ACy) on quadrilaterals
Weak Galerkin finite elements use separate basis functions in element interiors and on interelement boundaries.

These basis functions are different than those basis functions used in the continuous or discontinuous Galerkin
methods. We call them discrete weak functions.
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Let k > 0 be an integer and E be a convex quadrilateral with interior E° and boundary E°. Let Pi(E°) be
the space of polynomials defined in E° with degree at most k, and similarly, P,(E?) be the space of piecewise
polynomials defined on E? with degree at most k. Let AC(E) be the space of vector-valued polynomials discussed
in the previous section.

Let ¢ = {¢°, $°} be a discrete weak function such that ¢° € P(E°) and ¢° € P(E?). Note that ¢° is defined
for the element interior only; whereas, ¢ is defined on the element boundary only. We define V,,¢ € AC(E) by

/(Vw¢)'w: W) — | ¢°(V-w) Vw € AC(E), (32)
E E? E°

or in slightly different notation

(Vud, Wi = (@°, w-n) s — (¢°, V- W)go. (33)

This paper focuses on the case k = 0. We deal with discrete weak functions that are constants separately defined
in element interiors and on edges. In this case, Eq. (33) is simply a size-4 SPD linear system for each quadrilateral.
Its solution contains 4 coefficients to be used for expressing V,,¢ as a linear combination of the local basis functions
of ACy stated in (29).

We shall also need a local L>-projection Q), = {05, QZ}, where Q) is the L2-projection that maps a function
in L?(E°) to a constant in E°, whereas QZ is the L2-projection that maps a function in L?(e) to a constant on e
for each edge e on E?.

5. Combining WG(Py, Py; ACy) and (BR;, Q) elements for coupled Stokes—Darcy flow

This section presents the finite element scheme for the coupled problem, but first we will introduce appropriate
notations and spaces.

Let Elf , EhD be quasi-uniform quadrilateral meshes of 0S, 0P, respectively, with size /i, and let th be a mesh
of I'Z, which is conforming with 5;? and EP.

Let VhS, Wf be the global BR; and piecewise constant spaces on 5;? for the unknowns (uhS, p;lg ), respectively.
Then let VhD be the WG(Py, Py) space on 5hD for the unknowns { p,?’o, phD’a}. Furthermore, we use VhS’O, VhD’0 to
denote the subspaces of Vh‘s, VhD consisting of functions that vanish on Dirichlet boundaries, respectively.

Now we have four discrete bilinear forms defined on these finite element spaces:

Aj@d vy =" 2u / e) re(vi)+ Y [ g ), - 1), (34)
Ee SS eeF,;Z ¢

BY(py.vi) =Y / PRV V), (39)
Eefs

Crip v =Y / Py (v - m® (36)
eth

AP(pr an =) f KVupi) - Vadn, (37)
EeSh

and two discrete linear forms

AOERY /f it Y / Vi, (38)

Ecgf eerg, "
Fan=Y f sai= Y [ubai- ¥ / Qu(~KD) - Vg, (39)
EcgP eerp, "¢ EceP

where Q) is the local projection from L2(£27)? to the broken AC, space.
7
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Our finite element scheme for the coupled Stokes—Darcy flow problem seeks u,‘,S € V;ls, p,‘lS € W,f , and p,? € VhD
such that wi'| s = Py(up), piIpp = Q)(pp). and for any v, € V30 ry e W, and g;, € V,P°, there holds

A, vy =B (ps.ve) +CFPP.vi) = FSw,
BS(ry. ud) = o, (40)
—C¥(qn, uf) +AP(pP.qn) = FP(qn).

For implementation, we consider five groups of (trial and test) shape functions in the following order:

— (1) Stokes velocity: BR; nodal basis functions;

— (2) Stokes velocity: BR; edge-based bubble functions;
— (3) Stokes pressure: Qg elementwise constants;

— (4) Darcy pressure: Py constants for element interiors;
— (5) Darcy pressure: Pj constants for edges.

Accordingly, the global stiffness matrix has five row-wise and five column-wise segments, and hence it has a total
of 25 blocks. The two discrete bilinear forms .Af(~, ), ChI (+, ) involving the interface conditions make contributions
to the (1,1)-, (1,2)-, (1,5)-, (2,1)-, (2,2)-, (2,5)-, (5,1)-, (5,2)-blocks.

