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For a broad class of Gaussian disordered systems at low temperature,
we show that the Gibbs measure is asymptotically localized in small neigh-
borhoods of a small number of states. From a single argument, we obtain:
(i) a version of “complete” path localization for directed polymers that is not
available even for exactly solvable models, and (ii) a result about the exhaus-
tiveness of Gibbs states in spin glasses not requiring the Ghirlanda–Guerra
identities.
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1. Introduction. A ubiquitous theme in statistical mechanics is to understand how a
system behaves differently at high and low temperatures. In a disordered system, where the
interactions between its elements are governed by random quantities, the strength of the dis-
order is determined by temperature. Namely, high temperatures mean the disorder is weak,
and the system is likely to resemble a generic one based on entropy. On the other hand, low
temperatures indicate strong disorder which creates dramatically different behavior in which
the system is constrained to a small set of states that are energetically favorable. In the latter
case, this concentration phenomenon is often called “localization.”

A useful statistic in distinguishing different temperature regimes is the so-called “replica
overlap.” That is, given the disorder, one can study the similarity of two independently ob-
served states. If the disorder is strong, then these two states should closely resemble one
another with good probability, since we believe the system is bound to a relatively small
number of possible realizations. Some version of this statement has been rigorously estab-
lished in a number of contexts, most famously in spin glass theory but also in the settings of
disordered random walks and disordered Brownian motion. Unfortunately, it does not follow
that the number of realizable states is small but only that there is small number of states that
are observed with positive probability.

In the present study our entry point to this problem is to consider conditional overlap.
Whereas previous results in the literature show the overlap distribution between two indepen-
dent states has a nonzero component, we ask whether the same is true even if one conditions
on the first state. That is, does a typical state always have positive expected overlap with an
independent one? We show that for a broad class of Gaussian disordered systems, the answer
is “yes,” the key implication being that the entire realizable state space is small. Specifically,
there is an O(1) number of states such that all but a negligible fraction of samples from the
system will have positive overlap with one of these states.

The general setting, notation, motivation, and results are given in Sections 1.1–1.4, re-
spectively. The consequences for spin glasses, directed polymers and other Gaussian fields
are discussed in Sections 1.5 and 1.6.

1.1. Model and assumptions. Let (�,F,P) be an abstract probability space, and
(�n)n≥1 a sequence of Polish spaces equipped respectively with probability measures
(Pn)n≥1. For each n, we consider a centered Gaussian field Hn, indexed by �n and de-
fined on �. Viewing this field as a Hamiltonian, we have the associated Gibbs measure at
inverse temperature β ,

μβ
n (dσ) :=

eβHn(σ )

Zn(β)
Pn(dσ) where Zn(β) :=

∫
eβHn(σ ) Pn(dσ).

Our results concern the relationship between the free energy,

Fn(β) :=
1

n
logZn(β),

and the covariance structure of Hn. We make the following assumptions:

• There is a deterministic function p :R →R such that

(A1) lim
n→∞

Fn(β) = p(β) P-a.s. and in L1(P), for every β ∈R.

• For every σ ∈ �n,

(A2) VarHn(σ ) = n.
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• For every σ 1, σ 2 ∈ �n,

(A3) Cov
(
Hn

(
σ 1),Hn

(
σ 2)) ≥ −nEn,

where En is a nonnegative constant tending to 0 as n → ∞.
• For each n, there exist measurable real-valued functions (ϕi,n)

∞
i=1 on �n and i.i.d. stan-

dard normal random variables (gi,n)
∞
i=1 defined on � such that for each σ ∈ �n, with

P-probability 1,

(A4) Hn(σ ) =
∞∑

i=1

gi,nϕi,n(σ ),

where the series on the right converges in L2(P).

REMARK 1.1. In all applications of interest (see Section 1.5), the hypothesis (A3) is
trivially satisfied with En = 0. Nevertheless, we assume throughout only that En → 0 (at any
rate). This modest relaxation is made so our results can apply to slightly more general models,
for instance, perturbations of the standard models we will soon describe.

REMARK 1.2. The condition (A4) is very mild: For example, it always holds when �n

is finite. More generally, a sufficient condition for the existence of a representation (A4) is
that �n is compact in the metric defined by Hn (namely, the metric that defines the distance
between σ and σ ′ as the L2 distance between the random variables Hn(σ ) and Hn(σ

′)). For
a proof of this standard result, see [1], Theorem 3.1.1. Furthermore, in all applications of
interest, Hn will actually be explicitly defined using a sum of the form (A4).

1.2. Notation. Unless stated otherwise, “almost sure” and “in Lα” statements are with
respect to P. We will use En and E to denote expectation with respect to Pn and P, respec-
tively. Absent any decoration, 〈·〉 will always denote expectation with respect to μ

β
n , meaning

〈
f (σ)

〉
=

En(f (σ ) eβHn(σ ))

En(eβHn(σ ))
.

At various points in the paper, we will decorate 〈·〉 to denote expectation with respect to some
perturbation of μ

β
n . The type of perturbation will change between sections. The symbols σ j ,

j = 1,2, . . . , shall denote independent samples from μ
β
n , if appearing within 〈·〉, or from

Pn, if appearing within En(·). We will refer to the vector gn = (gi,n)
∞
i=1 as the disorder or

random environment. Sometimes, we will consider multiple environments at the same time
which will necessitate that we write μ

β
n,gn

instead of μ
β
n to emphasize the dependence on the

environment gn.
In the sequel,

∑
i will always mean

∑∞
i=1, and we will condense our notation to ϕi =

ϕi,n(σ ) when we are dealing with some fixed n. Similarly, gi,n will be shortened to gi , and
gn will be shortened to g. Also, C(·) will indicate a positive constant that depends only on the
argument(s). In particular, no such constant depends on g or n. We will not concern ourselves
with the precise value which may change from line to line.

1.3. Motivation. Our results will be stated in terms of the correlation or overlap function,

R
(
σ 1, σ 2) :=

1

n
Cov

(
Hn

(
σ 1),Hn

(
σ 2)), σ 1, σ 2 ∈ �n.

Note that (A2) and (A3) imply

−En ≤ R
(
σ 1, σ 2) ≤ 1.

We will often abbreviate R(σ j , σ k) to Rj,k .
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The Gaussian process (Hn(σ ))σ∈�n naturally defines a (pseudo)metric ρ on �n, given by

(1.1) ρ
(
σ 1, σ 2) := 1 −R1,2.

Given the metric topology, we can study the so-called “energy landscape” of βHn on �n. The
geometry of this landscape is intimately related to the free energy. By Jensen’s inequality,

(1.2) EFn(β) ≤
1

n
logEZn(β)

(Lemma 3.7)=
β2

2

which, in particular, implies p(β) ≤ β2/2. In general, whether or not this inequality is strict
determines the nature of the energy landscape: In order for p(β) = β2/2, the fluctuations
of logZn(β) must be relatively small so that the Jensen gap in (1.2) is o(1). This behavior
arises when the Gaussian deviations of βHn(σ ) are washed out by the entropy of Pn, creat-
ing a more or less flat landscape. On the other hand, if p(β) < β2/2, then these deviations
will have overcome the entropy of Pn, producing large peaks and valleys where βHn(σ ) is
exceptionally positive or negative. From a physical perspective this latter scenario is more in-
teresting, as these peaks can account for an exponentially vanishing fraction of the state space
even as their union accounts for a nonvanishing fraction of the mass of μ

β
n . The primary goal

of this paper is to give a sufficient condition for when (in a sense Theorem 1.3 makes precise)
μ

β
n places all of its mass on this union of peaks.
Suppose that p(·) is differentiable at β ≥ 0. Using Gaussian integration by parts, it is not

difficult to show (as we do in Corollary 3.10) that

(1.3) lim
n→∞

E〈R1,2〉 = 1 −
p′(β)

β
.

This identity has been observed before (e.g., see [3, 27, 47, 61], [19], Lemma 7.1, and [24],
Theorem 6.1). For this reason the condition in which we are interested is p′(β) < β . To
improve upon (1.3), a first step is to show that if E〈R1,2〉 is bounded away from zero, then
the random variable 〈R1,2〉 is itself stochastically bounded away from zero. This is the content
of Theorem 1.5. The more substantial contribution of this paper, however, is to bootstrap this
result to a proof of Theorem 1.4 which roughly says that 〈R1,2〉 is stochastically bounded
away from 0 even conditional on σ 1.

It follows from Corollary 3.10 that p′(β) < β implies p(β) < β2/2, but it is natural to
ask whether the two conditions are equivalent. This equivalence is true for spin glasses [47,
61] and is believed to be true for directed polymers [24], Conjecture 6.1. But at the level of
generality considered in this paper, we are not aware of any conjecture. In any case, for the
examples we consider in Section 1.5, both conditions will be true for sufficiently large β .

1.4. Results. Our main result is Theorem 1.3, stated below. It says that at low tempera-
tures one can find a finite number of (random) states such that almost any sample from the
Gibbs measure will have positive overlap with at least one of them. To state this precisely, let
us define the sets

B(σ, δ) :=
{
σ ′ ∈ �n : R

(
σ,σ ′) ≥ δ

}
, σ ∈ �n, δ > 0.(1.4)

In terms of the metric ρ defined in (1.1), this is just the ball of radius 1− δ centered at σ . Typ-
ically, such balls have vanishingly small size under Pn as n → ∞ which should be contrasted
with the following behavior of the Gibbs measure.

THEOREM 1.3. Assume (A1)–(A4). If β ≥ 0 is a point of differentiability for p(·), and

p′(β) < β , then for every ε > 0, there exist integers k = k(β, ε) and n0 = n0(β, ε) and a
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number δ = δ(β, ε) > 0 such that the following is true for all n ≥ n0. With P-probability at

least 1 − ε, there exist σ 1, . . . , σ k ∈ �n such that

μβ
n

(
k⋃

j=1

B
(
σ j , δ

)
)

≥ 1 − ε.

It is worth noting that in some cases, such as the directed polymer model defined in Sec-
tion 1.5.2, it is possible (although unproven) that k can be taken equal to 1 if δ is chosen
sufficiently small. For other models, however, such as polymers on trees or the Random En-
ergy Model discussed in Section 1.6, k will necessarily diverge as ε → 0.

As stated below, we will derive Theorem 1.3 as a corollary of Theorem 1.4. In fact, The-
orem 1.3 is actually equivalent to Theorem 1.4, although the latter has a less transparent
statement which is why we have stated Theorem 1.3 as our main result.

Theorem 1.4 concerns the following function on �n. For given σ 1 ∈ �n, we will write the
conditional expectation of R1,2 as

(1.5) R
(
σ 1) :=

〈
R1,2|σ 1〉 =

1

n

∞∑

i=1

ϕi,n

(
σ 1)〈ϕi,n

(
σ 2)〉.

(Note that the expectation 〈·|σ 1〉 can be exchanged with the sum because of Fubini’s theorem,
in light of (A2).) Given δ > 0, we consider the set

(1.6) An,δ :=
{
σ ∈ �n : R(σ ) ≤ δ

}
.

With this notation the quantity 〈1An,δ 〉 is the probability that a state sampled from μ
β
n has

expected overlap at most δ with an independent sample from μ
β
n . Theorem 1.4 says that, at

low temperatures and for small δ, this probability is typically small.

THEOREM 1.4. Assume (A1)–(A4). If β ≥ 0 is a point of differentiability for p(·), and

p′(β) < β , then for every ε > 0, there exists δ = δ(β, ε) > 0 sufficiently small that

(1.7) lim sup
n→∞

E〈1An,δ 〉 ≤ ε.

To prove Theorem 1.4, we first have to prove a weaker theorem stated below. This result
considers the following event in the σ -algebra F :

Bn,δ :=
{
〈R1,2〉 ≤ δ

}
,

and shows that its probability is small at low temperature.

THEOREM 1.5. Assume (A1)–(A4). If β ≥ 0 is a point of differentiability for p(·), and

p′(β) < β , then for every ε > 0, there exists δ = δ(β, ε) > 0 sufficiently small such that

(1.8) lim sup
n→∞

P(Bn,δ) ≤ ε.

Theorem 1.5 is proved in Section 4, Theorem 1.4 in Section 5 and the equivalence of
Theorems 1.3 and 1.4 in Section 6. In Section 3 we provide some general facts that are needed
in the main arguments. A detailed sketch of the proof technique is given in Section 2. We will
often simplify notation by writing Aδ and Bδ , where the dependence on n is understood and
will not be a source of confusion.
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1.5. Applications. For many applications it would suffice to consider �n which is finite
for every n. Other applications, however, such as spherical spin glasses or directed polymers
with a reference walk of unbounded support, require �n to be infinite. It is for this reason that
we have stated the setting and results in the generality seen above. Now, we discuss specific
models of interest.

1.5.1. Spin glasses. Let �n = {±1}n (Ising case) or �n = {σ ∈R
n : ‖σ‖2 =

√
n} (spher-

ical case), and take Pn to be uniform measure on �n. In the mean-field models the Hamilto-
nian is of the form

(1.9) Hn(σ ) =
∑

p≥2

βp

n(p−1)/2

n∑

i1,...,ip=1

gi1,...,ipσi1 · · ·σip .

We will assume

(1.10)
∑

p≥2

β2
p(1 + ε)p < ∞ for some ε > 0,

which is more restrictive than what we require but standard in the literature. Standard ap-
plications of Gaussian concentration show that |Fn(β) − EFn(β)| → 0 almost surely and in
L1. Assumption (A1) then follows from the convergence of EFn(β) → p(β), where p(β) is
given by a formula depending on the model. In the Ising case there is the celebrated Parisi
formula [53, 54], proved by Talagrand [62] for even-spin models, building on the seminal
work of Guerra [40]. It was later extended by Panchenko [51] to general mixed p-spins. For
the spherical model there is a simpler and elegant formula predicted by Crisanti and Sommers
[32] and proved by Talagrand [63] and Chen [22].

To accommodate assumptions (A2) and (A3), one should assume the function ξ(q) :=∑
p≥2 β2

pqp satisfies

ξ(1) = 1 and ξ(q) ≥ 0 for all q ∈ [−1,1].(1.11)

This is because

Rj,k = ξ(Rj,k) where Rj,k :=
1

n

n∑

i=1

σ
j
i σ k

i ∈ [−1,1].

Note that the second assumption in (1.11) is automatic if βp = 0 for all odd p. When ξ(q) =
q2, (1.9) is the classical Sherrington–Kirkpatrick (SK) model [57], if �n = {±1}n, or the
spherical SK model [44] if �n = {σ ∈R

n : ‖σ‖2 =
√

n}.
In the spin-glass literature, R1,2 is the usual replica overlap that is studied as an order

parameter for the system [59]. Roughly speaking, R1,2 converges to 0 when p(β) = β2/2, but
converges in law to a nontrivial distribution when p(β) < β2/2. In the latter case, the model
exhibits what is known as replica symmetry breaking (RSB). If the limiting distribution of
R1,2, called the Parisi measure, contains k + 1 distinct atoms (one of which must be 0 [5]),
then ξ is said to be kRSB. For instance, spherical pure p-spin models are 1RSB for large
β [52], and it was recently shown that some spherical mixed spin models are 2RSB at zero
temperature [9]. In the Ising case, however, the Parisi measure is expected to have an infinite
support throughout the low-temperature phase (with 0 in the support but not as an atom, (see
[17], page 15), a behavior referred to as full-RSB (FRSB). Proving such a statement is a
problem of great interest and has been solved at zero temperature [7]. For spherical models
the situation is somewhat clearer; in [23], sufficient conditions were given for both 1RSB and
FRSB, again at zero temperature.

The simplest type of symmetry breaking, 1RSB, admits the following heuristic picture.
The state space �n is (from the perspective of μ

β
n ) separated into many orthogonal parts
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called “pure states,” within which the intracluster overlap concentrates on some positive value
q > 0. In the 2RSB picture the pure states are not necessarily orthogonal but rather grouped
together into larger clusters which are themselves orthogonal. In this case the overlap could
be q (same pure state), q ′ ∈ (0, q) (same cluster but different pure state) or 0 (different clus-
ters). The complexity increases in the same fashion for general kRSB. In FRSB the clusters
become infinitely nested, yielding a continuous spectrum of possible overlaps while main-
taining “ultrametric” structure [49]. In any case, though, there should be asymptotically no
part of the state space which is orthogonal to everything; that is, the pure states exhaust μ

β
n .

Absent the intricate hierarchical picture described above, the following rephrasing of The-
orem 1.3 confirms this idea:

THEOREM 1.6. Assume (1.10) and (1.11) and that β ≥ 0 is a point of differentiability

for p(·) such that p′(β) < β . Then, for every ε > 0, there exist integers k = k(β, ε) and

n0 = n0(β, ε) and a number δ = δ(β, ε) > 0 such that the following is true for all n ≥ n0.
With P-probability at least 1 − ε, there exist σ 1, . . . , σ k ∈ �n such that

μβ
n

(
k⋃

j=1

{
σ k+1 ∈ �n : |Rj,k+1| ≥ δ

}
)

≥ 1 − ε.

The proof of the above theorem follows simply from Theorem 1.3 and the observation that
by (1.10), ξ is continuous at 0.

Under strong assumptions on ξ and the overlap distribution, namely, the (extended)
Ghirlanda–Guerra identities, much more precise results were proved by Talagrand [64], The-
orem 2.4, and later Jagannath [42], Corollary 2.8. For spherical pure spin models, similar
results were proved by Subag [58], Theorem 1. An advantage of our approach, beyond its
generality, is that our assumptions on ξ are elementary to check and fairly loose (they include
all even spin models), and the temperature condition p′(β) < β is explicit and sharp.

While the literature on replica overlaps in spin glasses is vast, the reader will find much
information in [45, 50, 65, 66]; see also [43] and references therein.

