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A Deterministic Theory of Low Rank

Matrix Completion

Sourav Chatterjee

Abstract— The problem of completing a large low rank matrix
using a subset of revealed entries has received much attention
in the last ten years. The main result of this paper gives a
necessary and sufficient condition, stated in the language of graph
limit theory, for a sequence of matrix completion problems with
arbitrary missing patterns to be asymptotically solvable. It is then
shown that a small modification of the Candès–Recht nuclear
norm minimization algorithm provides the required asymptotic
solution whenever the sequence of problems is asymptotically
solvable. The theory is fully deterministic, with no assumption
of randomness. A number of open questions are listed.

Index Terms— Matrix completion, low rank matrix, graph
limit, graphon.

I. INTRODUCTION

THE problem of reconstructing a large low rank matrix

from a subset of revealed entries has attracted widespread

attention in the statistics and machine learning literatures in

the last ten years. For a recent survey of this vast body of

work, see [15]. Notice that the problem itself is a problem

in linear algebra, with nothing random in it. However, matrix

completion in classical linear algebra is restricted to matrices

with special structure, such as positive definite matrices [10].

In the literature on low rank matrix completion, randomness

enters into the picture through the assumption that the set of

missing entries is random. In most papers, the randomness

is uniform over all subsets of a given size. This assumption,

while unrealistic, allows researchers to prove many beautiful

theorems. There are a handful of papers that strive to work

with deterministic missing patterns or missing patterns that

depend on the matrix, using spectral gap conditions [1], [9],

rigidity theory [17], algebraic geometry [12] and other meth-

ods [6], [13], [16], [18]. These are discussed in some detail

in Section V.

However, a complete characterization of missing patterns

that allow approximate completion of large low rank matrices

has remained an open question. The aim of this paper is to

give such a characterization. Here ‘approximate completion’

means that the missing entries are required to be recovered
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Fig. 1. A pattern of missing entries that cannot be completed (even
approximately) even if the rank is known to be small.

approximately and not exactly (a precise definition is given

later). The analogous criterion for exact recovery is left as an

open question. Our result is an asymptotic statement involving

limits; proving a non-asymptotic version of the result is also

left as an open question.

Right away, it is important to note that not all patterns of

revealed entries allow low rank matrix completion (even in

an approximate sense), even if a substantial fraction of entries

are revealed. For example, if we have a large square matrix of

order n, and only the top n/2 rows are revealed, the matrix

cannot be completed even if it is known to have rank 1
(see Figure 1). When we say ‘cannot be completed’, what

we really mean is that there multiple very different ways to

complete, even under the low rank assumption. This means

that any particular completion cannot be a reliable estimate of

the true matrix.

This example suggests that the set of revealed entries has to

be in some sense ‘dense’ in the set of all entries for the matrix

to be recoverable. However, one has to be cautious about this

intuition. Consider a second counterexample: Let n be even,

and consider an n × n matrix whose (i, j)th entry is revealed

if and only if i and j have the same parity (that is, both even

or both odd). This set of revealed entries looks sufficiently

‘dense’ (see Figure 2). Yet, we will now argue that recovery

is not possible even if the rank of the matrix is as small as

three.

To see this, note that the rows and columns can be relabeled

such that the even numbered rows and columns in the original

matrix are renumbered from 1 to n/2 and the odd numbered

rows and columns are renumbered from n/2+1 to n. Then in

this new arrangement of rows and columns, the (i, j)th entry

is revealed if and only if either both i and j are between 1
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Fig. 2. A pattern of missing entries that cannot be completed. Shaded regions denote available entries and white regions are missing. Although the pattern
of available entries on the left looks ‘dense’, permuting rows and columns in a particular way gives the pattern on the right, which is clearly not completable
(even approximately) even if the rank is known to be small.

and n/2, or both i and j are between n/2+1 and n. In other

words, the matrix is a 2×2 block matrix with blocks of order

n/2×n/2, where only the top-left and bottom-right blocks are

revealed (again, see Figure 2). Clearly, the other two blocks

cannot be recovered using this information if the rank is three

or higher.

The problem with the above counterexample is that the

rows and columns could be relabeled so that the pattern

of revealed entries is no longer ‘dense’. This suggests that

for recoverability of low rank matrices, it is necessary that

the pattern of revealed entries remains ‘dense’ under any

relabeling of rows and columns.

