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Mobile platforms must satisfy the contradictory requirements of fast response time and minimum energy
consumption as a function of dynamically changing applications. To address this need, system-on-chips (SoC)
that are at the heart of these devices provide a variety of control knobs, such as the number of active cores and
their voltage/frequency levels. Controlling these knobs optimally at runtime is challenging for two reasons.
First, the large configuration space prohibits exhaustive solutions. Second, control policies designed offline
are at best sub-optimal since many potential new applications are unknown at design-time. We address these
challenges by proposing an online imitation learning approach. Our key idea is to construct an offline policy
and adapt it online to new applications to optimize a given metric (e.g., energy). The proposed methodology
leverages the supervision enabled by power-performance models learned at runtime. We demonstrate its
effectiveness on a commercial mobile platform with 16 diverse benchmarks. Our approach successfully adapts
the control policy to an unknown application after executing less than 25% of its instructions.
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1 INTRODUCTION

Over a billion people use various types of electronic devices including mobile phones, tablets,
and personal computers [37]. As the processing and sensing capabilities of these devices expand,
we see exponential growth in the number and types of applications. Common examples include
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Fig. 1. lllustration of the offline policy constructed using a training set that includes BasicMath-Large. The
policy decisions for BasicMath-Large are perfect for entire execution, while decisions for Kmeans are different
50% of the time with respect to the reference.

graphics-intensive games, communication-intensive social media apps, health monitoring, and
traditional compute-intensive applications. Delivering the required performance on-demand and
maximizing the battery life are two common goals independent of the application. However,
the runtime configurations to achieve these goals can vary dramatically for different application
scenarios. For example, high-performance CPU cores (e.g., big cores) are preferred over low-power
cores while running compute-intensive applications. Furthermore, the voltage and frequency levels
should be controlled optimally at runtime, since the highest (i.e., most power-hungry) levels are
not needed continuously. Therefore, heterogeneous SoCs must orchestrate the utilization of the
available resources optimally at runtime as the composition of active applications evolve.

Determining the optimal SoC configuration at runtime is challenging for two reasons. First, the
parameter space is prohibitively large to explore at runtime. Even with two types of cores (e.g., ng
big and ny little cores) with F frequency levels each, there are thousands of possible configurations
(ng X nf ). Second, and more importantly, one cannot find the optimal configuration offline since
many potential applications are unknown at design-time. Even if a set of key applications, i.e., key
performance indicators (KPI), are available, we do not know the precise composition of these KPIs
and background applications in advance. Furthermore, the type and number of applications grow
continuously. Therefore, there is a strong need for approaches that adapt to new applications by
learning optimal SoC configurations at runtime.

Existing governors in mobile platforms use simple metrics for runtime power management
decisions. For example, interactive and on-demand governors in Android phones control the
operating frequency as a function of the utilization. These policies maximize performance, but
they are not energy-efficient. Several power management techniques have recently been proposed
to overcome these limitations [25, 30, 31]. These policies are typically built offline using prior
knowledge of few known applications. Therefore, they may not perform well for new applications
encountered at runtime. For example, Figure 1 illustrates an offline policy which performs poorly
while running applications outside the training set. Reinforcement learning (RL) [40] methods,
such as Q-learning, can be employed for online learning. However, RL methods are not efficient to
learn the optimal policy for new applications, since they learn via trial-and-error using very weak
training signals and require a large number of data samples.

In this paper, we propose a novel online imitation learning (Online-IL) approach to learn optimal
policies for new applications at runtime. The Online-IL approach leverages an offline control algo-
rithm, constructed at design-time, as the initial policy to effectively bootstrap the learning process.
This policy may not perform well on new applications seen at runtime as demonstrated by Figure 1
and our experimental results. Hence, the proposed Online-IL approach synergistically combines the
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benefits of power/performance models and machine learning techniques. The power/performance
models provide strong supervision via low-overhead and accurate evaluation of candidate configu-
rations. Our machine learning techniques leverage this supervision to efficiently adapt the policy to
new applications. In each training epoch, we perform the following four steps. 1) Execute the current
policy and record the workload metadata, such as the number of instructions and memory accesses;
2) Evaluate the candidate configurations using the metadata and analytical power/performance
models to determine the best action; 3) Update the policy parameters such that evaluation of
policy at each system state matches the best configuration found via power/performance models;
and 4) If required, update the parameters of analytical power/performance models based on real
measurements. We repeat these four steps until the policy convergences.

Experimental evaluations on Odroid-XU3 board show that offline policies achieve almost 100%
accuracy with respect to a golden reference while running applications from the training set.
However, they perform poorly under new applications seen at runtime. Our proposed online-IL
methodology adapts the offline policy online to new applications within a few seconds.

Contributions: The main contributions of this work are:

e A novel approach to utilize online power/performance models at runtime to generate training
data,

e A runtime adaptive control algorithm that combines optimal offline policies and online
learning,

e Comprehensive experimental evaluation on a commercial mobile platform using 16 diverse
applications.

2 BACKGROUND AND RELATED WORK

Increasing mobile phone usage and performance demands have led to significant research in explor-
ing power-performance trade-offs in heterogeneous SoCs. Mobile platforms employ heterogeneous
SoCs that integrate different types of cores (big/little), GPUs, and application-specific processors.
They come with power management governors, such as on-demand [29], that use simple metrics in-
cluding core utilization to make power management decisions, although the increasing complexity
of heterogeneous SoCs necessitates new algorithms for their dynamic resource management.

The majority of prior power management techniques utilize control policies designed of-
fline [32, 44]. For example, two recent studies propose CPU/GPU frequency selection techniques
using decision tree [30, 31]. These techniques are designed offline and verified at runtime under
gaming applications. Purely offline methodologies are impractical since they cannot adapt to new
applications with unknown characteristics. Therefore, a practical dynamic power management
technique for mobile platforms should automatically adapt to new application applications seen at
runtime.

One class of techniques choose between multiple pre-designed dynamic power management
policies by characterizing the incoming applications online [1, 8, 9, 36]. For example, the technique
presented in [1] updates the parameters online, when a new uncharacterized application begins.
These methods incur the cost of storing multiple control policies and switching among them
online. The accuracy of these approaches depends critically on the availability of an appropriate
policy, which is infeasible due to the rapidly growing number of new applications. A recent study
updates the policy online with the help of a proportional-integral (PI) controller which estimates
the workload behavior [45]. However, this technique controls only one knob, the uncore frequency.

