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Abstract. We prove
√

logn lower bounds on the order of growth fluctuations in three planar growth models (first-passage percolation,
last-passage percolation, and directed polymers) under no assumptions on the distribution of vertex or edge weights other than the
minimum conditions required for avoiding pathologies. Such bounds were previously known only for certain restrictive classes of
distributions. In addition, the first-passage shape fluctuation exponent is shown to be at least 1/8, extending previous results to more
general distributions.

Résumé. Nous montrons des bornes inférieures de
√

logn pour l’ordre des fluctuations de trois modèles planaires de croissance (per-
colation de premier passage, percolation de dernier passage et polymères dirigés) sans autre hypothèse sur la loi des poids des sommets
ou des arêtes que les conditions minimales permettant d’éviter les cas pathologiques. De telles bornes étaient connues auparavant
seulement pour certaines classes restreintes de lois. De surcroît, nous montrons que l’exposant des fluctuations autour de la forme
limite pour la percolation de premier passage est au moins 1/8, ce qui étend des résultats précédents à des lois plus générales.
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1. Introduction

Even after years of study on random growth models, such as first- and last-passage percolation and directed polymers,
much remains mysterious or out of reach technically. For instance, beyond the fundamental shape theorems guaran-
teeing linear growth rates for the passage times/free energy, there are sublinear fluctuations whose asymptotics are not
established. Even in the planar setting, for which the conjectural picture is clear, general tools are far from making it
rigorous. This is in stark contrast with integrable models, for which fluctuation exponents are only a fraction of what
has been proved. In this paper we consider three widely studied random growth models: first-passage percolation (FPP),
last-passage percolation (LPP), and directed polymers in random environment. While the models differ in how growth
is measured, they each possess a law of large numbers that says the rate of growth is asymptotically linear. More mys-
terious, however, are the sublinear fluctuations. In their two-dimensional versions, these models are believed to belong
to the Kardar–Parisi–Zhang universality class [30], and in particular that growth fluctuations are of order n1/3. Except
in exceptional cases of LPP and directed polymers having exact solvability properties, rigorous results are far from this
goal, or in some cases non-existent.

The goal of this article is two-fold. First, we describe a general strategy for proving lower bounds on the order of
fluctuations for a sequence of random variables (defined precisely in Definition 2.1). The approach is an adaptation of
techniques developed recently by the second author in [23]. It is general in that it can be used in a wide variety of
problems consisting of i.i.d. random variables, where no assumptions are made on the common distribution of these
variables. Second, we apply the method to study fluctuations in the growth of planar FPP, LPP, and directed polymers. In
all three cases, we are able to prove a lower bound of order

√
logn fluctuations. In addition, for FPP we extend the shape
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fluctuation lower bound of n1/8−δ to almost all distributions for which it should be true. Although still far from n1/3,
which by all accounts is the correct order (e.g. see [66] and references therein), our results require almost no assumptions
on the underlying weight distribution.

The paper is structured as follows. The general method mentioned above for establishing fluctuation lower bounds
is outlined in Section 2, and some necessary lemmas are proved. The random growth models under consideration are
introduced in Section 3, where the main results are also stated. Finally, Section 4 sees the method put into action to prove
these results.

2. General method for lower bounds on fluctuations

2.1. Definitions

Let us begin by precisely stating what is meant by a lower bound on fluctuations.

Definition 2.1. Let (Xn)n≥1 be a sequence of random variables, and let (δn)n≥1 be a sequence of positive real numbers.
We will say that Xn has fluctuations of order at least δn if there are positive constants c1 and c2 such that for all large n,
and for all −∞ < a ≤ b < ∞ with b − a ≤ c1δn, one has P(a ≤ Xn ≤ b) ≤ 1 − c2.

In other words, fluctuations are of order at least δn if no sequence of intervals In of length o(δn) satisfies
P(Xn ∈ In) → 1. Note that if fluctuations are at least of order δn, then so is

√
Var(Xn). The converse, however, is not

true in general, necessitating alternative approaches even when a lower bound on variance is known. On the other hand,
if a variance lower bound is accompanied by an upper bound of the same order, then fluctuations must be of that order.
One can see this from a second moment argument, for instance using the Paley–Zygmund inequality. In the absence of
matching variance bounds, one must work with Definition 2.1 directly. For this reason, the following simple lemma is
useful.

Lemma 2.2 ([23, Lemma 1.2]). Let X and Y be random variables defined on the same probability space. For any

−∞ < a ≤ b < ∞,

P(a ≤ X ≤ b) ≤ 1

2

(
1 + P

(
|X − Y | ≤ b − a

)
+ dTV(LX,LY )

)
,

where LX and LY denote the laws of X and Y , respectively.

Here dTV(ν1, ν2) is the total variation distance between probability measures ν1, ν2 on the same measurable space
(�,F), defined as

dTV(ν1, ν2) := sup
A∈F

∣∣ν1(A) − ν2(A)
∣∣.

It can be related to Hellinger affinity between μ and μ̃,

ρ(ν1, ν2) :=
∫

�

√
fg dν0, (2.1)

where ν0 is any probability measure on (�,F) with respect to which both ν1 and ν2 are absolutely continuous, and f

and g are their respective densities. Since

dTV(ν1, ν2) = 1

2

∫

�

|f − g|dν0,

the following upper bound follows from the Cauchy–Schwarz inequality:

dTV(ν1, ν2) ≤
√

1 − ρ(ν1, ν2)2. (2.2)
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2.2. The general method

To produce a lower bound on the order of fluctuations using Lemma 2.2, the basic idea is to introduce a coupling (X,Y )

such that |X − Y | is large with substantial probability while dTV(LX,LY ) is small. A general approach formalizing this
idea was initiated in [23], in which the couplings are obtained from multiplicative perturbations inspired by the Mermin–
Wagner theorem of statistical mechanics [52]. Such couplings only work, however, for a certain class of random variables,
namely those with

density proportional to e−V , where V ∈ C∞(R), such that

V and its derivatives of all orders have at most polynomial growth, and

eV grows faster than any polynomial. (2.3)

We now propose a different type of coupling that allows for the approach of [23] to be extended to any distribution.
Although the couplings we will use to prove the main theorems of this paper are more specific, we present here the most
general setup in hopes that the method might be useful in other settings.

Consider a real-valued random variable X defined on some probability space (�,F,P). Let LX denote the law of X.
Suppose X′ is another random variable defined on the same probability space, such that LX′ is absolutely continuous with
respect to LX and has bounded density. Given ε ∈ (0,1), let Y be a Bernoulli(ε) random variable independent of X and
X′. Finally, set

X̃ =
{

X′ if Y = 1,

X if Y = 0.
(2.4)

Lemma 2.3. The Hellinger affinity between LX and LX̃ satisfies the lower bound

ρ(LX,LX̃) ≥ 1 − Cε2,

where C is a constant depending only on LX and LX′ .

Proof. Let us denote the density of LX′ with respect to LX by f (t), which we assume to be bounded; say f (t) ≤ M . It
is easy to see that εf (t) + 1 − ε is the density of LX̃ with respect to LX , and so

ρ(LX,LX̃) =
∫

R

√
εf (t) + 1 − εLX(dt).

For ε < 1/M , we can write the Taylor expansion

√
1 − ε

[
1 − f (t)

]
= 1 − ε

2

[
1 − f (t)

]
− ε2

8

[
1 − f (t)

]2 + ε3r(t),

where r(t) is bounded. In fact, the entire right-hand side above is bounded, and so there is no problem in writing

ρ(LX,LX̃) =
∫

R

(
1 − ε

2

[
1 − f (t)

]
− ε2

8

[
1 − f (t)

]2 + ε3r(t)

)
LX(dt).