It turns out that this condition is also sufficient. This is

the main theorem of this paper (Theorem 2). The precise

statement is given in the language of graph limit theory [14].

It is then proved that a modification of a popular method of low

rank matrix completion by nuclear norm minimization [2]–[4]

succeeds in approximately recovering the full matrix whenever

the above condition holds (Theorem 3). In other words, this

algorithm does the job whenever the job is doable.

The modification is as follows. The usual Candès–Recht

algorithm finds the matrix with minimum nuclear norm among

all matrices that agree with the unknown matrix on the set of

revealed entries. In the modification, we assume that an upper

bound L on the magnitudes of the entries of the unknown

matrix is known to the user (which is usually true), and then

find the matrix that minimizes the nuclear norm subject to

the usual constraint, plus the constraint that the magnitudes of

all entries are bounded by L. Note that this is still a convex

optimization problem, just like the original algorithm.

The rest of the paper is organized as follows. Some neces-

sary notations are introduced in Section II. Several definitions

needed for stating our results in the language of graph limit

theory are given in Section III. The main results are presented

in Section IV. A brief discussion of the existing literature on

matrix completion with non-uniform missing patterns is given

in Section V. Some open problems are stated in Section VI.

The remaining sections are devoted to proofs.

II. NOTATIONS

All our matrices will have real entries. We will denote the

(i, j)th entry of a matrix A by aij , of B by bij , and so on. The

transpose of a matrix A will be denoted by AT , and the trace

by Tr(A), and the rank by rank(A). Vectors will be treated

as matrices with one column.

Let A be an m×n matrix. We will have occasions to use the

following matrix norms. The Frobenius norm of A is defined

as

kAkF :=

( m∑

i=1

n∑

j=1

a2
ij

)1/2

.

More frequently, we will use the following averaged version

of the Frobenius norm:

kAkF :=
kAkF√

mn
=

(
1

mn

m∑

i=1

n∑

j=1

a2
ij

)1/2

.

For us, the average Frobenius norm will be more useful than

the usual Frobenius norm because it is a measure of the size

of a typical entry of A.

If σ1, . . . , σr are the non-zero singular values of A,

the nuclear norm of A is defined as

kAk∗ :=

r∑

i=1

σi.

The `∞ norm of A is simply

kAk∞ := max
i,j

|aij |.

We will also use a somewhat non-standard matrix norm, called

the cut norm, defined as

kAk� :=
1

mn
max{|xT Ay| : x ∈ R

m, y ∈ R
n,

kxk∞ ≤ 1, kyk∞ ≤ 1}.
In the usual definition of the cut norm for matrices, the maxi-

mum is not divided by mn. We divide by mn because it will

be more convenient for us to work with this version, and also

because this is the custom in graph limit theory.

For each k, let Sk be the group of all permutations of

{1, . . . , k}. For π ∈ Sm and τ ∈ Sn, let Aπ,τ be the matrix

whose (i, j)th entry is aπ(i)τ(j). The cut norm is used to define

the cut distance between two m × n matrices A and B as

δ�(A, B) := min
π∈Sm, τ∈Sn

kAπ,τ − Bk�. (1)

We will say that a matrix is a binary matrix if each of its entries

is either 0 or 1. We will use binary matrices to denote the

locations of revealed entries in matrix completion problems.
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If A and B are two m×n matrices, the Hadamard product

of A and B, denoted by A ◦ B, is the m × n matrix whose

(i, j)th entry is aijbij . Hadamard products will be useful for

us in the following way. If A is a matrix which is partially

revealed, and P is a binary matrix indicating the locations of

the revealed entries, then A ◦ P is the matrix whose entries

equal the entries of A wherever they are revealed, and zero

elsewhere.

III. DEFINITIONS

As mentioned earlier, certain patterns of revealed entries

may not suffice for approximately recovering the full matrix,

whereas other patterns may suffice. While this makes intuitive

sense, we need to give a precise mathematical definition of the

notion of recoverability before proceeding further with this.

Roughly speaking, approximate recoverability should mean

that if two low rank matrices are approximately equal on

the revealed entries, they should also be approximately equal

everywhere. To make this fully precise, we need to state it in

terms of sequences of matrices rather than a single matrix.