1.5.2. Directed polymers. Given a positive integer d , let �n be the set of all maps from
{0,1, . . . , n} into Z

d , and let Pn be the law, projected onto �n, of a homogeneous random
walk on Z

d starting at the origin. That is, there is some probability mass function K on Z
d

such that

Pn

(
σ(0) = 0

)
= 1,(1.12a)

Pn

(
σ(i) = y | σ(i − 1) = x

)
= K(y − x), 1 ≤ i ≤ n.(1.12b)

Let (g(i, x) : i ≥ 1, x ∈ Z
d) be i.i.d. standard normal random variables. The Hamiltonian for

the model of directed polymers in Gaussian environment is then given by

Hn(σ ) =
n∑

i=1

g
(
i, σ (i)

)
=

n∑

i=1

∑

x∈Zd

g(i, x)1{σ(i)=x}.

In this case the overlap between two paths is the fraction of time they intersect,

(1.13) R1,2 =
1

n

n∑

i=1

1{σ 1(i)=σ 2(i)}.

The assumption (A1) holds for any K [14], Section 2, although, typically, Pn is taken to
be standard simple random walk; all the references below refer to this case. Alternatively,
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one can consider point-to-point polymer measures, meaning the endpoint of the polymer is
fixed. This case is studied in [39, 55] and accommodates the same structure as above, up to
changing the reference measure Pn.

Notice that the identity (1.3) immediately implies limn→∞E〈R1,2〉 > 0 when p′(β) < β .
Theorem 1.5 goes a step further, showing that the random variable 〈R1,2〉 is itself stochasti-
cally bounded away from 0. For a certain class of bounded random environments, a quantita-
tive version of Theorem 1.5 was proved by Chatterjee [21], but Theorem 1.4 is the first of its
kind. Unlike some other conjectured polymer properties, the statement (1.7) has not been ver-
ified for the so-called exactly solvable models in d = 1 [13, 31, 46, 56, 67]. For heavy-tailed
environments a stronger notion of localization is considered in [8, 68] and also discussed in
[16, 37]. Historically, studying pathwise localization has found somewhat greater success in
the context of continuous space-time polymer models [25, 26, 29, 30].

For polymers in Gaussian environment, it is known (see [24], Proposition 2.1(iii)) that p′ is
bounded from above by a constant, and so E〈R1,2〉 → 1 as β → ∞ by (1.3). (While convexity
guarantees p(·) is differentiable almost everywhere, it is an open problem to show that p(·)
is everywhere differentiable, let alone analytic away from the critical value separating the
high- and low-temperature phases.) In this sense the polymer measure becomes completely
localized near the maximizer of Hn(·) as β → ∞. A main motivation for the present study
was to formulate a version of “complete localization” for fixed β in the low-temperature
regime.

In [15, 69], complete localization was phrased in terms of the endpoint distribution: the
law of σ(n) under μ

β
n . Loosely speaking, what was shown is that if p(β) < β2/2, then with

probability at least 1 − ε, one can find sufficiently many (independent of n) random vertices
x1, . . . , xk in Z

d so that

(1.14) μβ
n

({
σ : σ(n) ∈ {x1, . . . , xk}

})
≥ 1 − ε.

This behavior is called “asymptotic pure atomicity,” referring to the fact that even as n grows
large, the endpoint distribution remains concentrated on an O(1) number of sites (rather than
diffuse polynomially as in simple random walk). This is analogous to the results of this paper,
except that the endpoint statistic has been used to reduce the state space to Z

d . The pathwise
localization in Theorem 1.3 describes a more global phenomenon occurring in the original
state space �n. Rephrased below, it says that up to arbitrarily small probabilities, the Gibbs
measure is concentrated on paths intersecting one of a few distinguished paths a positive
fraction of the time.

THEOREM 1.7. Assume (1.12) and that β ≥ 0 is a point of differentiability for p(·) such

that p′(β) < β . Then, for every ε > 0, there exist integers k = k(β, ε) and n0 = n0(β, ε) and

a number δ = δ(β, ε) > 0 such that the following is true for all n ≥ n0. With P-probability at

least 1 − ε, there exist paths σ 1, . . . , σ k ∈ �n such that

μβ
n

(
k⋃

j=1

{
σ k+1 ∈ �n :

1

n

n∑

i=1

1{σ k+1(i)=σ j (i)} ≥ δ

})
≥ 1 − ε.

In Section 7, we demonstrate that path localization does not occur in the atomic sense
(1.14). That is, any bounded number of paths will have a total mass under μ

β
n that decays to

0 as n → ∞. For this reason the definitions from [15, 69] of complete localization for the
endpoint are inadequate for path localization, necessitating a statement in terms of overlap.
This distinguishes the lattice polymer model from its mean-field counterpart on regular trees
which is simply the statistical mechanical version of branching random walk [24, 36]. For
those models the endpoint distribution on the leaves of the tree is obviously equivalent to the
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Gibbs measure because each leaf is the termination point of a unique path. Moreover, the
results of [15] can be interpreted equally well (and improved upon) in that setting (see [12,
41]), and so we will not elaborate on the fact that polymers on trees also fit into the framework
of this paper.

1.6. Other Gaussian fields. Here, we mention several other models to which our results
apply but for which they are not new. Indeed, each model below is known to exhibit Poisson–
Dirichlet statistics for the masses assigned by μ

β
n to the “peaks” discussed in the motivating

Section 1.3. In particular, asymptotically no mass is given to states having vanishing expected
overlap with an independent sample:

• Derrida’s Random Energy Model (REM) [33, 34] is set on the hypercube �n = {±1}n
with uniform measure and has the simplest possible covariance structure: Rj,k = δj,k .
With βc =

√
2 log 2, the following formula holds ([18], Theorem 9.1.2):

p(β) =
{
β2/2, β ≤ βc,

β2
c /2 + (β − βc)βc, β > βc.

See also [60], Chapter 1, in particular, Theorem 1.2.1:
• The generalized random energy models have nontrivial covariance structure [35] and can

be tuned to have an arbitrary number of phase transitions. The condition p′(β) < β is
satisfied as soon as the first phase transition occurs; see also [18], Chapter 10.

• Finally, in [4] Arguin and Zindy studied a discretization of a log-correlated Gaussian field
from [10, 11] which has the same free energy as the REM. Their particular model had the
technical complication of correlations not following a tree structure, unlike, for instance,
the discrete Gaussian free field.

1.7. Open problems. There are a number of open questions which, if solved, would en-
hance the theory presented in this paper. A partial list is the following:

1. Understand conditions under which the number of localizing regions is exactly one. As
mentioned before, this requires more conditions than (A1)–(A4), because it does not hold for
some models (such as REM), whereas it is supposed to hold for many others.

2. A close cousin of the above problem is to understand conditions under which R1,2 is
itself guaranteed to be away from zero with high probability. This would have important im-
plications about the FRSB picture in mean-field spin glasses and path localization in directed
polymers.

3. Obtain a good quantitative bound on δ in terms of ε in Theorem 1.4. Our proof gives a
very poor bound, since it is based on an iterative argument similar to those used in extremal
combinatorics (see the proof sketch in Section 2.2).

4. For directed polymers, prove a stronger theorem about path localization that says a
typical path localizes within a narrow neighborhood of one or more fixed paths, rather than
saying that a typical path has nonzero intersection with one or more fixed paths.

5. Prove more general versions of Theorems 1.3, 1.4 and 1.5 that do not require the condi-
tion (A3) guaranteeing asymptotically nonnegative correlations. This would allow the theory
to include other models of interest, such as the Edwards–Anderson model [38] of lattice spin
glasses. It is important to note, however, that the hypotheses and conclusions of these more
general theorems may require adjustment in order to be physically meaningful.

6. For any finite β , prove estimates that stochastically bound 〈R1,2〉 away from 1. More
ambitiously, determine conditions which guarantee that 〈R1,2〉 concentrates around its ex-
pectation as n → ∞.
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7. Even when the spin glass correlation function ξ takes negative values (recall that
ξ(R1,2) = R1,2), it is possible for the Gibbs measure to concentrate on a set such that
R1,2 ≥ 0. This is Talagrand’s positivity principle and is known to hold when the extended
Ghirlanda–Guerra identities are satisfied; see [66], Section 12.3, or [50], Section 3.3. Per-
haps the methods of this paper can be adapted to use this input rather than the condition
ξ ≥ 0.

2. Proof sketches. The proofs of Theorems 1.4 and 1.5 are long, but they contain ideas
that may be useful for other problems. Therefore, we have included this proof-sketch section
which, while still rather lengthy, distills the arguments to their central ideas. It introduces
some of the notations that will be used later in the manuscript; however, these notations will
be reintroduced in the later sections, so it is safe to skip directly to Section 3 should the reader
decide to do so.

2.1. Proof sketch of Theorem 1.5. For simplicity, let us assume that the representation
(A4) consists of only finitely many terms,

Hn(σ ) =
N∑

i=1

giϕi(σ ).

Following the argument described below, the general case is handled by some routine calcu-
lations (made in Section 3.1) to check that sending N → ∞ poses no issues.

Given (1.3), it is clear that p′(β) < β would imply (1.8) if we knew that 〈R1,2〉 concen-
trates around its mean as n → ∞. Unfortunately, this may not be true in general. Therefore,
as a way of artificially imposing concentration, we let the environment evolve as an Ornstein–
Uhlenbeck (OU) flow and then, eventually, take an average over a short time interval. For-
mally, this means we consider

(2.1) gt := e−t g + e−t W
(
e2t −1

)
, t ≥ 0,

where W (·) = (Wi(·))Ni=1 are independent Brownian motions that are also independent of
g = g0. Recall the OU generator L := � − x · ∇ and the fact that ELf (g) = 0 for any f

with suitable regularity. By expanding f in an orthonormal basis of eigenfunctions of L and
expressing both Lf (gt ) and E‖∇f (g)‖2 using the coefficients from this expansion, one can
show that

(2.2) Var
(

1

t

∫ t

0
Lf (gs)ds

)
≤

2

t
E
∥∥∇f (g)

∥∥2
.

This inequality, established in Lemma 4.3, provides the proof’s essential estimate when ap-
plied to f (g) = Fn(β). For this f , it is easy to verify that E‖∇f (g)‖2 = O(1/n), and

Lf (gt ) = β2 − β2〈R1,2〉t − β
∂

∂β
Fn,t (β),

where 〈R1,2〉t and Fn,t (β) are the expected overlap and free energy, respectively, in the en-
vironment gt . Moreover, from standard methods (worked out in Section 3.2) it follows that
∂
∂β

Fn,t (β) ≈ p′(β) with high probability. Combining these observations about f with the
general variance estimate (2.2), we arrive at

(2.3)
1

T/n

∫ T/n

0
〈R1,2〉t dt = 1 −

p′(β)

β
+ O(1/T ).

In other words, averaging 〈R1,2〉t over a long enough interval, but whose size is still O(1/n),
results in a value close to the expectation suggested by (1.3). We choose T = T (ε) large
enough depending on ε which determines the level of precision required in (2.3).
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Next comes the most crucial step in the proof, where we show that if 〈R1,2〉 = 〈R1,2〉0 ≤ δ

for some small δ, then, for each t ∈ [0, T (ε)/n], the quantity 〈R1,2〉t is also small with high
probability. If p′(β) < β , this leads to a contradiction to (2.3) if δ is small enough. To avoid
this contradiction, the probability of 〈R1,2〉 ≤ δ happening in the first place must be small
which is what we want to show.

To demonstrate our crucial claim, we consider any t = T/n, where T ≤ T (ε) and n is
large. First, note that

(2.4) 〈R1,2〉t =
〈R1,2 eβAt+βBt 〉

〈eβAt+βBt 〉
,

where Bt comes from the Brownian part of (2.1) and At comes from the initial environment:

At :=
(
e−t −1

)(
Hn

(
σ 1) + Hn

(
σ 2)),

Bt := e−t
∑

i

Wi

(
e2t −1

)(
ϕi

(
σ 1) + ϕi

(
σ 2)).

Since t = T/n � 1, we have

At ≈ −
T

n

(
Hn

(
σ 1) + Hn

(
σ 2)).

By standard arguments (again presented in Section 3.2), Hn(σ
1)/n and Hn(σ

2)/n are both
close to p′(β) with high probability under the Gibbs measure. Thus, for fixed t , the random
variable At behaves like a constant inside 〈·〉. Consequently, we can reduce (2.4) to

(2.5) 〈R1,2〉t ≈
〈R1,2 eβBt 〉

〈eβBt 〉
.

Now, let hi := Wi(e2t −1)/
√

e2t −1 so that hi ∼ N (0,1). Again, since t = T/n � 1, we
have

Bt =
√

1 − e−2t
∑

i

hi

(
ϕi

(
σ 1) + ϕi

(
σ 2)) ≈

√
2T

n

∑

i

hi

(
ϕi

(
σ 1) + ϕi

(
σ 2)).

Thus, if Eh denotes expectation in h = (h1, . . . , hN ) only, then

Eh

〈
eβBt

〉
≈

〈
exp

(
β2T

n

∑

i

(
ϕi

(
σ 1) + ϕi

(
σ 2))2

)〉

(A2)= exp
(
2β2T (1 +R1,2)

)
.

In the event that 〈R1,2〉 is small, the assumption (A3) implies that R1,2 ≈ 0 with high proba-
bility under the Gibbs measure. Therefore, conditional on this event (which depends only on
g, not h), we have

Eh

〈
eβBt

〉
≈ e2β2T .

By a similar argument, we also have

Eh

〈
eβBt

〉2 ≈ Eh

〈
exp

(
β

√
2T

n

∑

i

hi

(
ϕi

(
σ 1) + ϕi

(
σ 2) + ϕi

(
σ 3) + ϕi

(
σ 4))

)〉

=
〈
exp

(
β2T

n

∑

i

(
ϕi

(
σ 1) + ϕi

(
σ 2) + ϕi

(
σ 3) + ϕi

(
σ 4))2

)〉
≈ e4β2T .
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In summary, if 〈R1,2〉 ≈ 0, then

Varh
〈
eβBt

〉
= Eh

〈
eβBt

〉2 −
(
Eh

〈
eβBt

〉)2 ≈ 0,

and thus, with high probability,

(2.6)
〈
eβBt

〉
≈ Eh

〈
eβBt

〉
≈ e2β2T .

By following exactly the same steps with 〈R1,2 eβBt 〉 instead of 〈eβBt 〉, we show that

(2.7)
〈
R1,2 eβBt

〉
≈ 〈R1,2〉 e2β2T .

Combining (2.5)–(2.7), we conclude that if 〈R1,2〉 ≈ 0, then 〈R1,2〉t ≈ 〈R1,2〉 ≈ 0.

2.2. Proof sketch of Theorem 1.4. We begin this proof sketch where the previous section
left off, namely, the observation that if the average overlap 〈R1,2〉 in environment g is small,
then Gibbs averages of the type in (2.6) and (2.7) are well concentrated. By the same type of
argument—see Lemmas 4.5(b) and (5.11)—we can say something more general: no matter
the size of 〈R1,2〉, these averages remain concentrated so long as they are restricted to the set
An,δ defined in (1.6), where conditional average overlap 〈R1,2 | σ 1〉 is small. That is, if H̃n is
an independent Hamiltonian (i.e., defined with h, an independent copy of g), then with high
probability,

(2.8)
〈
1An,δ e

β√
n
H̃n(σ )〉 ≈ Eh

〈
1An,δ e

β√
n
H̃n(σ )〉 (A2)= e

β2

2 〈1An,δ 〉.

In fact, the opposite is true off of the set An,δ . If 〈R1,2〉 is not too small relative to δ, then the

fluctuations of 〈1A
c
n,δ

e
β√
n
H̃n(σ )〉 due to h are �(1) as n → ∞. This is again an elementary

calculation; see (5.8)–(5.12).

On the other hand, a convenient consequence of Gaussianity is that Hn + 1√
n
H̃n

d=√
1 + 1

n
Hn. That is, an environment perturbation is equivalent in distribution to a temperature

perturbation. (In fact, this simple observation underlies the Aizenman–Contucci identities
[2], the predecessor of the Ghirlanda–Guerra identities.) Therefore, if we keep track of the
dependence on β by writing 〈·〉β , and abbreviate An,δ to Aδ , we have

(2.9) 〈1Aδ 〉β
√

1+ 1
n

d=
〈1Aδ e

β√
n
H̃n(σ )〉β

〈e
β√
n
H̃n(σ )〉β

.

By rewriting the denominator in a trivial way and using our observation (2.8), we see that,
with high probability,

(2.10)

〈1Aδ e
β√
n
H̃n(σ )〉β

〈e
β√
n
H̃n(σ )〉β

=
〈1Aδ e

β√
n
H̃n(σ )〉β

〈1Aδ e
β√
n
H̃n(σ )〉β + 〈1A

c
δ

e
β√
n
H̃n(σ )〉β

≈
e

β2

2 〈1Aδ 〉β

e
β2
2 〈1Aδ 〉β + 〈1A

c
δ

e
β√
n
H̃n(σ )〉β

.
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In the last expression above, the only term depending on h is the second summand in the
denominator. Therefore, Jensen’s inequality gives

(2.11)

Eh

[
e

β2

2 〈1Aδ 〉β

e
β2
2 〈1Aδ 〉β + 〈1A

c
δ

e
β√
n
H̃n(σ )〉β

]

>
e

β2

2 〈1Aδ 〉β

e
β2
2 〈1Aδ 〉β +Eh〈1A

c
δ

e
β√
n
H̃n(σ )〉β

=
e

β2

2 〈1Aδ 〉β

e
β2
2 〈1Aδ 〉β + e

β2
2 〈1A

c
δ
〉β

= 〈1Aδ 〉β .

