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For a broad class of Gaussian disordered systems at low temperature,
we show that the Gibbs measure is asymptotically localized in small neigh-
borhoods of a small number of states. From a single argument, we obtain:
(i) a version of “complete” path localization for directed polymers that is not
available even for exactly solvable models, and (ii) a result about the exhaus-
tiveness of Gibbs states in spin glasses not requiring the Ghirlanda—Guerra

identities.
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1. Introduction. A ubiquitous theme in statistical mechanics is to understand how a
system behaves differently at high and low temperatures. In a disordered system, where the
interactions between its elements are governed by random quantities, the strength of the dis-
order is determined by temperature. Namely, high temperatures mean the disorder is weak,
and the system is likely to resemble a generic one based on entropy. On the other hand, low
temperatures indicate strong disorder which creates dramatically different behavior in which
the system is constrained to a small set of states that are energetically favorable. In the latter
case, this concentration phenomenon is often called “localization.”

A useful statistic in distinguishing different temperature regimes is the so-called “replica
overlap.” That is, given the disorder, one can study the similarity of two independently ob-
served states. If the disorder is strong, then these two states should closely resemble one
another with good probability, since we believe the system is bound to a relatively small
number of possible realizations. Some version of this statement has been rigorously estab-
lished in a number of contexts, most famously in spin glass theory but also in the settings of
disordered random walks and disordered Brownian motion. Unfortunately, it does not follow
that the number of realizable states is small but only that there is small number of states that
are observed with positive probability.

In the present study our entry point to this problem is to consider conditional overlap.
Whereas previous results in the literature show the overlap distribution between two indepen-
dent states has a nonzero component, we ask whether the same is true even if one conditions
on the first state. That is, does a typical state always have positive expected overlap with an
independent one? We show that for a broad class of Gaussian disordered systems, the answer
is “yes,” the key implication being that the entire realizable state space is small. Specifically,
there is an O(1) number of states such that all but a negligible fraction of samples from the
system will have positive overlap with one of these states.

The general setting, notation, motivation, and results are given in Sections 1.1-1.4, re-
spectively. The consequences for spin glasses, directed polymers and other Gaussian fields
are discussed in Sections 1.5 and 1.6.

1.1. Model and assumptions. Let (2, F,P) be an abstract probability space, and
(Zn)n>1 a sequence of Polish spaces equipped respectively with probability measures
(Pp)n>1. For each n, we consider a centered Gaussian field H,, indexed by X, and de-
fined on 2. Viewing this field as a Hamiltonian, we have the associated Gibbs measure at
inverse temperature S,

BHy(0)
Zn(B)

Our results concern the relationship between the free energy,

wh(do) = P,(do) where Z,(B) := / ePH @) p(do).

Fu(B) = %bg Zn(B),
and the covariance structure of H,. We make the following assumptions:
e There is a deterministic function p : R — R such that
(A1) lim F,(f)=p() P-as.andin L'(P), for every B8 € R.
e Forevery o € &,

(A2) Var H, (o) =n.
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e For every ol,o2ex,,
(A3) Cov(Hy (o), Hy(0?)) = —né,,

where &, is a nonnegative constant tending to 0 as n — oo.

e For each n, there exist measurable real-valued functions (‘Pi,n)?; on X, and i.i.d. stan-
dard normal random variables (gi,n)?i defined on 2 such that for each o € X,,, with
P-probability 1,

o
(A4) Hy(0) =) 8inin(0),

i=1

where the series on the right converges in L?(P).

REMARK 1.1. In all applications of interest (see Section 1.5), the hypothesis (A3) is
trivially satisfied with &, = 0. Nevertheless, we assume throughout only that &, — O (at any
rate). This modest relaxation is made so our results can apply to slightly more general models,
for instance, perturbations of the standard models we will soon describe.

REMARK 1.2. The condition (A4) is very mild: For example, it always holds when %,
is finite. More generally, a sufficient condition for the existence of a representation (A4) is
that 3, is compact in the metric defined by H,, (namely, the metric that defines the distance
between o and o’ as the L? distance between the random variables H, (o) and H,(c”)). For
a proof of this standard result, see [1], Theorem 3.1.1. Furthermore, in all applications of
interest, H, will actually be explicitly defined using a sum of the form (A4).

1.2. Notation. Unless stated otherwise, “almost sure” and “in L*” statements are with
respect to P. We will use E, and [E to denote expectation with respect to P, and PP, respec-

tively. Absent any decoration, (-) will always denote expectation with respect to ,ug , meaning
_ Ey(f(0)ePtn®)

(f (o) = E,(eBHn(0))
At various points in the paper, we will decorate (-) to denote expectation with respect to some
perturbation of Mf The type of perturbation will change between sections. The symbols ¢/,

j=1,2,..., shall denote independent samples from ME, if appearing within (-), or from
Py, if appearing within E, (-). We will refer to the vector g, = (gi,»){2, as the disorder or
random environment. Sometimes, we will consider multiple environments at the same time
which will necessitate that we write Mf g, instead of ,ug to emphasize the dependence on the
environment g,,.

In the sequel, }; will always mean ) :°,, and we will condense our notation to ¢; =
@i n(0) when we are dealing with some fixed n. Similarly, g; , will be shortened to g;, and
g, will be shortened to g. Also, C(-) will indicate a positive constant that depends only on the
argument(s). In particular, no such constant depends on g or n. We will not concern ourselves
with the precise value which may change from line to line.

1.3. Motivation. Our results will be stated in terms of the correlation or overlap function,
1
R(ol, 02) = —COV(Hn(Ul), Hn(oz)), ol,o’ex,.
n
Note that (A2) and (A3) imply
—&, 573(01,02) <1

We will often abbreviate R(c/, o%) to R k-
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The Gaussian process (H,(0))scx, haturally defines a (pseudo)metric p on X, given by
(1.1) plo!, o) :=1-Ry,.

Given the metric topology, we can study the so-called “energy landscape” of B H, on X,. The
geometry of this landscape is intimately related to the free energy. By Jensen’s inequality,

2
(1.2) EFy(8) < ~log EZy (8) “™2>7 ﬂ?
n

which, in particular, implies p(8) < 8%/2. In general, whether or not this inequality is strict
determines the nature of the energy landscape: In order for p(8) = 8%/2, the fluctuations
of log Z,,(8) must be relatively small so that the Jensen gap in (1.2) is o(1). This behavior
arises when the Gaussian deviations of 8 H, (o) are washed out by the entropy of P,, creat-
ing a more or less flat landscape. On the other hand, if p(8) < B2/2, then these deviations
will have overcome the entropy of P,, producing large peaks and valleys where S H, (o) is
exceptionally positive or negative. From a physical perspective this latter scenario is more in-
teresting, as these peaks can account for an exponentially vanishing fraction of the state space
even as their union accounts for a nonvanishing fraction of the mass of ,ug The primary goal
of this paper is to give a sufficient condition for when (in a sense Theorem 1.3 makes precise)
ME places all of its mass on this union of peaks.

Suppose that p(-) is differentiable at 8 > 0. Using Gaussian integration by parts, it is not
difficult to show (as we do in Corollary 3.10) that
p'(B)

B
This identity has been observed before (e.g., see [3, 27, 47, 61], [19], Lemma 7.1, and [24],
Theorem 6.1). For this reason the condition in which we are interested is p’(8) < 8. To
improve upon (1.3), a first step is to show that if [E(/R 2) is bounded away from zero, then
the random variable (R 2) is itself stochastically bounded away from zero. This is the content
of Theorem 1.5. The more substantial contribution of this paper, however, is to bootstrap this
result to a proof of Theorem 1.4 which roughly says that (R ) is stochastically bounded
away from 0 even conditional on o'!.

It follows from Corollary 3.10 that p’(8) < B implies p(B) < B2/2, but it is natural to
ask whether the two conditions are equivalent. This equivalence is true for spin glasses [47,
61] and is believed to be true for directed polymers [24], Conjecture 6.1. But at the level of
generality considered in this paper, we are not aware of any conjecture. In any case, for the
examples we consider in Section 1.5, both conditions will be true for sufficiently large §.

(1.3) lim E(Ry,)=1—
n—oo

1.4. Results. Our main result is Theorem 1.3, stated below. It says that at low tempera-
tures one can find a finite number of (random) states such that almost any sample from the
Gibbs measure will have positive overlap with at least one of them. To state this precisely, let
us define the sets

(1.4) B(o,8):={c' € £,:R(0,0') =8}, o0€%,,8>0.

In terms of the metric p defined in (1.1), this is just the ball of radius 1 — § centered at o. Typ-
ically, such balls have vanishingly small size under P, as n — oo which should be contrasted
with the following behavior of the Gibbs measure.

THEOREM 1.3. Assume (A1)-(A4). If B = 0 is a point of differentiability for p(-), and
P (B) < B, then for every & > 0, there exist integers k = k(B, €) and no = no(B, ) and a
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number § = §(B, €) > 0 such that the following is true for all n > no. With P-probability at
least 1 — ¢, there exist !, ..., 0% € Y, such that

,uf(LkJ B(oj,8)> >1—e.
j=1

It is worth noting that in some cases, such as the directed polymer model defined in Sec-
tion 1.5.2, it is possible (although unproven) that k£ can be taken equal to 1 if § is chosen
sufficiently small. For other models, however, such as polymers on trees or the Random En-
ergy Model discussed in Section 1.6, k will necessarily diverge as ¢ — 0.

As stated below, we will derive Theorem 1.3 as a corollary of Theorem 1.4. In fact, The-
orem 1.3 is actually equivalent to Theorem 1.4, although the latter has a less transparent
statement which is why we have stated Theorem 1.3 as our main result.

Theorem 1.4 concerns the following function on X,,. For given o' € X,,, we will write the
conditional expectation of R 7 as

(1.5) R( ) Rl 2|U Z(/)l n (pl n 2))

(Note that the expectation (-|o 1y can be exchanged with the sum because of Fubini’s theorem,
in light of (A2).) Given é > 0, we consider the set

(1.6) Aps:={0o € Z,:R(0) <6}.

With this notation the quantity (14, ;) is the probability that a state sampled from //,E has

expected overlap at most § with an independent sample from ,u,‘? . Theorem 1.4 says that, at

low temperatures and for small 8, this probability is typically small.

THEOREM 1.4. Assume (Al)—(A4). If B > 0 is a point of differentiability for p(-), and
P’ (B) < B, then for every € > 0, there exists § = §(B, €) > O sufficiently small that
(L.7) limsupE(1 4, ;) <e.

n—oo

To prove Theorem 1.4, we first have to prove a weaker theorem stated below. This result
considers the following event in the o -algebra F:

B, s :={(Ri12) <8},

and shows that its probability is small at low temperature.

THEOREM 1.5. Assume (Al)—(A4). If B > 0 is a point of differentiability for p(-), and
P’ (B) < B, then for every ¢ > 0, there exists § = §(B, ) > 0 sufficiently small such that

(1.8) limsupP(B, s5) <e.

n—oo

Theorem 1.5 is proved in Section 4, Theorem 1.4 in Section 5 and the equivalence of
Theorems 1.3 and 1.4 in Section 6. In Section 3 we provide some general facts that are needed
in the main arguments. A detailed sketch of the proof technique is given in Section 2. We will
often simplify notation by writing .45 and Bs, where the dependence on 7 is understood and
will not be a source of confusion.



2760 E. BATES AND S. CHATTERIJEE

1.5. Applications. For many applications it would suffice to consider X, which is finite
for every n. Other applications, however, such as spherical spin glasses or directed polymers
with a reference walk of unbounded support, require X, to be infinite. It is for this reason that
we have stated the setting and results in the generality seen above. Now, we discuss specific
models of interest.

1.5.1. Spin glasses. Let X, = {£1}" (Ising case) or X, = {o € R" : ||lo|l» = «/n} (spher-
ical case), and take P, to be uniform measure on X, . In the mean-field models the Hamilto-
nian is of the form

ﬂ n
(1.9) Hyo)= 3 o n 20 8,0 i,
p>2 i1seensip=1
We will assume
(1.10) Z,Bﬁ(l—i—e)p < oo forsome ¢ > 0,

p=2

which is more restrictive than what we require but standard in the literature. Standard ap-
plications of Gaussian concentration show that | F,,(8) — EF,(8)| — 0 almost surely and in
L. Assumption (A1) then follows from the convergence of EF,,(8) — p(B), where p(B) is
given by a formula depending on the model. In the Ising case there is the celebrated Parisi
formula [53, 54], proved by Talagrand [62] for even-spin models, building on the seminal
work of Guerra [40]. It was later extended by Panchenko [51] to general mixed p-spins. For
the spherical model there is a simpler and elegant formula predicted by Crisanti and Sommers
[32] and proved by Talagrand [63] and Chen [22].

To accommodate assumptions (A2) and (A3), one should assume the function £(g) :=

22 ,qup satisfies
(1.11) E()=1 and &(g)=>0 forallge[—1,1].

This is because
1
Rjk=E&(Rjr) where R = - Y olof e[-1,11.
i=1

Note that the second assumption in (1.11) is automatic if 8, = 0 for all odd p. When &(q) =
qz, (1.9) is the classical Sherrington—Kirkpatrick (SK) model [57], if £, = {£1}", or the
spherical SK model [44] if £, = {0 € R" : ||o |2 = /n}.