Definition 1: Let {Pk}k≥1 be a sequence of binary matri-

ces. We will say that this sequence admits stable recovery of

low rank matrices if it has the following property. Take any

two sequences of matrices {Ak}k≥1 and {Bk}k≥1, where Ak

and Bk have the same dimensions as Pk. Suppose that there

are numbers K and L such that rank(Ak) and rank(Bk) are

bounded by K and kAkk∞ and kBkk∞ are bounded by L for

each k. Then for any ε > 0 there is some δ > 0, depending

only on ε, K and L, such that if lim supk→∞ k(Ak − Bk) ◦
PkkF ≤ δ, then lim supk→∞ kAk − BkkF ≤ ε.

The word ‘stable’ is added in the above definition to

emphasize that we only need approximate equality of the

revealed entries, rather than exact equality.

To understand the essence of the above definition, it is

probably helpful to revisit the counterexample mentioned

earlier. For each k, let Pk be the k × k binary matrix whose

entries are 1 in the first [k/2] rows, and 0 elsewhere. Let

Ak be the k × k matrix of all zeros, and Bk be the k × k
matrix whose entries are 0 in the top [k/2] rows and 1
elsewhere. Then kAkk∞ and kBkk∞ are bounded by 1 for

all k, and rank(Ak) and rank(Bk) are bounded by 1 for all

k. Now clearly limk→∞ k(Ak −Bk)◦PkkF = 0, but a simple

calculation shows that

lim
k→∞

kAk − BkkF =
1√
2
.

Thus, the sequence {Pk}k≥1 does not admit stable recovery

of low rank matrices.

To verify that a sequence {Pk}k≥1 admits stable recovery

of low rank matrices according to Definition 1, one needs

to verify the stated condition for all sequences {Ak}k≥1 and

{Bk}k≥1. It would however be much more desirable to have

an equivalent criterion in terms of some intrinsic property of

the sequence {Pk}k≥1. The main result of this paper gives

such a criterion. To state this result, we need to introduce

some further definitions.

In graph limit theory [14], a graphon is a Borel measurable

function from [0, 1]2 into [0, 1], which is symmetric in its

arguments. Since we are dealing with matrices that need not be

symmetric, we need to generalize this definition by dropping

the symmetry condition.

Definition 2: An asymmetric graphon is a Borel measurable

function from [0, 1]2 into [0, 1].
If W is an asymmetric graphon and m and n are two

positive integers, we define the m×n discrete approximation

of W to be the m × n matrix Wm,n, whose (i, j)th entry is

the average value of W in the rectangle [ i−1
m , i

m ] × [ j−1
n , j

n ],
that is,

mn

∫ i/m

(i−1)/m

∫ j/n

(j−1)/n

W (x, y)dydx.

If A is an m × n matrix and W is an asymmetric graphon,

we define the cut distance between A and W to be

δ�(A, W ) := δ�(A, Wm,n),

where the right side is as defined in equation (1).

Definition 3: We will say that a sequence of matri-

ces {Ak}k≥1 converges to an asymmetric graphon W if

δ�(Ak, W ) → 0 as k → ∞.

Note that the limit defined in the above sense may not be

unique. The same sequence may converge to many different

limits. In graph limit theory, all of these different limits are

considered to be equivalent by defining an equivalence relation

on the space of graphons. It is possible to do a similar thing

for asymmetric graphons, but that is not needed for this paper.

We will use asymmetric graphons to represent limits of

binary matrices. Not every sequence has a limit, but subse-

quential limits always exist.

Theorem 1: Any sequence of binary matrices with dimen-

sions tending to infinity has a subsequence that converges to

an asymmetric graphon.

The above theorem is the asymmetric analog of a fun-

damental compactness theorem in graph limit theory [14,

Theorem 9.23]. It is probable that the asymmetric version

already exists in the literature, but since the proof is not

difficult, it is presented in Section X.

IV. RESULTS

Our main objective is to give a necessary and sufficient

condition for a sequence of binary matrices to admit stable

recovery of low rank matrices. Because of Theorem 1, it suf-

fices to only consider convergent sequences.

Theorem 2: A sequence of binary matrices with dimensions

tending to infinity and converging to an asymmetric graphon

W admits stable recovery of low rank matrices (in the sense of

Definition 1) if and only if W is nonzero almost everywhere.