A more careful analysis shows that the Jensen gap is large enough that we can replace the
lower bound by (1 + γ )〈1Aδ 〉β −C

√
δ, where γ and C are positive constants. One important

caveat is that this stronger lower bound is valid only when 〈R1,2〉 is not too small (so that the

fluctuations of 〈1A
c
δ

e
β√
n
H̃n(σ )〉β are order 1) which is why Theorem 1.5 is needed beforehand.

Reading (2.9)–(2.11) from start to end, we obtain

(2.12) E〈1Aδ 〉β
√

1+ 1
n

≥ (1 + γ )E〈1Aδ 〉β − C
√

δ.

While the above inequality is the most important step of the proof, a key shortcoming is
that the set Aδ is defined using 〈·〉β rather than 〈·〉

β
√

1+ 1
n

. Since we will want to apply the

inequality iteratively, we need to replace Aδ on the left-hand side by Aδ,1, where

Aδ,k :=
{
σ ∈ �n :

1

n

∑

i

ϕi(σ )〈ϕi〉
β
√

1+ k
n

}
, k = 0,1,2, . . . .

To make this replacement, we produce a complementary inequality, again using the equiva-
lence of environment/temperature perturbations. For simplicity, let us assume R1,2 ≥ 0 which
is essentially realized by (A3) for large n. Observe that

〈
R1,2 | σ 1〉

β
√

1+ 1
n

d=
〈R1,2 e

β√
n
H̃n(σ 2) | σ 1〉β

〈e
β√
n
H̃n(σ )〉β

≤
√〈
R1,2 | σ 1

〉
β

√
〈
e

2β√
n
H̃n(σ )〉

β

〈
e

−β√
n
H̃n(σ )〉

β︸ ︷︷ ︸
X

,

where we have applied Cauchy–Schwarz (and then R2
1,2 ≤ R1,2 ≤ 1) and Jensen’s inequality

(using the convexity of x �→ x−1). When σ 1 ∈ Aδ = Aδ,0, the final expression is at most
X

√
δ, and so the inequality implies Aδ,0 ⊂ AX

√
δ,1. Now, the random variable X has mo-

ments of all orders (admitting simple upper bounds), and so it can be essentially regarded as
a large constant. In particular, when δ is small, we will have X ≤ δ−1/4 with high probability,
in which case Aδ,0 ⊂ Aδ1/4,1. Combining these ideas with (2.12), we show

E〈1A
δ1/4,1

〉
β
√

1+ 1
n

≥ (1 + γ )E〈1Aδ 〉β − C
√

δ.

More generally, for any integer k ≥ 1,

(2.13) E〈1A
δ1/4,k

〉
β
√

1+ k
n

≥ (1 + γ )E〈1Aδ,k−1〉β
√

1+ k−1
n

− C
√

δ.
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This inequality can now be iterated, with δ being replaced by δ1/4, then δ1/16, and so on, as
the expectation on the left is inserted on the right in the next iteration.

Since the left-hand side of (2.13) is always at most 1, we clearly obtain a contradiction
if E〈1Aδ,0〉β is larger than x, where x is the solution to x = (1 + γ )x − C

√
δ. This would

complete the proof of Theorem 1.4 if not for the subtlety that γ actually depends on k in a
nontrivial way. Nevertheless, (2.13) can still be used to derive a contradiction of the same
spirit unless E〈1A

δ1/4k
,k
〉 is small for some k ≤ K , where K is large and tends to infinity

as ε → 0, but, crucially, does not depend on n. This approach is reminiscent of tower-type
arguments in extremal combinatorics.

Replacing δ by δ4k
, we can then say E〈1Aδ,k

〉 is small. Finally, to deduce the smallness
of E〈1Aδ,0〉 from the smallness of E〈1Aδ,k

〉, we make use of standard arguments showing
that if an event is rare at inverse temperature β , then it remains rare at inverse temperature
β + O(1/n).

2.3. Proof sketch of Theorem 1.3. To deduce Theorem 1.3 from Theorem 1.4, simply let
σ 1, . . . , σ k, σ k+1 be i.i.d. draws from the Gibbs measure. Then, by the law of large numbers,
when k is large,

1

k

k∑

j=1

Rj,k+1 ≈ R
(
σ k+1)

with high probability. But by Theorem 1.4, we know that, with high probability, R(σ k+1)

is not close to zero. Therefore, with high probability, there must exist 1 ≤ j ≤ k such that
Rj,k+1 is not close to zero.

3. General preliminaries. In this preliminary section we record several facts needed in
the proofs of Theorems 1.4 and 1.5. These preparatory results are mostly elementary.

3.1. The Gibbs measure and partition function. In order for our results to apply to a
broad collection of models, we have allowed the state space �n to be completely general and
the Hamiltonian Hn to consist of countably infinite summands. We begin by checking that
these assumptions pose no issues to computation. So for the remainder of Section 3.1, we fix
the value of n.

Let 〈·〉N denote expectation with respect to the Gibbs measure when the Hamiltonian is
replaced by the finite sum Hn,N :=

∑N
i=1 giϕi . That is,

(3.1)
〈
f (σ)

〉
N =

En(f (σ ) eβHn,N (σ ))

En(eβHn,N (σ ))
.

So that we can pass from 〈·〉N to 〈·〉, we begin with the following lemma:

LEMMA 3.1. For all β ∈ R and any f ∈ L2(�n), the following limits hold almost surely

and in Lα for any α ∈ [1,∞):

lim
N→∞

〈
f (σ)

〉
N =

〈
f (σ)

〉
< ∞,(3.2a)

lim
N→∞

〈
Hn,N (σ )

〉
N =

〈
Hn(σ )

〉
< ∞.(3.2b)

PROOF. We organize the proof into a sequence of claims.

CLAIM 3.2. With P-probability equal to 1,

lim
N→∞

Hn,N (σ ) = Hn(σ ) for Pn-a.e. σ ∈ �n.
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PROOF. Observe that for fixed σ ∈ �n, the sequence (Hn,N (σ ))N≥0 is a martingale with
respect to P. Since

sup
N≥0

E
[
Hn,N (σ )2] = sup

N≥0

N∑

i=1

ϕi(σ )2 (A2), (A4)= n,

the martingale convergence theorem guarantees that Hn,N (σ ) converges P-almost surely as
N → ∞ to a limit we call Hn(σ ). Now, Fubini’s theorem proves the claim,

EEn(1{Hn,N (σ )→Hn(σ )}) = En

(
E[1{Hn,N (σ )→Hn(σ )}]

)
= En(1) = 1. �

CLAIM 3.3. There exist nonnegative random variables (M+(σ ))σ∈�n and (M−(σ ))σ∈�n

such that

(3.3) ±Hn,N (σ ) ≤ M±(σ ) for all N ≥ 0, σ ∈ �n,

and

(3.4) EEn

(
eβM±(σ )) < ∞ for all β ≥ 0.

PROOF. We simply take

M±(σ ) := sup
N≥0

±Hn,N (σ ) ≥ ±Hn,0(σ ) = 0,

so that (3.3) is satisfied by definition. Since M+ d= M−, we need only check (3.4) for M+.
Observe that, for any β ≥ 0, (eβHn,N (σ ))N≥0 is a submartingale. By Doob’s inequality, for
any λ > 0 and any integer m ≥ 0,

P

(
max

0≤N≤m
eβHn,N (σ ) ≥ λ

)
= P

(
max

0≤N≤m
e2βHn,N (σ ) ≥ λ2

)

≤ λ−2
E
(
e2βHn,m(σ ))

= λ−2 e2β2 ∑m
i=1 ϕ2

i (σ )
(A2)
≤ λ−2 e2β2n .

Therefore, for any 0 < ε < λ,

P
(
eβM+(σ ) ≥ λ

)
≤ P

(
eβM+(σ ) ≥ λ −

ε

2

)

≤ lim
m→∞

P

(
max

0≤N≤m
eβHn,N (σ ) ≥ λ − ε

)
≤ (λ − ε)−2 e2β2n

which implies

E
(
eβM+(σ )) =

∫ ∞

0
P
(
eβM+(σ ) ≥ λ

)
dλ

≤ 1 + ε + e2β2n
∫ ∞

1+ε
(λ − ε)−2 dλ < ∞.

Since Tonelli’s theorem gives EEn(eβM+(σ )) = En(E eβM+(σ )), (3.4) follows from the above
display. �

CLAIM 3.4. For any f ∈ L2(�n) and any continuous function φ : R → R such that

|φ(x)| ≤ a eb|x| for all x ∈ R, for some a, b ≥ 0, we have

(3.5) lim
N→∞

En

[
f (σ)φ

(
Hn,N (σ )

)]
= En

[
f (σ)φ

(
Hn(σ )

)]
a.s.
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PROOF. By Claim 3.2 and the continuity of φ, we almost surely have that φ(Hn,N (σ )) →
φ(Hn(σ )) for Pn-a.e. σ ∈ �n, as N → ∞. And by hypothesis,

(3.6)
∣∣φ

(
Hn,N (σ )

)∣∣ ≤ a
(
ebM+(σ ) + ebM−(σ )).

Since

En

[∣∣f (σ)
∣∣(ebM+(σ ) + ebM−(σ ))] ≤

√
En

[
f (σ)2

]
En

[(
ebM+(σ ) + ebM−(σ )

)2]

≤
√

En

[
f (σ)2

]
En

[
2
(
e2bM+(σ ) + e2bM−(σ )

)]

and Claim 3.3 implies that almost surely En(e2bM±(σ )) < ∞, (3.5) now follows from domi-
nated convergence (with respect to Pn). �

CLAIM 3.5. For any f ∈ L2(�n) and any continuous function φ : R → R such that

|φ(x)| ≤ a eb|x| for all x ∈ R, for some a, b ≥ 0, we have

(3.7) lim
N→∞

〈
f (σ)φ

(
Hn,N (σ )

)〉
N =

〈
f (σ)φ

(
Hn(σ )

)〉
a.s. and in Lα, α ∈ [1,∞).

PROOF. Recall that

〈
f (σ)φ

(
Hn,N (σ )

)〉
N =

En[f (σ)φ(Hn,N (σ )) eβHn,N (σ )]
En(eβHn,N (σ ))

,

〈
f (σ)φ

(
Hn(σ )

)〉
=

En[f (σ)φ(Hn(σ )) eβHn(σ )]
En(eβHn(σ ))

.

Since |φ(x)| eβx ≤ a e(b+β)|x|, the almost sure part of (3.7) is immediate from Claim 3.4.
The convergence in Lα is then a consequence of dominated convergence (with respect to P).
Indeed, by Cauchy–Schwarz and Jensen’s inequality, we have the majorization

∣∣〈f (σ)φ
(
Hn,N (σ )

)〉
N

∣∣ =
|En(f (σ )φ(Hn,N (σ )) eβHn,N (σ ))|

En(eβHn,N (σ ))

≤

√
En(f (σ )2)En(φ(Hn,N (σ ))2 e2βHn,N (σ ))

En(e−βM−(σ ))

(3.6)
≤

√
En

(
f (σ)2

)
En

[
2a2

(
e2(b+β)M+(σ ) + e2(b+β)M−(σ )

)]
En

(
eβM−(σ )),

where the final expression has moments of all orders by (3.4). �

We now complete the proof of Lemma 3.1 by taking φ ≡ 1 for (3.2a) and f ≡ 1, φ(x) = x

for (3.2b). �

REMARK 3.6. The essential feature of the above proof was checking in Claim 3.3 that
(A2) is enough to guarantee the first equality below:

(3.8) E
(
eβ

∑∞
i=1 giϕi

)
= lim

N→∞
E
(
eβ

∑N
i=1 giϕi

)
= lim

N→∞
e

β2

2
∑N

i=1 ϕ2
i

(A2)= e
β2

2 n .

We will frequently use the above identity, an easy consequence of which is the following:

LEMMA 3.7. For any β ∈R, we have

(3.9) EZn(β) = e
β2

2 n
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as well as

(3.10) E
[
Zn(β)−1] ≤ e

β2

2 n .

PROOF. By exchanging the order of expectation in the identityEZn(β) = E[En(eβHn(σ ))]
(which we are permitted to do by Tonelli’s theorem) and applying (3.8), we obtain (3.9). For
(3.10) we apply Jensen’s inequality to obtain

Zn(β)−1 =
[
En

(
eβHn(σ ))]−1 ≤ En

(
e−βHn(σ )),

then take expectation E(·) of both sides and again exchange the order of expectation. �

Let us also record two consequences of Lemma 3.1 that will be needed later in the paper.

COROLLARY 3.8. For any β ∈ R, the following limits hold almost surely and in Lα for

any α ∈ [1,∞):

(3.11) lim
N→∞

N∑

i=1

〈
ϕ2

i

〉
N = n and lim

N→∞

N∑

i=1

〈ϕi〉2
N =

∞∑

i=1

〈ϕi〉2.

PROOF. First, we argue the almost sure statements. The Lα statements will then follow
from bounded convergence, since (A2) gives the uniform bound

0 ≤
N∑

i=1

〈ϕi〉2
N ≤

N∑

i=1

〈
ϕ2

i

〉
N ≤ n for every N.

So we fix the disorder g. By Lemma 3.1 it is almost surely the case that for every i ≥ 1,
〈ϕi〉N → 〈ϕi〉 and 〈ϕ2

i 〉N → 〈ϕ2
i 〉 as N → ∞. We also know

∑∞
i=1 ϕ2

i = n. In particular,
given ε > 0, we can choose M so large that

n − ε ≤
M∑

i=1

〈
ϕ2

i

〉
≤ n ⇒

∞∑

i=M+1

〈
ϕ2

i

〉
≤ ε.

Given M , there is N0 such that for all N ≥ N0,
∣∣∣∣∣

M∑

i=1

(〈
ϕ2

i

〉
N −

〈
ϕ2

i

〉)
∣∣∣∣∣ ≤ ε and

∣∣∣∣∣

M∑

i=1

(
〈ϕi〉2

N − 〈ϕi〉2)
∣∣∣∣∣ ≤ ε.

In particular, for all N ≥ N0 ∨ M ,

n − 2ε ≤
M∑

i=1

〈
ϕ2

i

〉
N ≤ n ⇒ n − 2ε ≤

N∑

i=1

〈
ϕ2

i

〉
N ≤ n,

and also
∣∣∣∣∣

N∑

i=1

〈ϕi〉2
N −

∞∑

i=1

〈ϕi〉2

∣∣∣∣∣ ≤
∣∣∣∣∣

M∑

i=1

(
〈ϕi〉2

N − 〈ϕi〉2)
∣∣∣∣∣ +

∞∑

i=M+1

(
〈ϕi〉2

N + 〈ϕi〉2)

≤
∣∣∣∣∣

M∑

i=1

(
〈ϕi〉2

N − 〈ϕi〉2)
∣∣∣∣∣ +

∞∑

i=M+1

(〈
ϕ2

i

〉
N +

〈
ϕ2

i

〉)
≤ 4ε.

�
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3.2. Derivative of free energy. This section records some important facts regarding
convergence of the free energy’s derivative. As Lemmas 3.9 and 3.11 are standard, we
will omit their proofs. Full arguments can be found in the arXiv version of this paper,
arXiv:1906.05502, or in the references mentioned below.

By Lemma 3.1 it is almost surely the case that the random variable Hn(σ ) has exponential
moments of all orders with respect to Pn. Standard calculations then show that the free energy
Fn(β) = 1

n
logZn(β) satisfies

(3.12) F ′
n(β) =

〈Hn(σ )〉
n

and F ′′
n (β) =

〈Hn(σ )2〉 − 〈Hn(σ )〉2

n
a.s.

Recall from (A1) that Fn(β) → p(β). Since Fn(·) is convex for every n, p(·) is necessar-
ily convex. This assumption implies the following lemma which is a general fact about the
convergence of convex functions:

LEMMA 3.9. If p(·) is differentiable at β and βn = β + δ(n) with δ(n) → 0 as n → ∞,
then

lim
n→∞

F ′
n(βn) = p′(β) a.s. and in L1.

COROLLARY 3.10. For every β ≥ 0 at which p(·) is differentiable,

(3.13) p′(β) = β
(
1 − lim

n→∞
E〈R1,2〉

)
.

In particular, 0 ≤ p′(β) ≤ β , and there is thus some βc ∈ [0,∞] such that

0 ≤ β ≤ βc ⇒ p(β) =
β2

2
,

β > βc ⇒ p(β) <
β2

2
.

PROOF. Using the notation of Lemma 3.1, we have

EF ′
n(β)

(3.12)=
E〈Hn(σ )〉

n

(3.2b)= lim
N→∞

E〈Hn,N (σ )〉N
n

= lim
N→∞

E

〈
1

n

N∑

i=1

giϕi

〉

N

= lim
N→∞

1

n

N∑

i=1

E
[
gi〈ϕi〉N

]
.

By Gaussian integration by parts,

E
[
gi〈ϕi〉N

]
= E

[
∂

∂gi

〈ϕi〉N
]

= βE
[〈
ϕ2

i

〉
N − 〈ϕi〉2

N

]
,

and then Lemma 3.9 allows us to write

p′(β) = lim
n→∞

EF ′
n(β) = lim

n→∞
lim

N→∞
βE

[
1

n

N∑

i=1

(〈
ϕ2

i

〉
N − 〈ϕi〉2

N

)
]

(3.11)= lim
n→∞

βE

[
1 −

1

n

∞∑

i=1

〈ϕi〉2

]

= lim
n→∞

β
(
1 −E〈R1,2〉

)
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which completes the proof of (3.13). The inequalities 0 ≤ p′(β) ≤ β now follow from

1
(A2)
≥ lim

n→∞
E〈R1,2〉

(A3)
≥ − lim

n→∞
En = 0.

For the second part of the claim, we recall that p(·) is convex and thus absolutely contin-
uous. Since p(0) = 0, we then have

β2

2
− p(β) =

∫ β

0

[
t − p′(t)

]
dt.