Using the fact that
∫
R

f (t)LX(dt) = 1, we find

ρ(LX,LX̃) = 1 − ε2

8

∫

R

[
1 − f (t)

]2
LX(dt) + O

(
ε3)≥ 1 − Cε2,

where C depends only on LX and LX′ . Replacing C by max(C,M2) allows the statement to also hold trivially for
ε ≥ 1/M . �

When the same type of coupling is applied to several i.i.d. variables, we get the following bound which can be used in
Lemma 2.2.
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Lemma 2.4. Let X1, . . . ,Xn be i.i.d. random variables with law LX , and X′
1, . . . ,X

′
n be i.i.d. random variables with law

LX′ . Assume LX′ is absolutely continuous with respect to LX with bounded density. For each i = 1, . . . , n, let Yi be a

Bernoulli(εi) random variable independent of everything else, and define X̃i as in (2.4) with ε = εi . Then

dTV(L(X1,...,Xn),L(X̃1,...,X̃n)) ≤ C

(
n∑

i=1

ε2
i

)1/2

,

where C is a constant depending only on LX and LX′ .

Proof. By properties of product measures, it is clear from the definition (2.1) that

ρ(L(X1,...,Xn),L(X̃1,...,X̃n)) =
n∏

i=1

ρ(LXi
,LX̃i

). (2.5)

Now let C0 be the constant from Lemma 2.3. From (2.2), (2.5), and Lemma 2.3, we deduce

dTV(L(X1,...,Xn),L(X̃1,...,X̃n)) ≤
(

1 −
n∏

i=1

(
1 − C0ε

2
i

)2

)1/2

.

The desired bound is now obtained by iteratively applying the inequality (1 − x)(1 − y) ≥ 1 − x − y for x, y ≥ 0. �

2.3. Choice of coupling

Naturally there are many measures LX′ that are absolutely continuous to LX , but we look for one which can be naturally
coupled to LX in such a way that X′ deviates from X by as much as possible. Without further assumptions on LX , the
possibilities can be rather limited. Two choices that are always available, however, are

X′ = min
(
X,X(1), . . . ,X(m)

)
or X′ = max

(
X,X(1), . . . ,X(m)

)
, (2.6)

where X(1), . . . ,X(m) are independent copies of X. Indeed, these are the two couplings we will use to prove results on
fluctuations in planar random growth models. It is easy to check that the bounded density condition from Lemma 2.4 is
satisfied.

Lemma 2.5. For any law LX and any m ≥ 1, the law LX′ of X′ given by (2.6) is absolutely continuous with respect to

LX , and has bounded density.

Proof. For any Borel set A ⊂R,

P
(
X′ ∈ A

)
≤ P

(
{X ∈ A} ∪

m⋃

j=1

{
X(j) ∈ A

}
)

≤ P(X ∈ A) +
m∑

j=1

P
(
X(j) ∈ A

)
= (m + 1)P(X ∈ A).

It follows that P(X′ ∈ A) = 0 whenever P(X ∈ A) = 0, and that the density of LX′ with respect to LX is bounded by
m + 1. �

For a specific distribution LX , other couplings might also be useful and easier to work with. For instance, if X is a
uniform random variable on [0,1], one could take X′ = aX for any a ∈ (0,1). If P(X = 0) > 0, one could simply take
X′ = 0. For X that is geometrically distributed, X′ = X + a is also valid for any positive integer a.
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3. Planar random growth models: Definitions, background, and results

3.1. Two-dimensional first-passage percolation

Let E(Z2) denote the edge set of Z2. Let (Xe)e∈E(Z2) be an i.i.d. family of nonnegative, non-degenerate random variables.
Along a nearest-neighbor path γ = (γ0, γ1, . . . , γn), the passage time is

T (γ ) :=
n∑

i=1

X(γi−1,γi ),

where (γi−1, γi) denotes the (undirected) edge between γi−1 and γi . For x, y ∈ Z
2, denote by T (x, y) the minimum

passage time of a path connecting x and y; that is,

T (x, y) := inf
{
T (γ ) : γ0 = x, γn = y

}
.

The quantity T (x, y) is called the (first) passage time between x and y, and any path achieving this time will be called a
(finite) geodesic. For a recent survey on first-passage percolation, we refer the reader to [5].

We are interested in the fluctuations of T (x, y) when x and y are separated by a distance of order n. In dimensions
three and higher, there is actually no known lower bound other than the trivial observation that fluctuations are at least of
order 1. In the planar setting considered here, order

√
logn fluctuations (in the sense of Definition 2.1) were established

by Pemantle and Peres [58] when Xe is exponentially distributed. In [23, Theorem 2.6], this lower bound was extended
to the family of passage time distributions described in Section 2, satisfying (2.3). Our result below expands the result to
optimal generality (cf. Remark 3.2).

Let pc(Z
d) and �pc(Z

d) denote the critical values for undirected and directed bond percolation on Z
d . When d = 2,

we have pc(Z
2) = 1/2 and �pc(Z

2) ≈ 0.6445 [17, Chapter 6]. In order to have a rigorous upper bound, we cite the result
of [9] which guarantees

�pc

(
Z

2)≤ 0.6735. (3.1)

Theorem 3.1. With s := ess infXe ∈ [0,∞), assume

P(Xe = s) < pc

(
Z

2). (3.2)

Let yn be any sequence in Z
2 such that ‖yn‖1 ≥ n for every n. Then the fluctuations of T (0, yn) are at least of order√

logn.

Remark 3.2. The above result is optimal in the following sense. If s = 0 and P(Xe = 0) > pc(Z
d), then T (0, yn) is tight

because there is an infinite cluster of zero-weight edges extending in every direction [71,75].

When s > 0, we can relax (3.2) upon adding a weak moment condition (3.3b). This condition is standard in planar FPP
and is equivalent to the limit shape having nonempty interior (see (3.4) and the discussion that follows).

Theorem 3.3. With s := ess infXe ∈ [0,∞), assume

s > 0, P(Xe = s) < �pc

(
Z

2), (3.3a)

and

Emin
(
X(1),X(2),X(3),X(4)

)2
< ∞, (3.3b)

where the X(i)’s are independent copies of Xe. Let yn be any sequence in Z
2 such that ‖yn‖1 ≥ n for every n. Then the

fluctuations of T (0, yn) are at least of order
√

logn.

Remark 3.4. As similarly mentioned in Remark 3.2, the above result is optimal in the following sense. If s > 0 and
P(Xe = s) > �pc(Z

d), then T (0, yn) − n‖yn‖1 is tight so long as yn is in or at the edge of the oriented percolation cone
[74, Remark 7] (cf. [39] for a description of this cone). An independent work of Damron, Hanson, Houdré, and Xu [33],
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which uses different methods and was posted shortly after a first version of this manuscript, shows that Theorem 3.3 holds
even if one assumes (3.3a) without (3.3b); their Lemma 6 is the key innovation needed to remove this moment condition.
They also prove a statement equivalent to Theorem 3.1.

One should compare Theorems 3.1 and 3.3 with the results of Newman and Piza [54]. Under (3.2) or (3.3a), and the
additional assumption that E(X2

e ) is finite – which is slightly stronger than (3.3b) – they show Var(T (0, yn)) ≥ C logn.
Zhang [74, Theorem 2] shows the same for yn = (n,0) assuming only P(Xe = 0) < pc(Z

2), and Auffinger and Damron [4,
Corollary 2] extend this result to any direction outside the percolation cone (see also [48, Corollary 1.3]). Unfortunately,
these lower bounds on variance give no information on the true size of fluctuations, hence the need for Theorems 3.1
and 3.3. Indeed, one cannot expect a matching upper bound since Var(T (0, yn)) should be of order n2/3 in the standard
cases.