To understand this result, first consider the familiar case of

entries missing at random. Suppose that each entry is revealed

with probability p, independently of each other. Then the

corresponding sequence of binary matrices converges to the

graphon that is identically equal to p on [0, 1]2. If p > 0,

Theorem 2 tells us that this sequence of revelation patterns

admits stable recovery of low rank matrices. On the other hand,

consider our running counterexample, where only the top half

of the rows are revealed. The corresponding sequence of binary

matrices converges to the graphon that is 1 in [0, 1/2]× [0, 1]
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and 0 in (1/2, 1] × [0, 1]. Therefore this sequence does not

admit stable recovery of low rank matrices, as we observed

before.

At this point the reader may be slightly puzzled by the fact

that Theorem 2 implies that recovery is impossible if the set

of revealed entries is sparse (because then the limit graphon

is identically zero), whereas there are many existing results

about recoverability of low rank matrices from a sparse set

of revealed entries. The reason is that we are not assuming

randomness and at the same time demanding that the recovery

is ‘stable’. Suppose that most entries are the same for two

matrices, but the entries that differ are the only ones that are

revealed. Then there is no way to tell that the matrices are

mostly the same. Thus, stable recovery is impossible from

a small set of revealed entries if there is no assumption of

randomness.

Theorem 2 succeeds in giving an intrinsic characteriza-

tion of recoverability in terms of the locations of revealed

entries. However, it does not tell us how to actually recover

a matrix from a set of revealed entries when recovery is

possible. Fortunately, it turns out that this is doable by a small

modification of an algorithm that is already used in practice,

namely, the Candès–Recht algorithm for matrix completion

by nuclear norm minimization [2]–[4]. The Candès–Recht

estimator of a partially revealed matrix A is the matrix with

minimum nuclear norm among all matrices that agree with

A at the revealed entries. The modified estimator is the

following.

Definition 4: Let A be a matrix whose entries are partially

revealed. Suppose that kAk∞ ≤ L for some known constant

L. We define the modified Candès–Recht estimator of A as the

matrix that minimizes nuclear norm among all B that agree

with A at the revealed entries and satisfy kBk∞ ≤ L.

The assumption of a known upper bound on the `∞ norm

is not unrealistic. Usually such upper bounds are known, for

example in recommender systems. The modified estimator is

the solution of a convex optimization problem, just like the

original estimator, and should therefore be computable on a

computer if the dimensions are not too large. The following

theorem shows that this algorithm is able to approximately

recover the full matrix whenever the pattern of revealed entries

allows stable recovery.

Theorem 3: Let {Pk}k≥1 be a sequence of binary matrices

with dimensions tending to infinity that admits stable recovery

of low rank matrices. Let {Ak}k≥1 be a sequence of matrices

such that for each k, Ak has the same dimensions as Pk.

Suppose that rank(Ak) and kAkk∞ are uniformly bounded

over k. Let Âk be the modified Candès–Recht estimate of Ak

(as defined in Definition 4) when the locations of the revealed

entries are defined by Pk . Then limk→∞ kÂk − AkkF = 0.

The modified Candès–Recht estimator, just like the original

estimator, will run into computational cost issues for very large

matrices. It would be interesting to figure out if there is a

faster algorithm (for example, by some kind of singular value

thresholding [5], [8], [11]) that also has the above ‘universal

recovery’ feature.

Another interesting and important problem is to develop an

analog of the above theory when the set of revealed entries

is sparse. As noted before, the problem is unsolvable in this

setting if we demand that the recovery be stable. However,

dropping the stability requirement may render it possible to

recover the full matrix from a sparse set of revealed entries

even in the absence of randomness. In particular, Theorem 3

may have an extension to the sparse setting under appropriate

assumptions. The methods of this paper would need to be

significantly extended to make this possible.

This concludes the statements of results. The proofs are

organized as follows. The proof of Theorem 2 is divided

between Sections VII and VIII. Theorem 3 is proved

in Section IX, and Theorem 1 is proved in Section X.

V. SOME RELATED LITERATURE

A small number of papers in the literature investigate

the problem of matrix completion when the entries are not

missing uniformly at random. As mentioned earlier, this list

is minuscule in comparison to the vast body of literature on

matrix completion under the assumption of missing uniformly

at random. The following is a non-exhaustive list of some of

the notable contributions.