Note that the assembly for each of the discrete bilinear forms A§, BY and AP is handled almost as with the
independent Stokes or Darcy problem. An important part of this implementation is the handling of the interface
term Cf and the BJS condition within the A$ term.

After a numerical Darcy pressure p,? is obtained from solving the sparse monolithic system, we define the
numerical Darcy velocity by postprocessing the numerical Darcy pressure by

u; = Qu(~K(Vupy — 7). (41)
The numerical Darcy velocity is used in the upcoming section to show the weak Galerkin discretization provides
conservation properties for the flow in the Darcy domain.
6. Analysis

This section presents a rigorous analysis for the new finite element scheme. For ease presentation, we adopt the
following assumptions.

(1) K = k1. For analysis on Darcy solvers with a general permeability, see [34].
(i) f? = 0. Then u? = —«VpP and uP = —«V,, pP due to (i) and (41).
(iii) Homogeneous pure Dirichlet boundary conditions are imposed for both Stokes and Darcy parts.

We define the following energy semi-norms for v, € V;f and g;, € VhD:

Wil = A5 vi),  llanll? = AP(qn, qn), (42)

which induce an energy semi-norm on the space Vhs X VhD :

v @l = 11Vall; + HanllT7- (43)
6.1. Properties of operators and subspaces
For the Stokes part, we shall need 7, as the local L?-projection operator from L3({2) to W;LS .

Lemma 1 (WG Commuting Ildentity). For any E € EE and any q € H'(E), there holds
Qi (Vq) = Vi (Qrq). (44)

Proof. See [28,29].
Under the assumption K = «I, Lemma | implies that

Q.(KVp?) = K(Q,Vp?) = KV, (Q)pP).
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Lemma 2 (WG Conversion to Trace). For any E € 5,? and any qy € VhD, there holds
W, Vugi)e = (W D, q) —q;)ps. YW € ACo(E). (45)
Proof. This is obtained by applying the definition of discrete weak gradient V,,q;, the Gauss divergence theorem,
and the fact that g} is a constant in E°. We also extend ¢; to each edge on E? when needed.
Lemma 3 (Lower Bound for Discrete Weak Gradient). There holds
1 o
W2l = aplles S WVugille, VYE € &7, Vg € V7' (46)
Proof. Choose w € AC, so that (w - n)|, = ‘12 — ¢7l. for each edge e C E?. We apply Lemma 2 and a
Cauchy—Schwarz inequality to obtain
gy —apllye = (W-n,q; —q7)gr = (W, Vugn)e
< Iwle IVwanlle 47
1
~ hz|w-nllg [Vugnlle.

For the last step, we have used an estimate similar to that in [30] Lemma 5. A cancellation of ||q,? —qyllgs yields
the desired result.

Lemma 4 (Conservation of Mass for Darcy Flow). For any E € EP, there holds

/Eauhpmz/Ef. (48)

Proof. This statement is common in the literature for weak Galerkin methods for Darcy flow, but the only difference
here is we choose v, = 0, r, = 0, and g5, = {xgeo, 0} in (40). The remainder of the proof follows from applying
the conversion to trace and definition of the Darcy velocity (see also [28,29]).

Lemma 5 (Bulk Flux Continuity for Darcy Flow). For any two elements E, E, € EhD which share an interior edge
e, their respective local velocities ufl, uhD2 satisfy

/“}?1 -m —l—/u,?z -mp = 0. 49)

Proof. This is another common statement for weak Galerkin methods for Darcy flow, and just as in Lemma 4, we
choose v, =0, r, =0, but g, = {0, x.}. The remainder of the proof may be obtained by applying a conversion to
trace and definition of numerical Darcy velocity (see also [28,29]).

6.2. Existence and uniqueness

In this subsection, we prove the existence and uniqueness of the finite element scheme (40). It suffices to show
the uniqueness, since the discrete linear system is finite-dimensional and square. This will be accomplished by
setting the source terms to zero and then showing that all parts of the discrete solution are zero. Thus, we consider
the special system

AS@s, vy) —BS(py,vy) +CE(pP,vi) = 0,
B (ry, uf) = 0, (50)
—CH(gn, uy) +AP(pP.qn) = O.