In the spin-glass literature, Rj > is the usual replica overlap that is studied as an order
parameter for the system [59]. Roughly speaking, R; > converges to 0 when p(8) = A2/2, but
converges in law to a nontrivial distribution when p(B8) < B2/2. In the latter case, the model
exhibits what is known as replica symmetry breaking (RSB). If the limiting distribution of
R1 2, called the Parisi measure, contains k 4 1 distinct atoms (one of which must be 0 [5]),
then & is said to be kRSB. For instance, spherical pure p-spin models are 1RSB for large
B [52], and it was recently shown that some spherical mixed spin models are 2RSB at zero
temperature [9]. In the Ising case, however, the Parisi measure is expected to have an infinite
support throughout the low-temperature phase (with 0 in the support but not as an atom, (see
[17], page 15), a behavior referred to as full-RSB (FRSB). Proving such a statement is a
problem of great interest and has been solved at zero temperature [7]. For spherical models
the situation is somewhat clearer; in [23], sufficient conditions were given for both 1RSB and
FRSB, again at zero temperature.

The simplest type of symmetry breaking, 1RSB, admits the following heuristic picture.

The state space X, is (from the perspective of ,ug ) separated into many orthogonal parts
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called “pure states,” within which the intracluster overlap concentrates on some positive value
q > 0. In the 2RSB picture the pure states are not necessarily orthogonal but rather grouped
together into larger clusters which are themselves orthogonal. In this case the overlap could
be g (same pure state), g’ € (0, g) (same cluster but different pure state) or O (different clus-
ters). The complexity increases in the same fashion for general kRSB. In FRSB the clusters
become infinitely nested, yielding a continuous spectrum of possible overlaps while main-
taining “ultrametric” structure [49]. In any case, though, there should be asymptotically no
part of the state space which is orthogonal to everything; that is, the pure states exhaust ,ug .

Absent the intricate hierarchical picture described above, the following rephrasing of The-
orem 1.3 confirms this idea:

THEOREM 1.6. Assume (1.10) and (1.11) and that B > 0 is a point of differentiability
for p(-) such that p'(B) < B. Then, for every ¢ > 0, there exist integers k = k(B, €) and
ng = no(B, €) and a number § = §(B, &) > 0 such that the following is true for all n > ny.
With P-probability at least 1 — ¢, there exist ol,...,oke >, such that

k
uﬁ(U{o"“ € |Rjky1l > a}) >1—e
j=1

The proof of the above theorem follows simply from Theorem 1.3 and the observation that
by (1.10), & is continuous at 0.

Under strong assumptions on & and the overlap distribution, namely, the (extended)
Ghirlanda—Guerra identities, much more precise results were proved by Talagrand [64], The-
orem 2.4, and later Jagannath [42], Corollary 2.8. For spherical pure spin models, similar
results were proved by Subag [58], Theorem 1. An advantage of our approach, beyond its
generality, is that our assumptions on & are elementary to check and fairly loose (they include
all even spin models), and the temperature condition p’(B) < B is explicit and sharp.

While the literature on replica overlaps in spin glasses is vast, the reader will find much
information in [45, 50, 65, 66]; see also [43] and references therein.

1.5.2. Directed polymers. Given a positive integer d, let X, be the set of all maps from
{0,1,...,n} into 74, and let P, be the law, projected onto X,, of a homogeneous random
walk on Z¢ starting at the origin. That is, there is some probability mass function K on Z¢
such that

(1.12a) P(0c(0)=0)=1,
(1.12b) Pio()=yloli—1)=x)=K(y—x), 1<i<n.

Let (g(i,x):i>1,x¢€ Z4) be i.i.d. standard normal random variables. The Hamiltonian for
the model of directed polymers in Gaussian environment is then given by

Hy(0) =Y g(i,0@) =)D &, X)) (i)=a)-
i=1

i=1xezd

In this case the overlap between two paths is the fraction of time they intersect,

1 n
(1.13) Ri2=~2 ol i)=a2i))
i=1

The assumption (A1) holds for any K [14], Section 2, although, typically, P, is taken to
be standard simple random walk; all the references below refer to this case. Alternatively,
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one can consider point-to-point polymer measures, meaning the endpoint of the polymer is
fixed. This case is studied in [39, 55] and accommodates the same structure as above, up to
changing the reference measure P,.

Notice that the identity (1.3) immediately implies lim,_, oo E(R12) > 0 when p’(B) < B.
Theorem 1.5 goes a step further, showing that the random variable (R 2) is itself stochasti-
cally bounded away from 0. For a certain class of bounded random environments, a quantita-
tive version of Theorem 1.5 was proved by Chatterjee [21], but Theorem 1.4 is the first of its
kind. Unlike some other conjectured polymer properties, the statement (1.7) has not been ver-
ified for the so-called exactly solvable models in d = 1 [13, 31, 46, 56, 67]. For heavy-tailed
environments a stronger notion of localization is considered in [8, 68] and also discussed in
[16, 37]. Historically, studying pathwise localization has found somewhat greater success in
the context of continuous space-time polymer models [25, 26, 29, 30].

For polymers in Gaussian environment, it is known (see [24], Proposition 2.1(iii)) that p’ is
bounded from above by a constant, and so E(RR1 2) — 1 as § — oo by (1.3). (While convexity
guarantees p(-) is differentiable almost everywhere, it is an open problem to show that p(-)
is everywhere differentiable, let alone analytic away from the critical value separating the
high- and low-temperature phases.) In this sense the polymer measure becomes completely
localized near the maximizer of H, (-) as B — oo. A main motivation for the present study
was to formulate a version of “complete localization” for fixed  in the low-temperature
regime.

In [15, 69], complete localization was phrased in terms of the endpoint distribution: the
law of o (n) under Mf . Loosely speaking, what was shown is that if p(8) < ,32 /2, then with
probability at least 1 — ¢, one can find sufficiently many (independent of n) random vertices
X1, ..., x; in Z9 so that

(1.14) Mf({a:a(n)e{xl,...,xk}})21—5.

This behavior is called “asymptotic pure atomicity,” referring to the fact that even as n grows
large, the endpoint distribution remains concentrated on an O (1) number of sites (rather than
diffuse polynomially as in simple random walk). This is analogous to the results of this paper,
except that the endpoint statistic has been used to reduce the state space to Z?. The pathwise
localization in Theorem 1.3 describes a more global phenomenon occurring in the original
state space X,. Rephrased below, it says that up to arbitrarily small probabilities, the Gibbs
measure is concentrated on paths intersecting one of a few distinguished paths a positive
fraction of the time.

THEOREM 1.7. Assume (1.12) and that B > 0 is a point of differentiability for p(-) such
that p'(B) < B. Then, for every ¢ > 0, there exist integers k = k(B, &) and no = no(B, €) and
a number § = 6(B, €) > 0 such that the following is true for all n > ngy. With P-probability at

least 1 — ¢, there exist paths ol,...,oke Y, such that
k 1 n
ME(U =0k+1 €, ; Z]]‘{OkJrl(i):Uj(i)} > 8}) >1—e.
j=1 i=1

In Section 7, we demonstrate that path localization does not occur in the atomic sense
(1.14). That is, any bounded number of paths will have a total mass under /,L,lf that decays to
0 as n — oo. For this reason the definitions from [15, 69] of complete localization for the
endpoint are inadequate for path localization, necessitating a statement in terms of overlap.
This distinguishes the lattice polymer model from its mean-field counterpart on regular trees
which is simply the statistical mechanical version of branching random walk [24, 36]. For
those models the endpoint distribution on the leaves of the tree is obviously equivalent to the
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Gibbs measure because each leaf is the termination point of a unique path. Moreover, the
results of [15] can be interpreted equally well (and improved upon) in that setting (see [12,
41]), and so we will not elaborate on the fact that polymers on trees also fit into the framework
of this paper.

1.6. Other Gaussian fields. Here, we mention several other models to which our results

apply but for which they are not new. Indeed, each model below is known to exhibit Poisson—

Dirichlet statistics for the masses assigned by Mf to the “peaks” discussed in the motivating

Section 1.3. In particular, asymptotically no mass is given to states having vanishing expected
overlap with an independent sample:

e Derrida’s Random Energy Model (REM) [33, 34] is set on the hypercube %, = {+1}"
with uniform measure and has the simplest possible covariance structure: R = §; .
With 8. = +/21og?2, the following formula holds ([18], Theorem 9.1.2):

B*/2, B < Be,
B2+ (B—Bo)Be, B> B

See also [60], Chapter 1, in particular, Theorem 1.2.1:

e The generalized random energy models have nontrivial covariance structure [35] and can
be tuned to have an arbitrary number of phase transitions. The condition p’(B8) < B is
satisfied as soon as the first phase transition occurs; see also [18], Chapter 10.

e Finally, in [4] Arguin and Zindy studied a discretization of a log-correlated Gaussian field
from [10, 11] which has the same free energy as the REM. Their particular model had the
technical complication of correlations not following a tree structure, unlike, for instance,
the discrete Gaussian free field.

p(B) =

1.7. Open problems. There are a number of open questions which, if solved, would en-
hance the theory presented in this paper. A partial list is the following:

1. Understand conditions under which the number of localizing regions is exactly one. As
mentioned before, this requires more conditions than (A1)—(A4), because it does not hold for
some models (such as REM), whereas it is supposed to hold for many others.

2. A close cousin of the above problem is to understand conditions under which R 7 is
itself guaranteed to be away from zero with high probability. This would have important im-
plications about the FRSB picture in mean-field spin glasses and path localization in directed
polymers.

3. Obtain a good quantitative bound on § in terms of ¢ in Theorem 1.4. Our proof gives a
very poor bound, since it is based on an iterative argument similar to those used in extremal
combinatorics (see the proof sketch in Section 2.2).

4. For directed polymers, prove a stronger theorem about path localization that says a
typical path localizes within a narrow neighborhood of one or more fixed paths, rather than
saying that a typical path has nonzero intersection with one or more fixed paths.

5. Prove more general versions of Theorems 1.3, 1.4 and 1.5 that do not require the condi-
tion (A3) guaranteeing asymptotically nonnegative correlations. This would allow the theory
to include other models of interest, such as the Edwards—Anderson model [38] of lattice spin
glasses. It is important to note, however, that the hypotheses and conclusions of these more
general theorems may require adjustment in order to be physically meaningful.

6. For any finite 8, prove estimates that stochastically bound (R ») away from 1. More
ambitiously, determine conditions which guarantee that (R ) concentrates around its ex-
pectation as n — o0.



2764 E. BATES AND S. CHATTERIJEE

7. Even when the spin glass correlation function § takes negative values (recall that
&E(R12) = R1.2), it is possible for the Gibbs measure to concentrate on a set such that
R12 > 0. This is Talagrand’s positivity principle and is known to hold when the extended
Ghirlanda—Guerra identities are satisfied; see [66], Section 12.3, or [50], Section 3.3. Per-
haps the methods of this paper can be adapted to use this input rather than the condition
£>0.

2. Proof sketches. The proofs of Theorems 1.4 and 1.5 are long, but they contain ideas
that may be useful for other problems. Therefore, we have included this proof-sketch section
which, while still rather lengthy, distills the arguments to their central ideas. It introduces
some of the notations that will be used later in the manuscript; however, these notations will
be reintroduced in the later sections, so it is safe to skip directly to Section 3 should the reader
decide to do so.

2.1. Proof sketch of Theorem 1.5. For simplicity, let us assume that the representation
(A4) consists of only finitely many terms,

N
Hy(0) =) gipi(0).
i=1
Following the argument described below, the general case is handled by some routine calcu-
lations (made in Section 3.1) to check that sending N — oo poses no issues.

Given (1.3), it is clear that p’(8) < B would imply (1.8) if we knew that (R ») concen-
trates around its mean as n — 0o. Unfortunately, this may not be true in general. Therefore,
as a way of artificially imposing concentration, we let the environment evolve as an Ornstein—
Uhlenbeck (OU) flow and then, eventually, take an average over a short time interval. For-
mally, this means we consider

2.1) g i=e'gre W -1), >0,

where W(-) = (Wi(')),N: | are independent Brownian motions that are also independent of
g = 8- Recall the OU generator £ := A — x - V and the fact that EL f(g) = 0 for any f
with suitable regularity. By expanding f in an orthonormal basis of eigenfunctions of £ and
expressing both £ f(g,) and E|V f(g) Ik using the coefficients from this expansion, one can
show that

1 2
2.2) Var(;fo Ef(gs)dS) < ;EHVf(g)HZ-

This inequality, established in Lemma 4.3, provides the proof’s essential estimate when ap-
plied to f(g) = F,(B). For this f, it is easy to verify that I[:€||Vf(g)||2 =0(/n),and

0
Lf(g)=p*—B*Ri2) — B g Fne(B).

where (R1,2); and F}, ;(B) are the expected overlap and free energy, respectively, in the en-
vironment g,. Moreover, from standard methods (worked out in Section 3.2) it follows that
%Fn,,(ﬁ) ~ p/(B) with high probability. Combining these observations about f with the
general variance estimate (2.2), we arrive at

1
T/n
In other words, averaging (R 2); over a long enough interval, but whose size is still O(1/n),

results in a value close to the expectation suggested by (1.3). We choose T = T (¢) large
enough depending on ¢ which determines the level of precision required in (2.3).

(2.3)

+01/7).