A general recovery method was developed in [1] when the

pattern of revealed entries is the adjacency matrix of a bipartite

graph with a large spectral gap. A similar question was inves-

tigated in a slightly different setting in [9]. Inhomogeneous

— but still independent and random — patterns of missing

entries were studied in [6].

The very interesting paper [17] applied rigidity theory to

understand whether a partially revealed low rank matrix is

completable or not. However, this paper did not give an

algorithm for completion when completion is possible. A com-

parison of the criterion from [17] with our Theorem 2 is an

interesting question that merits further investigation.

An attempt at giving a criterion for completability using

algebraic geometry was made in [12]. This paper has a

criterion for recoverability of specific entries of the matrix. But

again, a recovery algorithm was not given. Algebraic criteria

have also been investigated in other recent papers, such as [16].

A different approach was taken in [13], which proposed

a new way of interpreting the quality of the output of a

given matrix completion algorithm under arbitrary patterns of

missing entries.

The idea of using the EM algorithm for matrix completion

under data-dependent missing patterns was recently studied

in [18].

The main advantage of our results over most of the papers

mentioned above is that we give a condition that is both nec-

essary and sufficient for completability, and also demonstrate

that a small modification of a popular algorithm can do the job

when it is doable. The main disadvantage, on the other hand,

is that our results are of an asymptotic nature. Developing

non-asymptotic versions is an important goal. This is further

discussed in the next section.

VI. OPEN PROBLEMS

The results of this paper leave a lot of questions unanswered.

The following is a partial list.
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1) The definition of ‘stable recovery’ entails that the

revealed entries are only approximately equal to the

corresponding entries of the unknown matrix. What if

we drop this condition and assume that the revealed

entries are exactly equal to the true entries? How should

the theory be modified?

2) Developing non-asymptotic versions of Theorems 2

and 3 is extremely desirable. Note that it is not quite

clear what should be the proper non-asymptotic state-

ments that one can aspire to prove. A precise formulation

of the non-asymptotic problem is itself an open question.

The non-asymptotic formulation is needed for dealing

with sparse recovery problems, for the following reason.

The theorems of this paper have meaningful implications

when the fraction of revealed entries remains fixed as

the size of the matrix goes to infinity. To properly

understand the level of sparsity allowable for a matrix

of a given size, one needs a non-asymptotic result.

3) It is not clear if the Candès–Recht algorithm indeed

needs to be modified, or if the original version is good

enough for Theorem 3. We believe that the modification

is necessary, but we do not have a counterexample to

show that the original algorithm will not work.

4) As mentioned before, the Candès–Recht algorithm is

rather slow for very large matrices. Is there a faster

algorithm that can take its place in Theorem 3?

VII. TOWARDS THE PROOF OF THEOREM 2

The goal of this section is to prove a quantitative result that

underlies the proof of Theorem 2. We need to prove a number

of lemmas before arriving at this theorem.

Lemma 1: Let X be an m×n matrix with kXk∞ ≤ 1 and

singular value decomposition

X =

k∑

i=1

σiuiv
T
i .

Then for each i,

σi ≤
√

mn, kuik∞ ≤
√

n

σi
and kvik∞ ≤

√
m

σi
.

Proof: Let uij denote the jth component of ui. Since

Xvi = σiui and kXk∞ ≤ 1, we get

σi|uij | ≤
n∑

l=1

|xjlvil| ≤
n∑

l=1

|vil| ≤
(

n
n∑

l=1

v2
il

)1/2

=
√

n.

Dividing throughout by σi and maximizing over j, we get the

required bound for kuik∞. The bound for kvik∞ is obtained

similarly. For the bound on σi, notice that since
∑

j u2
ij = 1

there is some j such that |uij | ≥ m−1/2, and use this

information in the above display.

Recall that a matrix is called a block matrix if its entries are

constant in rectangular blocks — in other words, if the matrix

can be expressed as an array of constant matrices. We will

say that two matrices A and B have a simultaneous block

structure if they are both block matrices and the rows and

columns defining the blocks are the same. Note that block

structures may not be uniquely defined, but that will not be a

problem for us.