We set v, = u;f, ry, = p;lS ,and g, = p,?, and sum the equations to obtain

2
s, pDI, = AF g, ul) + AP (pF, pP) = 0.
9
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This immediately implies s(uf ) =0, uhS -t=0,and V,, p,? = 0. The fact that the Dirichlet boundary in the Stokes
domain is nonempty implies uf = 0. The discrete inf—sup condition (24) then implies that p,‘f =0.

It remains to show that V,, p}? = 0 implies the numerical pressure p,? is zero. By Lemma 3, V,, p}l) = 0 implies
that pg = (p;)l. on each edge e of E for any E € 5,? . It is easy to see these are all the same constant on a given
E. The fact that each E € EP shares an edge with another element in &P implies that p) and pj are the same
constant over the entire mesh. Since the Dirichlet boundary for the Darcy flow is nonempty, we conclude that this
constant is zero. Furthermore, from this we conclude |||(-, -)|||, iS @ norm on Vhs‘0 X VhD‘O.

6.3. Error equations

We split the errors of finite element solutions as discrete errors and projection errors. The discrete errors are
defined as

e =P’ —ul, e =mp°—p;. el =0wp" —pP. (51)

The projection errors are defined as
w—-pPu®,  p—mp®, pP - Qup”.

In this subsection, we establish error equations to express the above discrete errors in terms of the projection errors,
which are known to be controlled by the regularity of the exact solutions and the approximation capacity of the
finite element subspaces constructed.

Lemma 6 (Error Equations). Let (u¥, pS, pD) be the exact solutions to the coupled Stokes—Darcy flow problem (13)
with homogeneous Dirichlet boundary conditions on the whole boundary (except the interface). Let (u;?, p;?, p,?)
be the numerical solutions obtained from the finite element scheme (40). Then for any v;, € Vhs,o’ r, € W,;S’O, and
qn € VhD’O, there holds

ASer,vi) —Bred,vi) +CLeP,v,) =§G5@m®, pS, pP,vy),
BS(ry, ) o0, (52)
—C¥(qn, €5) +APEP, q,) =GPMP, q),

where

GS@S, pS, pP.,vi) = A7 (PpuS —us, vy)
=B pS — pS,vi) + CEHQup® — pP, Vi),

GP@”, g = Y UTu” —Qu”, Vyug)e.

D
Eeg;,

(33)

Proof. To handle Darcy pressure error, we use the 3rd equation in the finite element scheme (40) to obtain
AR er s an) = AL (Qip®, an) — A7 (P an)
= AV(Qup®, an) — F () — Ci (qn, u).
By Lemma 1, the first term in the last line is converted to

A;?(thDa qh) - Z (Kvw(thD)a quh)E

D
Ee€g,

Y QuKVpP), Vuan)e (54)

D
Eeg;,

- Z (QhuD’ Vth)E-

D
Eeg),
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To deal with Darcy source term s = V - (~KV p?), we consider ¢, € VhD’O. Then

Foan =Y .q)e= Y (V- (-KVp").q}),.

EGE;lD EEEILD
=Y (V-ul g = Y (V- -TuP), g
EeEhD EESI;D

Note that IT,u” is in the global ACy space. By the definition of discrete weak gradient, we have
Fl@y =Y (TuP) n,gh)— Y (TP, Vg
Eeé‘hD Eeé’l;D

The interpolant in the global ACy space has normal continuity. So the terms for the interior edges vanish, and the
terms for Dirichlet edges satisfy g/ = 0. The only surviving terms lie on the interface edges. Thus we have

Fl@) = Y (Tu®) -0 gl — 3 ITu®, Vg, (55)
ethI EESZD
Combining the above results yields

AR gy =Y (T,u” — Qu”, Vygn)r

EeShD (56)
= Y A(UTuP)-n®, g)). — CF(gn. uy).
ethI
Therefore, subtracting CZ(gy, €;) from AP (eP, q;) yields
AP P, qn) — C(qn, €) = AP (P, q1) — CE(qn, Ppu® —uy)
= A7 (el qn) + CJ (qn. wy) — Cif (qn, Pyu®)
= Y " —Qu”, Vyge — Y (T, 0", g)),
Eeé}hD eeI‘hI (57)
=Y (@) 0% g)).
eEI—’hI
= Y UIu® - Qu”, Vygne + Y (Pyu® — ITuP)-n”, gi)..
EeShD EEFhI