The best known variance upper bound is Cn/ logn, proved in general dimensions for progressively more general
distributions by Benjamini, Kalai, and Schramm [15], Benaïm and Rossignol [14], and Damron, Hanson, and Sosoe [34,
35]. One notable exception to the n/ logn barrier comes from a simplified FPP model introduced by Seppäläinen [63],
for which Johansson [45, Theorem 5.3] proves that the passage time fluctuations, when rescaled by a suitable factor of
n1/3, converge to the GUE Tracy–Widom distribution [68].

Interestingly, in the critical case P(Xe = 0) = 1/2 with P(0 < Xe < ε) = 0, fluctuations are of order exactly
√

logn.
Kesten and Zhang [47] prove a central limit theorem on this scale, and in the binary case P(Xe = 1) = 1/2, Chayes,
Chayes, and Durrett [26, Theorem 3.3] establish the expected asymptotic E(T (0, ne1)) = �(logn). More delicate critical
cases are examined in [37,72].

Next we turn our attention to the related shape fluctuations. For x ∈ R
2, let [x] be the unique element of Z2 such that

x ∈ [x] + [0,1)2. For each t > 0, define

B(t) :=
{
x ∈R

2 : T
(
0, [x]

)
≤ t

}
, (3.4)

which encodes the set of points reachable by a path of length at most t . Sharpened from a result of Richardson [62], the
Cox–Durrett shape theorem [32, Theorem 3] says that if (and only if) P(Xe = 0) < pc(Z

2) and (3.3b) holds, then there
exists a deterministic, convex, compact set B ⊂R

2, having the symmetries of Z2 and nonempty interior, such that for any
ε > 0, almost surely

(1 − ε)B ⊂ 1

t
B(t) ⊂ (1 + ε)B for all large t .

More specifically, for every x ∈ R
2, there is a positive, finite constant μ(x) such that

lim
n→∞

T (0, [nx])
n

= μ(x) a.s., (3.5)

and

B =
{
x ∈R

2 : μ(x) ≤ 1
}
.

Moreover, μ is a norm on R
2, and so B is the unit ball under this norm.

The question remains as to how far B(t) typically is from tB. One way to pose this problem precisely is to ask for the
value of

χ ′ := inf
{
ν : P

((
t − tν

)
B ⊂ B(t) ⊂

(
t + tν

)
B for all large t

)
= 1

}
. (3.6)

Another possible quantity to consider is χ := sup‖x‖2=1 χx , where

χx := sup
{
γ ≥ 0 : ∃C > 0,VarT

(
0, [nx]

)
≥ Cn2γ for all n

}
.

Although it is conjectured that χx = χ = χ ′ = 1
3 , even relating χ and χ ′ is challenging because a variance lower bound

does not by itself guarantee anything about fluctuations. Assuming E(X2
e ) < ∞ and either (3.2) or (3.3a), Newman and

Piza [54, Theorem 7] prove max(χ,χ ′) ≥ 1/5. Furthermore, they show χx ≥ 1/8 if x is a direction of curvature for B, a
notion defined in [54] and recalled here.

Definition 3.5. Let x ∈R
2 be a unit vector, and z ∈ ∂B the boundary point of B in the direction x. We say x is a direction

of curvature for B if there exists a Euclidean ball S (with any center and positive radius) such that S ⊃ B and z ∈ ∂S .
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Since B must have at least one direction of curvature (e.g. take a large ball S containing B, and then translate S until it
first intersects ∂B), one has χ ≥ 1/8 in the setting of [54]. Unfortunately, this result does not imply order n1/8 fluctuations
without a matching upper bound on the variance.

The first work addressing typical shape fluctuations is due to Zhang [73], who shows they are at least of order
√

logn

in a certain sense for Bernoulli weights and general dimension. Nakajima [53] extends this result to general distributions.
In the first result proving χ ′ > 0, Chatterjee [23, Theorem 2.8] shows that if for some direction of curvature x, T (0, [nx])
has fluctuations of order n1/8−δ for any δ > 0 in the sense of Definition 2.1, then χ ′ ≥ 1/8. It is then shown in [23,
Theorem 2.7] that the hypothesis of the previous sentence is true if the weight distribution satisfies (2.3). Here we are
able to replace that assumption with a small moment condition needed to use Alexander’s shape theorem [2], as refined
by Damron and Kubota [36].

Theorem 3.6. Assume P(Xe = 0) < pc(Z
2) and E(Xλ

e ) < ∞ for some λ > 3/2. If x is a direction of curvature for B,
then T (0, [nx]) has fluctuations of order at least n1/8−δ for any δ > 0.

By the argument of [23, Theorem 2.8], we obtain the following lower bound on the shape fluctuation exponent.

Corollary 3.7. Assume the setting of Theorem 3.6. Then the shape fluctuation exponent defined by (3.6) satisfies χ ′ ≥ 1
8 .

3.2. Corner growth model

In its planar form, LPP is often called the corner growth model. It is similar to FPP, the main differences being that only
directed paths are considered (i.e. coordinates never decrease), and the passage time T is defined by time-maximizing
paths rather than minimizing ones. Furthermore, by convention we place the weights on the vertices instead of the edges,
but this difference is more technical than conceptual. We will now make this setup precise.

Let Z2
+ denote the first quadrant of the square lattice, that is the set of all v = (a, b) ∈ Z

2 with a, b ≥ 0. We will
write the standard basis vectors as e1 = (1,0) and e2 = (0,1). Let (Xv)v∈Z2

+
be an i.i.d. family of non-degenerate random

variables; because of the directedness, no assumption of nonnegativity is needed. A directed path �γ = (γ0, γ1, . . . , γn) is
one in which each increment γi − γi−1 is equal to e1 or e2. The passage time of such a path is

T ( �γ ) :=
n∑

i=1

Xγi
.

Let T (u, v) be the maximum passage time of a directed path from u to v, called the (last) passage time,

T (u, v) := sup
{
T ( �γ ) | γ0 = u,γn = v

}
.

We will again refer to any path achieving this time as a (finite) geodesic. Once more T satisfies a shape theorem under
mild assumptions on LX , which we will not discuss. For further background, the reader is directed to [51,60,61].

The directed structure advantages this model because of correspondences with problems in queueing networks, inter-
acting particle systems, combinatorics, and random matrices. Remarkable progress has been made by leveraging these
connections in specific cases, leading to rigorous proofs of order n1/3 passage time fluctuations converging to Tracy–
Widom distributions upon rescaling. This has been successfully carried out by Johansson [44] when the Xv’s are geomet-
rically or exponentially distributed, building on work of Baik, Deift, and Johansson [6] connected to a continuum version
of LPP. The results extend to point-to-line passage times [20]. Purely probabilistic techniques for accessing fluctuation
exponents appear in [8,21]. The fluctuation exponent of 1/3 is also present in a model known as Brownian LPP, for which
the connection to Tracy–Widom laws is more explicit [55].

Away from exactly solvable settings, Chatterjee [22, Theorem 8.1] proves that when the vertex weights are Gaussian,
the point-to-line passage time has variance at most Cn/ logn. Graham [41] extends this result to general dimensions,
also discussing uniform and gamma distributions. To our knowledge, no general lower bound on fluctuations has been
written for LPP. It is worth mentioning, however, that the results in [54] are also stated for directed FPP. It is natural
to suspect that many of results mentioned for FPP could be naturally translated to the LPP setting. Indeed, as we now
discuss, Theorem 3.1 carries over with little modification.

Let �pc,site(Z
2) be the critical value of directed site percolation on Z

2. It is clear that �pc,site(Z
2) is at least as large as its

undirected counterpart pc,site(Z
2), which in turn satisfies pc,site(Z

2) > pc(Z
2) = 1/2 [43]. In the way of upper bounds, it

is known from [9,49] that �pc,site(Z
2) ≤ 3/4. Let S := ess supXv ∈ (−∞,∞]. The assumption analogous to (3.2) or (3.3a)

is

P(Xv = S) < �pc,site
(
Z

2). (3.7)
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Theorem 3.8. Assume (3.7). Let vn be any sequence in Z
2
+ such that ‖vn‖1 ≥ n for every n. Then the fluctuations of

T (0, vn) are at least of order
√

logn.