T/n 4
/ (Ri2)idt =1— ALY
0 B
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Next comes the most crucial step in the proof, where we show that if (R12) = (R12)0 <6
for some small §, then, for each ¢ € [0, T (¢)/n], the quantity (R 2); is also small with high
probability. If p’(B8) < B, this leads to a contradiction to (2.3) if § is small enough. To avoid
this contradiction, the probability of (R12) < happening in the first place must be small
which is what we want to show.

To demonstrate our crucial claim, we consider any ¢t = T/n, where T < T'(¢) and n is
large. First, note that

(Ri2 eﬂAt+,BBt)

(2~4) (R1,2>z = W’

where B; comes from the Brownian part of (2.1) and A; comes from the initial environment:
Ar = (e —1)(Ha(0") + Ha(0?)).
B, :=e! Z W; (eZ’ —1)(gi (01) + @; (02)).
i

Since r =T /n < 1, we have
T
A = (Hy (o) + Hu(o%).

By standard arguments (again presented in Section 3.2), H, (o)) /n and H, (02 /n are both
close to p’(B) with high probability under the Gibbs measure. Thus, for fixed ¢, the random
variable A; behaves like a constant inside (-). Consequently, we can reduce (2.4) to

(RiePBr)

(2.5) (Ri2) =~ PEr)

Now, let h; := W;(e* —1)/+/e* —1 so that h; ~ N(0, 1). Again, since t = T/n < 1, we
have

mz}l (pl +§01 Zh (pl +‘ﬂl( ))

Thus, if £ denotes expectation in k = (h1, ..., hy) only, then
BT
Ele) ~ (e 55 Clele!) + o))
i
(A2)

= exp(2B°T (1 + R1.2)).

In the event that (/R 2) is small, the assumption (A3) implies that R 2 ~ 0 with high proba-
bility under the Gibbs measure. Therefore, conditional on this event (which depends only on
g, not h), we have

Ep{efP) ~ 28T

By a similar argument, we also have

e~ fxn (3 2L S o)+ o)+ o)+ )

N <eXp<IBZ—T > (i) +ei(0?) +wi(0°) + i (04))2)> et

n -
i
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In summary, if (R12) = 0, then
Vary (€#P) = Ep (P51 )* — (Ep(efP1))* ~ 0,
and thus, with high probability,
(2.6) (ePB)) ~ By (ePBr) v 27T
By following exactly the same steps with (R1 2 efBr) instead of (e#P), we show that
2.7 (Ri2ePB)~ (Ry ) T,

Combining (2.5)—(2.7), we conclude that if (R 2) &0, then (R12); = (R1.2) = 0.

2.2. Proof sketch of Theorem 1.4. We begin this proof sketch where the previous section
left off, namely, the observation that if the average overlap (/%1 2) in environment g is small,
then Gibbs averages of the type in (2.6) and (2.7) are well concentrated. By the same type of
argument—see Lemmas 4.5(b) and (5.11)—we can say something more general: no matter
the size of (R 2), these averages remain concentrated so long as they are restricted to the set
A, s defined in (1.6), where conditional average overlap (R 2 | o) is small. That is, if H, is
an independent Hamiltonian (i.e., defined with &, an independent copy of g), then with high
probability,

L i, (o) L H,(0), (A2) B
(2.8) (]lA,,,(;eﬁ 7 >%Eh<]l_,4n,éeﬁ 7 > ='e2 <:[I‘An,5>'

In fact, the opposite is true off of the set A, 5. If (R 2) is not too small relative to 8, then the

b
fluctuations of (1 A evn H"(U)) due to h are 2(1) as n — oo. This is again an elementary
calculation; see (5 .8)—(5.12).

. .. . 5 od
On the other hand, a convenient consequence of Gaussianity is that H, + ﬁHn =

V14 %Hn. That is, an environment perturbation is equivalent in distribution to a temperature
perturbation. (In fact, this simple observation underlies the Aizenman—Contucci identities
[2], the predecessor of the Ghirlanda—Guerra identities.) Therefore, if we keep track of the
dependence on 8 by writing (-) g, and abbreviate A, s to As, we have

Ll (0)
d (LageVm g
1+1 = B 7
B n (e ﬁHn (o) )ﬂ
By rewriting the denominator in a trivial way and using our observation (2.8), we see that,
with high probability,

2.9) (L 45)

L f,(0) L f,(0)
(Ta e g (La,evn " 7)g
L H,(0) B L H,(0) £ H,(0)
€ )p (L g (g e )
(2.10) B
eT<]l.A5>/3

~
~

£ f,(0)

= :
e 2 (Lay)p+ (Tagevs ™ )p
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In the last expression above, the only term depending on k is the second summand in the
denominator. Therefore, Jensen’s inequality gives
2

£
€2 (lea)ﬂ
B 2 1,(0)
7 (1a, )ﬂ+(1A°ef ey
8
ez (1
2.11) > — Tap TEo
ol ~—H,(o
e2 (Lay)p+En(lagev™ " g
ﬁZ
e 7 (1g)
=z : f = (Las)p-

8 82
e (Las)p+eZ (La)p

A more careful analysis shows that the Jensen gap is large enough that we can replace the
lower bound by (14 y)(L44)p—C V/8, where y and C are positive constants. One important
caveat is that this stronger lower bound is valid only when (R 2) is not too small (so that the

b
fluctuations of (1 4 evi'h (0)) g are order 1) which is why Theorem 1.5 is needed beforehand.
Reading (2.9)—(2.11) from start to end, we obtain

(2.12) E(La), /i1 = 1+ 7)E(La)p —CVs.

While the above inequality is the most important step of the proof, a key shortcoming is

that the set .Aj; is defined using (-)g rather than (-) 8 m Since we will want to apply the

inequality iteratively, we need to replace .As on the left-hand side by As 1, where
1
1

To make this replacement, we produce a complementary inequality, again using the equiva-
lence of environment/temperature perturbations. For simplicity, let us assume R 2 > 0 which
is essentially realized by (A3) for large n. Observe that

14+=
BY1+3 (eﬁHn(U)

Vo g
)8

(Ria]o!)

Hn ﬁn
Riz o) ylen @) e

X

where we have applied Cauchy—Schwarz (and then R%’Z <Ri2 <1)andJensen’s inequality
(using the convexity of x — x~!). When o! € As = As 0, the final expression is at most
X+/8, and so the inequality implies As o C Ay /s.1- Now, the random variable X has mo-
ments of all orders (admitting simple upper bounds), and so it can be essentially regarded as
a large constant. In particular, when & is small, we will have X < 8~ !/% with high probability,
in which case As o C Agi/4 1. Combining these ideas with (2.12), we show

E<1A51/4,1>ﬂm >(1+ J/)E<1A5)ﬂ — C\/g.
More generally, for any integer k > 1,

(2.13) E(ﬂAMk)ﬁ\/@ > (14 7By ), T C+/s.
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This inequality can now be iterated, with § being replaced by §!/4, then '/, and so on, as
the expectation on the left is inserted on the right in the next iteration.

Since the left-hand side of (2.13) is always at most 1, we clearly obtain a contradiction
if E(14,,)p is larger than x, where x is the solution to x = (1 + y)x — C+/$8. This would
complete the proof of Theorem 1.4 if not for the subtlety that y actually depends on & in a
nontrivial way. Nevertheless, (2.13) can still be used to derive a contradiction of the same
spirit unless E(1 A k) is small for some k < K, where K is large and tends to infinity

as ¢ — 0, but, cru01ally, does not depend on n. This approach is reminiscent of tower-type
arguments in extremal combinatorics.

Replacing & by 84k, we can then say [E(1 4, ) is small. Finally, to deduce the smallness
of (1 4;,) from the smallness of E(1 4, ,), we make use of standard arguments showing
that if an event is rare at inverse temperature §, then it remains rare at inverse temperature
B+ 0(/n).

2.3. Proof sketch of Theorem 1.3. To deduce Theorem 1.3 from Theorem 1.4, simply let
ol, ..., ok o*t1 bei.i.d. draws from the Gibbs measure. Then, by the law of large numbers,

when k is large,

=

k
Z ikt NR k—i—l)

with high probability. But by Theorem 1.4, we know that, with high probability, R(c**1)
is not close to zero. Therefore, with high probability, there must exist 1 < j < k such that
R j k+1 is not close to zero.

3. General preliminaries. In this preliminary section we record several facts needed in
the proofs of Theorems 1.4 and 1.5. These preparatory results are mostly elementary.

3.1. The Gibbs measure and partition function. In order for our results to apply to a
broad collection of models, we have allowed the state space X, to be completely general and
the Hamiltonian H,, to consist of countably infinite summands. We begin by checking that
these assumptions pose no issues to computation. So for the remainder of Section 3.1, we fix
the value of n.

Let (-) y denote expectation with respect to the Gibbs measure when the Hamiltonian is
replaced by the finite sum H,, y := ZIN 1 8iwi. That s,

E,(f(c)ePHnn(@))
E, (eﬁHn N(U))

3.1 (fo))y=
So that we can pass from (-) ; to (-), we begin with the following lemma:

LEMMA 3.1. Forall B € Rand any f € L*(Z,), the following limits hold almost surely
and in L¥ for any a € [1, 00):

(3.2a) Jim (£ @)y =(/(0)) < oo,
(3.2b) Jim (H, v (@) = (Ha(@) < co.

PROOF. We organize the proof into a sequence of claims.

CLAM 3.2.  With P-probability equal to 1,
lim H, ny(o)=H,(0) for P,-a.e.0€X,.
N—o0
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PROOF. Observe that for fixed o € X, the sequence (H, y(0))n=0 is a martingale with
respect to P. Since

N
A2), (Ad)
sup B[H, v (0)%] = sup 3 gi(0)? W2
N>0 N>0;_4

9

the martingale convergence theorem guarantees that H, y(o) converges P-almost surely as
N — oo to a limit we call H, (o). Now, Fubini’s theorem proves the claim,

EE,(L{H, y(0)— Hy(0)) = En(ElL{#, y0)— Hy0)]) = En(1) = 1. O

CLAIM 3.3.  There exist nonnegative random variables (M ™ (0))ses, and (M~ (0))sex,
such that

(3.3) +H, y(0) < M*(0) forall N>0,0 €%,
and
(3.4) EE, (e @) < oo forall p > 0.

PROOF. We simply take

M*(0) := sup +H, y(0) = +H, 0(0) =0,
N>0

so that (3.3) is satisfied by definition. Since M im ~, we need only check (3.4) for M.
Observe that, for any 8 > 0, (efHnN () N>0 1S a submartingale. By Doob’s inequality, for
any A > 0 and any integer m > 0,

]P’( max ePHnn(©) > A) =IP’( max e PHnn©) > )\2)

0<N<m 0<N<m
S )\‘_ZE(ezlan,m(U))
_ 2B o) D) 5 2 28
Therefore, for any 0 < ¢ < A,

P(efM" @) > ) < P(eﬁM+(") >\ — %)
< lim IP’( max ePinn(©@) > 5 8) <(h—eg)? 2Bn
m— o0 OSNSm

which implies

o0
E(e’sMJr(")) = f P(eﬂMJr(") > ) da
0
2820 [ )
<l+e+e / (A—¢e)""dA < o0.
1+4¢
Since Tonelli’s theorem gives EE, (e#M +(")) = E,(EefM +(")), (3.4) follows from the above
display. U

CLAIM 3.4. For any f € L*(Z,) and any continuous function ¢ : R — R such that
lp(x)] < a ebil for all x € R, for some a, b > 0, we have

(3.5) lim_E[f(0)¢(Hun(@)] = Ea[f(©)$(Hi(@)] as.
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PROOF. By Claim 3.2 and the continuity of ¢, we almost surely have that ¢ (H, y(0)) —
¢(H,(0)) for P,-ae. o € ¥, as N — 00. And by hypothesis,

(3.6) 6 (Hon (0))] < (M@ 4PM @),

Since

Ea[|f(0)] (P @) 1 ebM (@))] 5\/En F)?] En[(ebMJr(a)_{_ehM’(a))z]

<\/E [f(0)2] En[2(e20M* @) 4 e26M~(0))]

and Claim 3.3 implies that almost surely E, (esz ©)) < 00, (3.5) now follows from domi-
nated convergence (with respect to P,). [J

CLAIM 3.5. For any f € L*(Z,) and any continuous function ¢ : R — R such that
o (x)] < aebmfor all x € R, for some a, b > 0, we have

3.7) Nli_r)noo(f(o)(b( N (0)))y =(f(@)p(Hn(0))) a.s.andin L, a €[1,00).

PROOF. Recall that

En[f(0)¢(Hy n(0))ePHnn@)]
E, (ePHnN(©))

Enlf(0)¢(Hy (o)) ePHn(@)]
E, (ePH(0)) '

9’

(f(@)p(Hnn(0)))y =

(f(0)p(Hu(0))) =

Since |¢(x)|ef* < ae®tPIXI | the almost sure part of (3.7) is immediate from Claim 3.4.
The convergence in L is then a consequence of dominated convergence (with respect to IP).
Indeed, by Cauchy—Schwarz and Jensen’s inequality, we have the majorization

|En(f (o) (Hy n(0)) ePHnn(@)))
E (eﬂHn.N(U))

(£ (@) (Hn n(0)))y| =

JE (f(0)2) En(@(Hy y(0))? 2P Hrn (@)
E, (e~ BM~ (U))

(356) \/E” (f(a)z)E” [zaz(ez(b+ﬂ)M+(a) + eZ(b+ﬁ)M—(0))]En (eﬂM‘(o))’

where the final expression has moments of all orders by (3.4). [J

We now complete the proof of Lemma 3.1 by taking ¢ = 1 for (3.2a)and f =1, ¢(x) =x
for (3.2b). O

REMARK 3.6. The essential feature of the above proof was checking in Claim 3.3 that
(A2) is enough to guarantee the first equality below:

% 4o . o N = £

(3.8) E(e’g pBa $i%) = lim ]E(eﬁ Z,Nzlgﬂﬂz) — lim e2 YN e (AD) ol

N—o00 N—oo
We will frequently use the above identity, an easy consequence of which is the following:

LEMMA 3.7. Forany € R, we have

(3.9) EZ,(8) ="
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as well as
(3.10) E[Z,(B) '] <e=".