Modeling power-performance with system-level measurements is usually an integral part of dy-
namic resource management techniques. Multiple studies in the literature discuss power modeling
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for heterogeneous platforms [6, 38, 46]. A comprehensive discussion about power modeling tech-
niques is presented in [6, 38]. One class of power models rely on the parameters obtained through
circuit simulations [2, 46]. Since typical circuit simulations are slow, obtaining power models though
simulations are time-consuming. Another class of techniques use empirical data to obtain the power
models. Since our technique uses empirical data to obtain the power model, we discuss this class
in more detail. An empirical power modeling technique is proposed in [4]. In this technique, the
authors collect power data from the platform itself by executing it at different fixed temperatures,
voltages and frequencies. Several researchers also proposed offline and online performance models
for heterogeneous platforms. Authors in [16, 21] proposed machine learning-based performance
models as a function of hardware counters to estimate GPU performance. Auto-regressive models
are used to predict the performance in heterogeneous processors both offline [10] and online [11].
Adaptive performance models for heterogeneous SoCs are proposed in [3, 17]. In these techniques,
the authors perform offline feature selection and use Recursive Least Square (RLS) to learn model
coefficients online. In our proposed work, we first collect power and execution time data for differ-
ent applications. Since total power is a function of dynamic capacitance (Cgy ) and leakage current
(Ijeak), we model these two as a linear combination of hardware counters. However, these models
might be inaccurate for the new applications seen at runtime. Therefore, we update these linear
models through RLS with the help of the hardware counters and the power values obtained at
runtime. We apply a similar technique to estimate execution time too.

Recent studies proposed applying Reinforcement Learning (RL) to dynamic power management
to enable online adaptation [7, 43, 47]. For instance, Q-Table based approaches are used for energy-
aware DVFS scheduling [7, 43]. These approaches are not scalable for heterogeneous SoCs since the
number of state-action pairs is increasing with the number of cores and supported power states. To
address this problem, Zhang et al. [47] proposed a deep queue learning network (DQN) technique
for heterogeneous SoCs. A common drawback of all RL methods is their inefficiency to learn the
optimal policy for new applications. More specifically, RL techniques require a large number of
data samples to converge, since they learn via trial-and-error using weak training signals.

In this work, we employ the principles of imitation learning (IL) [34] due to significant advantages
of IL methods over RL: require fewer data and time to learn near-optimal policies. IL leverages the
optimal sequential-decision making behavior (referred to as the Oracle) and employs supervised
learning techniques to mimic this behavior. However, exact imitation learning algorithms suffer
from error propagation. Advanced IL algorithms use additional training data collected during
policy evaluation to recover from mistakes to address this problem [33]. This idea has been used to
control voltage-frequency islands in a multiprocessor SoC [22]. In their approach, the control policy
is created offline using known applications and evaluation is performed for homogeneous SoCs
using only simulation studies. Recently, another IL-based dynamic power management technique is
proposed in [24] for heterogeneous platforms. In this approach, the authors design the Oracle policy
using the applications known at design-time. Subsequently, they use the offline designed policy at
runtime. Therefore, these methodologies cannot improve the control policy for new applications.

In contrast to prior work, we propose a novel low-overhead Online Imitation Learning approach
that can learn to control multiple configuration knobs simultaneously as new applications arrive.
Our proposed solution utilizes power/performance models to generate strong online supervision
which enables us to tailor the policy to new applications seen at runtime. Finally, we evaluate the
effectiveness of our solution with experiments on a hardware platform.

3 PRELIMINARIES AND PROBLEM SETUP

We consider a heterogeneous platform with k different core types. Each type can contain a single
core or multiple cores. For example, the platform may integrate multiple CPU cores while having a
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Table 1. Notations and important parameters

Sequence of epochs of an application (& = {Ey, Ez,- -+ ,Er})

i™ epoch of an application
Set of candidate configurations

Configuration on which j™ epoch of an application runs
Number of active big cores

Number of active little cores

Frequency of big cores

fi | Frequency of little cores

7w | A power management policy which maps E; to C; € C

T [§ 100 ™

single GPU. Given such a platform, our goal is to design a power management policy to control
the number of active cores and their respective frequencies. Each possible combination of the
number of cores and their frequencies is a unique runtime configuration for the platform. Using
this definition, we can represent all possible configurations in the system by C = {C;,Cy, -+ ,Cn},
as summarized in Table 1. For our experimental platform, Odroid-XU3, a configuration consists of
four control knobs: the number of active big cores (np), the number of active little cores (np), the
frequency of big cores (fp), and the frequency of little cores (fr). Therefore, the goal of the power
management policy is to determine the tuple (np, ny, fz, f;) for each control interval.

The default power management governors used on mobile platforms apply decisions in periodic
intervals ranging from 10-100 ms [29]. These decisions typically involve determining the number
of active cores and their respective frequencies. Suppose that we run an application repeatedly
at different frequencies. Decision intervals observed in each execution will be different from the
other runs. This means that we cannot execute the same application at different configurations and
collect the optimal configuration for each interval. Thus, periodic intervals impede construction of
optimal oracles even for known applications.

To facilitate Oracle policy construction, we segment applications into repeatable decision epochs,
which are clusters of macro-blocks. To this end, we use the methodology proposed by Gupta et
al. [14]. We start by inserting PAPI API [28] call within consecutive epochs using LLVM [23] and
clang compiler framework. Specifically, we first find all the available basic blocks in the source
code. Then, we instrument at all possible basic blocks in the application. Finally, we remove PAPI
calls from basic blocks at the lower hierarchy of call graph to prune the number of epochs. As a
result of the instrumentation, the number of instructions in each epoch ranges from 10 - 100 million
instructions with a median of about 7.5 million instructions. This translates to about 50 - 1000
epochs per workload as a function of the total execution time of the workload. This instrumentation
enables us to collect the performance counters listed in Table 2 and power consumption for each
repeatable epoch. We note that the repeatability here means that the number of instructions executed
for a given epoch are always the same regardless of the configuration they are being executed

Table 2. Performance and power consumption data collected in each epoch.

Instructions Retired Noncache External Memory Request
CPU Cycles Total Little Cluster Utilization
Branch Miss Prediction Per Core Big Cluster Utilization
Level 2 Cache Misses ~ Total Chip Power Consumption
Data Memory Access
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on. At the same time, the other performance counters, such as LLC misses, memory accesses, can
be different each time the application is executed. Consequently, an application with T decision
epochs can be expressed as a sequence of epochs & = {Ej, E;, - - - , Er}. Each epoch has a fixed set
of macro-blocks (e.g., a while loop) ranging from 10 to 100 millions of instructions. Using these
definitions, a policy 7 : & — CT is a function that maps a given epoch to one of the supported
configurations. For instance, 7(E;) = C; means that epoch E; should run on configuration C; € C
based on policy 7.