In the case vn = ne1, the passage time T (0, ne1) is just the sum of n i.i.d. random variables and thus fluctuates on the
scale of n1/2. The n1/3 scaling should manifest when the two coordinates of vn are both of order n. Interpolating between
these two regimes, it is expected that if vn = (n, �na�) for a ∈ (0,1), then T (0, vn) has fluctuations of order n1/2−a/6.
Such a result is proved, along with rescaled convergence to the GUE Tracy–Widom distribution, for a < 3/7 [7,16].

3.3. Directed polymers in 1 + 1 dimensions

The model of directed polymers in random environment is a positive-temperature version of LPP. That is, instead of
examining only maximal paths, we consider the softer model of defining a Gibbs measure on paths, with those of greater
passage time receiving a higher probability. With Z

2
+ as before, we again take (Xv)v∈Z2

+
to be an i.i.d. family of non-

degenerate random variables, called the random environment. Let ��n denote the set of directed paths �γ = (v0, v1, . . . , vn)

of length n starting at the origin v0 = 0. Given an inverse temperature β > 0, define a Gibbs measure ρ
β
n on ��n by

ρβ
n ( �γ ) := eβHn( �γ )

Z
β
n

, Hn( �γ ) :=
n∑

i=1

Xvi
, �γ ∈ ��n,

where now the object of interest is the partition function,

Zβ
n :=

∑

�γ∈��n

eβHn( �γ ).

Since Z
β
n grows exponentially in n, the proper linear quantity to consider is the free energy, logZ

β
n . Strictly speaking, the

following result is not the exact analogue of Theorems 3.1 and 3.8, since we have not fixed the endpoint. Nevertheless,
the same argument goes through for point-to-point free energies.

Theorem 3.9. Assume (3.7). Then the fluctuations of logZ
β
n are at least of order

√
logn for any β > 0.

As in LPP, there are several exactly solvable models of (1 + 1)-dimensional directed polymers for which free energy
fluctuations on the order of n1/3 can be calculated, beginning with the inverse-gamma (or log-gamma) polymer introduced
by Seppäläinen [64]. There are now three other solvable models: the strict-weak polymer [31,56], the Beta RWRE [11],
and the inverse-beta polymer [67]. Chaumont and Noack show in [24] that these are the only possible models possessing
a certain stationarity property, and in [25] provide a unified approach to calculating their fluctuation exponents. We also
mention the positive temperature version of Brownian LPP, introduced by O’Connell and Yor [57], for which order n1/3

energy fluctuations have been established [18,19,65].
For the general model considered here, the situation is much the same as for FPP. In the way of upper bounds,

Alexander and Zygouras [3] prove exponential concentration of logZ
β
n − E(logZ

β
n ) on the scale of

√
n/ logn, in anal-

ogy with works mentioned earlier [14,15,22,34,35,41]. Their results hold in general dimensions and for a wide range of
distributions. As for lower bounds, Piza [59] proves Var(logZ

β
n ) ≥ C logn for non-positive weights with finite variance,

as well as weaker versions of the shape theorem results from [54].
Although Theorem 3.9 does not even prove a positive fluctuation exponent, simply knowing that free energy fluctu-

ations diverge may be significant in understanding the phenomenon of polymer localization. One way of defining this
phenomenon is to say the polymer measure is localized if its endpoint distribution has atoms:

lim sup
n→∞

max
‖v‖1=n

ρβ
n (γn = v) > 0 a.s. (3.8)

It is known [29, Proposition 2.4] that (3.8) occurs for any β > 0 in 1 + 1 and 1 + 2 dimensions, and for sufficiently large
β in higher dimensions, depending on the law of the Xv’s. What is unclear, however, is whether the atoms or “favorite
endpoints” are typically close to one another or far apart. From the solvable case [64], there is evidence suggesting the
former is true at least in 1+1 dimensions [28]. In general dimensions, the same is known only along random subsequences
[12,13]. These subsequences also exist for polymers on trees, but in that setting, the favorite sites more frequently appear
far apart [10]; this behavior is thus difficult to rule out in high-dimensional lattices. It is interesting, then, that for both
polymers on trees and for high-temperature lattice polymers in dimensions 1 + 3 and higher, the fluctuations of logZ

β
n

are order 1. On the lattice, this fact is easy to deduce from a martingale argument; see [27, Chapter 5]. For the tree case,
see [38, Section 5].
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4. Proofs of main results

The proofs follow a general strategy, which we outline below. For clarity, we will break each proof into two parts:

Part 1. Use the coupling (2.6) with large enough m to show that in all relevant paths, there is a high frequency of weights
where X′ is far away from X.

Part 2. Show the same is true when X′ is replaced by X̃ defined by (2.4), provided we make good choices for ε. This
step uses Part 1, as well as the independence of Y from X and X′. Conclude that the passage time (or free energy)
has, with positive probability independent of n, changed by an amount of the desired order.

4.1. Proof of Theorems 3.1 and 3.3

Recall the notation

s = ess infXe.

Before proceeding with the main argument, we begin with a lemma meant to guarantee that geodesics contain many
edges with weights far from s. Preempting a technical concern, we note that with probability 1, geodesics do exist
between all pairs of points in Z

2 without any assumptions on the distribution of Xe [70]. We will use the notation
Bn(x) := {y ∈ Z

2 : ‖x − y‖1 ≤ n} and ∂Bn(x) := {y ∈ Z
2 : ‖x − y‖1 = n} for n ≥ 1.

Lemma 4.1. Given δ > 0 and ρ ∈ (0,1), let Ex
n be the event that there exists a geodesic γ = (γ0, γ1, . . . , γN ) from x ∈ Z

2

to some y ∈ ∂Bn(x) such that

#{1 ≤ i ≤ N : X(γi−1,γi ) ≥ s + 2δ} < ρn. (4.1)

If (3.2) or (3.3) holds, then there are δ and ρ sufficiently small that

∞∑

n=1

P
(
E0

n

)
< ∞. (4.2)

Furthermore, for some sequence (nk)
∞
k=1 satisfying 2k−1 < nk ≤ 2k ,

∞∑

k=1

∑

‖x‖1=nk

P
(
Ex

nk

)
< ∞. (4.3)

Remark 4.2. As will be seen in the proof, the restriction of Lemma 4.1 to geodesics is only necessary when assuming
(3.3) without (3.2).

We will need two results from the literature. The first theorem below was originally established by van den Berg and
Kesten [69] when y = (1,0), and later generalized by Marchand [50].

Theorem 4.3 (Marchand [50, Theorem 1.5(ii)]). Let (Xe)e∈E(Z2) and (X̂e)e∈E(Z2) be two i.i.d. families of nonnegative

random variables, such that X̂e stochastically dominates Xe. Let μ and μ̂ be the respective limiting norms, given by (3.5).
If P(Xe = s) < �pc(Z

2), then μ(y) < μ̂(y) for all y �= 0.

The next theorem demonstrates why (3.3b) is necessary when (3.2) is not assumed. The version stated in [1] uses ‖ · ‖2

in place of ‖ · ‖1, but this makes no difference because all norms on R
2 are equivalent.

Theorem 4.4 (Ahlberg [1, Theorem 1]). For every α, ε > 0,

Emin
(
X(1),X(2),X(3),X(4)

)α
< ∞ ⇐⇒

∑

y∈Z2

‖y‖α−2
1 P

(∣∣T (0, y) − μ(y)
∣∣> ε‖y‖1

)
< ∞,

where the X(i)’s are independent copies of Xe.
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Proof of Lemma 4.1. We handle the cases of (3.2) and (3.3) separately.
Case 1: Assuming (3.2). Choose δ > 0 small enough that P(Xe < s + 2δ) < pc(Z

2) = 1/2. Consider the first-passage
percolation when each Xe is replaced by

X̂e :=
{

0 if Xe < s + 2δ,

1 otherwise.