PROOF. By exchanging the order of expectation in the identity EZ, (8) = E[E, (e##»(?))]
(which we are permitted to do by Tonelli’s theorem) and applying (3.8), we obtain (3.9). For
(3.10) we apply Jensen’s inequality to obtain

Zu()™! = [Ea ™) < By (e ),

then take expectation [E(-) of both sides and again exchange the order of expectation. [l
Let us also record two consequences of Lemma 3.1 that will be needed later in the paper.

COROLLARY 3.8. For any B € R, the following limits hold almost surely and in L% for
any a € [1, 0o):

N N

(3.11) Jim 3 i)y =n and  lim 3 (g} = i:Zl«mz.

i=1 i=1

PROOF. First, we argue the almost sure statements. The L% statements will then follow
from bounded convergence, since (A2) gives the uniform bound

N N
<Y o)y < (¢f)y <n forevery N.

So we fix the disorder g. By Lemma 3.1 it is almost surely the case that for every i > 1,
(piYN — (i) and (<ﬂ,-2)N — (gol.z) as N — oo. We also know > 7° l(p = n. In particular,
given ¢ > 0, we can choose M so large that

1

n—ex)leilsn = 3 (pi)=e

Given M, there is Ny such that for all N > Ny,

M

Y (er)ly —le?)| <e

i=1

and

In particular, for all N > No vV M,

M N
n—2e<Y (g}ly<n = n-—2e<) (pf)y =<n,
= ,

and also
N o] 00
Yo lpidn — @i < )+ Y (s + (@)
i=1 i=1 i=M+1

A
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3.2. Derivative of free energy. This section records some important facts regarding
convergence of the free energy’s derivative. As Lemmas 3.9 and 3.11 are standard, we
will omit their proofs. Full arguments can be found in the arXiv version of this paper,
arXiv:1906.05502, or in the references mentioned below.

By Lemma 3.1 it is almost surely the case that the random variable H, (o) has exponential
moments of all orders with respect to P,. Standard calculations then show that the free energy
Fu(B) = Llog Z,(B) satisfies

(Hq(0)) (Hy(0)?) — (Hy(0))?
n

and F)(B)= - a.s.

(3.12) F (B)=

Recall from (A1) that F,,(8) — p(B). Since F,(-) is convex for every n, p(-) is necessar-
ily convex. This assumption implies the following lemma which is a general fact about the
convergence of convex functions:

LEMMA 3.9. If p(-) is differentiable at B and B, = B + 6(n) with 6(n) — 0 as n — oo,
then

. 1 . . 1
nll)néo F.B,)=p(B) as.andinL .

COROLLARY 3.10. Forevery B > 0 at which p(-) is differentiable,

(3.13) (B =B(1— lim E(R12)).
In particular, 0 < p’(B) < B, and there is thus some B. € [0, 00] such that
ﬂZ
0<B=B. = pP= 7
132
p>p = P(ﬁ)<7-
PROOF. Using the notation of Lemma 3.1, we have
E(H, E(H,
EF/(8) (3.12) E(Hn(0)) (3.20) lim (Hy N(0))N
N—o00 n
1 N
= NIE%OE<; ;gl"”>

By Gaussian integration by parts,
0
E[gi(pi)n] = E[@(%‘)N] = BE[(¢?)y — (@)% ],
l
and then Lemma 3.9 allows us to write

, . ’ i i ! 3
P = n&f%oEFn(ﬁ)znlggowlgnooﬁE[;Z )]

i=1
s
eV | ﬂE[l - —Z«onz}
n nl 1
= lim ,3(1 — E<R1,2>)

n—oo
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which completes the proof of (3.13). The inequalities 0 < p’(8) < B now follow from
(A2) (A3)
1 > hm E(Ri2) > — lim &, =0.
n—o0

For the second part of the claim, we recall that p(-) is convex and thus absolutely contin-
uous. Since p(0) =0, we then have

s p /
S —r®= [ -r ol
Since the integrand is nonnegative, it follows that 82/2 — p(B) is nondecreasing for g > 0.

O

So that we can be explicit in the inverse temperature parameter §, for the remainder of the
section we will write (-)g for expectation with respect to ;Lf . In light of (3.12), Lemma 3.9

implies

lim

n—oo

‘@ - p/(ﬁ)‘ =0 a.s. whenever p’(B) exists.

We will require the following stronger form of this result which also appears in [48], Theo-
rem 1.1, and [6], Theorem 3:

LEMMA 3.11. If B is a point of differentiability for p(-), then

n—oo

. H, (o) ’ . 1
lim <‘ —-p (,3)’> =0 as.andinL".
n B

3.3. Temperature perturbations. Here, we derive upper bounds for the effects of temper-
ature perturbations on certain expectations with respect to Mﬁ .

LEMMA 3.12. The following statements hold for any 1 > o > 0:
(a) For any measurable [ : %, — [—1, 1],

1£(©@))g, = (@), | < y/n(B1 — Bo) (Fy(B1) — Fy(Bo)).
(b) For any o€ X,,

Z(pl %i)p Z‘/’l %i)p

(3.14) \/n(ﬂl — Bo)(F;(B1) — F;(Bo)).

(c) Finally,

1
(3.15) 12 teih — Z«m,%o‘ <2\/n(B1 — Bo) (F}(B1) — F;(Bo)).

i i

PROOF. All three claims follow from two crucial observations. First, for any f €
L*(Zy),

| ﬁ<f<a>>\ = (F @ Ha)], — (£ @) Ha ()]

(3.16) < \/(Hn<o)2)ﬁ - <Hn<o>>,§\/(f(a)2)ﬂ — (@)l

L) L) (7@~ (@ < @) (7@,
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And second,

/ﬂ '3 JnEy(B)dp < \/nwl ~ po) /ﬂ '3 FI(B)dp

— ﬁ(,sl — Bo)(FL(B1) — FL(Bo)).

(3.17)

Then, part (a) immediately follows, since

@G16) |0 P
1=t || < nre)

3.17
(:>)

£ @))g, — £ (@), < y/n(B1 — Bo) (F4(B1) — Fy(Bo)).

For part (b) we first observe that if 0 < 8 < 1, then

0 (3.16)
B BTN
En 2 BH,(0)

W En((ﬂiz) n En((/)i2 eP1Hn(0))
"N Za(B) Z.(B)

max(Zy(0). Zu () [T
F// . '
" i T O)\/ mingueio 1 Zn(o) Y 7110 T Wilar

IA

A

where now the right-hand side is independent of § and (almost surely) finite. Moreover, we
have the following finiteness condition when summing over i:

> leilyle?)o +le?)s, < /z 02 (103l +leflp) S Vo < co.

It thus follows that
0 0
9B Xi:%((ﬂi)ﬁ = Xijwi%(ﬁl)i)ﬁ-
In particular,
a1 1
- . . < =
‘aﬂn Xi:%(wzm' 359>

316 [F/(B) L
=< —n Xi:|§0z|\/(‘/’i )5

[F)(B) I~ > 0 (A2 [
= ) Xi:% Xix%)g ="/nFE/(B).

go,-%«oi),s‘
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As in part (a), (3.17) now proves (3.14). For part (c) we can argue similarly in order to obtain

a1 ) o) | i |
’35n§:wnﬁ —zjw»ﬂwgwﬁ4

n

a6 [F/(B)

= 2 TﬁZ|(¢i>ﬁ|\/<<Pi2)ﬁ
F(B) 2, (A2) ”

< 2/ lZ(%-)ﬂ ="2/nF;(B),

from which (3.17) proves (3.15). O

4. Proof of Theorem 1.5. Recall the event under consideration,
1
Bs = {; Z(‘Pi)z < 5}-
i

The proof of Theorem 1.5 is a perturbative argument using an Ornstein—Uhlenbeck (OU)
flow on the environment,

4.1) g, =c'g+e W 1), >0,

where W (-) = (W;(:)){2, is a collection of independent Brownian motions that are also inde-
pendent of g = g, and the above definition is understood coordinatewise. Within Section 4
we denote expectation with respect to ,u,’f g, by (-)s, not to be confused with (-)s used in
Section 3. We now prove Theorem 1.5 by juxtaposing the following two propositions. Notice
that if P(Bs) = 0, then there is nothing to be done; therefore, we may henceforth assume
P(Bs) > 0 so that conditioning on Bg is well defined.

PROPOSITION 4.1. If B is a point of differentiability for p(-), and p'(B) < B, then there
exists k = k (B) > 0 such that the following holds: For any ¢ > 0, there is T =T (B, ¢) suffi-
ciently large that

o T/n ]
4.2) gggéﬂ@( K — T—/n/ Z o) dt’ < g> >1—e.
More specifically,
“m:ﬁ—gw)

For the statement of the second result, let .%; denote the o-algebra generated by g, and
(W(s))p<s<e2 —1-

PROPOSITION 4.2. Assume B is a point of differentiability for p(-). Then, there is a
process (I);~q adapted to the filtration (%;);-0 such that the following statements hold:

(a) Forany T,¢e >0,

(4.3) Tim IP’(

T/n 1
IT/n—T—/n/ Z(pl dt‘>8):0
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(b) Forany T, ey, &3 > 0, there exist 51 = 81(B, T, €1, €2) > 0 sufficiently small and ng =
no(B, T, €1, &2) sufficiently large, that

4.4) IP’(

1 2
Itn — = > _{@i) 281|Ba)§82 forall0 <§ <81,n > np.
n =

1

PROOF OF THEOREM 1.5. Let ¢ > 0 be given, and assume the hypotheses of Proposi-
tion 4.1. By that result there is ¥ > 0 and 7 large enough that

1 T/n 1 4k €
4.5 liminfP —/ - -2dt>—>>l——.
(4.5) imin (T/n A ”Xi:m)l =5 )=z1-5
Let (I;)s>0 be the process guaranteed by Proposition 4.2, and define the events:

1 T/nq 4k
G:=]—— — i2dt>—},
T/n/o n;«'o)’ -5

1 T/n 1 3k
H:={— - izdt<—},
T/n/o an«p)’ =75

Hy = {|I : /T/an:( >2dz‘<"}
1= [{T/n T/n Jo ni%, =3
1 K
Hy = IT/n__Z<§0i>2’§ —}-
n“ 5
By Proposition 4.2(a)
(4.6) nlgréo P(H)) =1.

And by Proposition 4.2(b) we can choose 0 < § < k/5 sufficiently small and ng sufficiently
large that

1
“4.7) IP(H | Bs) > 5 for all n > ng.

Observe that Bs N\ Hy N H, C H, and clearly the events G and H are disjoint. We thus have
P(Bs N Hi N Hy) <P(H) <1—-P(G).
On the other hand,
P(BsN HiNHy) > P(H)+P(HyNBs)—1
= PP(Hy) — 1 +P(H; | Bs)P(Bjs)

P(Bs)

4.7
> P(H) — 1+ 7

Putting the two previous displays together, we find
P(Bs) <2(2 —P(G) — P(HY)),

and so

. . _ (45), (4.6)
limsup P(Bs) < 2(2 — liminfP(G) — lim_ ]P’(Hl)) <

n—oo

4.1. Proof of Proposition 4.1. We will need to recall some facts about Ornstein—
Uhlenbeck processes. To avoid technical complications, we restrict ourselves to finite-
dimensional OU processes and then take an appropriate limit at a later stage.
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4.1.1. General OU theory. Fix a positive integer N, and consider a vector g =
(g1,...,8n) of ii.d. standard normal random variables. Let W = (W(¢)),>0 be an inde-
pendent N-dimensional Brownian motion. The OU flow starting at g is given by

g, =e'gte ' We*-1), r>0.
This is a continuous-time, stationary Markov chain. Let (P;);>0 denote the OU semigroup;
that is, for f: RY — R,
Pif(x):=Ef(e”x +e ' W(e* -1)), xeRY.