By the flux-capturing property of the BR,; interpolation operator (22), the flux capturing property of the AC,
interpolation operator (31), and the first interface condition, the second sum vanishes, and one is led to the 3rd
error equation in (52)

APl qn) — CE(qn, €)) = AP (el q1) — CL(qn, Pyu® —u3)
= > (" —Qu”, Vg e + Y (P — Mu®) -0, g}).
EGEZ" ethI
> dIu® - Quu”, Vugn)e
EESE
=GPWP, qp).

To handle Stokes velocity error, we use the 1st equation in the finite element scheme (40). We remark that while
the Stokes discretization is conforming, we proceed carefully due to the ChI term to obtain

AS(eS, vy) = ASPyu®, vy) — AP (uf, vy)

= AS Ppu®, vi) — FP (Vi) — By (py . vi) + CE(pL ., vi).
11

(58)

(59)
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Similarly, we utilize Stokes 1st equation to rewrite the forcing term and obtain

Fow) =Y Eve= Y (=V-0,v)k

EeS;lS EeS;lS
= Z (Gs VVh)E - (an, Vh>E3 (60)
Eeé‘,‘?
= Y 2u(e@®), e(vi)e — (p°. V- vi)p — (o, Vi) o
Eec‘,‘,;g
All normal contributions of stress cancel across the interior edges, leaving only the interface edges, where on® is
once again decomposed into normal and tangential components, yielding
Few) = 2ue@®), e(vi)e — (p°. V- vi)e
EeS;lS
(61)
+ ) (Bu® 1%, vy - t5), + (p7, vy - %),
eGShI
So we have
Fow = 2ue@®), e(vi)e + Y (Bu’ 15, v, - 15),
Eeé‘,‘f eeShI (62)
=B (pS,vi) + CE(pT. V).
Therefore,
ATy, vi) = AT Pu®,vy) — Y 2u(e®), e(Vi))e
Eeé';,s
= > (Bu® - t%, v - %) + By (p° — pivi) = G (P = p o va)
eeEhI
= AP ®yu® —u®,vy) + BY (p° — i p® +mup® = pil,vi) (63)

—CH(p® — 0up® + Qup® — pP. Vi)
= AT Puu® —u®, v,) + By (e, vi) — CF (el . Vi)
—B3 (mupS — pS,vi) + CE(Qup® — pP, i)
=G5w®, p°, pP.vi) + By (ef . vi) — CE (el v,

which yields the 1st error equation in (52).
6.4. Error estimation

For the approximation capacity of the finite element spaces used for the scheme in this paper, one has the
following results. For any quadrilateral element E, there holds

s s 2k S )

lu® —Pyu | S A0 lg2E), k=0,1;
s S s

P —mnpllo S Al gy

Additionally, we shall frequently use the following standard trace inequality for any scalar- or vector-valued
H'-function

helldl? < ol + hZ 1ol (65)

Based on these facts, we have

(64)

3
IS —Pyu®) - the < h2lu g (66)
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We shall also use the following bounds for norms of a function v € H'(2°):
IV - Vii2es) S leMlizes) < I1VVllizes) < VI os)- (67)
Theorem 1 (Energy Norm Error Estimate). Let (n®, pS, pP) € H2(25) x H'(2°) x H*(2P) be the full-regularity

solutions to (1-5) under the assumptions from the beginning of this section. Let (uhS , p;? , phD) € Vh‘s’0 X W;LS X VhD’O
be the numerical solutions of (40). Then

ey, e, S (I0slles) + 125 1m@s) + 1P li2@p)) |

(68)
leg Il < 2 (I llgees) + 125w es) + PPl u2om)) -
Proof. Taking v, = ef, r, = e,‘f, and g, = e,? in the error equations (52) and summing them yields
2 2 2
1€ e, = 1 T, + e I, = A7 (e, €) + AP (e e) )

=G%®w®, p°, pP, )+ GP P, eD).
Part (1) Handling G°(u®, pS, pP, e7). Recall that
GS@®, pS, pP,vi) = AS @ —u®, vy) — BE (i pS — pS, i) + CE(Qiup® — pP, ).