Let T̂ be the associated passage time, so that T̂ (x, y) is simply the minimum number of edges e satisfying Xe ≥ s + 2δ

in a path from x to y. By [46, Theorem 1], there exists ρ small enough that with probability tending to 1 exponentially
quickly in n, every self-avoiding path γ starting at the origin that has length at least n – not just those terminating at
∂Bn(0) – has T̂ (γ ) ≥ ρn. That is, P(E0

n) ≤ ae−bn for some a, b > 0, which easily gives

∞∑

n=1

nP
(
E0

n

)
< ∞.

In particular, (4.2) is true, and (4.3) holds for any increasing sequence nk → ∞, since |∂Bn(0)| = 4n for every n ≥ 1.
Case 2: Assuming (3.3). Recall that (3.3b) implies the existence of the finite limit (3.5) for every x ∈ R

2. By (3.3a), we
can choose δ > 0 small enough that P(Xe < s + 2δ) < �pc(Z

2). Next we choose M large enough that P(s + 2δ ≤ Xe <

s + 2δ + M) ≥ 1/4, which is possible because of (3.1). Consider the first-passage percolation model where each Xe is
replaced by

X̂e :=
{

s + 2δ + M if s + 2δ ≤ Xe < s + 2δ + M,

Xe otherwise.

Let T̂ and μ̂ be the associated passage time and limiting norm. We also define

μmin := min
{
μ(y) : y ∈R

2,‖y‖1 = 1
}
,

which is positive because s > 0, and finite because of (3.3b). Because of our choice of δ and M , Theorem 4.3 guarantees
μ(y) < μ̂(y) for every nonzero y ∈ R

2. By compactness and continuity of μ and μ̂, there is ε1 > 0 such that μ(y)(1 +
ε1) < μ̂(y)(1 − 2ε1) for every y with ‖y‖1 = 1. By scaling, the same inequality holds for all y �= 0. Therefore, if we set
ε2 := ε1 min(μmin,1), then for all y ∈ ∂Bn(0),

μ(y)(1 + ε1) + ε2n < μ̂(y)(1 − 2ε1) + ε2‖y‖1

≤ μ̂(y)(1 − 2ε1) + ε1μ(y)

< μ̂(y)(1 − 2ε1) + ε1μ̂(y) = μ̂(y)(1 − ε1). (4.4)

Finally, choose ρ ∈ (0,1) such that ρM < ε2.
Now consider any y ∈ ∂Bn(0). If there exists a geodesic γ (with respect to T ) from 0 to y such that (4.1) holds, then

γ contains fewer than ρn edges e such that X̂e �= Xe. Moreover, for each such edge, we have X̂e ≤ Xe + M . Therefore,

T̂ (0, y) ≤
N∑

i=1

X̂(γi−1,γi ) ≤ T (0, y) + nρM < T (0, y) + ε2n.

But in light of (4.4),

{
T (0, y) ≤ μ(y)(1 + ε1)

}
∩
{
μ̂(y)(1 − ε1) ≤ T̂ (0, y)

}
⊂
{
T (0, y) + ε2n ≤ T̂ (0, y)

}
.

From these observations, we see

E0
n ⊂

⋃

‖y‖1=n

{
T (0, y) > μ(y)(1 + ε1)

}
∪
{
T̂ (0, y) < μ̂(y)(1 − ε1)

}
, (4.5)
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and hence

P
(
E0

n

)
≤

∑

‖y‖1=n

[
P
(
T (0, y) − μ(y) > ε1μ(y)

)
+ P

(
T̂ (0, y) − μ̂(y) < −ε1μ̂(y)

)]

≤
∑

‖y‖1=n

[
P
(
T (0, y) − μ(y) > ε2‖y‖1

)
+ P

(
T̂ (0, y) − μ̂(y) < −ε2‖y‖1

)]
.

By Theorem 4.4 with α = 2, (3.3b) gives

∑

y∈Z2

[
P
(
T (0, y) − μ(y) > ε2‖y‖1

)
+ P

(
T̂ (0, y) − μ̂(y) < −ε2‖y‖1

)]
< ∞.

Now (4.2) follows from the previous two displays. To conclude (4.3), we take

nk := arg min
2k−1<n≤2k

P
(
E0

n

)
.

Note that by translation invariance, P(Ex
n ) = P(E0

n) for all x ∈ Z
2. Again using the fact that |∂Bn(0)| = 4n for all n ≥ 1,

we have

∞∑

k=1

∑

‖x‖1=nk

P
(
Ex

nk

)
= 4

∞∑

k=1

nkP
(
E0

nk

)
≤ 8

∞∑

k=1

2k−1
P
(
E0

nk

)
≤ 8

∞∑

k=1

2k∑

n=2k−1+1

P
(
E0

n

)
= 8

∞∑

n=2

P
(
E0

n

)
< ∞.

�

Proof of Theorems 3.1 and 3.3. Part 1. Let Tn = T (0, yn). From Lemma 4.1, take δ > 0, ρ ∈ (0,1), and (nk)
∞
k=1

satisfying 2k−1 < nk ≤ 2k , such that (4.3) holds. Then choose k0 large enough that

∞∑

k=k0

∑

‖x‖1=nk

P
(
Ex

nk

)
≤ 1

7
.

Define the event

G0 :=
∞⋂

k=k0

⋂

‖x‖1=nk

(
Ex

nk

)c
, (4.6)

so that

P(G0) ≥ 6

7
. (4.7)

Finally, choose m large enough that if X
(1)
e , . . . ,X

(m)
e are independent copies of Xe, then

P
(
min

(
X(1)

e , . . . ,X(m)
e

)
≤ s + δ

)
> 1 −

(
1

3

)1/ρ

. (4.8)

Throughout the rest of the proof, C will denote a constant that may depend on m and LX , but nothing else. Its value may
change from line to line or within the same line. To condense notation, we will also define

X′
e := min

(
Xe,X

(1)
e , . . . ,X(m)

e

)
, Ze := Xe − X′

e, We := 1 − e−Ze , (4.9)

where (X
(j)
e )e∈E(Z2), 1 ≤ j ≤ m, are independent copies of the i.i.d. edge weights.

Given any realization of the percolation, the subgraph of Z2 induced by the geodesics between all pairs of points in
B2n(0) is finite and connected. Therefore, we can choose one of its spanning trees according to some arbitrary, determin-
istic rule. From that tree we have a distinguished geodesic for each x, y ∈ B2n(0). Moreover, if x′ and y′ lie along the
geodesic from x to y, then the distinguished geodesic from x′ to y′ is the relevant subpath.
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Given c > 0 to be chosen later, consider the event Fn that there exist x ∈ ∂Bn(0) and y ∈ ∂B2n(0) whose distinguished
geodesic – which we denote by its edges (e1, . . . , eN ) in a slight abuse of notation – satisfies

N∑

i=1

Wei
≤ cn. (4.10)

For a given x ∈ Bn(0), if Ex
n does not occur, then any geodesic from x to any y ∈ ∂Bn(x) contains at least ρn edges

satisfying Xei
≥ s + 2δ. Furthermore, because ‖x‖1 = n, every geodesic from x to ∂B2n(0) must pass through ∂Bn(x).

Therefore, if Ex
n does not occur, then any geodesic from x to ∂B2n(0) contains at least ρn edges satisfying Xei

≥ s + 2δ.
It will be convenient to define

Ue :=
{

1 if min(X
(1)
e , . . . ,X

(m)
e ) ≤ s + δ,

0 otherwise.