Since the integrand is nonnegative, it follows that β2/2 − p(β) is nondecreasing for β ≥ 0.
�

So that we can be explicit in the inverse temperature parameter β , for the remainder of the
section we will write 〈·〉β for expectation with respect to μ

β
n . In light of (3.12), Lemma 3.9

implies

lim
n→∞

∣∣∣∣
〈Hn(σ )〉β

n
− p′(β)

∣∣∣∣ = 0 a.s. whenever p′(β) exists.

We will require the following stronger form of this result which also appears in [48], Theo-
rem 1.1, and [6], Theorem 3:

LEMMA 3.11. If β is a point of differentiability for p(·), then

lim
n→∞

〈∣∣∣∣
Hn(σ )

n
− p′(β)

∣∣∣∣
〉

β

= 0 a.s. and in L1.

3.3. Temperature perturbations. Here, we derive upper bounds for the effects of temper-
ature perturbations on certain expectations with respect to μ

β
n .

LEMMA 3.12. The following statements hold for any β1 ≥ β0 ≥ 0:

(a) For any measurable f : �n → [−1,1],
∣∣〈f (σ)

〉
β1

−
〈
f (σ)

〉
β0

∣∣ ≤
√

n(β1 − β0)
(
F ′

n(β1) − F ′
n(β0)

)
.

(b) For any σ ∈ �n,

(3.14)
1

n

∣∣∣∣
∑

i

ϕi〈ϕi〉β1 −
∑

i

ϕi〈ϕi〉β0

∣∣∣∣ ≤
√

n(β1 − β0)
(
F ′

n(β1) − F ′
n(β0)

)
.

(c) Finally,

(3.15)
1

n

∣∣∣∣
∑

i

〈ϕi〉2
β1

−
∑

i

〈ϕi〉2
β0

∣∣∣∣ ≤ 2
√

n(β1 − β0)
(
F ′

n(β1) − F ′
n(β0)

)
.

PROOF. All three claims follow from two crucial observations. First, for any f ∈
L2(�n),

∣∣∣∣
∂

∂β

〈
f (σ)

〉
β

∣∣∣∣ =
∣∣〈f (σ)Hn(σ )

〉
β −

〈
f (σ)

〉
β

〈
Hn(σ )

〉
β

∣∣

≤
√〈

Hn(σ )2
〉
β −

〈
Hn(σ )

〉2
β

√〈
f (σ)2

〉
β −

〈
f (σ)

〉2
β(3.16)

(3.12)=
√

nF ′′
n (β)

√〈
f (σ)2

〉
β −

〈
f (σ)

〉2
β ≤

√
nF ′′

n (β)
√〈

f (σ)2
〉
β .
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And second,

(3.17)

∫ β1

β0

√
nF ′′

n (β)dβ ≤
√

n(β1 − β0)

∫ β1

β0

F ′′
n (β)dβ

=
√

n(β1 − β0)
(
F ′

n(β1) − F ′
n(β0)

)
.

Then, part (a) immediately follows, since

|f | ≤ 1
(3.16)⇒

∣∣∣∣
∂

∂β

〈
f (σ)

〉
β

∣∣∣∣ ≤
√

nF ′′
n (β)

(3.17)⇒
∣∣〈f (σ)

〉
β1

−
〈
f (σ)

〉
β0

∣∣ ≤
√

n(β1 − β0)
(
F ′

n(β1) − F ′
n(β0)

)
.

For part (b) we first observe that if 0 ≤ β ≤ β1, then

∣∣∣∣
∂

∂β
〈ϕi〉β

∣∣∣∣
(3.16)
≤

√
nF ′′

n (β)
√〈

ϕ2
i

〉
β

=
√

nF ′′
n (β)

√√√√En(ϕ
2
i eβHn(σ ))

Zn(β)

≤
√

nF ′′
n (β)

√√√√En(ϕ
2
i )

Zn(β)
+

En(ϕ
2
i eβ1Hn(σ ))

Zn(β)

≤
√

n max
β0∈[0,β1]

F ′′
n (β0)

√
max(Zn(0),Zn(β1))

minβ0∈[0,β1] Zn(β0)

√〈
ϕ2

i

〉
0 +

〈
ϕ2

i

〉
β1

,

where now the right-hand side is independent of β and (almost surely) finite. Moreover, we
have the following finiteness condition when summing over i:

∑

i

|ϕi |
√〈

ϕ2
i

〉
0 +

〈
ϕ2

i

〉
β1

≤
√∑

i

ϕ2
i

∑

i

(〈
ϕ2

i

〉
0 +

〈
ϕ2

i

〉
β1

) (A2)=
√

2n < ∞.

It thus follows that

∂

∂β

∑

i

ϕi〈ϕi〉β =
∑

i

ϕi

∂

∂β
〈ϕi〉β .

In particular,

∣∣∣∣
∂

∂β

1

n

∑

i

ϕi〈ϕi〉β
∣∣∣∣ ≤

1

n

∑

i

∣∣∣∣ϕi

∂

∂β
〈ϕi〉β

∣∣∣∣

(3.16)
≤

√
F ′′

n (β)

n

∑

i

|ϕi |
√〈

ϕ2
i

〉
β

≤

√
F ′′

n (β)

n

√∑

i

ϕ2
i

∑

i

〈
ϕ2

i

〉
β

(A2)=
√

nF ′′
n (β).
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As in part (a), (3.17) now proves (3.14). For part (c) we can argue similarly in order to obtain
∣∣∣∣

∂

∂β

1

n

∑

i

〈ϕi〉2
β

∣∣∣∣ =
∣∣∣∣
2

n

∑

i

〈ϕi〉β
∂

∂β
〈ϕi〉β

∣∣∣∣

(3.16)
≤ 2

√
F ′′

n (β)

n

∑

i

∣∣〈ϕi〉β
∣∣
√〈

ϕ2
i

〉
β

≤ 2

√
F ′′

n (β)

n

∑

i

〈
ϕ2

i

〉
β

(A2)= 2
√

nF ′′
n (β),

from which (3.17) proves (3.15). �

4. Proof of Theorem 1.5. Recall the event under consideration,

Bδ =
{

1

n

∑

i

〈ϕi〉2 ≤ δ

}
.

The proof of Theorem 1.5 is a perturbative argument using an Ornstein–Uhlenbeck (OU)
flow on the environment,

(4.1) gt := e−t g + e−t W
(
e2t −1

)
, t ≥ 0,

where W (·) = (Wi(·))∞i=1 is a collection of independent Brownian motions that are also inde-
pendent of g = g0 and the above definition is understood coordinatewise. Within Section 4
we denote expectation with respect to μ

β
n,gt

by 〈·〉t , not to be confused with 〈·〉β used in
Section 3. We now prove Theorem 1.5 by juxtaposing the following two propositions. Notice
that if P(Bδ) = 0, then there is nothing to be done; therefore, we may henceforth assume
P(Bδ) > 0 so that conditioning on Bδ is well defined.

PROPOSITION 4.1. If β is a point of differentiability for p(·), and p′(β) < β , then there

exists κ = κ(β) > 0 such that the following holds: For any ε > 0, there is T = T (β, ε) suffi-

ciently large that

(4.2) lim inf
n→∞

P

(∣∣∣∣κ −
1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt

∣∣∣∣ ≤ ε

)
≥ 1 − ε.

More specifically,

κ(β) =
β − p′(β)

β
.

For the statement of the second result, let Ft denote the σ -algebra generated by g0 and
(W (s))0≤s≤e2t −1.

PROPOSITION 4.2. Assume β is a point of differentiability for p(·). Then, there is a

process (It )t>0 adapted to the filtration (Ft )t>0 such that the following statements hold:

(a) For any T , ε > 0,

(4.3) lim
n→∞

P

(∣∣∣∣IT/n −
1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt

∣∣∣∣ > ε

)
= 0.



2776 E. BATES AND S. CHATTERJEE

(b) For any T , ε1, ε2 > 0, there exist δ1 = δ1(β,T , ε1, ε2) > 0 sufficiently small and n0 =
n0(β,T , ε1, ε2) sufficiently large, that

(4.4) P

(∣∣∣∣IT/n −
1

n

∑

i

〈ϕi〉2
∣∣∣∣ ≥ ε1 | Bδ

)
≤ ε2 for all 0 < δ ≤ δ1, n ≥ n0.

PROOF OF THEOREM 1.5. Let ε > 0 be given, and assume the hypotheses of Proposi-
tion 4.1. By that result there is κ > 0 and T large enough that

(4.5) lim inf
n→∞

P

(
1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt ≥

4κ

5

)
≥ 1 −

ε

2
.

Let (It )t≥0 be the process guaranteed by Proposition 4.2, and define the events:

G :=
{

1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt ≥

4κ

5

}
,

H :=
{

1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt ≤

3κ

5

}
,

H1 :=
{∣∣∣∣IT/n −

1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt

∣∣∣∣ ≤
κ

5

}
,

H2 :=
{∣∣∣∣IT/n −

1

n

∑

i

〈ϕi〉2
∣∣∣∣ ≤

κ

5

}
.

By Proposition 4.2(a)

(4.6) lim
n→∞

P(H1) = 1.

And by Proposition 4.2(b) we can choose 0 < δ ≤ κ/5 sufficiently small and n0 sufficiently
large that

(4.7) P(H2 | Bδ) ≥
1

2
for all n ≥ n0.

Observe that Bδ ∩ H1 ∩ H2 ⊂ H , and clearly the events G and H are disjoint. We thus have

P(Bδ ∩ H1 ∩ H2) ≤ P(H) ≤ 1 − P(G).

On the other hand,

P(Bδ ∩ H1 ∩ H2) ≥ P(H1) + P(H2 ∩ Bδ) − 1

= P(H1) − 1 + P(H2 | Bδ)P(Bδ)

(4.7)
≥ P(H1) − 1 +

P(Bδ)

2
.

Putting the two previous displays together, we find

P(Bδ) ≤ 2
(
2 − P(G) − P(H1)

)
,

and so

lim sup
n→∞

P(Bδ) ≤ 2
(
2 − lim inf

n→∞
P(G) − lim

n→∞
P(H1)

) (4.5), (4.6)
≤ ε.

�

4.1. Proof of Proposition 4.1. We will need to recall some facts about Ornstein–
Uhlenbeck processes. To avoid technical complications, we restrict ourselves to finite-
dimensional OU processes and then take an appropriate limit at a later stage.
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4.1.1. General OU theory. Fix a positive integer N , and consider a vector g =
(g1, . . . , gN ) of i.i.d. standard normal random variables. Let W = (W (t))t≥0 be an inde-
pendent N -dimensional Brownian motion. The OU flow starting at g is given by

gt := e−t g + e−t W
(
e2t −1

)
, t ≥ 0.

This is a continuous-time, stationary Markov chain. Let (Pt )t≥0 denote the OU semigroup;
that is, for f :RN →R,

Ptf (x) := Ef
(
e−t x + e−t W

(
e2t −1

))
, x ∈ R

N .

Denote the OU generator by L := � − x · ∇ . It is especially useful to consider the spectral
decomposition of L, whose eigenfunctions are the multivariate Hermite polynomials. For our
purposes it suffices to recall the following well-known facts (see, for instance, [20], Chap-
ter 6):

• Let γN denote the N -dimensional standard Gaussian measure. There is an orthonormal
basis {φj }∞j=0 of L2(γN ) consisting of eigenfunctions of L, where φ0 ≡ 1, Lφ0 = λ0φ0 =
0, and Lφj = −λjφj with λj > 0 for j ≥ 1. Therefore, if f =

∑∞
j=0 ajφj ∈ L2(γN ), then:

Ef (g) = a0,(4.8)

Lf = −
∞∑

j=1

λjajφj ,(4.9)

⇒ ELf (g) = 0.(4.10)

Furthermore, if f1 =
∑∞

j=0 ajφj , f2 =
∑∞

j=0 bjφj ∈ L2(γN ), then

(4.11) Cov
(
f1(g), f2(g)

)
=

∞∑

j=1

ajbj .

• The OU semigroup acts on L2(γN ) by

Ptφj = e−λj t φj , j ≥ 0.

Therefore, if f =
∑∞

j=0 ajφj ∈ L2(γN ), then

(4.12) PtLf = −
∞∑

j=1

λjaj e−λj t φj .

• The associated Dirichlet form is given by

−E
[
f1(g)Lf2(g)

]
= E

[
∇f1(g) · ∇f2(g)

]
,

whenever f1 and f2 are twice-differentiable functions in L2(γN ) such that both expecta-
tions above are finite. In particular, if f1 = f2 =

∑∞
j=0 ajφj ∈ L2(γN ) is twice differen-

tiable, then

(4.13) E
(∥∥∇f (g)

∥∥2) =
∞∑

j=1

λja
2
j .

LEMMA 4.3. For any twice differentiable f ∈ L2(γN ) with Lf ∈ L2(γN ), we have

Var
(

1

t

∫ t

0
Lf (gs)ds

)
≤

2

t
E
(∥∥∇f (g)

∥∥2)
.
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PROOF. Take any 0 ≤ s ≤ t . By the law of total variance, we have

Cov
(
f (gs), f (gt )

)
= E

[
Cov

(
f (gs), f (gt ) | gs

)]
+ Cov

(
f (gs),E

[
f (gt ) | gs

])

= 0 + Cov
(
f (gs),E

[
f (gt ) | gs

])

= Cov
(
f (gs),Pt−sf (gs)

)

= Cov
(
f (g0),Pt−sf (g0)

)
.

In particular, if we write f in the form f =
∑∞

j=0 ajφj , then

Cov
(
Lf (gs),Lf (gt )

)
= Cov

(
Lf (g0),Pt−sLf (g0)

)

(4.9), (4.12), (4.11)=
∞∑

j=1

λ2
ja

2
j e−λj (t−s) .

Therefore,
∫ t

0
Cov

(
Lf (gs),Lf (gt )

)
ds =

∫ t

0

∞∑

j=1

λ2
ja

2
j e−λj (t−s) ds

=
∞∑

j=1

λja
2
j

(
1 − e−λj t )

≤
∞∑

j=1

λja
2
j

(4.13)= E
(∥∥∇f (g)

∥∥2)
.

Hence,

Var
(∫ t

0
Lf (gs)ds

)
=

∫ t

0

∫ t

0
Cov

(
Lf (gs),Lf (gu)

)
ds du

= 2
∫ t

0

∫ u

0
Cov

(
Lf (gs),Lf (gu)

)
ds du

≤ 2tE
(∥∥∇f (g)

∥∥2)
. �

PROOF OF PROPOSITION 4.1. Let (gt )t≥0 be the OU flow from (4.1), and write

gi(t) := e−t gi + e−t Wi

(
e2t −1

)
, i ≥ 1.

Recall that 〈·〉t denotes expectation with respect to μ
β
n,gt

. Let Zn,t (β) and Fn,t (β) be the
associated partition function and free energy, respectively. That is, with Hn,t :=

∑
i gi(t)ϕi ,

we have

Zn,t (β) := En

(
eβHn,t

)
, Fn,t (β) :=

1

n
logZn,t (β).

So that we can use the finite-dimensional facts discussed before, define Hn,t,N :=∑N
i=1 gi(t)ϕi as well as

Zn,t,N (β) := En

(
eβHn,t,N

)
, Fn,t,N (β) :=

1

n
logZn,t,N (β), N ≥ 0.

Define f :RN →R by

f (x) :=
1

n
logEn

(
eβ

∑N
i=1 xiϕi

)
,
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so that f (gt ) = Fn,t,N (β), where gt is understood to mean (g1(t), . . . , gN (t)). Note that
f ∈ L2(γN ), since log2 x ≤ x + x−1 for x > 0, and so, using the same arguments as in
Lemma 3.7, yields

E log2 Zn,t,N (β) ≤ EZn,t,N (β) +E
[
Zn,t,N (β)−1]

≤ En

(
E eβHn,t,N (σ )) + En

(
E e−βHn,t,N (σ ))

= 2En

(
e

β2

2
∑N

i=1 ϕ2
i
) (A2)

≤ 2 e
β2

2 n .

Similar to (3.1), for general f ∈ L2(�n), we define

(4.14)
〈
f(σ )

〉
t,N =

En(f(σ ) eβHn,t,N (σ ))

En(eβHn,t,N (σ ))
.

Observe that
∂f

∂xi

(gt ) =
β〈ϕi〉t,N

n
, 1 ≤ i ≤ N,

which implies

(4.15)
∥∥∇f (gt )

∥∥2 =
β2

n2

N∑

i=1

〈ϕi〉2
t,N ≤

β2

n2

N∑

i=1

〈
ϕ2

i

〉
t,N

(A2)
≤

β2

n

as well as

gt · ∇f (gt ) =
β

n

N∑

i=1

gi(t)〈ϕi〉t,N =
β

n

〈
Hn,t,N (σ )

〉
t,N

(3.12)= βF ′
n,t,N (β),

where the derivative is with respect to β . Note that

(4.16)

E
[
F ′

n,t,N (β)2] =
1

n2E

[(
N∑

i=1

gi(t)〈ϕi〉t,N

)2]

≤
1

n2E

[(
N∑

i=1

gi(t)
2

)(
N∑

i=1

〈ϕi〉2
t,N

)]

≤
1

n2
E

[(
N∑

i=1

gi(t)
2

)(
N∑

i=1

〈
ϕ2

i

〉
t,N

)]

(A2)
≤

1

n
E

(
N∑

i=1

gi(t)
2

)
=

N

n
< ∞.

Furthermore,

∂2f

∂x2
i

(gt ) =
β2

n

(〈
ϕ2

i

〉
t,N − 〈ϕi〉2

t,N

)
, 1 ≤ i ≤ N.

We thus have

Lf (gt ) =
β2

n

N∑

i=1

(〈
ϕ2

i

〉
t,N − 〈ϕi〉2

t,N

)
− βF ′

n,t,N (β).