The standard approach to obtain a policy is to first obtain data with a number of applications
and then apply supervised learning methods to train a policy. However, as we show in Figure 1,
policies trained offline may not perform well for unseen applications. Therefore, there is a need for
methodologies that continue to learn online and adapt to unseen applications. To this end, we first
present an approach using reinforcement learning to solve this problem since it is commonly used
for online learning. However, RL methods require the design of a reward function and exploration
of large state space. This can lead to a slow convergence for RL policies. To overcome this, we
present a novel low-overhead Online Imitation Learning approach that can learn to control multiple
configuration knobs simultaneously as new applications arrive online.

4 CANONICAL BASELINE APPROACH: REINFORCEMENT LEARNING (RL)

Reinforcement Learning (RL) is a commonly used framework for solving sequential decision-
making problems. In RL setting, a controller takes an action as a function of the current system
state. In our power management problem, we define the state as the hardware counters observed
in a given decision epoch. The controller takes an action as a function of the hardware counters.
After the controller takes the action, it interacts with the environment. The environment provides
feedback (reward) to the controller about the quality of the action taken by the controller. The
learned utility of actions at states is represented in the form of Q-values. Each state and action
pair corresponds to a Q-value. Depending on the reward, the controller gets to know how good
or bad the previously taken action was and the corresponding Q-value gets updated. Using the
reward and the current state information, the controller performs an update to its parameters such
that the actions in future states can be improved. After a sufficient number of observations, the

Algorithm 1: Q-learning Algorithm with € Greedy Exploration

1 Input: Number of learning epochs (K), Reward function (R), Exploration probability (¢)
2 fork=1,2,...,Kdo

3 if rand() < € then

4 ‘ Choose Cy randomly from C // Exploration

5 else

6 Evaluate Q-value for different configurations as a function of the features of the

current epoch (Eg)

7 Select the configuration (Cp,;) with highest Q-value // Exploitation

8 Obtain reward (Ry) from the environment for the chosen configuration (Cy)
9 Update Q function following Equation 1

10 Ck = Cpol

11 end

12 end
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controller learns to take near-optimal action for a given state. Algorithm 1 delineates the canonical
Q-learning algorithm that is popularly employed in the design automation community. There are
different methodologies in the literature to implement this learning algorithm, especially to store
Q-values. One of them employs a Q-table to explicitly store the values for each state and action
pair, and another one uses a function approximator to implicitly store the Q-values.

Table-based approach: A well-known methodology to implement Q-learning is the table-based
approach. In this setting, the Q-values represent the value of taking an action in a given state. The Q-
values of all the states and the corresponding actions are stored in a table. When the controller takes
an action, the environment serves the reward using a hand-designed reward function. Subsequently,
it calculates the Q-value for the current state-action pair and populates the table. It has been proved
that table-based RL approach will asymptotically converge to take optimal actions [40]. Table-based
RL is typically used to perform power management for SoCs in existing literature [7, 12, 35, 43].

Function approximation approach: Although table-based RL approach is very efficient to learn
an optimal controller, this approach scales poorly as the number of states grows beyond a small
number. If there are S possible states and A candidate actions, then the number of entries in the
Q-table is O(S X A). Therefore, if S is very high, then the number of entries in the Q-table will grow.
Moreover, in the table-based approach, the state has to be discretized into a fixed number of bins
when the state space is continuous, as is the case in our problem. If the discretization is coarse,
then the learned model can suffer from low accuracy. On the other hand, if the discretization is
very fine, then storing a large table will incur additional overhead. To solve these challenges with
table-based policy representation, function approximation based Q-learning algorithm is proposed
in the literature [27]. In this methodology, the Q-values are learned using a function approximator,
such as a neural network or regression trees. If a neural network is used as a function approximator,
then the Q-learning methodology is often referred to as deep Q-Learning (DQN). Deep Q-Learning
has been used to manage control knobs of an SoC in prior work [15, 42, 48]. We refer the reader
to [27] for more details on deep Q-learning.

The power management problem described in Section 3 has a continuous state space and a
discrete action space. Therefore, we apply Deep Q-Learning [27] to obtain a policy 7. The Q-values
are updated following Equation 1:

QEk. Cie) = (1 — )Q(Ek. C) + a[Rie + y max Q1. 0)] (1)

where Q(Eg, Cy) is the Q-value for k*" epoch executed on configuration Cy, « is the learning rate
and y is the discount factor.

Reward function: The performance of RL algorithms critically depends on the design of a good
reward function. We define the reward function (R) at k*" decision epoch as follows.

_ P(Eg, cx) X t(Eg, Ci)P
- Pmin(Ek) X tmin(Ek)ﬁ

where P(Ej, Cy) and t(Eg,Cy) are the power consumption and execution time respectively at
decision epoch Ej with configuration Ck. Ppin(Ex) is the minimum possible energy consumed
at decision epoch Ej. Typically, when the powersave governor is active, energy consumption is
minimum. ¢,,;,(Ey ) is the minimum possible execution time at decision epoch Ej. With performance
governor, the platform delivers minimum execution time. Further, we can change the value of
parameter f to fine-tune the optimization objective. For example, with § = 0, the reward function
results in control behavior to minimize power, and with f = 1, the reward function results in control
behavior to minimize energy. In our experiments, we employ f = 1, as this minimizes energy.

)
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However, we argue that deep Q-Learning based RL is not suitable for controlling heterogeneous
processors when compared to our proposed online imitation learning approach. This can be
attributed to the following reasons:

e First, the feedback obtained by the controller from the environment through the reward
function is indirect. Therefore, the controller has to sufficiently explore the large state space
to be able to learn a near-optimal policy. This can result in a long convergence time for the
RL policy, as shown later in Section 6.4. Such a long convergence time is not desirable since
the workload composition can change frequently in mobile devices.

e Second, the accuracy of policy learning in RL critically depends on the reward function.
However, designing a good reward function that can achieve the desired convergence is
challenging.

In order to overcome these challenges, we propose a novel online imitation learning methodology
in the next section.

5 ONLINE IMITATION LEARNING METHOD

Imitation learning (IL) is a supervised machine learning framework that aims to imitate an Oracle
for sequential decision-making problems. The Oracle policy provides expert-level feedback to the
policy being learned by IL. In classical IL settings, the Oracle is provided as training data from
expert demonstrations (such as humans performing a task in robot learning [34]). In the case of
dynamic management of heterogeneous systems, the Oracle provides the best configuration for
a given epoch of the application. The IL-based controller receives the correct control action as
feedback when it makes incorrect decisions. However, RL-based controllers can only observe the
reward from the environment, which is weaker supervision with respect to IL. It has been shown
that IL policies converge exponentially faster than RL [39]. Due to this advantage, we choose IL to
train our resource management policies.