The three terms on the right-hand side of G will be estimated individually.
(i) For Ah‘S(Phus —u®, e,), by applying triangle inequalities, Cauchy—Schwarz inequalities, trace inequalities,
and the following fact that is derived from (67):

S _ .S S _ .8
lePru” —u)l20s) S 1P —u”[lgies),

we obtain

|A,‘f(PhuS —u°, eh5)|

=Y 2u(e@uu —u®), se) e + Y (BPuS —ud) 5 ef - t5),

EeE;lS eeé‘hz
1 1
2 2
S Sy\12 Sy\12
<2u| Y le®@u® —ud)E | | D0 Nl (70)
Eeé‘;f EEE;IS
1 1
2 2
S Sy . ¢S)2 1.8 (52
+ | DI —u®) 12| | Y 182 - 01
eeShI eeEhI

3
Sl lggos)leg 1, + A2 s lgos)llleg I,
For BY (pS — 7, p%, €7), we apply similar techniques to obtain
|B; (p® —mnp®.e})| = ‘ > =S V- )E

S
E€g;

2 2
< XS =mp®ln | | D IV-ElE 1)
EeEf EeEf
< 1p° = 71up® 205 IV - € 1 1205)
S P i as)le@)ll20s)
< kPl as)l€; N,
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Finally, for ChI (p? — 0up?, e;lS ), we estimate its interface terms by using the techniques for duality pairing in [35].
This yields

CE(PP = 0w, ) = | D (" — Qup”. € ).

ee£hI
D _ D S 72)
< 1 €, -nj 1 (
< 1pP = Qup”l oy o e ml
< h|p? e
= ||P “H%(FI)” h ”HI(Q;’S)

< 1l PPl em) e 1l
where the inequalities for ehS are due to a trace inequality and then the Korn’s inequality.
Part (2) Handling GP (u”, e,?). Recall that
GPa” g =Y (Tu® - QuP, Vyug)):.
EES}P

This involves two approximations to u”. Each converges with first order. Based on the approximation capacity of
IT;, Q, (and triangle inequalities), we have, for each element E,

T u” — QuuP g < [ ITu” —u® g + [u” — QuuPlle < hlluP g ).
Then by the Cauchy—Schwarz inequality, we have
GP@P, ef) = Yy (,u” — Qu”, Vel

D
Eeg,

=
Bl—=

<[ S ime® -l | | 3 1vueli: 73)

Eef,‘hD Eef,‘hD
1
D D
S hlu Ilnl(ma)—ﬁllleh [P

. 2
where in the last step we have used the fact [|le] |||, > « ZEEShD Vel |13

Combining these results, noting that |[u”||; < ||pP|l, and dividing both sides by |||(eh3, ehD)Hl , yields the first
inequality in (68).

Part (3) Handling ||e;lS ||. First, we remark that solving the first error equation (52) for B;? yields
|BS (e, vi)| = | A5 (e5, vi) + CL (P, vi) — G5, pS, pP,wy)|.

This holds true for each v, € Vhs,o’ so we may additionally restrict v| -z = 0, for which we denote by v € V?l C Vf’o
to obtain

B3 (e, vi)| = A7 7 vi) — G5 s, pS, pP,vi)|
S S S D
S ey 1, e llly + 2 (1o lg2cos) + 127 L micesy + 127 L m2cemy) Vel (74)
S S D
S k(I llwzees) + 127 1aies) + 127 Lzep)) Vel

The inf-sup condition for Bf is well-known in the case of Stokes flow [27], and it applies to v, € V(}l. Therefore,
we have

1BS (e, Vi)
||€/';3||L2(95) S sup —h 2
wve vl (75)