Denote the OU generator by £ := A — x - V. It is especially useful to consider the spectral
decomposition of £, whose eigenfunctions are the multivariate Hermite polynomials. For our
purposes it suffices to recall the following well-known facts (see, for instance, [20], Chap-
ter 6):

e Let yn denote the N-dimensional standard Gaussian measure. There is an orthonormal
basis {¢ J}OO o of L? (vn) consisting of eigenfunctions of £, where ¢g = 1, Lo = oo =

0,and L¢pj = —Aj¢; with A; > O for j > 1. Therefore, if f = Zj:()ajqﬁj € L*(yy), then:

(4.8) Ef(g) = ao,

(4.9) Lf==) hja;ej,
=1

(4.10) = ELf(g)=

Furthermore, if f| = Z;?io ajpj, = ?O:() bjpj e L*(yn), then
o
4.11) Cov(f1(g). f2(8)) =Y a;b;.

e The OU semigroup acts on L?(yy) by
Pip;=e'¢p;, j=>0.
Therefore, if f =32 ga;¢; € L*(yn), then

o
(4.12) PLf ==Y hrjaje "' ;.

e The associated Dirichlet form is given by

~E[A@LAL@]=E[Vfi(g) V)]

whenever f1 and f> are twice-differentiable functions in L2(yN) such that both expecta-
tions above are finite. In particular, if f; = fo = Z?io ajp; € L?(yn) is twice differen-
tiable, then

(4.13) E(|V £l Z*ﬂf

LEMMA 4.3.  For any twice differentiable f € L*>(yn) with Lf € L*(yn), we have

1 rt 2
var(; [ £f(e)ds) = SE(VF @)
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PROOF. Take any 0 <s <¢. By the law of total variance, we have

Cov(f(g,). f(g,) =E[Cov(f(gy), f(g,)|8s)]+Cov(f(g,) E[f(g,) 8]
=0+ Cov(f(gy).E[f(g,) | &])
= Cov(f(g,). Pi—s f(g}))
= Cov(f(80) Pr_s f(g0))-

In particular, if we write f in the form f = Z?io aj¢;, then
Cov(Lf(gs).Lf(g) = Cov(Lf(go). Pi—sLf(g0))

o
(4.9), 4.12), (4.11) 2 2 —xi(t—s)
= E Xjaje Y .

Jj=1

Therefore,

/ Cov(Lf(g,). Lf(g))d

| |
\

0,
Z e A=) g

r”18

ja]2~(1 —e M)

~.
Il
—_

rja; “SE(V @),

IA
.Mg

~
I
—_

Hence,

Var(/ot Ef(gs)ds) = /Ol /(;t Cov(Lf(gs). Lf(g,))dsdu

=2/0/0Cov(ﬁf(gs),ﬁf(gu))dsdu
<2E(|Vf@]?). O

PROOF OF PROPOSITION 4.1.  Let (g,);>0 be the OU flow from (4.1), and write
gi()=e g +eWie”-1), i>1

Recall that (-); denotes expectation with respect to ,un g,- Let Z, +(B) and F, (B) be the
associated partition function and free energy, respectively. That is, with H, ; :=)"; gi (*)¢i,
we have

1
Zni(B) = Eq(ePe),  F,,(B) = —10g Zy:1(B)-

So that we can use the finite-dimensional facts discussed before, define H,;n =
Z,N:1gi(f)§0i as well as

BHy i 1
Zn,t,N(,B) =E, (C e )a Fn,t,N(,B) = ;log Zn,t,N(,B)v N >0.
Define f : RY — R by

fx):= r_ll()g En(eﬂzi:ﬁz(ﬂz)’
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so that f(g,) = Fu: N(,B) where g, is understood to mean (g (¢), ..., gn(¢)). Note that
f € L*(yn), since log?x < x + x~! for x > 0, and so, using the same arguments as in
Lemma 3.7, yields

E1og” Zni N (B) <EZy i N(B) + B[ Zn i n(B) ']
S En(Ee.BHn,I,N(U)) + En(Ee_ﬂHn't’N(U))

82 (A2) B2
=2En(eTZl 1‘/’!) < 2e2".

Similar to (3.1), for general f € L?(X,), we define
E (f(o) ePHnin(@))

(4.14) (@) =—F P
Observe that
_f( t)_,3< )zN’ 1<i<N,
0x;
which implies
@15) Vs @l =25 S o2y < 25w, 2

as well as

g -Vig)=" ng (i) fN—ﬁ( Huyn @),y "2 BEL, y(B),

i=1
where the derivative is with respect to 8. Note that

1 r/ N 2
E[F}’/l,t,N(ﬁ)z] = n_ZE (Zgi(t)Wi)t,N) :|
L \i=1
1
- i (Eao (o)
(4.16) - i=1
1 N ) N )
= ﬁE Zgi(t) Z(%)z,N
L \i=1 i=1
a1 (XN N
< —E(;gim )—;<oo
Furthermore,
82 2
L=t - i) 1=isN
We thus have

2 N

Lfg)= % >_(led) = {@idin) = BE, , n(B)-

i=1
From (4.16) it is clear that L f € LZ()/N). Therefore, by Lemma 4.3 and (4.15),

2 N 2
Var(— /0 [ﬂ— 2 _(ld)n — (@) =B Mw)} ds) -

4 nas
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Moreover, from (4.10) we know

132 N , /
E<;A |: n Z«(/’,) <(pi)SvN) - 'BFn,s,N(,B)] dS) =0.

i=1

We can now apply (3.2a) (together with (3.12)) and (3.11) to take the limit N — oo in the
two previous displays and obtain

Var(;fot[ﬂz—’fZH ~ BB 4 )szt—‘iz,

n

E(%/Ot[ﬁz—ﬂ;gju ~BFL @) as) =0

Consequently, for any ¢ > 0, Chebyshev’s inequality shows

1t B e 8
4.17 P |- - = d = —.
@17) (; [1e ) o - Fa®as|=5) <

Now, consider that

f E|p'(B) — F, ,(B)] ds

=E[p'(8) — F,(B)|.
t(n)

Therefore, if B is a point of differentiability for p(-), then for any sequence (¢(n));>1,
Lemma 3.9 guarantees
"(B) 1 F,(B)ds| > 8) 0
- — s|>—]=0.
S TON I

When ¢t =t(n) =T /n for fixed T, (4.17) and (4.18) together show

1 T/n ﬂ 2 , 8
llgsogpﬂ”( T/n / [ﬁ - ZZ«ms 4 (ﬂ)] ds| > s) ST
Assuming p’(B) < B, we let k =k (B) := ’3_%@ > 0. Then, the previous display implies

T/n ] 8
K_T—/n/ Zgo, ds >€) ﬁ282

The proof is completed by taking 7" = T' (B, ¢) sufficiently large that

8
Tp2e2 =& O

1 t
E|p'(6) - fo L(B)ds| <

(4.18) lim supIP’(

n—oo

lim sup IE”(

n—o0

4.2. Proof of Proposition 4.2. Let us rewrite (4.1) as
gi=g+e ' WeH-1)+(e'~1)g, t>0.
Recall that (-)o = (-). Forany f € L?(X,), we have

(f(o)ePe DY R ACE NI —DHy(0))
(ePe™ Xy Wi —1)gi gf(e™ —D) Hy(0))

(f(o), =
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In light of Lemma 3.11, we anticipate that, for t = O (n—h,
(f(o)ePe X Wi (e =)gi g=Btnp'(B))y
( Be '3 Wi (eZt —De; e_,Btnp (/3)>

(f (o), ~

4.19)
f(g)eﬁe "X Wi =iy

(@B T Wi gy Q0: (/).

Indeed, the process that will satisfy the conclusions of Proposition 4.2 is

1 1
(4.20) I :=;/ > 0s(p)*ds, t>0.
0 n-=

To prove so, the following lemma will suffice. Recall that
1
Bs = {; i) < 5}-
i
LEMMA 4.4. Forany T, ¢ > 0, the following statements hold:

(a) If B is a point of differentiability for p(-), then there is a sequence of nonnegative
random variables (M) depending only on 8, T and &, such that

“4.21) limsupE(M,) <e,

n—oo

and for every f € L*(Z,), t €[0, 1],

(4.22) E|Q:(f)? — (£ ()] <E((f(0)*)M,).

(b) There exist §1 = 61(B, T, &) > 0 sufficiently small and no = no(B, T, &) sufficiently
large, that, for every n > ng, f € Lz(En), t €0, %] and § € (0, 81], we have

(4.23) E(|Q:(f)? = (f ()] | Bs) < €E[f(0)?).

Before checking these facts, let us use them to prove Proposition 4.2. The idea is to use
the above sequence M, to control the differences Q,((,oi)2 — ((,oi)2 simultaneously across all
iandt € [0, ] this will allow us to prove (4.3). On the other hand, (4.23) shows that, when
(R1,2) is small Qt(gol)2 remains close to Q()((p,)2 () i)2. That this approximation holds
uniformly over ¢ € [0, T] will lead to (4.4).

PROOF OF PROPOSITION 4.2. First, we prove part (a). Let T, & > 0 be fixed. From
Lemma 4.4(a) we identify a sequence of random variables (M;,) such that (4.22) holds, and
(4.24) limsup E(M,) < &>.

n— o0
Under our definition (4.20), we have

1 [T/ 5
E|Fr/n — T—/nfo 2 Lt}

T/n ]
_ T/n/ Z 0:(¢i)* — (1) ]dt!
1 I’l
< T_/n/O ;Zm@(w»z—wﬂdt

4.22) T/n 1 (A2)
< E(( n)dt = E(M,).
< / 2 L (M (My)
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Now, Markov’s inequality and (4.24) together imply
2

1 T/n 1 €
I - — -2dt'> ><_:
T/n T/n/O " Ei (i) dt| = ¢ ) < €

n—o00 &

lim sup IP’(

which completes the proof of (a).
Next, we prove part (b). Let €1, €2 > 0 be given. Similar to above, for any § > 0 we have

E( Ir/n — %Z((ﬁi)z ‘ Ba) =E< Ir/m — TL/n/OT/n % Z((Pi)zdt‘ ‘ Ba)

Tnl
T/nf Z (10:(@0)? — (92| | Bs) dr

From Lemma 4.4(b) we choose §; sufficiently small that (4.23) holds for all § € (0, §;], with
& = g1&7. We then have, for all n sufficiently large,

1 T/n 1 A2)
IE( Irjn — ;Z i) ‘Ba T/nf ZelszE g7)ds = e16.

Then, applying Markov’s inequality yields (4.4). [

It now remains to prove Lemma 4.4. To do so, we will make use of the following prepara-
tory result which, in fact, is the common thread between the proofs of Theorems 1.4 and 1.5.
Let b = (h;){2, be an independent copy of the disorder g. We will use [Ej and Vary, to denote
expectation and variance with respect to k, conditional on g. All statements involving these
conditional quantities will be almost sure with respect to P, although we will not repeatedly
write this.

LEMMA 4.5. Recall the constant &, from (A3). For any t > 0, the following statements
hold:

(a) Forany f € L3(Z,),

Vary(f (o) 7 1 "1%) < ezﬂ(f(o)Z)J % > (i) + 26,

i

(b) For any measurable f : %, — [0, 1],

N b0 ) 1
Varh(f(a)eﬁZl h’w’)fe” (<f(o); Z(pi((pi)>+2<5",,>.

PROOF. Forany f € L*(Z,),
Vary(f (o) evn = ")
_ Eh(f(a1)f(oz)eﬁ Zihi(w,«(al)w,-(oz))) _ (Eh(f(o)eﬁ ¥ hi‘ﬂi))Z
(4.25) W (£(o") £lo?) e =8N — (1(0)P)

2

= <o) £l (eF Zee e )

< @R eE Do nen iy
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Now, for all x € [—1, 1], we have |e’2x —1| < et |x|. In particular, since

2

1
(4.26) ‘; > gi(c)gi(o

we see from (4.25) that

Varh(fw)eﬁz"h””")532’2<f<“)2>\<<;2¢’ ot )2>

F@) >\<f¢ 5wl oi(o2)) + 26,

A o

2 1
2 @7) | = Y lwi) 426,
n <
\ i
Alternatively, if f : X, — [0, 1], then we can use the equalities in (4.25) to write

Varh(f(a)eﬁz,-hiwi> _ 612( l)f( 2)(C%Ziwi(o‘)<pi(02)_1)>
ey
s 2,2<f ( Zﬁ"l +2£>>

({0 i) 25)

A

We are now ready to prove Lemma 4.4.

PROOF OF LEMMA 4.4. Let f € L%(Z,) be arbitrary. Recall the random variable Q;(f)
defined in (4.19). Observe that, for fixed ¢t > 0, e~ W(eZ’ —1)isequal in law to /1 — e~ 2h,
where h is an independent copy of g. Therefore, if we define

X = (f (o) PV 1= Tihigi g™ ~DHA(@)),
Y = (B 1= Tihigi g€ ~DHi(@)),

X' = (f (o) V1= Tihioi) o™ ~np' ()
Y' 1= (V1= Sihigi) B —Dm (B),

then
X X’)
Y'vy

Since the conclusions of Lemma 4.4 depend only on marginal distributions at fixed ¢t < 7' /n,
it suffices to prove bounds of the form

(4.27) IE‘ @)2 — (;)2‘ <E((f(0)*)M,).

(@), Q:(f)) = (



2784 E. BATES AND S. CHATTERIJEE

where M,, satisfies (4.21) and

(4.28) E(‘ (;)2 - <f(0)>2‘ ) Ba) < ¢eE(f(0)?) for all large enough .

So, henceforth, we fix T,& > 0 and ¢ € [0, %]. We will need the following four claims. In
checking these claims, we will frequently use the following inequality which holds for any
c>0:

(4.29) n(l—e ) <nct <cT.
CLAIM 4.6. Forany q € (—00,0]U[1, 0c0),
(4.30) Ex[(Y)?]<=CB. T, q).
CLam 4.7. Foranyq > 12,
(4.31) Ex[(X')7] < C(B. T. ) f (@)2)"*.
CLAIM 4.8. Given any q > 0, set k = |log, qLTJ. For all n large enough that k > 1,
(432) En(Y ™) < C(B.T. ) Zu(B) F (ZsQHYF +1).