From (4.16) it is clear that Lf ∈ L2(γN ). Therefore, by Lemma 4.3 and (4.15),

Var

(
1

t

∫ t

0

[
β2

n

N∑

i=1

(〈
ϕ2

i

〉
s,N − 〈ϕi〉2

s,N

)
− βF ′

n,s,N (β)

]
ds

)
≤

2β2

tn
.
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Moreover, from (4.10) we know

E

(
1

t

∫ t

0

[
β2

n

N∑

i=1

(〈
ϕ2

i

〉
s,N − 〈ϕi〉2

s,N

)
− βF ′

n,s,N (β)

]
ds

)
= 0.

We can now apply (3.2a) (together with (3.12)) and (3.11) to take the limit N → ∞ in the
two previous displays and obtain

Var
(

1

t

∫ t

0

[
β2 −

β2

n

∑

i

〈ϕi〉2
s − βF ′

n,s(β)

]
ds

)
≤

2β2

tn
,

E

(
1

t

∫ t

0

[
β2 −

β2

n

∑

i

〈ϕi〉2
s − βF ′

n,s(β)

]
ds

)
= 0.

Consequently, for any ε > 0, Chebyshev’s inequality shows

(4.17) P

(∣∣∣∣
1

t

∫ t

0

[
β −

β

n

∑

i

〈ϕi〉2
s − F ′

n,s(β)

]
ds

∣∣∣∣ ≥
ε

2

)
≤

8

tnε2
.

Now, consider that

E

∣∣∣∣p
′(β) −

1

t

∫ t

0
F ′

n,s(β)ds

∣∣∣∣ ≤
1

t

∫ t

0
E
∣∣p′(β) − F ′

n,s(β)
∣∣ds

= E
∣∣p′(β) − F ′

n(β)
∣∣.

Therefore, if β is a point of differentiability for p(·), then for any sequence (t (n))n≥1,
Lemma 3.9 guarantees

(4.18) lim sup
n→∞

P

(∣∣∣∣p
′(β) −

1

t (n)

∫ t (n)

0
F ′

n,s(β)ds

∣∣∣∣ ≥
ε

2

)
= 0.

When t = t (n) = T/n for fixed T , (4.17) and (4.18) together show

lim sup
n→∞

P

(∣∣∣∣
1

T/n

∫ T/n

0

[
β −

β

n

∑

i

〈ϕi〉2
s − p′(β)

]
ds

∣∣∣∣ ≥ ε

)
≤

8

T ε2 .

Assuming p′(β) < β , we let κ = κ(β) := β−p′(β)
β

> 0. Then, the previous display implies

lim sup
n→∞

P

(∣∣∣∣κ −
1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
s ds

∣∣∣∣ ≥ ε

)
≤

8

Tβ2ε2
.

The proof is completed by taking T = T (β, ε) sufficiently large that

8

Tβ2ε2 ≤ ε.
�

4.2. Proof of Proposition 4.2. Let us rewrite (4.1) as

gt = g + e−t W
(
e2t −1

)
+

(
e−t −1

)
g, t ≥ 0.

Recall that 〈·〉0 = 〈·〉. For any f ∈ L2(�n), we have

〈
f (σ)

〉
t =

〈f (σ) eβ e−t ∑
i Wi(e2t −1)ϕi eβ(e−t −1)Hn(σ )〉

〈eβ e−t
∑

i Wi(e2t −1)ϕi eβ(e−t −1)Hn(σ )〉
.
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In light of Lemma 3.11, we anticipate that, for t = O(n−1),

(4.19)

〈
f (σ)

〉
t ≈

〈f (σ) eβ e−t ∑
i Wi(e2t −1)ϕi e−βtnp′(β)〉

〈eβ e−t
∑

i Wi(e2t −1)ϕi e−βtnp′(β)〉

=
〈f (σ) eβ e−t ∑

i Wi(e2t −1)ϕi 〉
〈eβ e−t

∑
i Wi(e2t −1)ϕi 〉

=: Qt (f ).

Indeed, the process that will satisfy the conclusions of Proposition 4.2 is

(4.20) It :=
1

t

∫ t

0

1

n

∑

i

Qs(ϕi)
2 ds, t > 0.

To prove so, the following lemma will suffice. Recall that

Bδ =
{

1

n

∑

i

〈ϕi〉2 ≤ δ

}
.

LEMMA 4.4. For any T , ε > 0, the following statements hold:

(a) If β is a point of differentiability for p(·), then there is a sequence of nonnegative

random variables (Mn) depending only on β , T and ε, such that

(4.21) lim sup
n→∞

E(Mn) ≤ ε,

and for every f ∈ L2(�n), t ∈ [0, T
n
],

(4.22) E
∣∣Qt (f )2 −

〈
f (σ)

〉2
t

∣∣ ≤ E
(〈
f (σ)2〉Mn

)
.

(b) There exist δ1 = δ1(β,T , ε) > 0 sufficiently small and n0 = n0(β,T , ε) sufficiently

large, that, for every n ≥ n0, f ∈ L2(�n), t ∈ [0, T
n
] and δ ∈ (0, δ1], we have

(4.23) E
(∣∣Qt (f )2 −

〈
f (σ)

〉2∣∣ | Bδ

)
≤ εE

〈
f (σ)2〉.

Before checking these facts, let us use them to prove Proposition 4.2. The idea is to use
the above sequence Mn to control the differences Qt (ϕi)

2 − 〈ϕi〉2 simultaneously across all
i and t ∈ [0, T

n
]; this will allow us to prove (4.3). On the other hand, (4.23) shows that, when

〈R1,2〉 is small, Qt (ϕi)
2 remains close to Q0(ϕi)

2 = 〈ϕi〉2. That this approximation holds
uniformly over t ∈ [0, T

n
] will lead to (4.4).

PROOF OF PROPOSITION 4.2. First, we prove part (a). Let T , ε > 0 be fixed. From
Lemma 4.4(a) we identify a sequence of random variables (Mn) such that (4.22) holds, and

(4.24) lim sup
n→∞

E(Mn) ≤ ε2.

Under our definition (4.20), we have

E

∣∣∣∣IT/n −
1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt

∣∣∣∣

= E

∣∣∣∣
1

T/n

∫ T/n

0

1

n

∑

i

[
Qt (ϕi)

2 − 〈ϕi〉2
t

]
dt

∣∣∣∣

≤
1

T/n

∫ T/n

0

1

n

∑

i

E
∣∣Qt (ϕi)

2 − 〈ϕi〉2
t

∣∣dt

(4.22)
≤

1

T/n

∫ T/n

0

1

n

∑

i

E
(〈
ϕ2

i

〉
Mn

)
dt

(A2)= E(Mn).
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Now, Markov’s inequality and (4.24) together imply

lim sup
n→∞

P

(∣∣∣∣IT/n −
1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2
t dt

∣∣∣∣ ≥ ε

)
≤

ε2

ε
= ε

which completes the proof of (a).
Next, we prove part (b). Let ε1, ε2 > 0 be given. Similar to above, for any δ > 0 we have

E

(∣∣∣∣IT/n −
1

n

∑

i

〈ϕi〉2
∣∣∣∣
∣∣∣ Bδ

)
= E

(∣∣∣∣IT/n −
1

T/n

∫ T/n

0

1

n

∑

i

〈ϕi〉2 dt

∣∣∣∣
∣∣∣ Bδ

)

≤
1

T/n

∫ T/n

0

1

n

∑

i

E
(∣∣Qt (ϕi)

2 − 〈ϕi〉2∣∣ | Bδ

)
dt.

From Lemma 4.4(b) we choose δ1 sufficiently small that (4.23) holds for all δ ∈ (0, δ1], with
ε = ε1ε2. We then have, for all n sufficiently large,

E

(∣∣∣∣IT/n −
1

n

∑

i

〈ϕi〉2
∣∣∣∣
∣∣∣ Bδ

)
≤

1

T/n

∫ T/n

0

1

n

∑

i

ε1ε2E
〈
ϕ2

i

〉
ds

(A2)= ε1ε2.

Then, applying Markov’s inequality yields (4.4). �

It now remains to prove Lemma 4.4. To do so, we will make use of the following prepara-
tory result which, in fact, is the common thread between the proofs of Theorems 1.4 and 1.5.
Let h = (hi)

∞
i=1 be an independent copy of the disorder g. We will use Eh and Varh to denote

expectation and variance with respect to h, conditional on g. All statements involving these
conditional quantities will be almost sure with respect to P, although we will not repeatedly
write this.

LEMMA 4.5. Recall the constant En from (A3). For any t ≥ 0, the following statements

hold:

(a) For any f ∈ L2(�n),

Varh
〈
f (σ) e

t√
n

∑
i hiϕi

〉
≤ e2t2 〈

f (σ)2〉
√√√√1

n

∑

i

〈ϕi〉2 + 2En.

(b) For any measurable f : �n → [0,1],

Varh
〈
f (σ) e

t√
n

∑
i hiϕi

〉
≤ e2t2

(〈
f (σ)

1

n

∑

i

ϕi〈ϕi〉
〉
+ 2En

)
.

PROOF. For any f ∈ L2(�n),

(4.25)

Varh
〈
f (σ) e

t√
n

∑
i hiϕi

〉

= Eh

〈
f
(
σ 1)f

(
σ 2) e

t√
n

∑
i hi(ϕi(σ

1)+ϕi(σ
2))〉 −

(
Eh

〈
f (σ) e

t√
n

∑
i hiϕi

〉)2

(3.8)= et2(〈
f
(
σ 1)f

(
σ 2) e

t2
n

∑
i ϕi(σ

1)ϕi(σ
2)〉 −

〈
f (σ)

〉2)

= et2 〈
f
(
σ 1)f

(
σ 2)(e

t2
n

∑
i ϕi(σ

1)ϕi(σ
2) −1

)〉

≤ et2 〈
f (σ)2〉

√
〈(

e
t2
n

∑
i ϕi(σ

1)ϕi(σ
2) −1

)2〉
.
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Now, for all x ∈ [−1,1], we have | et2x −1| ≤ et2 |x|. In particular, since

(4.26)
∣∣∣∣
1

n

∑

i

ϕi

(
σ 1)ϕi

(
σ 2)

∣∣∣∣ ≤
1

n

√∑

i

ϕi

(
σ 1

)2 ∑

i

ϕi

(
σ 2

)2 (A2)= 1,

we see from (4.25) that

Varh
〈
f (σ) e

t√
n

∑
i hiϕi

〉
≤ e2t2 〈

f (σ)2〉
√√√√

〈(
1

n

∑

i

ϕi

(
σ 1

)
ϕi

(
σ 2

))2〉

(A3)
≤ e2t2 〈

f (σ)2〉
√√√√

〈
1

n

∑

i

ϕi

(
σ 1

)
ϕi

(
σ 2

)〉
+ 2En

= e2t2 〈
f (σ)2〉

√√√√1

n

∑

i

〈ϕi〉2 + 2En.

Alternatively, if f : �n → [0,1], then we can use the equalities in (4.25) to write

Varh
〈
f (σ) e

t√
n

∑
i hiϕi

〉
= et2 〈

f
(
σ 1)f

(
σ 2)(e

t2
n

∑
i ϕi(σ

1)ϕi(σ
2) −1

)〉

≤ e2t2
〈
f
(
σ 1)

∣∣∣∣
1

n

∑

i

ϕi

(
σ 1)ϕi

(
σ 2)

∣∣∣∣
〉

(A3)
≤ e2t2

〈
f
(
σ 1)

(
1

n

∑

i

ϕi

(
σ 1)ϕi

(
σ 2) + 2En

)〉

≤ e2t2
(〈

f
(
σ 1)1

n

∑

i

ϕi

(
σ 1)〈ϕi

(
σ 2)〉

〉
+ 2En

)
.

�

We are now ready to prove Lemma 4.4.

PROOF OF LEMMA 4.4. Let f ∈ L2(�n) be arbitrary. Recall the random variable Qt (f )

defined in (4.19). Observe that, for fixed t ≥ 0, e−t W (e2t −1) is equal in law to
√

1 − e−2th,
where h is an independent copy of g. Therefore, if we define

X :=
〈
f (σ) eβ

√
1−e−2t

∑
i hiϕi eβ(e−t −1)Hn(σ )〉,

Y :=
〈
eβ

√
1−e−2t

∑
i hiϕi eβ(e−t −1)Hn(σ )〉,

X′ :=
〈
f (σ) eβ

√
1−e−2t

∑
i hiϕi

〉
eβ(e−t −1)np′(β),

Y ′ :=
〈
eβ

√
1−e−2t

∑
i hiϕi

〉
eβ(e−t −1)np′(β),

then

(〈
f (σ)

〉
t ,Qt (f )

) d=
(

X

Y
,
X′

Y ′

)
.

Since the conclusions of Lemma 4.4 depend only on marginal distributions at fixed t ≤ T/n,
it suffices to prove bounds of the form

(4.27) E

∣∣∣∣
(

X

Y

)2
−

(
X′

Y ′

)2∣∣∣∣ ≤ E
(〈
f (σ)2〉Mn

)
,
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where Mn satisfies (4.21) and

(4.28) E

(∣∣∣∣
(

X′

Y ′

)2
−

〈
f (σ)

〉2
∣∣∣∣
∣∣∣ Bδ

)
≤ εE

〈
f (σ)2〉 for all large enough n.

So, henceforth, we fix T , ε > 0 and t ∈ [0, T
n
]. We will need the following four claims. In

checking these claims, we will frequently use the following inequality which holds for any
c ≥ 0:

(4.29) n
(
1 − e−ct ) ≤ nct ≤ cT .

CLAIM 4.6. For any q ∈ (−∞,0] ∪ [1,∞),

(4.30) Eh

[(
Y ′)q] ≤ C(β,T , q).

CLAIM 4.7. For any q ≥ 2,

(4.31) Eh

[(
X′)q] ≤ C(β,T , q)

〈
f (σ)2〉q/2

.

CLAIM 4.8. Given any q > 0, set k = �log2
n

qT
�. For all n large enough that k ≥ 1,

(4.32) Eh

(
Y−q) ≤ C(β,T , q)Zn(β)

− 1
2k
(
Zn(2β)

1
2k + 1

)
.

CLAIM 4.9. For any even q ≥ 2 and ε > 0, the following inequalities hold for all n ≥
(2q + 1)T :

(4.33)

Eh

[(
X − X′)q]

≤ C(β,T , q)
〈
f (σ)2〉q/2

[
C(ε)

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉
+ εZn(β)−

2(q+1)T
n

]
,

and thus

(4.34) Eh

[(
Y − Y ′)q] ≤ C(β,T , q)

[
C(ε)

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉
+ εZn(β)−

(2q+1)T
n

]
.

Before proving the claims, we use them to obtain the desired statements.

4.2.1. Proof of Lemma 4.4(a). First, note that, for any random variables W and Z,

(4.35)
E
∣∣W 2 − Z2∣∣ = E

∣∣(W − Z)2 + 2Z(W − Z)
∣∣

≤ E
[
(W − Z)2] + 2

√
E
(
Z2

)
E
[
(W − Z)2

]
.

Therefore,

(4.36)

Eh

∣∣∣∣
(

X

Y

)2
−

(
X′

Y ′

)2∣∣∣∣

≤ Eh

[(
X

Y
−

X′

Y ′

)2]
+ 2

√

Eh

[(
X′

Y ′

)2]
Eh

[(
X

Y
−

X′

Y ′

)2]

≤ Eh

[(
X

Y
−

X′

Y ′

)2]
+ 2

(
Eh

[(
Y ′)−4]

Eh

[(
X′)4]) 1

4

√

Eh

[(
X

Y
−

X′

Y ′

)2]

(4.30), (4.31)
≤ Eh

[(
X

Y
−

X′

Y ′

)2]
+ C(β,T )

√〈
f (σ)2

〉
√

Eh

[(
X

Y
−

X′

Y ′

)2]
.
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Let δ be a positive number to be chosen later. Anticipating the application of Claims 4.8 and
4.9, we condense notation by defining

V (q)
n =

(
Zn(β)

− 1
2k
(
Zn(2β)

1
2k + 1

))2/q where k =
⌊

log2
n

qT

⌋
,

W (q)
n =

(
C(δ)

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉
+ δZn(β)−

2(q+1)T
n

)2/q

.

Because of (4.36), we seek a bound of the form

Eh

[(
X

Y
−

X′

Y ′

)2]
= Eh

[(
X − X′

Y
−

X′

Y ′
Y − Y ′

Y

)2]

≤ 2Eh

[
(X − X′)2

Y 2 +
(X′)2

(Y ′)2

(Y − Y ′)2

Y 2

]

≤ 2
(
Eh

[
Y−4]

Eh

[(
X − X′)4])1/2

+ 2
(
Eh

[(
Y ′)−8]

Eh

[(
X′)8]

Eh

(
Y−8)

Eh

[(
Y − Y ′)8])1/4

(4.30)–(4.34)
≤ C(β,T )

〈
f (σ)2〉(V (4)

n W (4)
n + V (8)

n W (8)
n

)
.

Therefore, once we set

Mn := C(β,T )
[(

V (4)
n W (4)

n + V (8)
n W (8)

n

)
+

(
V (4)

n W (4)
n + V (8)

n W (8)
n

)1/2]

and take expectation, (4.36) becomes

E

∣∣∣∣
(

X

Y

)2
−

(
X′

Y ′

)2∣∣∣∣ ≤ E
(〈
f (σ)2〉Mn

)

which is exactly (4.27). To complete the proof of Lemma 4.4(a), we need to show that, given
any ε > 0, we can choose δ sufficiently small that (4.21) holds (Mn depends on δ through
W

(4)
n and W

(8)
n ).

Indeed, by Cauchy–Schwarz we have

(4.37)
E(Mn) ≤ C(β,T )

(√
E
[(

V
(4)
n

)2]
E
[(

W
(4)
n

)2] +
√
E
[(

V
(8)
n

)2]
E
[(

W
(8)
n

)2]

+
√√

E
[(

V
(4)
n

)2]
E
[(

W
(4)
n

)2] +
√
E
[(

V
(8)
n

)2]
E
[(

W
(8)
n

)2])
.