Construction of an Oracle is one of the most important steps to train an IL policy. In an offline
setting, this can be achieved by collecting characterization data and using advanced algorithms like
dynamic programming to obtain the Oracle [24]. In literature, there are techniques to construct
an offline policy using IL for dynamic management of SoCs [22, 24]. However, constructing an
Oracle policy is non-trivial for an online learning setting because of two reasons. First, Oracle
construction needs a large amount of data which is not readily available in an online setting. Second,
the methodology to construct Oracle policy may involve expensive computation which can be
prohibitive at runtime. Therefore, there is a strong need for methodologies that can construct
high-quality Oracle policies at runtime with minimal overhead. To address this challenge, we
propose a four-step methodology for online imitation learning as depicted in Figure 2. These steps
are outlined below and detailed in the following sub-sections.

1. Construct Control Policy Offline (Section 5.1) — The first step of the proposed methodology
is to construct an offline control policy 7,rfine using the set of training applications available at
the design-time. Prior approaches use similar policies constructed offline to make runtime power
management decisions [14, 30]. However, they do not learn the characteristics of new applications
online and adapt the policy at runtime. In contrast, the proposed approach uses this offline policy
as a starting point and employs online imitation learning to adapt it to new applications.

2. Online Execution and Power-Performance Modeling (Section 5.2) — At runtime, we use
the most up to date policy trained until that point to make power management decisions. Meanwhile,
we also continuously collect the workload metadata summarized in Table 2. Subsequently, we
employ this data for maintaining accurate runtime adaptive power-performance models with
negligible overhead.
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Fig. 2. Overview of the proposed framework.

3. Online Oracle Policy Construction (Section 5.3) — The fundamental challenge in online
learning is to construct a good Oracle (or reference) policy that can provide strong supervision
needed to update the policy and quickly learn an optimal policy for new applications. We overcome
this challenge by using our power-performance models maintained online, as shown in Figure 2.
More specifically, we use these models at the end of each control interval to determine the best
action with less than 0.1% runtime overhead. This retrospective view enables us to compare this
action against the actual policy decision. If they do not match, we record the metadata and optimal
decision as future training data to update the policy.

4. Online Training (Section 5.4) — After a set of metadata and corresponding optimal configu-
ration are collected, we use them as supervised training examples to incrementally re-train the
policy using imitation learning. Hence, the policy adapts to new applications via supervision from
the oracle constructed online.

5.1 Offline Policy Construction

We can employ any existing method to construct a control policy offline using the applications
known at the design time. Without loss of generality, we use imitation learning for this purpose.
Segmenting the applications into repeatable epochs, i.e., microbenchmarks, enables us to execute
each epoch of an application at each supported configurations. Hence, we collect power consumption
and performance data for each epoch-configuration pair at design-time. This data allows us to
determine the configuration that optimizes a given metric (e.g., energy) for each epoch known at
design-time. More specifically, we use this data to construct an Oracle policy 7*(-) : & — CT that
maps each epoch to the configuration that minimizes the energy consumption.

The Oracle cannot be used directly at runtime due to excessive (more than 1 MB) storage
and computational requirements. Therefore, we need to construct a policy # : & — CT which
determines the best power management decisions for each epoch Ej. In other words, we want the
policy 7 to mimic the behavior of the Oracle policy. To this end, we apply imitation learning to
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Fig. 3. Illustration of the online recursive least square algorithm to update the analytical models of power
consumption and execution time.

first construct an offline policy using the training data for all epochs & = {E;,E;, -+ ,Er} and
the corresponding labels for best configuration obtained from the Oracle policy. The features for
each epoch are the performance counters and power consumption values listed in Table 2. We use
a neural network to approximate the Oracle using this training data. Advantages of the neural
networks include the ability to learn complex decision functions and perform online updates via
backpropagation. After learning a policy using exact imitation, we further improve its robustness
and accuracy using state-of-the-art IL techniques [33] to closely approximate the behavior of Oracle
policy. At the end of this design-time step, we obtain the offline policy 7offiine in the form of four
functions to predict the configuration for knobs ng, ny, fz, and fi.

5.2 Online Execution and Power-Performance Modeling

At runtime, we start with the offline policy (7o fiine) created at design time. Subsequently, we
run the incoming applications using the most up to date policy obtained so far, as shown in
Figure 2. Our online learning objective is to update the parameters of policy to minimize the
overall energy consumption. Meeting this goal requires a reliable supervision, but constructing
an Oracle similar to one presented in Section 5.1 is not practical at runtime. Therefore, we also
collect power consumption and performance data listed in Table 2 and maintain accurate analytical
power-performance models during the regular execution at runtime. Then, we use these models to
achieve the online learning objective.

We begin with the power consumption and execution time models built offline with the help of
the same applications used for the design-time Oracle construction. For example, the total power
in k™ epoch is expressed as:

Pcpu = Payn + Pleak

= (Cdyn(hk’ 9k)V2f) + Vljear (hy, 0k) ®3)

Algorithm 2: Online power/performance modeling

1 Input: Features listed in Table 2 (hy), Measured power/performance (F)

2 for each epoch Ej. do

3 Obtain weights at the end of the previous epoch (6_1)

4 Estimate power/performance through a linear model: Fr = hEHk—l

5 Calculate the error between the measured value and the estimated value: Fy — I:“;c
6 Apply weight update algorithm to obtain weights (6) for the next epoch.

7 end
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where the dynamic switching capacitance Cyy,, and leakage current I« are modeled as a function
of the performance counters (hyx) shown in Table 2. We employ a linear model using these counters
and weight vector 6, as depicted in Figure 3. Note that our data also includes measured power
consumption enabled by current sensors [19]. At the end of each epoch, we employ our model to
estimate the power consumption in the previous interval. Subsequently, we compare it to the actual
measurement, as illustrated in Figure 3 and Algorithm 2. We feed this error to the Recursive Least
Square (RLS) [26] algorithm to update the parameters of the power consumption model. Similarly,
we maintain an execution time model as a function of the performance counters. In this case, the
reference is simply the length of the epoch, which can be tracked easily at runtime.

In summary, we maintain accurate power-performance models by using the data available at the
end of each epoch. These models are used to generate strong supervision required by our online
learning algorithm as described in the following section. We also note that updating the power and
performance models have less than 0.1% overhead with respect to the execution time of an epoch.

5.3 Online Oracle Construction

In general, providing online supervision in terms of the best configuration to update the policy
is a challenging problem. We overcome this challenge by leveraging the power and performance
models, as described in the previous section. At the end of each epoch (Ey), we have the metadata
listed in Table 2 and up to date power-performance models. These models and the inputs enable us
to evaluate the energy at candidate configurations in C other than the one chosen by the current
policy. Specifically, we use the hardware counters measured on the current configuration to estimate
the power and performance when using other configurations. In general, the hardware counters do
not remain the same when we estimate the power consumption of other configurations. Indeed,
predicting the change in the counters is a complex problem which involves modeling of system
dynamics and the state transition probability. This can potentially add additional overhead to the
Oracle estimation step of our approach. Therefore, to avoid additional overhead, we reuse the
hardware counter values that we observe at runtime (of the current configuration) to estimate
the power consumption of other configurations. After obtaining the energy consumption values
at candidate configurations in C, we mark the configuration consuming the least energy as the
optimal configuration (Cy).