The reason for doing so is that now the Ue’s are mutually independent and independent of σ(X), the σ -algebra generated
by the Xe’s. In addition, if (e1, . . . , eN ) is the distinguished geodesic between some fixed x ∈ ∂Bn(0) and y ∈ ∂B2n(0),
then from the observation

Xe ≥ s + 2δ,Ue = 1 =⇒ Ze ≥ δ =⇒ We ≥ 1 − e−δ,

we see

N∑

i=1

1{Xei
≥s+2δ}1{Uei

=1}
(
1 − e−δ

)
≤

N∑

i=1

Wei
.

By the discussion of the previous paragraph, if Ex
n does not occur, then there is a subsequence 1 ≤ i1 < i2 < · · · < i�ρn� ≤

N such that Xei�
≥ s + 2δ for each � = 1, . . . , �ρn�. With this notation, we have

P

(
N∑

i=1

Wei
≤ cn

∣∣∣ σ(X)

)
1(Ex

n )c ≤ P

(
N∑

i=1

1{Xei
≥s+2δ}1{Uei

=1}
(
1 − e−δ

)
≤ cn

∣∣∣ σ(X)

)
1(Ex

n )c

≤ P

(�ρn�∑

�=1

1{Uei�
=1}

(
1 − e−δ

)
≤ cn

∣∣∣ σ(X)

)
1(Ex

n )c

≤ φ(t)�ρn� exp

{
cnt

1 − e−δ

}
for any t > 0,

where

φ(t) := E
(
e−tUe

)
= P(Ue = 0) + e−t

P(Ue = 1)
(4.8)
<

(
1

3

)1/ρ

+ e−t

(
1 − 1

31/ρ

)
.

We can choose t sufficiently large that φ(t)ρ ≤ 1/3. Then setting c = (1 − e−δ)t−1, we have

P

(
N∑

i=1

Wei
≤ cn

∣∣∣ σ(X)

)
1(Ex

n )c ≤ en

3n
.

We now use this estimate to bound the conditional probability of the event Fn defined via (4.10). Since |∂Bn(0)| = 4n

and |∂B2n(0)| = 8n, a union bound gives

P
(
Fn | σ(X)

)
1{⋂‖x‖1=n(Ex

n )c} ≤ 32n2en

3n
for all n ≥ 1. (4.11)

Now we choose an even integer k1 ≥ k0 sufficiently large that

32
∞∑

k=k1

n2
kenk

3nk
≤ 1

8
, (4.12)
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and define the event

G :=
∞⋂

k=k1

F c
nk

. (4.13)

Recall the event G0 ∈ σ(X) defined in (4.6). The above discussion yields

P
(
G | σ(X)

)
1G0 ≥

(
1 −

∞∑

k=k1

P
(
Fnk

| σ(X)
)
)
1G0

=
(

1 −
∞∑

k=k1

P
(
Fnk

| σ(X)
)
)
∏

k=k0

1{⋂‖x‖1=nk
(Ex

nk
)c}

(4.11)
≥

(
1 − 32

∞∑

k=k1

n2
kenk

3nk

)
∏

k=k0

1{⋂‖x‖1=nk
(Ex

nk
)c}

(4.12)
≥ 7

8
1G0 .

It now follows from (4.7) that

P(G) ≥ 7

8
P(G0) ≥ 3

4
. (4.14)

Having chosen k1, we will assume n satisfies

⌊
(log2 n)/2

⌋
≥ k1 + 1. (4.15)

Part 2. For each edge e, let ‖e‖ denote its distance from the origin, i.e. the graph distance from 0 to the closest endpoint
of e. For each e with ‖e‖ ≤ n, set

εe := α

(‖e‖ + 1)
√

logn
, (4.16)

where α is a constant to be chosen below. For each such e, define X̃e as in (2.4) with ε = εe and X′
e given in (4.9). Let

T̃n = T̃ (0, yn) be the passage time if Xe is replaced by X̃e whenever ‖e‖ ≤ n. Because there are at most C(i + 1) edges
e with ‖e‖ = i, we have

∑

‖e‖≤n

ε2
e = α2

logn

n∑

i=1

∑

‖e‖=i

1

(i + 1)2
≤ α2

logn

n∑

i=1

C

i + 1
≤ Cα2.

Hence, by Lemma 2.4,

dTV(LTn ,LT̃n
) ≤ Cα.

Choose α so that

dTV(LTn ,LT̃n
) ≤ 1

4
. (4.17)

Now we aim to show that with sufficiently large probability, Tn − T̃n is of order
√

logn. Let e1, . . . , eN be a geodesic
from 0 to yn, chosen according to same deterministic rule as before. Note that necessarily N ≥ ‖y‖1 ≥ n. We will use the
notation ei = (xi−1, xi) to denote endpoints of ei in the order traversed by the geodesic. For each k = 1, . . . , �(log2 n)/2�,
let ik be the first index such that ‖xik‖1 = n2k , where the nk’s were chosen in Part 1 and satisfy 2k−1 < nk ≤ 2k . Observe
that

‖ei‖ ≤ n2k − 1 ≤ 4k − 1 for every i ≤ ik. (4.18)
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Furthermore, (eik+1, . . . , eik+1) is a geodesic from xik ∈ Bn2k
(0) to xik+1 ∈ Bn2k+2(0), where n2k+2 > 22k+1 ≥ 2nk . There-

fore, on the event G defined in (4.13),

ik+1∑

i=ik+1

Wei
≥ cn2k > c22k−1 for all k = k1/2, . . . ,

⌊
(log2 n)/2

⌋
− 1.

which implies

N∑

i=1

εei
Wei

≥
N∑

i=ik1/2+1

εei
Wei

≥
�(log2 n)/2�−1∑

k=k1/2

ik+1∑

i=ik+1

εei
Wei

(4.18)
≥

�(log2 n)/2�−1∑

k=k1/2

α

4k+1
√

logn

ik+1∑

i=ik+1

Wei

≥ α√
logn

�(log2 n)/2�−1∑

k=k1/2

c22k−1

4k+1

= αc(�(log2 n)/2� − k1/2)

8
√

logn

(4.15)
≥ αc

√
logn

16 log 2
=: θ

√
logn. (4.19)

Denote by σ(X,X(1), . . . ,X(m)) the σ -algebra generated by the Xe’s and X
(j)
e ’s, 1 ≤ j ≤ m. Recall that each X̃ei

is equal

to min(Xei
,X

(1)
ei

, . . . ,X
(m)
ei

) = Xei
− Zei

independently with probability εei
, and equal to Xei

otherwise. In the former
case, the value of T̃n is lowered relative to Tn by at least Zei

; in the latter case, no change occurs. Therefore,

Tn − T̃n ≥
N∑

i=1

1{Yei
=1}Zei

=: D,

where the Yei
’s are Bernoulli(εei

) random variables independent of each other and independent of σ(X,X(1), . . . ,X(m)).
It follows that for any t ≥ 0,

P
(
D ≤ t | σ

(
X,X(1), . . . ,X(m)

))
≤ et

E
(
e−D | σ

(
X,X(1), . . . ,X(m)

))

= et

N∏

i=1

(
1 − εei

+ εei
e−Zei

)

≤ et

N∏

i=1

exp
{
−εei

(
1 − e−Zei

)}

= et exp

{
−

N∑

i=1

εei
Wei

}
.

Therefore, on the event G, (4.19) shows

P

(
D ≤ θ

2

√
logn

∣∣ σ
(
X,X(1), . . . ,X(m)

))
1G ≤ e− θ

2
√

logn.