Next, we observe that, for q ≥ 4 and n sufficiently large such that k = �log2
n

qT
� ≥ 1,

E
[(

V (q)
n

)2] ≤
(
E
[
Zn(β)

− 1
2k
(
Zn(2β)

1
2k + 1

)])4/q

≤
(
√
E
[
Zn(β)

− 2
2k
]
E
[
Zn(2β)

2
2k
]
+E

[
Zn(β)

− 1
2k
])4/q

≤
(
√
E
[
Zn(β)−1

] 2
2k E

[
Zn(2β)

] 2
2k +E

[
Zn(β)−1] 1

2k
)4/q(4.38)

(3.9), (3.10)
≤

(
√

e
β2n

2k e
4β2n

2k + e
β2n

2k+1
)4/q

≤
(√

eβ2qT e4β2qT + e
β2qT

2
)4/q = C(β,T , q).
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Meanwhile, if q ≥ 4 and n ≥ 2(q + 1)T , then

E
[(

W (q)
n

)2] ≤
(
C(δ)E

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉
+ δE

[
Zn(β)−

2(q+1)T
n

])4/q

≤
(
C(δ)E

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉
+ δE

[
Zn(β)−1] 2(q+1)T

n

)4/q

(3.10)
≤

(
C(δ)E

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉
+ δ eβ2(q+1)T

)4/q

.

By Lemma 3.11 the previous display shows

lim sup
n→∞

E
[(

W (q)
n

)2] ≤ δ4/q e
4β2(q+1)T

q = C(β,T , q)δ4/q .

In light of (4.37) and (4.38), it is clear from this inequality that δ can be chosen sufficiently
small that (4.21) holds.

4.2.2. Proof of Lemma 4.4(b). To establish (4.28), it will be easier to replace X′/Y ′ by
X′′/Y ′′, where:

X′′ :=
X′

e
β2
2 (1−e−2t )n eβ(e−t −1)np′(β)

=
〈f (σ) eβ

√
1−e−2t

∑
i hiϕi 〉

e
β2
2 (1−e−2t )n

,

Y ′′ :=
Y ′

e
β2
2 (1−e−2t )n eβ(e−t −1)np′(β)

=
〈eβ

√
1−e−2t

∑
i hiϕi 〉

e
β2
2 (1−e−2t )n

.

By Lemma 4.5(a)

Varh
〈
f (σ) eβ

√
1−e−2t

∑
i hiϕi

〉
≤ e2β2(1−e−2t )n〈f (σ)2〉

√√√√1

n

∑

i

〈ϕi〉2 + 2En,

and so

(4.39)

Varh
(
X′′) ≤ eβ2(1−e−2t )n〈f (σ)2〉

√√√√1

n

∑

i

〈ϕi〉2 + 2En

(4.29)
≤ C(β,T )

〈
f (σ)2〉

√√√√1

n

∑

i

〈ϕi〉2 + 2En

as well as

Varh
(
Y ′′) ≤ C(β,T )

√√√√1

n

∑

i

〈ϕi〉2 + 2En.

Because

Eh

〈
f (σ) eβ

√
1−e−2t

∑
i hiϕi

〉 (3.8)= e
β2

2 (1−e−2t )n〈f (σ)
〉
,

we have Eh(Y ′′) = 1 and can thus apply Chebyshev’s inequality to obtain

(4.40) Ph

(∣∣Y ′′ − 1
∣∣ ≥ θ

)
≤

C(β,T )

θ2

√√√√1

n

∑

i

〈ϕi〉2 + 2En for any θ > 0.
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We will use these inequalities in the following bound:

(4.41)

Eh

[(
X′

Y ′ −
〈
f (σ)

〉)2]

= Eh

[(
X′′

Y ′′ −
〈
f (σ)

〉)2]

= Eh

[(
X′′

Y ′′
(
1 − Y ′′) + X′′ −

〈
f (σ)

〉)2]

≤ 2Eh

[(
X′′

Y ′′

)2(
Y ′′ − 1

)2 +
(
X′′ −

〈
f (σ)

〉)2
]

≤ 2Eh

[(
X′′

Y ′′

)2(
θ2 + 1{|Y ′′−1|≥θ}

(
Y ′′ − 1

)2) +
(
X′′ −

〈
f (σ)

〉)2
]

≤ 2
(
Eh

[(
Y ′′)−8]

Eh

[(
X′′)8])1/4

√
Eh

[(
θ2 + 1{|Y ′′−1|≥θ}

(
Y ′′ − 1

)2)2]

+ 2 Varh
(
X′′)

≤ 2
√

2
(
Eh

[(
Y ′′)−8]

Eh

[(
X′′)8])1/4

√
θ4 +

√
Ph

(∣∣Y ′′ − 1
∣∣ ≥ θ

)
Eh

[(
Y ′′ − 1

)8]

+ 2 Varh
(
X′′).

Now,

(4.42) Eh

[(
Y ′′)−8] =

Eh[(Y ′)−8]
e−4β2(1−e−2t )n e−8β(e−t −1)np′(β)

(4.29), (4.30)
≤ C(β,T ),

and

(4.43) Eh

[(
X′′)8] =

Eh[(X′)8]
e4β2(1−e−2t )n e8β(e−t −1)np′(β)

(4.29), (4.31)
≤ C(β,T )

〈
f (σ)2〉4.

In addition,

Eh

[(
Y ′′ − 1

)8] ≤ 24(
Eh

[(
Y ′′)8] + 1

)

= 24
(

Eh[(Y ′)8]
e4β2(1−e−2t )n e8β(e−t −1)np′(β)

+ 1
)

(4.44)

(4.29), (4.30)
≤ C(β,T ).

Using (4.39), (4.40) and (4.42)–(4.44) in (4.41), we find

Eh

[(
X′

Y ′ −
〈
f (σ)

〉)2]

≤ C(β,T )
〈
f (σ)2〉

√√√√θ4 +
C(β,T )

θ

(
1

n

∑

i

〈
ϕ2

i

〉
+ 2En

)1/4

+ C(β,T )
〈
f (σ)2〉

√√√√1

n

∑

i

〈ϕi〉2 + 2En.

In particular, for any δ > 0 and n large enough that En ≤ δ/2,

1BδEh

[(
X′

Y ′ −
〈
f (σ)

〉)2]
≤ 1BδC(β,T )

〈
f (σ)2〉(

√
θ4 + θ−1(2δ)1/4 +

√
2δ

)
,
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and so (4.35) implies

1BδEh

∣∣∣∣
(

X′

Y ′

)2
−

〈
f (σ)

〉2
∣∣∣∣

≤ 1BδEh

[(
X′

Y ′ −
〈
f (σ)

〉)2]
+ 21Bδ

√
〈
f (σ)

〉2
Eh

[(
X′

Y ′ −
〈
f (σ)

〉)2]

≤ 1BδC(β,T )
〈
f (σ)2〉(

√
θ4 + θ−1δ1/4 +

√
δ +

√√
θ4 + θ−1δ1/4 +

√
δ
)
.

Given ε > 0, we choose θ and δ small enough (in that order and depending only on β , T and
ε) so that the rightmost expression above is at most 1Bδε〈f (σ)2〉. Moreover, it is clear that
once θ and δ are chosen, 1Bδ could be replaced by 1Bδ′ for any δ′ ∈ (0, δ), and the rightmost
expression will be bounded from above by 1Bδ′ ε〈f (σ)2〉. Taking expectations on both sides
yields (4.28).

4.2.3. Proof of Claim 4.6. Assume q ≤ 0 or q ≥ 1. Using Jensen’s inequality, we have

Eh

[(
Y ′)q] = eqβ(e−t −1)np′(β)

Eh

[〈
eβ

√
1−e−2t

∑
i hiϕi

〉q]

≤ eqβ(e−t −1)np′(β)
Eh

〈
eqβ

√
1−e−2t

∑
i hiϕi

〉

(3.8)= eqβ(e−t −1)np′(β) e
q2β2

2 (1−e−2t )n

(4.29)
≤ C(β,T , q).

4.2.4. Proof of Claim 4.7. Assume q ≥ 2. By Cauchy–Schwarz and Jensen’s inequality,
we have

Eh

[(
X′)q] = eqβ(e−t −1)np′(β)

Eh

(〈
f (σ) eβ

√
1−e−2t

∑
i hiϕi

〉q)

≤ eqβ(e−t −1)np′(β)
Eh

(〈
f (σ)2〉q/2〈e2β

√
1−e−2t

∑
i hiϕi

〉q/2)

≤ eqβ(e−t −1)np′(β)〈f (σ)2〉q/2
Eh

〈
eqβ

√
1−e−2t

∑
i hiϕi

〉

(3.8)= eqβ(e−t −1)np′(β)〈f (σ)2〉q/2 e
q2β2

2 (1−e−2t )n

(4.29)
≤ C(β,T , q)

〈
f (σ)2〉q/2

.

4.2.5. Proof of Claim 4.8. Assume q > 0. By Jensen’s inequality

(4.45)

Eh

(
Y−q) = Eh

[〈
eβ

√
1−e−2t

∑
i hiϕi eβ(e−t −1)Hn(σ )〉−q]

≤ Eh

〈
e−qβ

√
1−e−2t

∑
i hiϕi eqβ(1−e−t )Hn(σ )〉

(3.8)= e
q2β2

2 (1−e−2t )n〈eβq(1−e−t )Hn(σ )〉

(4.29)
≤ C(β,T , q)

〈
eβq(1−e−t )Hn(σ )〉.

Recall that k = �log2
n

qT
�, and we assume k ≥ 1. By (4.29)

q
(
1 − e−t ) ≤

qT

n
=

1

2log2
n

qT

≤
1

2k
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which implies

(4.46)
〈
eβq(1−e−t )Hn(σ )〉 ≤

〈
e−βHn(σ )/2k 〉

+
〈
eβHn(σ )/2k 〉

.

Repeated applications of Cauchy–Schwarz yield

(4.47)

〈
eβHn(σ )/2k 〉

=
En(e

β(1+ 1
2k )Hn(σ )

)

En(eβHn(σ ))

=
En(e

β
2 Hn(σ ) eβ( 1

2 + 1
2k )Hn(σ )

)

En(eβHn(σ ))

≤

√
En(eβHn(σ ))En(e

β(1+ 1
2k−1 )Hn(σ )

)

En(eβHn(σ ))

≤

√

En(eβHn(σ ))

√
En(eβHn(σ ))En(e

β(1+ 1
2k−2 )Hn(σ )

)

En(eβHn(σ ))

...

≤ En

(
eβHn(σ ))−1+

∑k
i=1

1
2i En

(
e2βHn(σ )) 1

2k

= Zn(β)
− 1

2k Zn(2β)
1

2k .

By similar manipulations

(4.48)
〈
e−βHn(σ )/2k 〉

≤ Zn(β)
− 1

2k Zn(0)
1

2k = Zn(β)
− 1

2k .

Together, (4.45)–(4.48) yield (4.32).

4.2.6. Proof of Claim 4.9. Assume q ≥ 2 is even. By Cauchy–Schwarz and Jensen’s
inequality, we have

(4.49)

Eh

[(
X − X′)q]

= Eh

[〈
f (σ) eβ

√
1−e−2t

∑
i hiϕi

(
eβ(e−t −1)Hn(σ ) − eβ(e−t −1)np′(β))〉q]

≤ Eh

[〈
f (σ)2〉q/2〈e2β

√
1−e−2t

∑
i hiϕi

(
eβ(e−t −1)Hn(σ ) − eβ(e−t −1)np′(β))2〉q/2]

≤
〈
f (σ)2〉q/2 eqβ(e−t −1)np′(β)

×Eh

〈
eqβ

√
1−e−2t

∑
i hiϕi

(
eβ(1−e−t )(np′(β)−Hn(σ )) −1

)q 〉

(3.8)=
〈
f (σ)2〉q/2 eqβ(e−t −1)np′(β) e

q2β2

2 (1−e−2t )n〈(eβ(1−e−t )(np′(β)−Hn(σ )) −1
)q 〉

(4.29)
≤ C(β,T , q)

〈
f (σ)2〉q/2〈(eβ(1−e−t )(np′(β)−Hn(σ )) −1

)q 〉
.



2790 E. BATES AND S. CHATTERJEE

For any L > 0, we have the inequality (ex −1)q ≤ C(L,q)|x| for all x ≤ L. Hence,

(4.50)

〈(
eβ(1−e−t )(np′(β)−Hn(σ )) −1

)q 〉

≤ C(L,q)β
(
1 − e−t )n

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉

+
〈(

eβ(1−e−t )(np′(β)−Hn(σ )) −1
)q

1{β(1−e−t )(np′(β)−Hn(σ ))>L}
〉

(4.29)
≤ C(β,T ,L,q)

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉

+
〈(

eβ(1−e−t )(np′(β)−Hn(σ )) −1
)q

1{β(1−e−t )(np′(β)−Hn(σ ))>L}
〉
.

Assume L ≥ 2βTp′(β) so that whenever

β
(
1 − e−t )(np′(β) − Hn(σ )

)
> L ≥ 2βTp′(β)

(4.29)
≥ 2β

(
1 − e−t )np′(β),

it follows that

−β
(
1 − e−t )Hn(σ ) > β

(
1 − e−t )np′(β)

⇒ −2β
(
1 − e−t )Hn(σ ) > β

(
1 − e−t )(np′(β) − Hn(σ )

)
> L ≥ 0

(4.29)⇒ −
2βT

n
Hn(σ ) > β

(
1 − e−t )(np′(β) − Hn(σ )

)
> L ≥ 0.

We thus have

(4.51)

〈(
eβ(1−e−t )(np′(β)−Hn(σ )) −1

)q
1{β(1−e−t )(np′(β)−Hn(σ ))>L}

〉

≤
〈
e− 2qβT

n
Hn(σ )

1{− 2βT
n

Hn(σ )>L}
〉

≤ e−L〈e− 2(q+1)βT
n

Hn(σ )〉

= e−L En[eβ(1− 2(q+1)T
n

)Hn(σ )]
En[eβHn(σ )]

≤ e−L (En[eβHn(σ )])1− 2(q+1)T
n

En[eβHn(σ )]

= e−L Zn(β)−
2(q+1)T

n .

Combining (4.49)–(4.51), we have now shown that

Eh

[(
X − X′)q] ≤

〈
f (σ)2〉q/2

[
C(β,T ,L,q)

〈∣∣∣∣p
′(β) −

Hn(σ )

n

∣∣∣∣
〉

+ C(β,T , q) e−L Zn(β)−
2(q+1)T

n

]
.

Finally, given ε > 0, we choose L large enough that e−L ≤ ε, thereby producing (4.33). Then,
(4.34) is the special case when f ≡ 1. �

5. Proof of Theorem 1.4. In this section we consider perturbations to the environment
of the form

g(k) := g +
1

√
n

k∑

j=1

h(j), k ≥ 0,
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where the h(j)’s are independent copies of g. An important observation is that

(5.1) g(k) d=

√

1 +
k

n
g ⇒ μ

β

n,g(k)

d= μ
β
√

1+ k
n

n,g .

We will continue to use E to denote expectation with respect to g and the h(k)’s jointly,
whereas E

h(k) will denote expectation with respect to h(k) conditional on g and h(j), 1 ≤ j ≤
k − 1. As before, all statements involving E

h(k) and Var
h(k) are to be interpreted as almost

sure statements.
As in Section 3, 〈·〉β will denote expectation with respect to μ

β
n,g . On the other hand, we

will write ⟪·⟫k to denote expectation under the measure μ
β

n,g(k) , where the dependence on β

is understood. That is,

(5.2)

⟪f (σ)⟫k :=
En(f (σ ) e

β(Hn(σ )+ 1√
n

∑k
j=1

∑
i h

(j)
i ϕi)

)

En(e
β(Hn(σ )+ 1√

n

∑k
j=1

∑
i h

(j)
i ϕi)

)

=
⟪f (σ) e

β√
n

∑
i h

(k)
i ϕi⟫k−1

⟪e β√
n

∑
i h

(k)
i ϕi⟫k−1

.

For δ > 0, define the set

Aδ,k :=
{
σ 1 ∈ �n :

1

n

∑

i

ϕi

(
σ 1)⟪ϕi

(
σ 2)⟫k ≤ δ

}
,

where Aδ,0 = Aδ is the set under consideration in Theorem 1.4, whose proof will rely on
Propositions 5.1 and 5.3 below.

PROPOSITION 5.1. For any δ0 > 0, there exists n0 = n0(δ0) such that, for all n ≥ n0,
k ≥ 1 and δ ≥ δ0,

E⟪1Aδ,k−1⟫k ≤ E⟪1A
δ1/4,k
⟫k + C(β)δ.

PROOF. For any measurable f : �n → [0,1], an application of (5.2), followed by
Cauchy–Schwarz and Jensen’s inequality, gives

⟪f (σ)⟫k ≤

√
⟪f (σ)2⟫k−1

√
⟪e 2β√

n

∑
i h

(k)
i ϕi⟫k−1

⟪e β√
n

∑
i h

(k)
i ϕi⟫k−1

≤
√
⟪f (σ)⟫k−1

√

⟪e 2β√
n

∑
i h

(k)
i ϕi⟫k−1⟪e

−β√
n

∑
i h

(k)
i ϕi⟫k−1.

So we define the random variable

X :=

√

2⟪e 2β√
n

∑
i h

(k)
i ϕi⟫k−1⟪e

−β√
n

∑
i h

(k)
i ϕi⟫k−1

and consider, for fixed σ 1, the function fσ 1(σ 2) = 0 ∨ 1
n

∑
i ϕi(σ

1)ϕi(σ
2). By (4.26) fσ 1 is

[0,1]-valued, and (A3) implies

fσ 1
(
σ 2) ≤ En +

1

n

∑

i

ϕi

(
σ 1)ϕi

(
σ 2).