We note that exhaustive search in the whole configuration space is resource expensive. For
example, Samsung Exynos 5422 processor supports up to 4940 different configurations. Our imple-
mentation shows that evaluating each configuration can take up to 5% of the execution time of
an epoch, which is prohibitive at runtime. To overcome this difficulty, we exploit the fact that the
current policy (1) is reasonably accurate and makes decisions that are not too far from those made
by the Oracle policy. Therefore, instead of searching in the whole configuration space, we search
within a local neighborhood of the configuration predicted by the current policy as described in
Algorithm 3.

Resource-bounded Online Oracle Construction: We start the local search in the neighborhood
of Ci by setting a maximum allowable time limit for the search, such as 5 ps. We initialize the
optimal configuration C;. to the current policy decision (Cy) and optimal cost (J;) to the cost of

Cr (line 3 in Algorithm 3). After this step, we start performing a search around the configuration
chosen by the current policy. We first evaluate the metrics obtained by configurations that are one
step away from the policy decision. Specifically, we get configurations to be evaluated by changing
the frequency of the cores by 200 MHz (i.e., + 200 MHz) or changing the number of active cores by
1 (ie., £ 1). After evaluating all the configurations that are one step away, we find the configuration
with the minimum cost from N/(C) as shown in Algorithm 3. We update the optimal configuration
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Algorithm 3: Online Estimation of Oracle Configuration

1 Input: Power and performance models; Cy, predicted configuration; Timeout period
2 Output: Oracle configuration (C}) at decision epoch Ex
3 Initialize: C}, «— Ck, Cmin < C. Ji < J(Ck)

4 while Timeout do
5 N(C) « Configurations with control knob values one step away from Cp,;, (e.g. np = 1)
6 Evaluate cost of configurations in N(C)
7 Cmin < Configuration with minimum cost in N(C) // Greedy search step
8 Jmin < J(Cmin)
9 if (Jmin < J;) then
10 ];: — Jmin
11 C;Z — Chin
12 end
13 end

(C;) whenever a configuration in the neighborhood search outperforms the best configuration
found so far (line 10 in Algorithm 3). If the configuration chosen by the current policy is different
than CI’Z, then we store Cl’z along with the features of the system state in a buffer, as illustrated
in Figure 2. We continue the search in this way until the time limit is exceeded. The data in this
buffer serves as the supervised training data from Oracle which is used for online learning, as
detailed in the next section. This flexible methodology can be easily extended to different objectives.
For example, we can perform a gradient-based search in the direction of increasing value if the
objective function is to maximize performance.

5.4 Policy Update via Online Training

The final step in the proposed online-IL methodology is to incrementally update the parameters of
the policy as a function of the new unseen applications and new training examples. The online
training method to update the policy is shown in Algorithm 4. As described in the previous section,
the Oracle policy (i.e., 7*(Ex) = Cy) is stored in a buffer. The size of this buffer is important since

Algorithm 4: Policy Update via Online Training

1 Input: Current Policy 7, Online Oracle 7* via power-performance models
2 for each epoch Ej. do

3 if n(Ex) = n*(Ex) then
4 Record hardware counters and the Oracle configuration 7*(Ex) as a new training
example in the buffer
5 end
6 if Buffer is full then
7 Perform online training to update the parameters of policy (i.e., neural network) via
backpropagation algorithm using the new training examples
8 return the new policy Tpew
9 end
10 end
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it determines the training accuracy and implementation overhead. Our experimental evaluations
show that metadata and label for 100 epochs easily provide close to 100% accuracy in adapting to
new applications. Furthermore, the corresponding storage overhead is less than 20KB. Therefore,
we use a buffer to store 100 Oracle entries in our experiments. We aggregate the training examples
until the buffer is full. Subsequently, we update the parameters of the policy, which is represented
as a neural network using this training data and backpropagation algorithm [20]. Once the online
training procedure to update the policy parameters is completed, we replace the current policy
with the new policy e, and continue the next iteration of online-IL approach.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Platform: We implement the proposed online IL algorithm on Odroid-XU3 [19] board running
Ubuntu 15.04 OS. The board integrates a Samsung Exynos 5422 SoC that consists of a A15 (big)
core cluster with 4 cores, a A7 (little) cluster with 4 cores, ARM Mali GPU and other components.
In order to facilitate power measurements, the board also provides sensors to measure the power
consumption of the big cores, little cores, main memory, and the GPU. We sample these sensors
every 50 ms to record the power consumption of each component. These measurements are used
in the online learning algorithm to update the power/performance models and to evaluate the
performance of the proposed online learning algorithm. The constructed policies are implemented
as user-space governors on the Odroid-XU3 board. Specifically, the frequency of operation is
specified in a sysfs entry that is read by the kernel to set the frequency. The number of cores for
the little and big cluster are set using the dynamic hotplugging feature of the Linux kernel.
Benchmarks: We evaluate the proposed methodology on a total of 16 applications from
Mibench [18], Cortex [41], and PARSEC [5] benchmark suites. Applications from these benchmark
suites exhibit a wide range of characteristics, such as compute intensiveness, memory intensiveness,
and parallelism. Therefore, these applications represent a broad group of applications commonly
executed in mobile platforms. We divide the benchmarks into two sets, as shown in Table 3. At any
time, one of the sets is used for the offline learning phase while the other set is reserved for online
learning.

Data Collection: Construction of an Oracle for offline policy requires characterization of the
applications while running at different configurations. Therefore, we perform extensive data
collection on the Odroid-XU3 platform while running the benchmarks. Specifically, we sweep the
core configuration from 1 big—1 little to 4 big—4 little. Within each configuration, we change the
frequency of big cores from 600 MHz-2.0 GHz and little cores from 600 MHz-1.4 GHz in steps

Table 3. List of applications instrumented from different benchmark suites.

Set 1 Set 2

BML AES

Dijkstra Kmeans

FFT Spectral

Patricia Motion Estimation
Qsort PCA

SHA Blackscholes-2T
Blowfish Blackscholes-4T
String Search

ADPCM
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Table 4. Different Parameters for Neural Network

Model Hyper-
Parameters

No. of Hidden Layers

2

No. of Neurons

20 in each layer

Activation ReLu

Optimizer Adam

Learning Rate 0.001
Categorical

Loss Function

Cross-entropy

Training Parameters | Batch Size 150
for Offline Learning | Epochs 500
Training Parameters | Buffer Size 100
for Online Learning | Batch Size 20
Epochs 20

of 200 MHz. We do not go below 600 MHz as lower frequencies do not provide better energy-
efficiency [1]. This characterization data is used to construct the Oracle policies in the offline
training phase.