CLAIM 4.9. For any even q > 2 and ¢ > 0, the following inequalities hold for all n >
29 +DT:
En[(X — X)7]
(4.33)

<. Tl co|pe - T2 ) ez, 5|
and thus
@sh -y =cenolco|re -2 ) vez,e |

Before proving the claims, we use them to obtain the desired statements.

4.2.1. Proof of Lemma 4.4(a). First, note that, for any random variables W and Z,
E|W? — Z?| =E|(W — Z)? +2Z(W — 2)|

(4.35) <E[(W — 2)*] +2,/E(Z2)E[(W — 2)?].
Therefore,
s(5) - ()
< (7)) (G-
(4.36)

430),431) _ T
< En

)

(

/X X'\ N A ) X  X'\?
= Bl(7-5) ] 2@ im0 ])4#,,[(7——) ]

(
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Let § be a positive number to be chosen later. Anticipating the application of Claims 4.8 and
4.9, we condense notation by defining

VD =(Z,8)" * (Z, (2,6)2’< ))2/‘1 wherekz{logz qLTJ’

B) —

Wi = (o

Because of (4.36), we seek a bound of the form

H, (o) 2(q+1)T>2/q
p )

D+SZAﬁY

X X'\? X—-X XY-Y\?
Exll= — = = E - =
"[(Y Y)] ”[( Y Y Y ”
(X—-X)? X))y -Y)?
= ZE"[ Y2 e ]
< 2ElyYIEL[(x - X))V
+2(Ea[(Y) P IEL(X)*JER (Y 8 Ea[ (¥ — Y]/

Therefore, once we set
1/2
M, :=CB, D[(VIWD + vOWS®)  (vOwD 1 v®w®)172]

and take expectation, (4.36) becomes

45 -(G)

which is exactly (4.27). To complete the proof of Lemma 4.4(a), we need to show that, given
any ¢ > 0, we can choose § sufficiently small that (4.21) holds (M,, depends on § through
4 (8)
wand W,™).
Indeed, by Cauchy—Schwarz we have

<E((f(0)*)M,)

E(M,) < (8. T)(E[(ViO) JBL(W)?) + VE[(Vi®)? [E[(WP)?)

+ \/ VELVEOPIEIWEY) ]+ VRO E[(W))).

Next, we observe that, for ¢ > 4 and » sufficiently large such that k = [log, qLTJ >1,

(4.37)

E[(VO)P] = (B[Zu(B) ¥ (Z.QBF + 1))

IA

V%zz(ﬁ)zk][z 28)F ]+ E[Za(B) F])*

l
ok

(VAE[Zn(ﬂ)_ UFE[Z,28)]F + E[Z.(B)']F)"4

3.9), (3.10 B2n 4p2n B2
()é)M;t;;wﬂw
< (\/m+e 2 )4/q CB.T,q).

(4.38)

A
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Meanwhile, if g >4 and n > 2(q + 1)T, then

1 \¥4
E[(Wliq))Z] =< (C((S)IE< p'(B) — H"n(o) >+8E[Z,,(ﬁ)—¥]>
Hy 2g+07 \4/4
= (C(3)E< P'(B) — n(a) >+8E[Zn(/3)—1]2( = )
4/

By Lemma 3.11 the previous display shows

4p%(q+DT
limsupE[(W D)2 < 6¥1e” ¢« =C(B. T, q)8%1.

n—oo

In light of (4.37) and (4.38), it is clear from this inequality that § can be chosen sufficiently
small that (4.21) holds.

4.2.2. Proof of Lemma 4.4(b). To establish (4.28), it will be easier to replace X’'/Y’ by
X"/Y”, where:

X X' _ {flo)efVImeH Kihiai)
e n e —mp'(p) o5 (e~ ’
Y’ (ePV I—e 23 higiy
Y// . —
g2 -2t B B2 —2r )
e 7 (1=e2)n oBe —Dnp/(B) ez (I—e7n
By Lemma 4.5(a)

Vary(f (o) e VI ikiv) < e2ﬁ2<1—°‘2’)”<f<a>2>l St 426,

i

and so
Vary (X") < eﬁz<1—e‘”>"<f<a>2>J % > i) 426,

(4.39) l

4.29 1

( < : C(B, T)(f(o)z)J . D {ei)? +268,
as well as

Vary, (Y") < C(B, T)J % S )2+ 26,

Because

Ey{f (o) /1= i) O e £ )

we have E;,(Y”) = 1 and can thus apply Chebyshev’s inequality to obtain

cB.7) |1
(4.40) Pp(|Y" —1]>0) < 2 J;Z(gﬂi)2+2é"n for any 6 > 0.

i
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We will use these inequalities in the following bound:

Eh[@ - (f(a)>ﬂ
-5 (5 o)
:E"Ki—:(l—” X"~ (f(o))ﬂ
< 2E, [(’;—)Z(Y — 124+ (X" - <f(a)))2]

(4.41) X
X//
SZEh[(YU) (0% + 1gyr—y=a) (Y = 1)%) + (X ”—(f(ff)))z]
<2Eal(r") M E[(X")*) " VEAL(6? + Lyyr—yize) (" — 1)%)’]
+ 2 Varg (X”)
< 2 BEAL ) AL 044 Bu(r— 1| = R — 1))
+ 2 Vary (X”).
Now,
Y En[(Y)H 8] (4.29), (4.30)
(4.42) Ea(r")"] = o—4p2(1—c 2fh>n gy e gy SR AL
and
" Enl(X)*] (4.29). (431) "
(443) EA[(X")"] = dp(—cmspe o~ P D(f @)

In addition,
Ea[(Y"—1)°] = 2'Ea[(Y")°]+1)

N8
(4.44) = 24( ()] + 1)

e4B*(1—e=2)n o8B (e~ —)np'(B)

(4.29), (4.30)
=

CB,T).
Using (4.39), (4.40) and (4.42)~(4.44) in (4.41), we find

m[(? - <f<a>>)2}

C(B.T) (1 14
<C(. T)(f(o)z)l 04 + (’39 )(; Z<¢?)+2@@n)

1
+C(B, T)<f<a>2>J =3 9 + 265

i

In particular, for any 6 > 0 and n large enough that &, <§/2,

nBSEh[(X/ <f<o>)) ] < 15,C8, D) f(@)2)(/o* +6-128) /4 + V25),
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and so (4.35) implies

/

nBSEhI%)Z —lf )

<1k (X - o) ]+ 2135/ (5 - |

<15,CB, T f (@04 +0- 18/ + \/5+\/ 04 + 018174 4+ /5).

Given € > 0, we choose 6 and é small enough (in that order and depending only on 8, T and
¢) so that the rightmost expression above is at most 1,&( f (0)?). Moreover, it is clear that
once 6 and § are chosen, 1 5, could be replaced by 1p,, for any 8’ € (0, 8), and the rightmost
expression will be bounded from above by 1p,,¢(f (0)?). Taking expectations on both sides
yields (4.28).

4.2.3. Proof of Claim 4.6. Assume g <0 or g > 1. Using Jensen’s inequality, we have
Ex[(Y')1] = et —Dw B g, [PV 1-e Lihivi]
< b =Dnp'(p) Eh<eqﬂ\/ l—e 23 hm)

242
38) (gpe™ ~Dnp/(B) g T~ (1—e)n

(4.29)
< C@B,T,q).

4.2.4. Proof of Claim 4.7. Assume g > 2. By Cauchy—Schwarz and Jensen’s inequality,
we have

Eh[(X’)CI] — eQ.B(e_f —Dnp'(B) Ey, ((f(a) eﬂ«/]_eth S higi >q)
< eQ.B(e_f —Dnp'(B) Eh ((f(o_)2>Q/2(eZﬂ«/ 1—e—2t Y hig; >q/2)

< B! —l)np/(ﬂ)(f(0)2>4/2Eh(eW3\/ l—e=2y; hifﬂi)

(3i8) eqﬂ(e—f—l)np’(ﬂ)(f(a)2>q/2e#(l—e_b)n

“D e 1.9 f @27

4.2.5. Proof of Claim 4.8. Assume g > 0. By Jensen’s inequality
Ep(Y™9) = Eh[(eﬂvl—e*” Yihioi eﬁ(e_’—l)Hn(o)>—q]

< Eh(e_qﬂ\/l—e—_Z’Zifli<ﬂi eqﬁ(l—ef’)Hn(a))
(4.45)

0 EF° (e mofa(1—e ) H (o)

(4.29) _
< C(,B, T,q)(eﬂq“*e I)Hn(a)>.

Recall that k = [log, qiTJ , and we assume k > 1. By (4.29)
_ qT 1 1
g(l—e™)=—= < 5

n Hlog, o
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which implies

(4.46) (ePa(1—e"VHn(@)) < (e=BHN(@)/2%) 4 (PHn(0)/2")

Repeated applications of Cauchy—Schwarz yield

1
En (eﬂ(H_Z" )H, (U))
E, (P Ha©))

BHy(0)/2k
(e )

1 1
B E, (ean(d) eﬂ(§+2_k)le(a))

E, (eﬂHn(O'))

1
_VE @) By FT )
= E, (ePHn(@))

(4.47)

B (@) B e o0 B, (PO )
= E, (PFno))

< B, (PM(@) 1 HEL 57 | (o2 (@)) 3
L L
= Zn(lg) 2+ Zn(Zﬁ) 2,
By similar manipulations

1 _

(4.48) (P2 < 7,(8)F Z,(0)F = Z, ().

»l_

Together, (4.45)—(4.48) yield (4.32).

4.2.6. Proof of Claim 4.9. Assume g > 2 is even. By Cauchy-Schwarz and Jensen’s
inequality, we have
En[(X — X)7]
=, [(f(U) eBV 1—e=2'Y; higi (eﬂ(f’ —DHy(0) _ oBle”™ —l)ﬂp'(ﬂ))yi]
< Ep[(f ()22 (2P 1=¢ " Tihigi (o€ ~DH(@) _ ope™ ~mp/(B))2)4/2]
2 —t _ ’
(4.49) < (f(0)2>f1/ edBe™ =hnp'(B)
x Eh(e‘f’3V 1—e™2 37 hig; (eﬁ(l—e">(np’(/3)—Hn(o)) —1)4)
(8 (f(0)2>61/2 edBEe™ =Dnp'(B) e#(1—e‘z’)n<(eﬂ(1—e")(np’(f3)—Hn(U)) —1)%)

(4.29) Y (B)—H. (o
< C(,B,T,q)(f(a)z)Qﬂ((eﬁ(l e~ np'(B)=Hu (@) _1)4),
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For any L > 0, we have the inequality (e* —1)7 < C(L, ¢)|x| for all x < L. Hence,
<(eﬁ(1—e*’)(np/(ﬁ)—Hn(0)) —1)%)

H,
P () — @) D
n

<C(L,q)B(1 —e—’)n<

(4.50) + (P DB OD ) gy (B)—Hno )= L)

)

9) ,
C.T.L. q>< P (B) —

1— —t / _Hn
+ (P DB OD 1) g1ty (B)— ()= L))

Assume L > 28T p’(B) so that whenever

(4.29)
B(1—e™")(np'(B) — Hu(0)) > L >2BTp'(B) > 2B(1 —e™")np'(B),
it follows that

—B(l—e")H,(0) > B(1 —e )np'(B)

=  2B8(1—e")Hy(o) > B(1 —e ") (np'(B) — Hu(0)) > L >0

Do) > 1) )~ Hafo) > L0

We thus have

1—e~)(np' (B)—Hy
(P DEPB=I ) 1)1 8 et (8)— Hy (01> 1)

_ 2987
< (e qn Hy (o) 1{_2ﬂTTHn(U)>L}>

2(g+DBT
< L= M H (o))

4.51) | B[P0 5D o))
=¢ E, [ePHn()]

L(E [eBHn(0)])1- AgtDT

- E [eﬁHn(U)]

2Ag+0T

=e " Zu(B)”
Combining (4.49)—(4.51), we have now shown that
H,(o)

n

p'(B) —

Ea[(X — X)) < (f ()22 [C(ﬂ, T.L. q><

)

L CB.T.q)e " Z,(B) (‘””T]

Finally, given & > 0, we choose L large enough that e~ < ¢, thereby producing (4.33). Then,
(4.34) is the special case when f=1. [

5. Proof of Theorem 1.4. In this section we consider perturbations to the environment
of the form

1Kk

*) ._ )

g =g+ Eh , k=0,
N =
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where the h/)’s are independent copies of g. An important observation is that

d k a BY1+E
(.1 g(k):\/1+;g = '““f,gu«):ﬂn,g -

We will continue to use E to denote expectation with respect to g and the h(k?’s jointly,
whereas £, «) will denote expectation with respect to h® conditional on g and ), 1 < Jj<
k — 1. As before, all statements involving Eh(k) and Var, &) are to be interpreted as almost
sure statements.

As in Section 3, (-)g will denote expectation with respect to /1,,/? ¢- On the other hand, we
will write (- )4 to denote expectation under the measure Mf g where the dependence on
is understood. That is,

B(H (o) +—= Xk T 1 g
_E(flo)e Vi I
k (J)
E ( ﬂ(Hn(O‘)"F\/*ZJ 1Zth )

(F@,: )

(5.2) o,

(e ity
- B 0, :
(eva =t ey

For § > 0, define the set
1
As i = {01 €%y ;Z%(Ul)«fﬂi(az)»k 55},
i

where A;s o = As is the set under consideration in Theorem 1.4, whose proof will rely on
Propositions 5.1 and 5.3 below.