2792 E. BATES AND S. CHATTERJEE

So the above estimate shows

1

n

∑

i

ϕi

(
σ 1)⟪ϕi

(
σ 2)⟫k ≤ ⟪fσ 1

(
σ 2)⟫k

≤
X
√

2

√√√√En +
1

n

∑

i

ϕi

(
σ 1

)⟪ϕi

(
σ 2

)⟫k−1.

In particular, when n is sufficiently large that En ≤ δ,

1Aδ,k−1

(
σ 1)1

n

∑

i

ϕi

(
σ 1)⟪ϕi

(
σ 2)⟫k ≤ X

√
δ.

We have thus shown Aδ,k−1 ⊂AX
√

δ,k , which implies

E⟪1Aδ,k−1⟫k ≤ E⟪1A
X

√
δ,k
⟫k ≤ E⟪1A

t
√

δ,k
⟫k + P(X > t) for any t > 0,

where in the second inequality we have used the fact that if δ1 ≤ δ2, then Aδ1,k ⊂ Aδ2,k . To
handle the last term in the above display, we note that, for any p ≥ 1,

P(X > t) = P
(
Xp > tp

)

≤ t−p
E
(
Xp)

= t−p2p/2
E
[⟪e 2β√

n

∑
i h

(k)
i ϕi⟫p/2

k−1⟪e
−β√

n

∑
i h

(k)
i ϕi⟫pk−1

]

≤ t−p2p/2

√
E
[⟪e 2β√

n

∑
i h

(k)
i ϕi⟫pk−1

]
·E

[⟪e−β√
n

∑
i h

(k)
i ϕi⟫2p

k−1

]

≤ t−p2p/2

√

E⟪e 2βp√
n

∑
i h

(k)
i ϕi⟫k−1 ·E⟪e−2βp√

n

∑
i h

(k)
i ϕi⟫k−1.

Now, for any θ ∈R and any k ≥ 1,

E⟪e θ√
n

∑
i h

(k)
i ϕi⟫k−1 = E

[
E

h(k)⟪e θ√
n

∑
i h

(k)
i ϕi⟫k−1

] (3.8)= e
θ2
2 .

Hence,

P(X > t) ≤ t−p2p/2 e2β2p2
.

Choosing t = δ−1/4 and p = 4, we arrive at

E⟪1Aδ,k−1⟫k ≤ E⟪1A
δ1/4,k
⟫k + C(β)δ

which holds for all n such that En ≤ δ. �

Next, we consider the event

Bδ,k :=
{

1

n

∑

i

⟪ϕi⟫2
k ≤ δ

}
,

where Bδ,0 = Bδ is the event under consideration in Theorem 1.5.

LEMMA 5.2. Assume β is a point of differentiability for p(·), and p′(β) < β . For any

ε > 0, there is δ = δ(β, ε) > 0 sufficiently small that, for any positive constant K , the follow-

ing is true. If k(n) ∈ {0,1, . . . ,K} for all n, then

(5.3) lim sup
n→∞

P(Bδ,k(n)) ≤ ε.
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PROOF. By Theorem 1.5 there is δ > 0 sufficiently small that

(5.4) lim sup
n→∞

P(B2δ,0) ≤ ε.

Let us write βn := β

√
1 + k(n)

n
and then observe that

P(Bδ,k(n)) = P

(
1

n

∑

i

⟪ϕi⟫2
k(n) ≤ δ

)

(5.1)= P

(
1

n

∑

i

〈ϕi〉2
βn

≤ δ

)
(5.5)

≤ P(B2δ,0) + P

(∣∣∣∣
1

n

∑

i

〈ϕi〉2
βn

−
1

n

∑

i

〈ϕi〉2
β

∣∣∣∣ ≥ δ

)
.

Since
√

1 + k(n)
n

≤ 1 + k(n)
n

≤ 1 + K
n

, we have 0 ≤ βn − β ≤ βK
n

, and thus Lemma 3.12(c)
gives

∣∣∣∣
1

n

∑

i

〈ϕi〉2
βn

−
1

n

∑

i

〈ϕi〉2
β

∣∣∣∣ ≤ 2
√

βK
√

F ′
n(βn) − F ′

n(β).

By Lemma 3.9 the right-hand side above converges to 0 almost surely as n → ∞. In particu-
lar,

lim
n→∞

P

(∣∣∣∣
1

n

∑

i

〈ϕi〉2
βn

−
1

n

∑

i

〈ϕi〉2
β

∣∣∣∣ ≥ δ

)
= 0,

and so (5.3) follows from (5.4) and (5.5). �

PROPOSITION 5.3. Given any α > 0, there are positive constants C1(α,β) and C2(β)

such that the following holds for any δ0 ∈ (0,1). There exists n0 = n0(δ0) so that, for every

n ≥ n0, k ≥ 1 and δ ∈ [δ0,1),

Eh(k)⟪1Aδ,k−1⟫k ≥ ⟪1Aδ,k−1⟫k−1 + C1(α,β)⟪1Aδ,k−1⟫k−11Bc
α,k−1

− C2(β)
√

δ.

PROOF. Let δ0 ∈ (0,1) be given, and take n0 such that En ≤ δ0/2 for all n ≥ n0. Consider
any δ ∈ [δ0,1), and define the random variables:

X := ⟪e β√
n

∑
i h

(k)
i ϕi⟫k−1,

X1 := ⟪1Aδ,k−1 e
β√
n

∑
i h

(k)
i ϕi⟫k−1,

X2 := ⟪1A
c
δ,k−1

e
β√
n

∑
i h

(k)
i ϕi⟫k−1,

Y1 := E
h(k)X1

(3.8)= e
β2

2 ⟪1Aδ,k−1⟫k−1,

Y2 := E
h(k)X2

(3.8)= e
β2

2 ⟪1A
c
δ,k−1
⟫k−1.

Step 1. Show that X1 is concentrated at Y1 but X2 is not concentrated at Y2 when Bc
α,k−1

occurs.
First, observe that, for any θ ∈ (−∞,0] ∪ [1,∞), Jensen’s inequality implies

(5.6) Eh(k)X
θ ≤ Eh(k)⟪e θβ√

n

∑
i h

(k)
i ϕi⟫k−1

(3.8)= e
(θβ)2

2 .
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In particular, for any t > e
β2

2 ≥ Y2,

(5.7)

Eh(k)

[
(X2 − Y2)

2
1{X2>t}

]
≤

E
h(k)[(X2 − Y2)

4
1{X2>t}]

(t − e
β2
2 )2

≤
E

h(k)(X4
2)

(t − e
β2
2 )2

≤
E

h(k)(X4)

(t − e
β2
2 )2

(5.6)
≤

e8β2

(t − e
β2
2 )2

.

On the other hand,

(5.8)

Varh(k)(X2) = Varh(k)(X − X1)

= Varh(k)(X) − 2 Covh(k)(X,X1) + Varh(k)(X1)

≥ Var
h(k)(X) − 2

√
Var

h(k)(X)Var
h(k)(X1).

We have the upper bound

(5.9) Var
h(k)(X) ≤ E

h(k)

(
X2) (5.6)

≤ e2β2

as well as the lower bound

(5.10)

Var
h(k)(X)

= Eh(k)⟪e β√
n

∑
i h

(k)
i (ϕi(σ

1)+ϕi(σ
2))⟫k−1 −

(
Eh(k)⟪e β√

n

∑
i h

(k)
i ϕi⟫k−1

)2

(3.8)= eβ2(⟪e β2

n

∑
i ϕi(σ

1)ϕi(σ
2)⟫k−1 − 1

)

≥ eβ2(
e

β2

n

∑
i⟪ϕi⟫

2
k−1 −1

)

≥ eβ2 β2

n

∑

i

⟪ϕi⟫2
k−1.

Meanwhile, we have En ≤ δ0/2 ≤ δ/2 for all n ≥ n0. Hence, Lemma 4.5(b) implies

(5.11)
Varh(k)(X1) ≤ e2β2

(
⟪1Aδ,k−1(σ )

1

n

∑

i

ϕi⟪ϕi⟫k−1⟫
k−1

+ 2En

)

≤ 2 e2β2
δ for all n ≥ n0.

Using (5.9)–(5.11) in (5.8) yields

(5.12) Var
h(k)(X2) ≥ β2 eβ2 1

n

∑

i

⟪ϕi⟫2
k−1 − 2 e2β2 √

2δ for all n ≥ n0.

So on the event Bc
α,k−1 = { 1

n

∑
i⟪ϕi⟫2

k−1 > α}, (5.12) shows

(5.13) Var
h(k)(X2)1Bc

α,k−1
≥

(
β2 eβ2

α − 2 e2β2 √
2δ

)
1Bc

α,k−1

for all n ≥ n0. Given α and β , we fix t = t (α,β) large enough such that

(5.14a) t > e
β2

2 ≥ max(Y1, Y2)

and

(5.14b)
e8β2

(t − e
β2
2 )2

≤
1

2
β2 eβ2

α.
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Because of (5.14b), the inequalities (5.7) and (5.13) together yield

(5.15)

Eh(k)

[
(X2 − Y2)

2
1{X2≤t}

]
1Bc

α,k−1

=
(
Varh(k)(X2) −E

[
(X2 − Y2)

2
1{X2>t}

])
1Bc

α,k−1

≥
(

1

2
β2 e2β2

α − 2 e2β2 √
2δ

)
1Bc

α,k−1
=

(
C1(α,β) − C2(β)

√
δ
)
1Bc

α,k−1

for all n ≥ n0.

Step 2. Since X1 ≈ Y1, obtain an upper bound on the error in the following approximation:

Eh(k)

(
X1

X1 + X2

)
≈ Eh(k)

(
Y1

Y1 + X2

)
.

Simple algebra gives

X1

X1 + X2
−

Y1

Y1 + X2
=

X2(X1 − Y1)

(X1 + X2)(Y1 + X2)
=

X2(X1 − Y1)

X(Y1 + X2)
,

and
∣∣∣∣Eh(k)

(
X2(X1 − Y1)

X(Y1 + X2)

)∣∣∣∣ ≤ E
h(k)

( |X1 − Y1|
X

)

≤ Eh(k)

(
X−2)√Varh(k)(X1)(5.16)

(5.6), (5.11)
≤ C(β)

√
δ for all n ≥ n0.

Step 3. Since X2 is not concentrated at Y2 when Bc
α,k−1 occurs, obtain a lower bound on the

gap in the following application of Jensen’s inequality:

Eh(k)

(
Y1

Y1 + X2

)
=

Y1

Y1 + Y2
+ (Jensen gap).

We consider the function f : (−Y1,∞) → [0,1] given by

f (x) :=
Y1

Y1 + x
for which f ′′(x) =

2Y1

(Y1 + x)3
≥ 0.

In particular, we consider its Taylor series approximation about Y2,

f (x) = f (Y2) + (x − Y2)f
′(Y2) +

(x − Y2)
2

2
f ′′(ξx),

where ξx belongs to the interval between x and Y2. We note that such an expansion exists

because the identity Y1 + Y2 = e
β2

2 shows Y2 > −Y1. Jensen’s inequality implies

Eh(k)f (X2) ≥ f (Eh(k)X2) = f (Y2) =
Y1

Y1 + Y2
= ⟪1Aδ,k−1⟫k−1.

We will now produce a lower bound on the Jensen gap.
First, observe that f ′′ is decreasing on (−Y1,∞). Consequently, if x ∈ [Y2, t], then

f ′′(ξx) ≥ f ′′(x) ≥ f ′′(t). Similarly, if x ≤ Y2, then f ′′(ξx) ≥ f ′′(Y2) ≥ f ′′(t). Therefore,
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for all n ≥ n0, we have

(5.17)

E
h(k)f (X2) − ⟪1Aδ,k−1⟫k−1

= Eh(k)f (X2) − f (Y2)

=
Eh(k)[(X2 − Y2)

2f ′′(ξX2)]
2

≥
f ′′(t)

2
E

h(k)

[
(X2 − Y2)

2
1{X2≤t}

]

≥
Y1

(Y1 + t)3Eh(k)

[
(X2 − Y2)

2
1{X2≤t}

]
1Bc

α,k−1

(5.14a), (5.15)
≥

Y1

8t3

(
C1(α,β) − C2(β)

√
δ
)
1Bc

α,k−1

≥ C1(α,β)⟪1Aδ,k−1⟫k−11Bc
α,k−1

− C2(β)
√

δ,

where the second term in the final expression need not depend on α since Y1/(8t3) ≤ 1.

Step 4. Reckon the final bound.
In summary, for all n ≥ n0,

Eh(k)⟪1Aδ,k−1⟫k (5.2)= Eh(k)

(
X1

X1 + X2

)

(5.16)
≥ Eh(k)

(
Y1

Y1 + X2

)
− C(β)

√
δ

= E
h(k)f (X2) − C(β)

√
δ

(5.17)
≥ ⟪1Aδ,k−1⟫k−1 + C1(α,β)⟪1Aδ,k−1⟫k−11Bc

α,k−1
− C2(β)

√
δ. �

PROOF OF THEOREM 1.4. Let ε > 0 be given. From Lemma 5.2 we fix α = α(β, ε) > 0
so that, for any bounded sequence (k(n))n≥1 of nonnegative integers, we have

(5.18) lim sup
n→∞

P(Bα,k(n)) ≤
ε

2
.

We wish to find δ∗ > 0, depending only on β and ε, such that E⟪1Aδ∗⟫≤ ε.
Let δ0 ∈ (0,1), with its exact value to be decided later. From Proposition 5.3 we know that,

for all n ≥ n0 = n0(δ0) and δ ∈ [δ0,1),

E⟪1Aδ,k−1⟫k
≥ E⟪1Aδ,k−1⟫k−1 + C1(β, ε)E

(⟪1Aδ,k−1⟫k−11Bc
α,k−1

)
− C2(β)

√
δ.

And from Proposition 5.1, we can assume

E⟪1Aδ,k−1⟫k ≤ E⟪1A
δ1/4,k
⟫k + C(β)δ for all n ≥ n0, δ ∈ [δ0,1).

Linking the two inequalities, we find that

E⟪1A
δ1/4,k
⟫k

≥ E⟪1Aδ,k−1⟫k−1 + C1(β, ε)E
(⟪1Aδ,k−1⟫k−11Bc

α,k−1

)
− C2(β)

√
δ,
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where now we fix the constants C1(β, ε) and C2(β). Note that δ0 ≤ δ ≤ δ1/4 < 1, and so this
reasoning can be iterated. Iterating K times produces the estimate

1 ≥ E⟪1A
δ1/4K

,K
⟫K

≥
K−1∑

k=0

[
C1(β, ε)E

(⟪1A
δ1/4k

,k
⟫k1Bc

α,k

)
− C2(β)

√
δ1/4k ] +E⟪1Aδ,0⟫0,

which implies the existence of some k = k(n) ∈ {0,1, . . . ,K − 1} such that

(5.19) C1(β, ε)E
(⟪1A

δ1/4k
,k
⟫k1Bc

α,k

)
− C2(β)

√
δ1/4k ≤

1

K
.

So we take K = K(β, ε) large enough that

(5.20)
1

C1(β, ε)K
≤

ε

6

and then choose δ0 = δ0(β,K) small enough that

(5.21) C2(β)

√
δ

1/4K

0 ≤
1

K
.

We now have, for all n ≥ n0,

E
(⟪1A

δ
1/4k

0 ,k

⟫k1Bc
α,k

) (5.19)
≤

1

C1(β, ε)

(
1

K
+ C2(β)

√
δ

1/4K

0

)

(5.21)
≤

2

C1(β, ε)K

(5.20)
≤

ε

3
.

Combining this bound with (5.18), we see that

(5.22) E⟪1A
δ
1/4k

0 ,k

⟫k ≤ E
(⟪1A

δ
1/4k

0 ,k

⟫k1Bc
α,k

)
+ P(Bα,k) ≤ ε ∀ large n.

To now complete the proof, we must obtain from this result an analogous one with k = 0.

As in the proof of Lemma 5.2, we will write βn := β
√

1 + k
n

. For η > 0, define the set

Ãη,k :=
{
σ 1 ∈ �n :

∑

i

ϕi

(
σ 1)〈ϕi

(
σ 2)〉

βn
≤ η

}
.

It follows from (5.1) that

(5.23) ⟪1Aη,k
⟫k d= 〈1Ãη,k

〉βn for any η > 0.

Since 0 ≤ βn − β ≤ βK
n

, Lemma 3.12(b) implies
∣∣∣∣
1

n

∑

i

ϕi〈ϕi〉βn −
1

n

∑

i

ϕi〈ϕi〉β
∣∣∣∣ ≤

√
βK

√
F ′

n(βn) − F ′
n(β).

Denote the right-hand side above by �n. Take δ∗ := 1
2δ0 ≤ 1

2δ
1/4k

0 . From the above display,
Aδ∗,0 ⊂ Ãδ∗+�n,k . Hence,

E〈1Aδ∗,0〉β ≤ E〈1Ãδ∗+�n,k
〉β

≤ P(�n > δ∗) +E〈1Ã2δ∗,k
〉β

(5.23)= P(�n > δ∗) +E〈1Ã2δ∗,k
〉β −E〈1Ã2δ∗,k

〉βn +E⟪1A2δ∗,k
⟫k

≤ P(�n > δ∗) +E〈1Ã2δ∗,k
〉β −E〈1Ã2δ∗,k

〉βn +E⟪1A
δ
1/4k

0 ,k

⟫k.
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And by Lemma 3.12(a),
∣∣〈1Ã2δ∗,k

〉βn − 〈1Ã2δ∗,k
〉β

∣∣ ≤ �n.