Sh (||us||H2(Q$) + ”pS”Hl(.QS) + ||PD||H2(QD)) )
which concludes the proof.
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Table 1
Example 1: Errors and convergence rates.
n llices eI, Rate u® —uf 2 Rate 1S — pll2 Rate 1P — i ll2 Rate
8 7.8259e—01 - 1.2155e—02 - 1.0935e—01 - 2.7940e—01 -
16 4.0407e—01 0.95 2.7537e—03 2.14 5.3808e—02 1.02 1.4024e—01 0.99
32 2.0363e—01 0.98 6.6788e—04 2.04 2.6794e—02 1.00 7.0189e—02 0.99
64 1.0201e—01 0.99 1.6564e—04 2.01 1.3383e—02 1.00 3.5103e—02 0.99
128 5.1031e—02 0.99 4.1328e—05 2.00 6.6898e—03 1.00 1.7553e—02 0.99

Remarks. In addition to the results proved above, we expect first-order convergence of Darcy velocity in the
H(div)-norm. Although it is not formally proved here, rigorous analysis for the case of single-phase Darcy flow
only can be found in [28]. We anticipate a similar result for the Stokes—Darcy problem, provided the Stokes solution
to which the Darcy solution is coupled converges at an appropriate rate. We provide numerical support for our claim
in Example 2 in Section 7.

In addition to the H(div)-convergence discussed above, our numerical experiments in the following section
suggest

e L2-norm of Stokes velocity errors exhibits 2nd order convergence;
e L2-norm of Darcy pressure errors exhibits 1st order convergence.

7. Numerical experiments

This section presents numerical experiments to demonstrate accuracy and efficiency of our new finite element
solver for coupled Stokes—Darcy flow problems.

Example 1 (Known Analytical Solutions). First we consider an example that has known analytical solutions. The
example is taken from [22]. Specifically, the domain for Stokes flow is 1S = (0, ) x (0, 1), the domain for Darcy
flow is 27 = (0, ) X (—1,0), and the interface is 't = (0, 7) x {y = 0}. Fluid viscosity is set as u = 1, the
permeability matrix is K =1, and f® = 0.

For the Stokes part, the exact solutions for velocity and pressure are

WSe. y) = [ cos(x)v'(y)

sin(x)v(y) i| ’ pS(x, y) = sin(x)sin(y),

where v(y) = # sin®(7r y) — 2. Clearly, V - u® = 0. For the Darcy part, one has
cos(x)(e¥ —e™?) ]

sin(x)(e” 4+ e™7)

The BJS coefficient « = 1. The three interface conditions can be easily verified.

Example 1 is tested on a sequence of uniform rectangular meshes that have n partitions in each of x, y-directions.
In this case, the local ACy space is the same as the classical RTjy space. The numerical results in Table 1
demonstrate the proved first order convergence in the discrete error energy norm, in addition to the Stokes pressure
error L2-norm. We remark that although it was not proved, for this numerical example, we observe second order
convergence in the Stokes velocity error L2-norm and first order convergence in the Darcy pressure error L>-norm.

pP(x,y) =sin(x)(e’ —e™),  uP(x,y)=— [

Example 2 (Trapezoidal Meshes and H (div)-Approximation). This example demonstrates that our new solver applies
well to general convex quadrilateral meshes, as shown in Fig. 2. We observe optimal order H (div)-approximation
in Darcy velocity since the new Arbogast—Correa space is used. This example is adopted from the one in [4] on
p. 383 with a slight modification in the Stokes velocity to ensure that the BJS condition is satisfied with non-zero
data.

Specifically, £2° = (0, 1) x (1,2), 27 = (0, 1) x (0, 1), the interface is I'Z = (0, 1) x {y = 1}. For Darcy flow,
the permeability matrix is K = «I with k = 1. In addition, f© = 0. An exact solution for the pressure is given as

pD(x, y) = %cos (%x) cos (%y) + (1 —x)y, (76)



G. Harper, J. Liu, S. Tavener et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113469

PUZN
PUZN
PUZN
LN

i

/
/
L

NINTNTN
[/ 1/

™~
™~
N
™

NINTNTN

Fig. 2. Example 2: A trapezoidal mesh with a slant parameter 0.35. See [36] also.