Assuming n is large enough that

e− θ
2
√

logn ≤ 1

2
, (4.20)
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we have

P

(
D >

θ

2

√
logn

∣∣ σ
(
X,X(1), . . . ,X(m)

))
≥ 1

2
1G, (4.21)

and thus

P

(
Tn − T̃n >

θ

2

√
logn

)
≥ P

(
D >

θ

2

√
logn

)
≥ 1

2
P(G)

(4.14)
≥ 3

8
. (4.22)

Using (4.17) and (4.22) in Lemma 2.2, we see that Tn has fluctuations of order at least
√

logn. �

4.2. Proof of Theorem 3.6

Recall Definition 3.5 for a direction of curvature, as well as the exponent χ ′ from (3.6).
Part 1. Fix any unit vector x that is a direction of curvature for B, and fix any δ > 0. We will write Tn = T (0, [nx]),

where [y] denotes the unique element of Z2 such that y ∈ [y] + [0,1)d . Let L be the line passing through 0 and x, and
let �n be the cylinder of width n3/4+δ centered about L:

�n :=
{
z ∈ Z

2 : d(z,L) ≤ n3/4+δ
}
,

where d(z,L) = inf{‖z − y‖2 : y ∈ L}. Under the given assumptions, [36, Theorem 1.2] guarantees χ ′ ≤ 1/2. It then
follows from [54, Theorem 6 and (2.21)] that there exists q0 ∈ (0,1] such that with probability at least q0, the following
event, which we call G1, is true: For all large n, all geodesics from the origin to [nx] lie entirely inside �n.

We would like to replace �n with a finite set. To do so, we let Ln be the line segment connecting 0 and nx, and then
introduce

Vn :=
{
z ∈ Z

2 : d(z,Ln) ≤ n3/4+2δ
}
.

Suppose toward a contradiction that G1 occurs but there exists a geodesic from 0 to [nx] that remains inside �n but not
Vn. Observe that from any z ∈ �n \ Vn, the closest point on Ln is either 0 or [nx]. Consequently, it follows from our
supposition that from one of the endpoints of Ln (say 0, for concreteness), there are points z1 within distance n3/4+δ and
z2 at distance at least n3/4+2δ , such that T (0, z1) ≥ T (0, z2); see Figure 1. By the shape theorem, this inequality can only
happen for finitely many n. From this argument we conclude that with probability at least q0, the following event, which
we call G2, is true: For all large n, all geodesics from the origin to [nx] lie entirely inside Vn.

Note that (3.3b) is implied by E(X
1/2
e ) < ∞ and thus also by E(Xλ

e ) < ∞ for λ > 3/2. From Lemma 4.1 we can find
δ > 0 and ρ ∈ (0,1) such that (4.2) holds. As in the proof of Theorem 3.1, for each edge e ∈ E(Z2) we define

X′
e := min

(
Xe,X

(1)
e , . . . ,X(m)

e

)
, Ze := Xe − X′

e, We := 1 − e−Ze .

Fig. 1. The geodesic connecting 0 and [nx] remains inside �n but exits and re-enters Vn. The point z2 is outside Vn but has a shorter passage time to
0 than does z1, which is within distance n3/4+δ of 0.



Fluctuation lower bounds in planar random growth models 2421

When considering geodesics between 0 and [nx], we always choose a distinguished geodesic (e1, . . . , eN ) according
some deterministic rule. As in the proof of Theorem 3.1, we take m large enough and c > 0 small enough that

P

(
N∑

i=1

Wei
≤ cn

∣∣∣ σ(X)

)
1(E0

n)c ≤ en

3n
for all n ≥ 1.

Let Fn be the event that
∑N

i=1 Wei
≤ cn (here we have fixed the endpoints, and so this event is different from the Fn

considered in the proof of Theorem 3.1). By the above display and (4.2), there is n0 such that

P(Fn) ≤ q0

2
for all n ≥ n0. (4.23)

Part 2. Now we set

ε := αn−7/8−δ,

where α will be chosen below, and define the perturbed edge weights as in (2.4): For each edge e with both endpoints in
Vn, we let

X̃e =
{

X′
e if Ye = 1,

Xe if Ye = 0,
where Ye

i.i.d.∼ Bernoulli(ε).

Denote by T̃n be the passage time from 0 to [nx] if Xe is replaced by X̃e whenever e has both endpoints in Vn. Before
proceeding, let us note that by Lemma 2.4,

dTV(LT ,LT̃ ) ≤ Cαn−7/8−δ
√

#(edges in Vn) ≤ Cαn−7/8−δ
√

Cn7/4+2δ = Cα,

where C depends only on LX and m. We can then take α sufficiently small that

dTV(LT ,LT ′) ≤ q0

8
. (4.24)

We will also assume

αc

2
n1/8−δ ≥ − log

(
q0

4

)
. (4.25)

Let (e1, . . . , eN ) be the distinguished geodesic from 0 to [nx], which lies entirely inside Vn for all large n provided G2
occurs. In this case, as in the proof of Theorem 3.1,

Tn − T̃n ≥
N∑

i=1

1{Yei
=1}Zei

=: D,

where the Yei
’s are i.i.d. Bernoulli(ε) random variables that are independent of σ(X,X(1), . . . ,X(m)). So on the event

F c
n ∩ G2, for any t > 0,

P
(
D ≤ tn1/8−δ | σ

(
X,X(1), . . . ,X(m)

))
1F c

n∩G2 ≤ etn1/8−δ

E
(
e−D | σ

(
X,X(1), . . . ,X(m)

))
1F c

n∩G2

= 1F c
n∩G2etn1/8−δ

N∏

i=1

(
1 − ε + εe−Zei

)

≤ 1F c
n∩G2etn1/8−δ

N∏

i=1

exp
{
−ε

(
1 − e−Zei

)}

= 1F c
n∩G2etn1/8−δ

exp

{
−ε

N∑

i=1

Wei

}

≤ etn1/8−δ−αcn1/8−δ

.
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Choosing t = αc/2, we find that

P

(
Tn − T̃n ≤ αc

2
n1/8−δ

)
≤ P

(
Fn ∪ Gc

2

)
+ e− αc

2 n1/8−δ

(4.23), (4.25)
≤ q0

2
+ 1 − q0 + q0

4
= 1 − q0

4
.

Together with (4.24) and Lemma 2.2, this completes the proof.

4.3. Proof of Theorem 3.8

We begin with a lemma that will serve a similar purpose as Lemma 4.1 did in the proof of Theorem 3.1.

Lemma 4.5. Consider directed site percolation on Z
2
+ in which each site is open independently with probability p <

�pc,site(Z
2). Given ρ > 0, let En be the event that exists a directed path (v0, v1, . . . , vn) with ‖v0‖1 ≤ n, such that

#{1 ≤ i ≤ n : vi closed} < ρn.

Then there is ρ sufficiently small that for some a, b > 0,

P(En) ≤ ae−bn for all n ≥ 1.

Proof. First observe that by a union bound,

P(En) ≤ (n + 1)(n + 2)

2
P
(
E0

n

)
,

where E0
n is the event that there exists a directed path of length n starting at the origin and passing through fewer than

ρn closed sites. If we can prove P(E0
n) ≤ ae−bn for some a, b > 0, then it will follow that P(En) ≤ a′e−b′n for some

a′, b′ > 0. Therefore, we henceforth concern ourselves only with the event E0
n.

For a directed path �γ = (γ (0), γ (1), . . . , γ (�)), let | �γ | = � denotes its length. Let Ak be the event that there exists an
open directed path of length k starting at the origin. Since p < �pc,site(Z

2), [42, Theorem 7] (see also [40, Theorem 14])
guarantees the existence of c1, c2 > 0 such that

P(Ak) ≤ c1e−c2k for all k ≥ 1.

Choose k large enough that

P(Ak) ≤ 1

36(k + 1)2
, (4.26)

and then set ρ := 1/(4k). Let Fn be the event that some directed path of length nk starting at the origin passes through
fewer than n/2 closed sites. Since ρ(n + 1)k = (n + 1)/4 ≤ n/2 for any n ≥ 1, we have the following containments for
n ≥ 1 and 0 ≤ j < k:

E0
nk+j =

{
∃ �γ , �γ (0) = 0, | �γ | = nk + j, with fewer than ρ(nk + j) closed sites

}

⊂
{
∃ �γ , �γ (0) = 0, | �γ | = nk, with fewer than ρ(n + 1)k closed sites

}

⊂
{
∃ �γ , �γ (0) = 0, | �γ | = nk, with fewer than n/2 closed sites

}
= Fn.