6.2 Evaluation of the Policy Trained Offline

To obtain a baseline, we first design the initial offline policy using only the applications known at
design-time. We employ IL to construct the policy using a neural network with two hidden layers.
The parameters of the policy and the hyperparameters used in training are listed in Table 4. We
adopt a neural network implementation over other regression techniques, such as linear regression
and regression trees, since neural networks allow us to learn non-linear decision functions and
facilitate online updates through the backpropagation algorithm [20]. We use a smaller number of
training epochs and smaller batch size for online learning because the policy updates at runtime
are incremental with a relatively small number of training examples. We observe that a training
buffer size of 100, and 20 epochs with a batch size of 20 are sufficient to update the policy.

We evaluate the accuracy of the policy for each configuration knob by measuring the distance
between the policy decision and a golden reference, which is constructed to evaluate the proposed
policies. If the total number of available levels for a configuration knob is L, level chosen by the
policy is L, and the reference level is L,.f, then accuracy can be expressed as:
|L7r =Ly f | )

1 4)

Accuracy(%) = 100 X (1 -
After finding the accuracy of each epoch, we take the average across all epochs of an application
to compute the overall accuracy for each control knob. We note that 100% accuracy denotes that
the decisions of the underlying policy match with the golden reference, and no policy can perform
better than that. We first train the policy offline using applications from the Mibench suite. Then, we
evaluate the trained policy with applications from all three benchmark suites, as shown in Figure 4.
Since the Mibench applications are included in the training set for this experiment, the offline
policy always reaches more than 95% accuracy compared to the Oracle for all four configurations
knobs. However, the accuracy is significantly lower for the applications from the Cortex suite
which are not included in the training set. For example, MotionEstimation shows only 77% and
53% accuracy for big and little core frequencies, respectively. Similarly, the accuracies for the
Blackscholes application from the PARSEC suite are lower than 80% for the number of big cores
and frequency of little cores. This shows that the offline policy is not good enough to capture the
characteristics of applications not seen at design-time.
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Fig. 4. Accuracy comparison for all knobs for applications from Mibench, Cortex and PARSEC benchmark
suites when the policy is trained with only Mibench applications.
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Fig. 5. Accuracy comparison for all knobs for applications from Mibench, Cortex and PARSEC benchmark
suites when the policy is trained with Cortex and PARSEC applications.

We also construct an offline policy by using only the applications from Cortex and PARSEC suites.
This time the offline policy performs well when running applications from these two benchmark
suites, but it shows poor performance for Mibench suite, as shown in Figure 5. More precisely, we
observe above 95% accuracy for all knobs when running applications from Cortex and PARSEC
suites. In contrast, the accuracy for applications from the Mibench suite are significantly lower. For
example, Qsort has only 67.5% accuracy for number of big cores. The degradation of accuracy with
unseen applications demonstrates the need for online learning.

Next, we compare the performance of IL and RL policies that are trained offline. Figure 6 shows
the accuracy of the offline policies trained with IL and RL, respectively. In this case, we construct two
offline policies through IL and RL by considering all 9 applications from Mibench suite as training
set. Then, we test these policies individually on all applications in Mibench suite. We observe that
the IL policy achieves close to 100% accuracy for all the control knobs for all applications. That
means IL policy can achieve performance similar to that of the Oracle policy. However, the offline
RL policy has much lower accuracy when compared to the IL policy. For example, number of big
cores has 17% accuracy and number of little cores has 33% accuracy for Qsort application. This
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Fig. 6. Accuracy comparison when the policy is trained with only Mibench applications (Set 1 in Table 3).

shows that even in the offline setting, the IL policy achieves a superior performance when compared
to the RL policy. Moreover, the offline RL policy requires more than 10X time to converge than the
offline IL policy.

6.3 Evaluation of Power-Performance Models

Similar to the offline policy, we construct offline power and performance models using the ap-
plications available at design-time. These power and performance models may not be valid for
new applications encountered only at runtime if they are not represented by the training data. For
example, Figure 7 shows that power models constructed using Mibench applications cannot track
the power consumption while running Kmeans application from the Cortex suite. In contrast, our
online power models based on RLS converge to the measured power in about 200 ms, as depicted by
the dashed line in Figure 7. Although the Kmeans application is not seen during training, we achieve
less than 1% error compared to the reference value. Similarly, the performance models converge
to reference values in 100-300 ms, which amounts to less than 10 epochs. This shows that the
proposed technique adapts the offline model to unseen applications at runtime with high efficiency.
Overall, the power models have an average error of 2.6%. These models enable us to construct the
accurate runtime supervision required for adapting the offline policy. From our experiments, we
observe that generating runtime supervision and updating the power and performance models
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Fig. 7. Comparison of estimated power for Kmeans application. While estimating with RLS, the power
estimation accuracy increases from 90% to 99% within 0.6 second.
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particular epoch of Spectral application.

at each epoch take approximately 8.5 ps. This is negligible compared to the execution time of an
epoch which is in the order of 10 ms.

Accuracy of Power Estimation Across Configurations: We use the performance counters
measured at a given configuration to estimate the power consumption at other configurations.
Figure 8(a) shows the histogram of L2 misses for different configurations for a particular epoch of
Spectral application. The number of L2 misses for the applications we consider is in the range of
500-2.5x10®. However, the number of L2 misses (for the particular epoch of Spectral application) of
122 configurations out of total 128 configurations (96%) is between 3.57x10°-3.59%x10°, i.e. within
0.6% of each other. Therefore, the number of L2 misses is nearly the same for all configurations for
that particular epoch. The histogram for the number of non-cache memory requests is shown in
Figure 8(b). The number of non-cache memory requests for the applications we consider is in the
range of 20-7.6x107. However, The number of non-cache memory requests (for the particular epoch
of Spectral application) of 98% of all configurations is between 2.58x10°-2.6x10°, i.e. within 0.8% of
each other. We observe similar behavior for other hardware counters and for other applications
too. For this reason, we can safely take the hardware counters of the current configuration as the
features to estimate the power of other configurations. Since we also consider the configuration
itself as a feature to estimate the power/performance of the configuration, we obtain different
power/performance estimation for different configurations. To validate the accuracy of this power
estimation, we compared the estimated power of all the configurations with the actual power
consumption of the configuration. That is, we use the hardware counters observed for a single
configuration to estimate the power consumption of all the configurations and compared it with
the measured value. For the applications used in online training, we observed that the estimation
error is around 10%. This error is acceptable since the online policy converges to the optimal for
unseen applications.