PROPOSITION 5.1. For any 8o > 0, there exists ng = no(8o) such that, for all n > ny,
k>1andé > é,

E«ﬂAa,kq >>k = E<<1A51/4’k >>k + C(B)3.

PROOF. For any measurable f : ¥, — [0, 1], an application of (5.2), followed by
Cauchy-Schwarz and Jensen’s inequality, gives

@ hoy e hz oy,

B (k)
(e ="y

(fo)) <

(k) (k)

<<f(0)>>k—1/(<627%z' ’ (p’>>k—1<<e;_§z’ IS TS

So we define the random variable

(k) (k)
X = \/2 e ) «esz -1

and consider, for fixed 0!, the function S (62)=0v % D i i (01)<pl~ (02). By (4.26) f,1is
[0, 1]-valued, and (A3) implies

for(0?) 26+ Y gilo )enlo?).
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So the above estimate shows

- Z(pt §01 >>k <{fo (62)>>k

[Jg + - Z@l >> k—1-

In particular, when n is sufficiently large that &, <6,
1A5.k 1 Z‘Pt 901 >>k = X‘/S-

We have thus shown As ;1 C Ay J3.k» Which implies

B(Lassc b SE(La s, Dk SB(La g D+ P> 1) forany 1> 0,

where in the second inequality we have used the fact that if §; < 8>, then Ajs, x C As, k. To
handle the last term in the above display, we note that, for any p > 1,

P(X >1) =P(X? > t?)
<t PE(XP)

28 5~ 0 =Ly 1Py
N (RO T R YN

h®

L (S BRI (S ELRIRS

_ 28p ’ AP —28p ih@i
<t Pzp/z/E«eﬁZ CO ey Efe v 2

Now, for any 6 € R and any k£ > 1,

oy 0, IS S ACH 3.8) o2
Effe s =" Yoy = E[Bje (v = )] e
Hence,

P(X > 1) <1 P2P/2 e8P

Choosing t =8~1/4

and p =4, we arrive at
E«ILAS,k—l >>k = E«IASI/{,{ >>k +C(B)S

which holds for all » such that &, <§. O

Next, we consider the event
1

Bs = {; Z«(pl IE < 3}

where Bs o = Bs is the event under consideration in Theorem 1.5.

LEMMA 5.2. Assume B is a point of differentiability for p(-), and p'(B) < B. For any
e >0, there is § = 6(B, &) > 0 sufficiently small that, for any positive constant K , the follow-
ing is true. If k(n) € {0, 1, ..., K} for all n, then

(5.3) limsup P(Bs k) < ¢.
n—>od
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PROOF. By Theorem 1.5 there is 6 > O sufficiently small that

5.4 limsupP(Bas,0) < e.
n—o0

k)

Let us write B, := 8,/1 + =~ and then observe that

1
P(Bs k() = P(; Z«(Pi >>i<n> = 5)

1

1
(55) Wr(, T3, <)

1 1
< P(Bas,0) + P(‘; Y ei)g, — =Y (ei)g

n =
i i

25>-

Since /1 + @ <1+ ]% <1+ %, we have 0 < B, — B < % and thus Lemma 3.12(c)
gives
1

RERILL TP
;;(‘Pz)ﬁn an<(pl>ﬂ

<2VBK\/ Fy(Bn) — F;(B).

By Lemma 3.9 the right-hand side above converges to 0 almost surely as n — oo. In particu-
lar,

1 1
Jim B[ Y td, - Y3 =5) =0,

n =
[ i

and so (5.3) follows from (5.4) and (5.5). O

PROPOSITION 5.3. Given any o > 0, there are positive constants C1(«, B) and C2(B)
such that the following holds for any 8o € (0, 1). There exists no = no(8g) so that, for every
n>no, k>1andé €[y, 1),

Epw (Las o e = (s oy D—1 + Crlet, BY(Las oy De—1lpe, | — C2(BIVS.

PROOF. Letdg € (0, 1) be given, and take ng such that &;, < §y/2 for all n > ng. Consider
any § € [dg, 1), and define the random variables:

B s 5O,
X := ((eﬁz’ A TERS

B s 5O,
X1 = (Dag, ¥ = Py,

38) £
¥ =E,0Xi e (14, o1,

(3.8) £
Y, = Eh(k)Xz ="e?2 <<]l¢4§,k_1>>k—1'
Step 1. Show that X1 is concentrated at Y1 but X, is not concentrated at Y, when B;’ i1
occurs.
First, observe that, for any 6 € (—oo, 0] U [1, 00), Jensen’s inequality implies

9 5 p® g 3.8) )2
(5.0) Ey0 X7 < By (evn =" ey W5
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. £
In particular, for any t > e 2 > Y»,

E,w[(X2 — Y2) L (x,51]
B0 [ (X2 — Y2)2]1{X2>t}] < _h {Xa>1}

;‘32
(t—e7)?
5.7 4 4 82
B X)) Ew(XT) 66 e P
= 2 = 2 = 2 -
t—eTR (-  (-eT)
On the other hand,
Var,w (X2) = Var,wm (X — X1)
(5.8) = Var,x) (X) — 2Cov,m (X, X1) + Var,w (X1)
> Var, x (X) — 2\/V3rh(k) (X) Var,w (X1).
We have the upper bound
(5.6)
(5.9) Var,a (X) <E,w(X?) <

as well as the lower bound
Varh ® (X)

£ ih(k) i (0 1) +oi (02 L ,«h(k),« 2
= By (evi = @OITAODy B (e )

B 5 .
(5.10) QD 8 (ol Tiwi@ i@y, | )

> f’ (eé il iy —1)

) 2
= o LS i

4

Meanwhile, we have &, < §9/2 < §/2 for all n > ngy. Hence, Lemma 4.5(b) implies

2 1
Var,a (X1) < e?’ (<<1A5,k_1 (@)=Y @i{@i -1 >> + 20@11)
(5.11) o k=1
< 26:2ﬁ2 é forall n > ng.
Using (5.9)~(5.11) in (5.8) yields
1
(5.12) Var,w (X2) = B2e =S (@i )7 —2*° V25 forall n = no.
n -
4
So on the event Bj, ;| = {% Yilei)? | > ), (5.12) shows
(5.13) Var,o (Xo)Lge > (B¢ o —2e%° V25)15e
for all n > ng. Given « and 8, we fix r =t («, ) large enough such that
2
(5.14a) t> e > max(Y), Y2)
and
8,32 1
(5.14b) S
2,72
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Because of (5.14b), the inequalities (5.7) and (5.13) together yield
Epw[(X2 = ¥2)*Lixyn]1sg, |

(5.15) = (Var,w (X2) — E[(X2 — Y2) ]l{x2>;}])]ch

k—1
. < % 228 92 mﬁBz,k. = (C1(e. B) — C2(B)V8) L e |

—1

for all n > ny.

Step 2. Since X = Y1, obtain an upper bound on the error in the following approximation:
X Y
X1+ X, Y1+ X,

X N X2(X1—Y1) _Xo(X1—Yy)
X1+ X Y1+X2 X1+ X)(Y1+X2) XY1+X2)'

Xz(Xl—Yl))’ <|X1—Y1|>

E, o o2 < Eyul——

’““( X (Y14 X2) - n® X

(5.16) < E,w» (sz),/Varh(m (X1)

(5.6, (5.11)
=<

Simple algebra gives

and

C(B)V/$ forall n > ny.

Step 3. Since X is not concentrated at Y, when B; x—1 occurs, obtain a lower bound on the
gap in the following application of Jensen’s inequality:

E < " > "y )
= ensen gap).
"\ +x) " ht gap

We consider the function f : (—Y7, o0) — [0, 1] given by

2Y
fo= for which f”(x) = T ! T
In particular, we consider its Taylor series approximation about Y3,
’ (x 2)2 "
fO=fM)+x—-Y)f(Y2) + ———f (),

where &, belongs to the interval between x and Y,. We note that such an expansion exists
2

. . B . o .
because the identity Y7 4+ Y» =e 2 shows Y2 > —Y7. Jensen’s inequality implies

Epw f(X2) > f(E,mX2) = f(Y2) = = (Las o i1

1
Y1+ 1
We will now produce a lower bound on the Jensen gap.

First, observe that f” is decreasing on (—Yj, 00). Consequently, if x € [Y3,¢], then
f7(E) = f7(x) = f(r). Similarly, if x < Y», then f”(&,) > f”(Y2) = f"(t). Therefore,
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for all n > ng, we have
By f(X2) = (Lag,_ k-1
= Euwf(X2) - f2)
E,0[(X2 = Y2)* f"(6x,)]

2
4
@)
(5.17) = 1 S By [(X2 = V) 1,0 ]
Yi )
(Y + t)3Eh(k)[(X2 — 1) ]l{Xzft}]]IB;,k,1
(5.14a), (5.15) Y]
= 25 B - V)

> Cile, A(Lag, Ji-1lpe, | — C2(BVS,

where the second term in the final expression need not depend on « since Y;/(8¢%) < 1.
Step 4. Reckon the final bound.

In summary, for all n > ny,

(5.2) X1
Eh(k)«]lAa,k—l»k = Eh(k)(M)

(5.16)

Y
2 Eh@(m) NG

= Euwf(X2) = C(BVS

°2” (LAt + Cre B Las Jecilps, | — Co(BVE. O

PROOF OF THEOREM 1.4. Let e > 0 be given. From Lemma 5.2 we fix ¢ = a(8,¢) >0
so that, for any bounded sequence (k(n)),>1 of nonnegative integers, we have

(5.18) limsup P(By k(n)) < =
n—o0 2

We wish to find 8, > 0, depending only on 8 and ¢, such that E{1 4, ) <e.
Let §p € (0, 1), with its exact value to be decided later. From Proposition 5.3 we know that,
forall n > ng =ng(5p) and § € [dp, 1),

E{Las 1 D
> B(Tayy Dkt + C1(B, OB((Lay, Ji—1lpe, ) — C2(BVS.
And from Proposition 5.1, we can assume
E{L a5 Mk < E«]lAsl/zt,k e+ C(B)S forall n > ng, s €[, 1).
Linking the two inequalities, we find that
E{ a1, Mk

> E(Tay i -1 + Ci(B, OB((Lay o, Je—1lpe, ) — C2(BIVS,
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where now we fix the constants C;(f, ¢) and C,(8). Note that §p < § < 81/4 < 1, and so this
reasoning can be iterated. Iterating K times produces the estimate

1 Z E<<II‘A51/4K K>>K

K—1

> Y [C1(B.E((La,, 0 elpg,) = C2(BIV Y]+ E(Las 0 )o.
k=0 ‘
which implies the existence of some k = k(n) € {0, 1, ..., K — 1} such that
1
4_k
(5.19) Ci(B, E)E(«]lAsle’k >>k]1B;,k) — G (Y < X

So we take K = K (B, ¢) large enough that
1

™

5.20 - <z
©:20) C1(B.0K ~ 6
and then choose 8y = §p(8, K) small enough that

1
(5.21) (B804 < <

‘We now have, for all n > ng,

(5.19) 1 1
E((La,, Iilgg,) = (¢ +caeysr™)

Ci(B.¢)
(5.21) 2 (520) ¢
P ——
- Gk T 3
Combining this bound with (5.18), we see that
(5.22) E{14 1 * e < E(<<11A 1k >>kILB§k) +P(By k) <& Vlargen.
50 k ’
To now complete the proof, we must obtain from this result an analogous one with k = 0.
As in the proof of Lemma 5.2, we will write 8, := 8,/1 + 5 For n > 0, define the set

A= {al €EX,: Zgoi(al)(w,-(az))ﬂn < n}.
i
It follows from (5.1) that

d
(5.23) (La, 0 = (1%,,)8, foranyn=>0.

Since 0 < B, — B < £X, Lemma 3.12(b) implies
Z‘pz %i)p __Z(Pt ®i) ‘_\/ \/Fr;(ﬂn)_F}’;(ﬂ)‘

k
Denote the right-hand side above by A,. Take 6, := %80 < %85/ . From the above display,
As,.0 C As,+n, k- Hence,

E(Las,op = Bz ,, )8
= P(An>38)+E1g, )p

(5.23)
="P(Ap >3 + ]E(]lj(%*,k)ﬂ - ]Emﬂzs*,k)ﬂn + E«]l"‘zs*sk D

< P(A, >80 +E(Lyg, )p—Eg, Js+ E(@ASW k»k'
L4k
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And by Lemma 3.12(a),

| <]]'.Z25*,k>/3n - <]1.,125*,k>/3 | = Ay.
From the previous two displays and (5.22), we have

E(T 4y, ) <P(An > 85) +E(A,) +&  forall large n.

Finally, Lemma 3.9 shows that A, — 0 almost surely and in L' as n — oco. Consequently,
limsup,iﬁooE(]lAa*,O)ﬂ <e. O

6. Proof of equivalence of Theorems 1.3 and 1.4. Theorem 1.3 is implied by Theo-
rem 1.4 once we establish the following result. Recall the definitions (1.4) and (1.6).