It suffices, then, to obtain a bound of the form P(Fn) ≤ ae−bn. The remainder of the proof is to achieve such an estimate.
Consider the set

�n :=
{
w = (w0 = 0,w1, . . . ,wn) | ∀i = 1, . . . , n,∃ �γ : wi−1 → wi with | �γ | = k

}
.

In words, �n is the set of all (n + 1)-tuples whose ith coordinate is ik steps from the origin, and for which there exists
a directed path passing through all its coordinates. Since a directed path of length � starting at a fixed position must
terminate at one of exactly � + 1 vertices, the cardinality of �n is

|�n| = (k + 1)n. (4.27)
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Recall that ��nk denotes the set of directed paths of length nk starting at the origin. For each w ∈ �n, let ��w denote the
subset of those paths traversing the coordinates of w:

��w :=
{
�γ ∈ ��nk : �γ (ik) = wi,1 ≤ i ≤ n

}
.

From the definitions, we have ��nk =⋃
w∈�n

��w . Moreover, if we define Fw to be the event that some �γ ∈ ��w has fewer
than n/2 closed sites, then

Fn =
⋃

w∈�n

Fw. (4.28)

Fix any w ∈ �n. For 1 ≤ i ≤ n, let Xi denote the minimum number of closed sites in a directed path of length k starting
at wi−1. It is immediate from translation invariance that P(Xi ≥ 1) = 1 − P(Ak). We thus have the estimate

P(Fw) ≤ P(X1 + · · · + Xn ≤ n/2)

≤ P(1{X1≥1} + · · · + 1{Xn≥1} ≤ n/2)

=
�n/2�∑

i=0

(
n

i

)(
1 − P(Ak)

)i
P(Ak)

n−i

≤ n

2

(
n

�n/2�

)
P(Ak)

n/2 ≤ C

√
n

2π

(
2
√
P(Ak)

)n
,

where the final inequality holds for some C > 0 by Stirling’s approximation. It now follows from (4.27), (4.28), and
(4.26) that

P(Fn) ≤ C

√
n

2π

(
2(k + 1)

√
P(Ak)

)n ≤ C

√
n

2π
3−n ≤ a2−n

for some a > 0. �

Proof of Theorem 3.8. Part 1. For each v ∈ Z
2
+ \ {0}, define

X′
v := max

(
Xv,X

(1)
v , . . . ,X(m)

v

)
, Zv := X′

v − Xv, Wv := 1 − e−Zv ,

where m is chosen below, and (X
(j)
v )v∈Z2

+
, 1 ≤ j ≤ m are independent copies of the i.i.d. vertex weights. Recall that

S = ess supXv . If S = ∞, take δ = 1 and choose S′ sufficiently large that

P
(
Xv ≥ S′ − 2δ

)
< �pc,site

(
Z

2).

If S < ∞, set S′ = S and choose δ > 0 sufficiently small that the above display holds. In either case, we can find m

sufficiently large that

P
(
max

(
X(1)

v , . . . ,X(m)
v

)
< S′ − δ

)
< �pc,site

(
Z

2)− P
(
Xv ≥ S′ − 2δ

)
,

so that

P(Zv < δ) ≤ P
(
max

(
X(1)

v , . . . ,X(m)
v

)
< S′ − δ

)
+ P(Xv ≥ S − 2δ) < �pc,site

(
Z

2).

By Lemma 4.5, there is ρ ∈ (0,1) and a, b > 0 so that with probability at least 1 − ae−b2k
, every directed path

(v0, v1, . . . , v2k ) of length 2k with ‖v0‖1 = 2k satisfies

2k∑

i=1

Wvi
≥ ρ

(
1 − e−δ

)
2k.

Let G be the event that this is the case for every k ≥ k1, where k1 is chosen large enough that

P(G) ≥ 3/4. (4.29)

We will assume n is large enough to satisfy (4.15).
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Part 2. Similarly to (4.16), we will take

εv := α

‖v‖1
√

logn
, v ∈ Z

2
+ \ {0},

and define X̃v as in (2.4) with ε = εv . Let Tn = T (0, yn) be the passage time with the Xv’s as the vertex weights, and let
T̃n = T̃ (0, yn) be the passage time with the X̃v’s. The constant α > 0 is taken small enough that (4.17) holds.

On the event G, every directed path (0 = v0, v1, . . . , vn) of length n satisfies

n∑

i=1

εvi
Wvi

≥
n∑

i=2k1

εvi
Wvi

≥
�log2 n�−1∑

k=k1

2k+1∑

i=2k+1

εvi
Wvi

≥
�log2 n�−1∑

k=k1

α

2k+1
√

logn

2k+1∑

i=2k+1

Wvi

≥ α√
logn

�log2 n�−1∑

k=k1

ρ(1 − e−δ)2k

2k+1

= αρ(1 − e−δ)(�log2 n� − k1)

2
√

logn

(4.15)
≥ αρ(1 − e−δ)

√
logn

4 log 2
=: θ

√
logn. (4.30)

The argument is now completed by proceeding exactly as in the proof of Theorem 3.1 following (4.19), where (4.14) and
(4.19) are replaced by (4.29) and (4.30), respectively. �

4.4. Proof of Theorem 3.9

We will absorb the inverse temperature β into the Xv’s and then work in the case β = 1. Let the notation be as in the proof
of Theorem 3.8. In addition, let H̃n and Z̃n be the Hamiltonian and partition function, respectively, in the environment
formed by the X̃v’s. Now (4.17) reads as

dTV(LlogZn ,Llog Z̃n
) ≤ 1

4
. (4.31)

We repeat all steps of the proof of Theorem 3.8 and take n sufficiently large that on the event G defined therein,

P

(
H̃n( �γ ) − Hn( �γ ) ≥ θ

2

√
logn

∣∣ σ
(
X,X(1), . . . ,X(m)

))
≥ 3

4
1G (4.32)

for every �γ ∈ ��n. (This is in analogy with (4.21), but for n satisfying a more restrictive lower bound than (4.20).) The
remainder of the argument must be slightly modified to account for the fact that all paths contribute to the free energy,
not just those with maximum weight.

For each �γ ∈ �n, define

D �γ :=
{

θ
2

√
logn if H̃n( �γ ) − Hn( �γ ) ≥ θ

2

√
logn,

0 otherwise.

From Jensen’s inequality, It is immediate that

log Z̃n − logZn = log
∑

�γ∈��n

eHn( �γ )

Zn

eH̃n( �γ )−Hn( �γ ) ≥ log
∑

�γ∈��n

eHn( �γ )

Zn

eD �γ ≥
∑

�γ∈��n

eHn( �γ )

Zn

D �γ .
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On one hand,

E

[∑

�γ∈��n

eHn( �γ )

Zn

D �γ

]
= E

[∑

�γ∈��n

eHn( �γ )

Zn

E
(
D �γ | σ

(
X,X(1), . . . ,X(m)

))]

(4.32)
≥ E

[∑

�γ∈��n

eHn( �γ )

Zn

1G

3θ

8

√
logn

]

= 3θ

8

√
lognP(G)

(4.29)
≥ 9θ

32

√
logn. (4.33)

On the other hand, we have the deterministic upper bound

∑

�γ∈��n

eHn( �γ )

Zn

D �γ ≤ θ

2

√
logn.

Therefore, the lower bound (4.33) can only hold if

P

(
log Z̃n − logZn ≥ θ

16

√
logn

)
≥ P

(∑

�γ∈��n

eHn( �γ )

Zn

D �γ ≥ θ

16

√
logn

)
≥ 1

2
.

Together with (4.31) and Lemma 2.2, this completes the proof.
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