6.4 Evaluation on Stream of Unseen Applications

In this section, we evaluate the effectiveness of the proposed online-IL methodology to new appli-
cations observed only at runtime. We start with a policy which is trained offline with applications
from Mibench suite. Then, we run a random sequence of seven applications from the Cortex and
PARSEC suites (AES, Kmeans, Spectral, Motion Estimation, PCA, 2-threaded Blackscholes, and
4-threaded Blackscholes) back to back. Each complete run of this set of applications takes around 33
seconds. We repeat this experiment for 5 different random sequences. After running the application
sequences, we evaluate the effectiveness of the proposed approach on each application individually.
To achieve this, we average the accuracy of each control knob over all random sequences. We note
that here accuracy measures the distance of the policy decision to the golden reference (Equation 4).
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Figure 9 compares the accuracy between the offline policy and the online policy after it converges
for all four configurations for the random sequences. Figure 9(a) and Figure 9(b) show that our
offline policy provides good accuracy for the number of cores. The online policy maintains this
accuracy without providing significant improvement. In contrast, Figure 9(c) and Figure 9(d) show
that the proposed online learning technique achieves a significant increase in the accuracy of little
and big core frequencies. The biggest improvements (20%-47%) are observed for Kmeans, Spectral,
and MotionEstimation applications. In particular, the action accuracy of the little core frequency
for MotionEstimation application increases from 53% to 99%.

We also analyze how quickly the online policy converges to the highest accuracy for different
application sequences. As stated before, we randomly construct five different application sequences.
To illustrate the convergence properties, we pick two representative application sequences. Sequence
1 consists of Kmeans, AES, Spectral, MotionEstimation, PCA, BlackScholes-2T, and BlackScholes-4T
applications one after another. Figure 10(a) and Figure 10(b) shows that the accuracy of big (fz)
and little (f1) core frequencies start at 52% and 71%, respectively. Our online-IL technique increases
both of these accuracies to 100% within 0.9 seconds, i.e., after running less than 3% of the sequence.
Moreover, we also use the offline RL policy to perform online learning for this application sequence.
To perform experiment with RL, we take the offline RL model trained with applications from
Mibench suite as described in Section 6.2. From Figure 10(a) and Figure 10(b), it is observed that
RL-based online policy does not achieve similar performance as Oracle policy most of the time.
For example, the accuracy of choosing the frequency of big cores (fg) and frequency of little cores
(fr) are 100% only 16% of the entire execution with RL-based online learned policy. Moreover,
we observe that the online RL policy could not converge to optimal configuration even after the
sequence is run 14 times back to back. In Sequence 2, we run MotionEstimation, BlackScholes-4T,
AES, BlackScholes-2T, Kmeans, Spectral and PCA applications one after another. Similar to the
previous example, our initial policy converges to the optimal policy only 1.2 seconds, as shown in
Figure 11(a) and Figure 11(b). RL-based online training is unable to converge as fast as online IL
policy for this application sequence also. For both sequences, the initial offline IL model is retrained
once before converging. However, the offline RL model is not able to obtain high accuracy ever
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Fig. 9. Comparison of accuracy of (a) number of big cores, (b) number of little cores, (c) big core frequency,
and (d) little core frequency for applications in Cortex and PARSEC benchmark suites.
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after retraining five times. We also compare the energy consumption of the applications upon
applying the RL policy and the proposed online IL policy. Figure 12 and Figure 13 show this energy
comparison with respect to the Oracle for application sequence 1 and application sequence 2
respectively. For both sequences, we observe that the energy consumption with the proposed online
IL policy is always within 2% of the energy consumption with Oracle policy. However, the energy
consumption due to the RL policy is 10%-40% higher than the energy consumption with the Oracle
policy. This demonstrates the efficiency of our proposed online IL technique to adapt to new unseen
applications.

Evaluation of the Proposed Approach without Offline Learning: We also evaluate the pro-
posed online learning framework when a pre-trained offline model is not available. In this case, we
start with a neural network model initialized with random weights. At runtime, with incoming
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applications, the model is updated using the proposed approach. Figure 14(a) and Figure 14(b)
show how fast the online policy converges when the pre-trained offline model is not provided
for frequency of big cores (fg) and frequency of little cores (f1) respectively. In this case also the
online IL policy converges within 1.5 second of execution which is around 5% of the sequence.
Similar to the results with offline policy, policy learned through RL does not obtain high accuracy
when compared to the proposed online IL methodology. Figure 15(a) and Figure 15(b) show the
convergence result with application sequence 2. In this case also the proposed online IL policy
converges faster than RL policy. The RL policy is unable to achieve optimal performance even after
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Fig. 18. Performance of online learned policy on initial applications.

the application sequence is run 5 times. Figure 16 and Figure 17 show the energy comparison of the
application sequences with RL and proposed online IL method. In both cases, online IL achieves
similar energy consumption as the reference Oracle policy. In contrast, energy consumption with
RL policy is always 1.1xX-1.6X higher than the energy consumption by the reference Oracle policy.
Performance of Online Learned Policy on Initial Applications: In online learning forgetting
offline learned policy is a common issue [13]. To show that the proposed online IL methodology
does not suffer from forgetting, we apply the online learned policy to the applications with which
the offline training was performed. Figure 18 shows the accuracy of choosing action knobs for
Mibench applications with the policy obtained after online learning is performed on the applications
from Cortex and Parsec benchmark suites. It can be seen that the accuracy is close to 100% for all
applications and for all control knobs. This shows that the policy obtained after performing several
rounds of online updates does not suffer from unwanted catastrophic forgetting.

6.5 Convergence for Single Application

Figure 9(c) and Figure 9(d) show that Kmeans, Spectral, and MotionEstimation applications have
large improvements when we perform an online update of the policy. Therefore, we execute these
applications standalone to measure the time required for each of the applications to converge to
the optimal Oracle policy. From Figure 19(a), we see that to converge to optimal policy Spectral
requires 0.7 seconds which is 6% of the total application execution time. Also, we observe that
within this time our online learning methodology aggregated 100 new samples which are then used
to update the policy once. Similarly, Figure 19(b) shows that MotionEstimation requires 1.4 seconds
to converge. In this case, 149 new samples are collected as training data to retrain the policy twice.
Finally, we note that each online update of the policy incurs 2 ms of execution time. Since this is
less than 0.5% of the time interval between successive updates, the runtime overhead is small.

100 —] 100

80 _f 80 —f,

60 60

Accuracy (%)
r
Accuracy (%)

40 40
( )0 2 4 6 8 10 12 0 1 2 3 4 5 6
a

Time (s) () Time (s)

Fig. 19. Convergence of fg and f1 for (a) Spectral and (b) Motion Estimation application.
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Fig. 20. Analysis of a Policy using only Power-Performance Models.