PROPOSITION 6.1.  Suppose H, is defined by (A4), where (g;);2, are i.i.d. random vari-
ables with zero mean and unit variance (not necessarily Gaussian). Assume (A1)—(A3). Then,
the following two statements are equivalent:

(S1) For every € > 0, there exist integers k = k(B, €) and ny = no(B, €) and a number
8 = 8(B, ) > 0 such that the following is true for all n > ng. With P-probability at least
| — &, there exist o', ..., ok e Y, such that

uf(OB(oj,(S)) >1—e.

j=1
(S2) For every € > 0, there exists § = 5(B, €) > 0 sufficiently small that

limsupE(1 4, ;) < e&.

n—oo

6.1. Proof of (S2) = (S1). Let ¢ > 0 be given. By (S2) we can choose § > 0 small
enough and ng large enough so that, for all n > ng,

82
E(14,,) = 5
It follows from Markov’s inequality that
6.1) IP’((JLA%%) > %) <e.

Now, by the Paley—Zygmund inequality, for any j # k + 1,

R(O’k+l)2
1
1) T LRk )>20)

1
1 k+1 D e w———
{R(e"T1)>28} = 2
4 <Rj,k+l | ok+l

(L(R,psiz0) | 0F

2
> 67 LR (ak+1)=25)-
Therefore,

k+1 2k _ 0%
<1m_’;:1{7zj’k+1<5} |0 T i R(oh1)s2sy < (1= 87)" <e™ .

Choosing k = [—8~2log(e/2)] Vv 0, we have

e 3
<lﬂ§'=1{73j,k+1<5}> = 2 T LRt <) = 2 )
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Therefore,
PULG_ ryppize) 21— 8) =P(Ag_ )0 <0)) =€)

g\ (6.1)
= P<<1An,25> = 5) > l—e.

This completes the proof, since
k .
MS(LJI B(GJ’ 8)> = <1U’;:1{Rj.k+125}>'
J:

6.2. Proof of (S1) = (S2). We begin with a lemma that roughly states the following.
If many random variables each have nonnegligible positive correlation with a distinguished
variable, then at least one pair of these variables has nonnegligible positive correlation.

LEMMA 6.2. For any § € (0, 1], there exists No = No(8) such that the following holds
for any integer N > Ny and any 6° € £, If o', ..., 0N € B(c?, 8) C Z,, then
(6.2) Rj’kzg forsomel <j<k<N.
PROOF. Consider the (N + 1) x (N + 1) matrix R = (R x)o<i, j<n, Where
Rix=R(o7,0%) = -3 i(o7)pi(o").
i

Observe that R is positive semidefinite: for any x € RN+

1 .
(x,Rx) = Z Rj,kxjxk=;Z Z xj‘/’i(‘fj)xk‘/’i(ak)

0<j,k<N i 0<j,k<N
N 2
! j
== | 2 xieile’)) =0
n“=\*“
i \j=0
Now, let n:=0V maxj<jx<nyRjk. Forx =(1,—x,...,—x) € RN with x > 0, our as-

sumptions give
0<(x,Rx) <1+ Nx>—25Nx +nN>x2.
We now take x = §/(1 4+ nN) to obtain

§ \? b o 8 \?
0<I+N — 28N +nN
1+nN 1+nN 1+nN
82 [ nN? } 8°N
—2N + =1- .
14+9NL1+4+nN 14+nN 1+nN
Supposing that < §2/2, we further see
82N 82N

=1+

0<1- <1-
1+nN 1+682N/2
which yields a contradiction as soon as 14332277\//2 >1. O

We will contrast Lemma 6.2 with the one below, which says that if § is small enough, then
any nonnegligible subset of .4, s has many nearly orthogonal elements.



2800 E. BATES AND S. CHATTERIJEE

LEMMA 6.3. For any €1, ey > 0 and positive integer N, there is § = §(e1,&2, N) > 0
such that the following holds. If A C A, s with (14) > €1, then there are ol,....,.oNeA
such that

Rjk<er foralll<j<k<=<N.
PROOF. Set § :=¢e1£3/N. Observe that, for any o € A, we have the following implica-

tion:

1) &1
(6.3) 2RO ze2llswen) = (o) < =4

Therefore, one can inductively choose
ol e A, azeA\B(al,ez), 03eA\(B(al,sz)UB(az,sz)), o
where (6.3) guarantees that
_ &1
B (AN (B(o!,e2) U---UB(0* 1, 62))) = &1 — (k — Dy
Hence, 0¥ € A\ (B(o!, &) U---UB(c*"!, £)) can be found so long as k < N. [
We can now complete the proof. Assume that (S1) holds. Suppose, contrary to (S2), that

there is some ¢ € (0, 1) such that, for every § > 0,
(6.4) limsupE(1 4, ;) > 4e.

n—oo

Note that for any n such that E(1 4, ;) > 4¢, we have
4 <E(la,;) <P((La,,) = 2¢) +26P((La, ,) < 2¢)
=1 —-20)P((14,,) > 2¢) + 2,

and thus P((1 4, ;) > 2¢) > 2e.
From (S1) we choose k and § so that for all n large enough (depending on ¢ on f), the

following is true with P-probability at least 1 — &: There exist o', ..., 0% € ¥, such that
k

(6.5) uﬁ(U B(af,a)> >1—e.
j=1

Once § has been determined, choose N so that the conclusion of Lemma 6.2 holds. Then,
given the values of k and N, choose & so that the conclusion of Lemma 6.3 holds with
e1=¢/kand &, = 82/2.

In summary, if n is large enough and E(1 4 ) > 4¢ (by (6.4), there are infinitely many n
for which this is the case), the following is true. With P-probability at least 2e — ¢ = ¢, we
have both (]lAn.a’> > 2¢ and (6.5) for some o1, ..., ok e >,. In this case we have

k
,uff (An,y N (U B(aj, 8))) >2¢ —g=¢.
j=1
Therefore, there is some j such that
- e
Mg (.An,gf N B(O’J, 3)) > %

By our choice of 8, we can find ¢!, ..., 0" € A5 N B(o/, 8) satisfying

82
Rj’k<7 foralll1<j<k<N.

Buto!,...,oN € B(c/,8), and so the above display contradicts (6.2).
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7. Polymer measures are asymptotically nonatomic. In this section we prove that di-
rected polymers on the lattice are asymptotically nonatomic. It is a striking phenomenon that
at sufficiently small temperatures, the polymer endpoint distribution places a nonvanishing
mass on a single element of Z% (which is random and varies with n) [28]. The fact that
the polymer measures themselves do not share this property, stated below as Theorem 7.1,
justifies the investigation of replica overlap as an order parameter for path localization. To
emphasize the fact that the Gaussian environment can be replaced by a general one, we rein-
troduce notation for directed polymers.

Let (w(i,x) :i > 1, x € Z%) be a collection of i.i.d. random variables. We will assume that

(7.1) E(') < oo for some > 0
and also that
(7.2) Var(w (i, x)) > 0

in order to avoid trivialities. Let P, denote the set of nearest-neighbor paths of length 7 in Z¢
starting at the origin. Note that |P,| = (2d)". To each x = (0, x1, ..., x,) in P,, we associate
the Hamiltonian energy

Hy(x) =) o, x).

i=1
The polymer measure is then defined by

B Hn ()
x eP,.

THEOREM 7.1. Assume (7.1). Then, for any d > 1 and any B € [0, 00),

(7.3) max ,uf(x) = O(n_l) a.s. as n — oo.
xePy,

The remainder of Section 7 is to prove Theorem 7.1. We begin by defining the passage
time,

L, := max H,(x).

xeP,

We will denote the set of maximizing paths by

(7.4) M, ={x € Py : Hy(x) = Ly}.

It is well known (for instance, see [39]) that there is a finite constant A such that
L E(L

(7.5) lim — = sup En) 5 s,

The first equality above is a consequence of the superadditivity of L, and the second equality
leads to a short proof of the following standard fact:

LEMMA 7.2. A >E(w(,x)).

PROOF. Let a = (1,0,...,0) € Z¢ and 0 = (0,...,0) € Z%. Observe that L, >
max{w(1l,a)+w2,0), w1, —a) + »(2,0)}, and so
2). > E(Ly) > Emax{w(l, a) + ©(2,0), (1, —a) + ®(2,0)} > 2E(w (i, x)),

where the final equality is strict because Var(w (i, x)%) > 0. [
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DEFINITION 7.3. For a nearest-neighbor path x = (xg, x1, ..., x,) of length n in 74,
define the furns of x to be the following set of indices:

(7.6) Tx):={1<i<n-—1:xi41—xi #xi —Xxi—1}.

The number of turns of x will be denoted 7(x) := |T (x)]|.

LEMMA 7.4. Forany ¢ > 0, there is § = 8(¢e,d) > 0 small enough that

l{x € Py:t(x) <dn}| <C(e,d)(1+&)" foralln>1.

PROOF. Given an integer j, 0 < j <n — 1, we count the elements of {x € P, : t (x) = j}
as follows. First, the number of choices for x1 is 2d. Next, a turn should occur at exactly j of
the coordinates x1, ..., x,_1. Moreover, if a turn occurs at x;, then there are 2d — 1 choices
for x; 11 — x; (so as to avoid x; — x;_1). Finally, if a turn does not occur at x;, then there is
only one choice for x; 1 — x;, namely, x; — x;_. Therefore, for any positive integer k < %,

k—1

|{xePn.t(x)<k|—Z2d< j )(2d—1)f<2dk< )(Zd—l)kl

j=0

If k = [6n] for 6 € (0, %), then Stirling’s approximation gives

lim —log (” A 1) — —5logd — (1 — 8)log(1 — §).

n—oo n

Therefore,

log|{x € P, : t(x) < dn}|

lim sup
n—o0 n

< —6logd — (1 —d)log(l —6) 4+ Slog(2d — 1).

Now, choose § sufficiently small that the right-hand side above is strictly less than log(1 4 ¢).
Inverting the logarithm and choosing C large enough now yields the desired result. [

LEMMA 7.5.  Let {(w;, w))}?° | denote a sequence of i.i.d. pairs of independent random
variables. For any € > 0 and v > 0, there exists D > 0 large enough that

P({1<i<n—1:w; >w;+ D}|>vn)<&" foralln>1.

PROOF. Choose D > 0 large enough that p :=P({|w;| > D/2} U {|a)l/.| > D/2}) satisfies

p’ < e&/2. We then have
P({1 <i <n:w; > w; + D}| > vn)

P({1<i<n—1:|wj|>D/2or |w;| > D/2}| > vn)

I/\

Z < )pj(l —p) <pm2l<e

j=Tvn O

PROOF OF THEOREM 7.1. Let w denote a generic copy of w(i, x) and w := E(w). Set
k = (A — @)/2 which is positive by Lemma 7.2. By assumption, there is ¢t > O such that
E(e'®) < oo. Take any s € (0, 1) and observe that, for any given x € P,,

P(Hn (x)>(w+ K)n) < P(es(Hn(x)—ch) > estcn) < g skn E(es(w_“_’))”_
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Using dominated convergence, it is easy to show that

. E@@ ) —1 | E((w-—ad)e' @)
lim = lim -

07
sN\O0 eshk —1 SN0 K esk

and so we may choose s sufficiently small that e™** E(e’ (@=@)) < 1. Set n:=1—
e ¢ E(e* @) and then choose ¢ > 0 sufficiently small that (1 4+ &)(1 —n) < 1. With §
as in Lemma 7.4, we have the union bound

P(Ex € Py :t(x) <én, Hy(x) > (@0 +k)n) <C(1+¢)" (1 —n)".
By our choice of ¢, Borel-Cantelli implies that the following statement holds almost surely:
dng:Vn >no,Vx € P,, t(x)<én= Hy(x) < (w+«)n.

On the other hand, it is apparent from (7.5) and our choice of « that, almost surely, we have
L, > (o + «)n for all large n. For any such n, we then have H,(x) > (& + «)n for every
x € M,, the set of maximizing paths defined in (7.4). That is, almost surely,

dny:Yn>n;,VxeM,, H,(x)>(o+«K)n.
Together, the two previous displays show that, almost surely,
7.7) dny :Vn>ny,Vx e M,,, t(x)>én.

Recall from (7.6) that 7'(x) denotes the set of turns in the path x € P,. For a given x € P,

andi € T (x), let x@ denote the unique element of P, such that xl.(i) # x; but x®

. ) . 4 i
j#i. Thatis, x" — x| = x; 1| —x; while x.(;)l —x" = x; —x; 1. Upon taking & = 1/(4d)

11— 1
and v =§/3 in Lemma 7.5, a union bound gives

= x; forall

; )
IP’(EIx ePu:l{i € T(x): Hy(x) > Hy(x?D) 4+ D}| > §n) <27
Therefore, we can again apply Borel-Cantelli to see that, almost surely,
; )
dns :Vn > n3,Vx € P, |{l eT(x): Hy(x) > Hn(x(’)) + D}} < gn.

Now, combining this statement with (7.7), we arrive at the following almost sure event:
. 28
Ing:Vn > ng,Vx € My, |{i € T(x): Hy(x) < H,(x") + D}| > 3

In particular, since M, has at least one element (call it y), we have the following for all
n=>ny:

p ePHn(Y) eBHn ()
max puf (x) = < :
€Pu " Xxep, P TSy PO
eﬂHn(y) 36/3D

< = .
- 23_8,1 eBHu(y) e—BD 26n

Since D and § do not depend on n, (7.3) follows. [
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