Table 2

Example 2: Convergence rates of CG(BR;, Qo) + WG(Py, Py; ACp) solver on trapezoidal meshes with slant parameter 0.35.
n lus —u ;2 Rate IpP — pPll,2 Rate [u? —uP ;2 Rate IV-@P —uP)l,2 Rate
23 7.8401e—03 - 3.8603e—02 - 6.4434e—02 - 2.1566e—01 -
24 2.0155e—03 1.95 1.9485¢—02 0.98 3.2998e—02 0.96 1.0819¢—01 0.99
2’ 5.1152e—04 1.97 9.7684e—03 0.99 1.6644e—02 0.98 5.4139e—02 0.99
26 1.2908e—04 1.98 4.8884e—03 0.99 8.3532¢—03 0.99 2.7075e—02 0.99
27 3.2461e—05 1.99 2.4450e—03 0.99 4.1838e—03 0.99 1.3538e—02 0.99

which produces a Darcy velocity

sin z)c cos T
_ (2 ) (2 Y ) ty

ol "= cos (%x) sin (%y) —(1—-x) ’ a
and accordingly, the fluid source is

s(x,y) =mcos (%x) cos (%y) . (78)

We use the above pT, u” to specify a Dirichlet boundary condition on the bottom side and a Neumann boundary
condition on the lateral sides. For Stokes flow, we have u = 1. The exact solutions for velocity and pressure are
known as

1 —sin (%x) cos (%y)
v = —(1 — x) + cos (%x) sin (EY> ’ el 7

The body force £° is derived accordingly. Clearly, V -u® = 0. The velocity exact solution is used to pose Dirichlet
boundary conditions on the left and right-sides of 2°. A Neumann condition is posed on the top side. The BJS
constant o = 1. It can be verified that all three interface conditions are satisfied.

For numerical experiments, we use a family of trapezoidal meshes (with a slant parameter 0.35) as shown in
Fig. 2. This type of meshes was introduced in [36]. Table 2 shows the results obtained from using the new solver
developed in this paper. One can clearly observe 2nd order convergence in Stokes velocity and 1st order convergence
in Darcy pressure, velocity, and div of velocity. However, Table 3 exhibits no convergence at all when the unmapped
Raviart-Thomas space is used on trapezoidal meshes.

Example 3 (Lid-Driven Cavity + Heterogeneous Permeability). This example couples the well-known lid-driven
cavity problem for Stokes flow and Darcy flow in a heterogeneous permeability field. Here the Stokes domain is
25 = (0, 2) x (0, 1) whereas the Darcy domain is 27 = (0, 2) x (—1, 0).

For the Stokes part, © = 1. There is no body force. Dirichlet boundary conditions are posed. Specifically, for
the top-side (y = 1), one has u‘g = [1, 0]7; for the left- and right-sides, a no-slip boundary condition (u = 0) is
posed.

16
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Table 3
Example 2: No convergence for the combination of CG(BR;, Qo) and WG(Qo, Qo; RTjo)) on
trapezoidal meshes with a slant parameter 0.35.

n u® — 1P = Pl lu® — 2 IV - @P —uP)ll
2 7.9157e—03 3.9068e—02 1.4909¢—01 2.8331e400
24 2.0827e—03 2.0143e—02 1.4671e—01 6.2122¢+00
2 6.0593e—04 1.1058¢—02 1.4924e—01 1.3150e+01
26 2.8866e—04 7.2183e—03 1.5137e—01 2.7046e+01
27 2.4347e—04 5.9187¢—03 1.5264e—01 5.4833e401

Stqkes-Darcy: Numerical pressure & velocity
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Fig. 3. Example 3: Numerical velocity and pressure obtained from using CG(BR;, Qo) + WG(Py, Pp; ACp) on a rectangular mesh with
h = 1/20. Velocity is plotted at element centers and the magnitude is doubled for better visual effect.

For the Darcy part, a heterogeneous permeability K = «I is given. Specifically, 27 is divided uniformly into
10 x 5 blocks. Labeling from left to right and top to bottom, these six blocks have a very low permeability value
Kk =107%(2,2),(2,4),(2,7),(2,9), (3,2), (3, 5). For the remaining blocks, x = 1 instead. There is no source, and
fP = 0. A no-flow boundary condition @?-n=0)is posed on the left-, right-, and bottom-sides of the domain.

The BJS coefficient o = 1.

There is no known analytical solution for comparison, but our new finite element scheme can capture the main
physics features. Shown in Fig. 3 are the velocity and pressure profiles obtained on a uniform rectangular mesh
with 1 = 1/20. Here are some qualitative observations.