Analysis of a Policy using only Power-Performance Models: We perform another experiment
to specifically highlight the contribution of online-IL to provide an optimal policy. In this experiment,
we do not use online-IL to estimate the configuration. Instead, we only use the power-performance
models to estimate the configuration. Specifically, in the current epoch, we search around the
configuration which was found optimal through the search performed in the previous epoch (same
as in Algorithm 3). Figure 20 shows the accuracy comparison for frequency of big cores (fp) between
proposed online-IL technique and the case where we use only power-performance models. This
experiment is performed for the Spectral application. We observe that, if only power-performance
models are used, the initial accuracy is more than the proposed method. This happens because,
initially, the IL policy is not suitable for the application. However, after learning on a sufficient
number of samples, the IL policy reaches to the highest accuracy. This IL policy uses an online
Oracle which is obtained through a local search around the current configuration. We note that, if
there is no learned policy, the local search guided only by the power-performance models would
not be effective. The online learned policy provides a good starting configuration to bootstrap the
search process. In other words, only a small amount of search is sufficient to reach the optimal
configuration if we perform local search around the configuration suggested by the learned policy.
On the other hand, if only power-performance models are used to take the control decision, then
local search will require evaluating a significantly large number of configurations (as much as
3% than online-IL) to construct an equally good online Oracle policy, which is not practically
feasible. Therefore, if we perform local search guided only by the power-performance models, the
resulting policy never converges to the optimal as shown in Figure 20. Since local search requires
a significantly large number of evaluations of configurations using power-performance models,
it is not practical to use only power-performance models for online control. The combination of
learned policy for getting good initial configuration and a small amount of local search guided
by power-performance models to generate better configurations (supervision to improve policy)
makes our overall approach effective. Once we converge to a near-optimal policy, we can apply
the policy with very little search, but the baseline solution (search guided by power-performance
models) will still require a lot of search and is impractical.

6.6 Comparison with the state-of-the-art Power Management Techniques

Powersave governor is commonly used in mobile platforms to operate in low power mode.
Therefore, we compare the energy consumption of individual applications when we use the proposed
online-IL approach and the Powersave governor. We note that these comparisons include energy
and execution time overheads since the evaluations are based on hardware measurements. Similar
to the previous sections, we start with an offline policy trained with applications from Mibench
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Fig. 21. Comparison of energy consumption and execution time with respect to the DyPO [14] and Powersave
governor.

suite. Then, we use the proposed technique to update the initial policy as we run applications from
Cortex and PARSEC suites.

Figure 21 shows the energy consumption and execution time comparisons. We normalize the
energy and execution time of all applications with respect to the Powersave governor since absolute
numbers vary widely across different applications. We observe that the proposed online learning
methodology achieves both lower energy and execution time compared to the Powersave governor
for all applications. More specifically, we achieve on average 10% lower energy consumption and
24% faster execution time. In particular, we improve the execution time for Kmeans by 42% while
also reducing the energy consumption.

The proposed policy achieves 48.4% less energy consumption on average when compared to
the interactive governor. We omit the detailed comparison with the interactive governor since it
targets performance optimization. We also compared the proposed online learning methodology
with a recent offline learning technique [14]. The DyPO approach first finds the Pareto-optimal
configurations for energy optimal operation and then chooses a configuration among them at
runtime. However, the DyPO approach does not perform any online learning. We observe that our
proposed methodology on average achieves 6.39% improvement in energy consumption and 15.24%
improvement in execution time for unseen applications when compared to the DyPO approach.

Furthermore, to validate the robustness of the proposed online IL technique, we apply the
technique while executing Kmeans and BML applications concurrently (Kmeans-BML). We choose
Kmeans as the foreground application and BML as the background application. We observe that the
proposed online IL technique results in 5% less energy consumption than powersave governor for
Kmeans-BML. Moreover, the execution time of Kmeans-BML with proposed online IL technique is
25% and 22% less than the powersave governor and DyPO respectively. This experiment proves
that the proposed online IL technique can efficiently manage the platform while executing multiple
applications concurrently.
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Table 5. Runtime and implementation overhead summary.

Metric | Module | Overhead Time b.e tween | % Over-
successive calls head
RLS 6 us 10-20 ms 0.06-0.12
Exe. Local
time 2.42 s 10-20ms | 0.02-0.05
search
Backprop. 2 ms 0.5-1.5s 0.4-1.0

In summary, the proposed online imitation learning methodology efficiently adapts to unseen
applications and provides significant improvements over state-of-the-art methods with minimal
overhead.

6.7 Implementation Overhead Analysis

We conclude our experimental evaluation by summarizing the runtime and storage overhead of
our approach measured on Odroid XU3 board. The online power-performance models are updated
in each epoch, which ranges between 10-20ms. Since the model updates take 6us, the runtime
overhead is only 0.06-0.12%, as summarized in Table 5. Online policy update via backpropagation
takes longer (2ms) than the other operations, as expected. However, we note that it runs every 100
epochs, i.e., in the order of seconds. Therefore, its runtime overhead is less than 1% as shown in
Table 5. Finally, the storage overhead of the buffer to store new training examples is only 18KB. In
summary, the proposed approach incurs minimal runtime and storage overheads.

Overhead Comparison with RL: We start the overhead comparison with the overhead of retrain-
ing neural network with backpropagation algorithm. For each backpropagation step we use 100
training samples for both online-IL and RL algorithms. Furthermore, the network structure used in
both the algorithm is similar. Therefore, the execution time overhead for both algorithms for a single
backpropagation step is same (2 ms). However, RL needs more backpropagation steps than the
proposed online-IL to learn a policy that performs as good as online-IL. As a result, the cumulative
overhead of RL in terms of both execution time and training samples required is much higher
than online-IL. For an example, to obtain the optimal policy for Spectral application, online-IL
performs backpropagation step only once (total 2 ms overhead). But, even after RL performs 8
backpropagation steps (total 16 ms overhead), it is not able to learn the optimal policy for Spectral.
Overall, for Spectral application, the performance overhead incurred by RL is twice of the overhead
incurred by IL. This further proves the efficiency of proposed online-IL approach over RL.

7 CONCLUSIONS AND FUTURE WORK

Designing an optimal runtime power management policy that achieves fast response time and
minimum energy consumption is challenging due to the large space of available control knobs and
diversity of applications. Policies constructed at design-time may fail to deliver optimal execution
for applications encountered at runtime. This paper presented a novel online imitation learning
methodology to efficiently learn the optimal policy for new applications at runtime. Experimental
evaluation on Odroid XU3 platform shows that we achieve both more than 10% lower energy
consumption and 24% faster execution time with respect to the Powersave governor. The proposed
approach is also applicable to other sequential decision-making problems in mobile systems, such
as, like prefetcher, cache replacement, branch prediction. However, extending the proposed IL
framework to these domains is beyond the scope of this paper. Therefore, it is left as future work.
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