From the previous two displays and (5.22), we have

E〈1Aδ∗,0〉β ≤ P(�n > δ∗) +E(�n) + ε for all large n.

Finally, Lemma 3.9 shows that �n → 0 almost surely and in L1 as n → ∞. Consequently,
lim supn→∞E〈1Aδ∗,0〉β ≤ ε. �

6. Proof of equivalence of Theorems 1.3 and 1.4. Theorem 1.3 is implied by Theo-
rem 1.4 once we establish the following result. Recall the definitions (1.4) and (1.6).

PROPOSITION 6.1. Suppose Hn is defined by (A4), where (gi)
∞
i=1 are i.i.d. random vari-

ables with zero mean and unit variance (not necessarily Gaussian). Assume (A1)–(A3). Then,
the following two statements are equivalent:

(S1) For every ε > 0, there exist integers k = k(β, ε) and n0 = n0(β, ε) and a number

δ = δ(β, ε) > 0 such that the following is true for all n ≥ n0. With P-probability at least

1 − ε, there exist σ 1, . . . , σ k ∈ �n such that

μβ
n

(
k⋃

j=1

B
(
σ j , δ

)
)

≥ 1 − ε.

(S2) For every ε > 0, there exists δ = δ(β, ε) > 0 sufficiently small that

lim sup
n→∞

E〈1An,δ 〉 ≤ ε.

6.1. Proof of (S2) ⇒ (S1). Let ε > 0 be given. By (S2) we can choose δ > 0 small
enough and n0 large enough so that, for all n ≥ n0,

E〈1An,2δ
〉 ≤

ε2

2
.

It follows from Markov’s inequality that

(6.1) P

(
〈1An,2δ

〉 >
ε

2

)
≤ ε.

Now, by the Paley–Zygmund inequality, for any j �= k + 1,

〈
1{Rj,k+1≥δ} | σ k+1〉

1{R(σ k+1)>2δ} ≥
1

4

R(σ k+1)2

〈R2
j,k+1 | σ k+1〉

1{R(σ k+1)>2δ}

≥ δ2
1{R(σ k+1)>2δ}.

Therefore,
〈
1⋂k

j=1{Rj,k+1<δ} | σ k+1〉
1{R(σ k+1)>2δ} ≤

(
1 − δ2)k ≤ e−δ2k .

Choosing k = �−δ−2 log(ε/2)� ∨ 0, we have

〈1⋂k
j=1{Rj,k+1<δ}〉 ≤

ε

2
+ 〈1{R(σ k+1)≤2δ}〉 =

ε

2
+ 〈1An,2δ

〉.
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Therefore,

P
(
〈1⋃k

j=1{Rj,k+1≥δ}〉 ≥ 1 − ε
)
= P

(
〈1⋂k

j=1{Rj,k+1<δ}〉 ≤ ε
)

≥ P

(
〈1An,2δ

〉 ≤
ε

2

)
(6.1)
≥ 1 − ε.

This completes the proof, since

μβ
n

(
k⋃

j=1

B
(
σ j , δ

)
)

= 〈1⋃k
j=1{Rj,k+1≥δ}〉.

6.2. Proof of (S1) ⇒ (S2). We begin with a lemma that roughly states the following.
If many random variables each have nonnegligible positive correlation with a distinguished
variable, then at least one pair of these variables has nonnegligible positive correlation.

LEMMA 6.2. For any δ ∈ (0,1], there exists N0 = N0(δ) such that the following holds

for any integer N ≥ N0 and any σ 0 ∈ �n. If σ 1, . . . , σN ∈ B(σ 0, δ) ⊂ �n, then

(6.2) Rj,k ≥
δ2

2
for some 1 ≤ j < k ≤ N.

PROOF. Consider the (N + 1) × (N + 1) matrix R = (Rj,k)0≤i,j≤N , where

Rj,k =R
(
σ j , σ k) =

1

n

∑

i

ϕi

(
σ j )ϕi

(
σ k).

Observe that R is positive semidefinite: for any x ∈ R
N+1,

〈x,Rx〉 =
∑

0≤j,k≤N

Rj,kxjxk =
1

n

∑

i

∑

0≤j,k≤N

xjϕi

(
σ j )xkϕi

(
σ k)

=
1

n

∑

i

(
N∑

j=0

xjϕi

(
σ j )

)2

≥ 0.

Now, let η := 0 ∨ max1≤j<k≤N Rj,k . For x = (1,−x, . . . ,−x) ∈ R
1+N with x ≥ 0, our as-

sumptions give

0 ≤ 〈x,Rx〉 ≤ 1 + Nx2 − 2δNx + ηN2x2.

We now take x = δ/(1 + ηN) to obtain

0 ≤ 1 + N

(
δ

1 + ηN

)2
− 2δN

δ

1 + ηN
+ ηN2

(
δ

1 + ηN

)2

= 1 +
δ2

1 + ηN

[
N

1 + ηN
− 2N +

ηN2

1 + ηN

]
= 1 −

δ2N

1 + ηN
.

Supposing that η < δ2/2, we further see

0 ≤ 1 −
δ2N

1 + ηN
≤ 1 −

δ2N

1 + δ2N/2

which yields a contradiction as soon as δ2N
1+δ2N/2

> 1. �

We will contrast Lemma 6.2 with the one below, which says that if δ is small enough, then
any nonnegligible subset of An,δ has many nearly orthogonal elements.
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LEMMA 6.3. For any ε1, ε2 > 0 and positive integer N , there is δ = δ(ε1, ε2,N) > 0
such that the following holds. If A ⊂ An,δ with 〈1A〉 ≥ ε1, then there are σ 1, . . . , σN ∈ A

such that

Rj,k < ε2 for all 1 ≤ j < k ≤ N.

PROOF. Set δ := ε1ε2/N . Observe that, for any σ ∈ A, we have the following implica-
tion:

(6.3) δ ≥ R(σ ) ≥ ε2〈1B(σ,ε2)〉 ⇒ 〈1B(σ,ε2)〉 ≤
δ

ε2
=

ε1

N
.

Therefore, one can inductively choose

σ 1 ∈ A, σ 2 ∈ A \B
(
σ 1, ε2

)
, σ 3 ∈ A \

(
B
(
σ 1, ε2

)
∪ B

(
σ 2, ε2

))
, . . . ,

where (6.3) guarantees that

μβ
n

(
A \

(
B
(
σ 1, ε2

)
∪ · · · ∪B

(
σ k−1, ε2

)))
≥ ε1 − (k − 1)

ε1

N
.

Hence, σ k ∈ A \ (B(σ 1, ε2) ∪ · · · ∪B(σ k−1, ε2)) can be found so long as k ≤ N . �

We can now complete the proof. Assume that (S1) holds. Suppose, contrary to (S2), that
there is some ε ∈ (0,1) such that, for every δ > 0,

(6.4) lim sup
n→∞

E〈1An,δ 〉 > 4ε.

Note that for any n such that E〈1An,δ 〉 ≥ 4ε, we have

4ε ≤ E〈1An,δ 〉 ≤ P
(
〈1An,δ 〉 ≥ 2ε

)
+ 2εP

(
〈1An,δ 〉 < 2ε

)

= (1 − 2ε)P
(
〈1An,δ 〉 ≥ 2ε

)
+ 2ε,

and thus P(〈1An,δ 〉 ≥ 2ε) ≥ 2ε.
From (S1) we choose k and δ so that for all n large enough (depending on ε on β), the

following is true with P-probability at least 1 − ε: There exist σ 1, . . . , σ k ∈ �n such that

(6.5) μβ
n

(
k⋃

j=1

B
(
σ j , δ

)
)

≥ 1 − ε.

Once δ has been determined, choose N so that the conclusion of Lemma 6.2 holds. Then,
given the values of k and N , choose δ′ so that the conclusion of Lemma 6.3 holds with
ε1 = ε/k and ε2 = δ2/2.

In summary, if n is large enough and E〈1An,δ′ 〉 ≥ 4ε (by (6.4), there are infinitely many n

for which this is the case), the following is true. With P-probability at least 2ε − ε = ε, we
have both 〈1An,δ′ 〉 ≥ 2ε and (6.5) for some σ 1, . . . , σ k ∈ �n. In this case we have

μβ
n

(
An,δ′ ∩

(
k⋃

j=1

B
(
σ j , δ

)
))

≥ 2ε − ε = ε.

Therefore, there is some j such that

μβ
n

(
An,δ′ ∩B

(
σ j , δ

))
≥

ε

k
.

By our choice of δ′, we can find σ 1, . . . , σN ∈An,δ′ ∩B(σ j , δ) satisfying

Rj,k <
δ2

2
for all 1 ≤ j < k ≤ N.

But σ 1, . . . , σN ∈ B(σ j , δ), and so the above display contradicts (6.2).



LOCALIZATION IN DISORDERED SYSTEMS 2801

7. Polymer measures are asymptotically nonatomic. In this section we prove that di-
rected polymers on the lattice are asymptotically nonatomic. It is a striking phenomenon that
at sufficiently small temperatures, the polymer endpoint distribution places a nonvanishing
mass on a single element of Z

d (which is random and varies with n) [28]. The fact that
the polymer measures themselves do not share this property, stated below as Theorem 7.1,
justifies the investigation of replica overlap as an order parameter for path localization. To
emphasize the fact that the Gaussian environment can be replaced by a general one, we rein-
troduce notation for directed polymers.

Let (ω(i, x) : i ≥ 1, x ∈ Z
d) be a collection of i.i.d. random variables. We will assume that

(7.1) E
(
etω(i,x)) < ∞ for some t > 0

and also that

(7.2) Var
(
ω(i, x)

)
> 0

in order to avoid trivialities. Let Pn denote the set of nearest-neighbor paths of length n in Z
d

starting at the origin. Note that |Pn| = (2d)n. To each x = (0, x1, . . . , xn) in Pn, we associate
the Hamiltonian energy

Hn(x) :=
n∑

i=1

ω(i, xi).

The polymer measure is then defined by

μβ
n (x) :=

eβHn(x)

∑
y eβHn(y)

, x ∈ Pn.

THEOREM 7.1. Assume (7.1). Then, for any d ≥ 1 and any β ∈ [0,∞),

(7.3) max
x∈Pn

μβ
n(x) = O

(
n−1) a.s. as n → ∞.

The remainder of Section 7 is to prove Theorem 7.1. We begin by defining the passage

time,

Ln := max
x∈Pn

Hn(x).

We will denote the set of maximizing paths by

(7.4) Mn :=
{
x ∈Pn : Hn(x) = Ln

}
.

It is well known (for instance, see [39]) that there is a finite constant λ such that

(7.5) lim
n→∞

Ln

n
= sup

n≥1

E(Ln)

n
= λ a.s.

The first equality above is a consequence of the superadditivity of Ln, and the second equality
leads to a short proof of the following standard fact:

LEMMA 7.2. λ > E(ω(i, x)).

PROOF. Let a = (1,0, . . . ,0) ∈ Z
d and 0 = (0, . . . ,0) ∈ Z

d . Observe that L2 ≥
max{ω(1,a) + ω(2,0),ω(1,−a) + ω(2,0)}, and so

2λ ≥ E(L2) ≥ Emax
{
ω(1,a) + ω(2,0),ω(1,−a) + ω(2,0)

}
> 2E

(
ω(i, x)

)
,

where the final equality is strict because Var(ω(i, x)2) > 0. �
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DEFINITION 7.3. For a nearest-neighbor path x = (x0, x1, . . . , xn) of length n in Z
d ,

define the turns of x to be the following set of indices:

(7.6) T (x) := {1 ≤ i ≤ n − 1 : xi+1 − xi �= xi − xi−1}.

The number of turns of x will be denoted t (x) := |T (x)|.

LEMMA 7.4. For any ε > 0, there is δ = δ(ε, d) > 0 small enough that
∣∣{x ∈ Pn : t (x) < δn

}∣∣ ≤ C(ε, d)(1 + ε)n for all n ≥ 1.

PROOF. Given an integer j , 0 ≤ j ≤ n− 1, we count the elements of {x ∈ Pn : t (x) = j}
as follows. First, the number of choices for x1 is 2d . Next, a turn should occur at exactly j of
the coordinates x1, . . . , xn−1. Moreover, if a turn occurs at xi , then there are 2d − 1 choices
for xi+1 − xi (so as to avoid xi − xi−1). Finally, if a turn does not occur at xi , then there is
only one choice for xi+1 −xi , namely, xi −xi−1. Therefore, for any positive integer k ≤ n−1

2 ,

∣∣{x ∈Pn : t (x) < k
}∣∣ =

k−1∑

j=0

2d

(
n − 1

j

)
(2d − 1)j ≤ 2dk

(
n − 1

k

)
(2d − 1)k−1.

If k = �δn� for δ ∈ (0, 1
2), then Stirling’s approximation gives

lim
n→∞

1

n
log

(
n − 1

k

)
= −δ log δ − (1 − δ) log(1 − δ).

Therefore,

lim sup
n→∞

log |{x ∈ Pn : t (x) < δn}|
n

≤ −δ log δ − (1 − δ) log(1 − δ) + δ log(2d − 1).

Now, choose δ sufficiently small that the right-hand side above is strictly less than log(1+ ε).
Inverting the logarithm and choosing C large enough now yields the desired result. �

LEMMA 7.5. Let {(ωi,ω
′
i)}∞i=1 denote a sequence of i.i.d. pairs of independent random

variables. For any ε > 0 and ν > 0, there exists D > 0 large enough that

P
(∣∣{1 ≤ i ≤ n − 1 : ωi > ω′

i + D
}∣∣ > νn

)
≤ εn for all n ≥ 1.

PROOF. Choose D > 0 large enough that p := P({|ωi | ≥ D/2} ∪ {|ω′
i | ≥ D/2}) satisfies

pν ≤ ε/2. We then have

P
(∣∣{1 ≤ i ≤ n : ωi > ω′

i + D
}∣∣ > νn

)

≤ P
(∣∣{1 ≤ i ≤ n − 1 : |ωi | ≥ D/2 or

∣∣ω′
i

∣∣ ≥ D/2
}∣∣ > νn

)

≤
n−1∑

j=�νn�

(
n

j

)
pj (1 − p)j ≤ pνn2n−1 ≤ εn.

�

PROOF OF THEOREM 7.1. Let ω denote a generic copy of ω(i, x) and ω̄ := E(ω). Set
κ := (λ − ω̄)/2 which is positive by Lemma 7.2. By assumption, there is t > 0 such that
E(etω) < ∞. Take any s ∈ (0, t) and observe that, for any given x ∈Pn,

P
(
Hn(x) ≥ (ω̄ + κ)n

)
≤ P

(
es(Hn(x)−ω̄n) ≥ esκn) ≤ e−sκn

E
(
es(ω−ω̄))n.
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Using dominated convergence, it is easy to show that

lim
s↘0

E(es(ω−ω̄)) − 1

esκ −1
= lim

s↘0

E((ω − ω̄) es(ω−ω̄))

κ esκ
= 0,

and so we may choose s sufficiently small that e−sκ
E(es(ω−ω̄)) < 1. Set η := 1 −

e−sκ
E(es(ω−ω̄)), and then choose ε > 0 sufficiently small that (1 + ε)(1 − η) < 1. With δ

as in Lemma 7.4, we have the union bound

P
(
∃x ∈ Pn : t (x) < δn,Hn(x) ≥ (ω̄ + κ)n

)
≤ C(1 + ε)n(1 − η)n.

By our choice of ε, Borel–Cantelli implies that the following statement holds almost surely:

∃n0 : ∀n ≥ n0,∀x ∈ Pn, t (x) < δn ⇒ Hn(x) < (ω̄ + κ)n.

On the other hand, it is apparent from (7.5) and our choice of κ that, almost surely, we have
Ln > (ω̄ + κ)n for all large n. For any such n, we then have Hn(x) > (ω̄ + κ)n for every
x ∈ Mn, the set of maximizing paths defined in (7.4). That is, almost surely,

∃n1 : ∀n ≥ n1,∀x ∈ Mn, Hn(x) ≥ (ω̄ + κ)n.

Together, the two previous displays show that, almost surely,

(7.7) ∃n2 : ∀n ≥ n2,∀x ∈ Mn, t (x) ≥ δn.

Recall from (7.6) that T (x) denotes the set of turns in the path x ∈ Pn. For a given x ∈ Pn

and i ∈ T (x), let x(i) denote the unique element of Pn such that x
(i)
i �= xi but x

(i)
j = xj for all

j �= i. That is, x
(i)
i −x

(i)
i−1 = xi+1 −xi while x

(i)
i+1 −x

(i)
i = xi −xi−1. Upon taking ε = 1/(4d)

and ν = δ/3 in Lemma 7.5, a union bound gives

P

(
∃x ∈ Pn :

∣∣{i ∈ T (x) : Hn(x) > Hn

(
x(i)) + D

}∣∣ >
δ

3
n

)
≤ 2−n.

Therefore, we can again apply Borel–Cantelli to see that, almost surely,

∃n3 : ∀n ≥ n3,∀x ∈ Pn,
∣∣{i ∈ T (x) : Hn(x) > Hn

(
x(i)) + D

}∣∣ ≤
δ

3
n.

Now, combining this statement with (7.7), we arrive at the following almost sure event:

∃n4 : ∀n ≥ n4,∀x ∈Mn,
∣∣{i ∈ T (x) : Hn(x) ≤ Hn

(
x(i)) + D

}∣∣ ≥
2δ

3
n.

In particular, since Mn has at least one element (call it y), we have the following for all
n ≥ n4:

max
x∈Pn

μβ
n (x) =

eβHn(y)

∑
x∈Pn

eβHn(x)
≤

eβHn(y)

∑
i∈T (y) eβHn(y(i))

≤
eβHn(y)

2δ
3 n eβHn(y) e−βD

=
3 eβD

2δn
.

Since D and δ do not depend on n, (7.3) follows. �
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