(1) Smooth flow exchange between the free flow (Stokes) and the porous-medium flow (Darcy) across the known
interface (y = 0): for x > 1, fluid travels from the Stokes domain to the Darcy domain; for x < 1, fluid
travels back from the Darcy domain to the Stokes domain;

(ii) Pressure singularity at the two corners (0, 1), (2, 1) for Stokes flow;

(iii) Detours of flow path around the six low permeability blocks for Darcy flow.

Example 4 (Three-Domain Coupling). This is a standard filtration example that has been tested by others in [6,13].
We test this example to show the presented methodology in this paper may be extended to more general domain
couplings. We consider coupling of three domains horizontally, which may also be referred to as Stokes—Darcy—
Stokes coupling. Specifically, £, = (—1,0) x (0, 1), £ = (0, 1) x (0, 1), {23 = (1, 2) x (0, 1). The two interfaces
are 7; = {x =0} x (0, 1) and Z, = {x = 1} x (0, 1). Stokes flow is considered in 2| and (25 with u = 1. whereas
Darcy flow is considered in (2, with permeability « = 1. The BJS coefficient « = 1.

A Dirichlet boundary condition with a parabolic profile up = [4y(1 — y), 0]” is specified on the entry (x = —1)
and a natural boundary condition is applied downstream at x = 2. No-slip boundary conditions are imposed along

17
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Stokes-Darcy-Stokes: Numerical pressure & velocity
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Fig. 4. Example 4 (Stokes—Darcy—Stokes coupling in three domains): Profiles of numerical velocity and pressure obtained with 7 = 1/16:
(top) k = 1.0; (bottom) x = 1E-6. Note Stokes velocity is plotted at nodes but Darcy velocity is plotted at element centers.

the lateral boundaries of the Stokes domains, and normal flux conditions u? - n = 0 are applied along the lateral

boundaries of the Darcy domain. All body forces and source term are set to zero.

In Fig. 4, we show the numerical results with 4 = 1/16 for the cases of ¥k = 1.0 (top) and x = 1E-6 (bottom).
Comparing the two cases, we see that the magnitude of the drop in the pressure across each Stokes domain is
approximately the same, but the magnitude of the pressure drop across the Darcy domain is inversely proportional
to the magnitude of the permeability. In addition, we observe some slight differences in the velocity fields in the
Stokes domains near the Stokes—Darcy interfaces. This is due to the fact that the tangential component of the Stokes
velocity is inversely proportional to the square root of the permeability through the BJS condition.

8. Concluding remarks

In this paper, we have developed a new finite element method for coupled Stokes—Darcy problems on quadrilateral
meshes that combines the classical Bernardi—Raugel element pair (BR;, Q) for Stokes flow with the new weak
Galerkin element (Py, Py; ACy) for Darcy flow. The new method has some noticeable features.

(1) As proved theoretically and demonstrated numerically, this new method has first order accuracy in the energy
norm and first order accuracy for Stokes pressure in the L?-norm.

(i) This new finite element scheme does not use Lagrange multipliers explicitly, but the weak Galerkin edge-based
pressure unknowns on the interface behave similarly to Lagrange multipliers to impose continuity of flux, as
shown in Eq. (36).

(iii) This new finite element method offers local mass conservation and normal flux continuity for the Darcy flow.

18
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(iv) This new method has fewer unknowns, compared to many other existing methods (for 2-dim problems), but
is flexible in accommodation of complicated domain geometry. The total number of unknowns is

2#StokesNodes + #StokesEdges + #StokesElements
+#DarcyElements + #DarcyEdges.

The new method can be extended to 3-dim coupled Stokes—Darcy flow problems on cuboidal hexahedral meshes
based on combination of the Bernardi—Raugel element pair (BR;, Q) for hexahedra and the weak Galerkin
element (Py, Py; ATp), where AT is the lowest-order Arbogast—Tao space [37]. This also means that a dimension-
independent implementation may be realized in a finite element library such as deal.II, which now contains the
Bernardi—Raugel element in version 9.1 [38]. Further extension of this approach to higher order solvers is possible
by using the Taylor—Hood elements or the WG(Py, Py; ACy) finite elements. All these are currently under our
investigation and will be reported in our future work.
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