Lemma 2: Let X and Y be m×n matrices with kXk∞ ≤ 1
and kY k∞ ≤ 1. Let q ≥ 1 be a number such that kXk∗ and

kY k∗ are bounded by q
√

mn. Take any ε ∈ (0, 1). Then,

there exist m × n matrices A and B with a simultaneous

block structure with at most (20000 q6ε−10)5q2ε−2

blocks, and

permutations π ∈ Sm and τ ∈ Sn, such that kXπ,τ−AkF ≤ ε
and kY π,τ − BkF ≤ ε. Moreover, it can be ensured that

kAk∞ ≤ 1 and kBk∞ ≤ 1.

Proof: Fix some ε > 0. Let δ, γ and η be three other

positive numbers, to be chosen later. Let

X =

k∑

i=1

σiuiv
T
i , Y =

l∑

i=1

λiwiz
T
i

be the singular value decompositions of X of Y , with σ1 ≥
· · · ≥ σk > 0 and λ1 ≥ · · · ≥ λl > 0. Choose two numbers

k1 and l1 such that σk1
> δ ≥ σk1+1 and λl1 > δ ≥ λl1+1.

If σi ≤ δ for all i, let k1 = 0, and if σi > δ for all i, let

k1 = k. Similarly, if λi ≤ δ for all i, let l1 = 0, and if λi > δ
for all i, let l1 = l. Let

X1 :=

k1∑

i=1

σiuiv
T
i , Y1 :=

l1∑

i=1

λiwiz
T
i .

Then by the definition of k1,

kX − X1k2
F

=
1

mn

k∑

i=k1+1

σ2
i

≤ δ

mn

k∑

i=1

σi =
kXk∗δ

mn
≤ qδ√

mn
. (2)

Similarly, the same bound holds for kY − Y1k2
F

.

For 1 ≤ i ≤ k and 1 ≤ a ≤ m, let uia denote the ath

component of ui. Define ũia to be the integer multiple of γ
that is closest to uia under the constraint that |ũia| ≤ |uia|.
Then note that |uia − ũia| ≤ γ. Let ũi be the vector whose

ath component is ũia. Let w̃i be defined similarly. Define ṽi

and z̃i the same way, but using η instead of γ. Let

X̃1 :=

k1∑

i=1

σiũiṽ
T
i , Ỹ1 :=

l1∑

i=1

λiw̃iz̃
T
i .

Now take any 1 ≤ i ≤ k1. By Lemma 1 and the choice of k1,

we have

kuik∞ <

√
n

δ
.

Therefore for any 1 ≤ a ≤ m, the set of possible values of

ũia has size at most

2
√

n

δγ
+ 1 ≤ 4

√
n

δγ
,

where the inequality was obtained under the assumption that

2
√

n

δγ
≥ 1. (3)

We will later choose δ and γ such that this assumption is valid.

We can give similar bounds on the sizes of the sets of possible

values of the components of ṽi, w̃i and z̃i.
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Declare that two rows a and a′ are ‘equivalent’ if ũia = ũia′

and w̃i′a = w̃i′a′ for all 1 ≤ i ≤ k1 and 1 ≤ i′ ≤ l1.

Similarly declare that two columns b and b′ are equivalent if

ṽib = ṽib′ and z̃i′b = z̃i′b′ for all 1 ≤ i ≤ k1 and 1 ≤ i′ ≤ l1.

Clearly, these define equivalence relations. By the previous

paragraph, there are at most (4
√

n/(δγ))k1+l1 equivalence

classes of rows, and at most (4
√

m/(δη))k1+l1 equivalence

classes of columns.

Let π be a permutation of the rows that ‘clumps together’

equivalent rows, and let τ be a permutation of the columns

that clumps together equivalent columns. Then it is clear that

X̃π,τ
1 and Ỹ π,τ

1 are block matrices. By the previous paragraph,

the number of blocks is at most (16
√

mn/(δ2γη))k1+l1 .

Now note that

k1σk1
≤

k∑

i=1

σi = kXk∗ ≤ q
√

mn.

But σk1
> δ. Thus,

k1 ≤ q
√

mn

δ
.

Similarly, l1 is also bounded by the same quantity. Thus,

the number of blocks is at most

b :=

(
16

√
mn

δ2γη

)2q
√

mn/δ

.

Now notice that by Lemma 1 and the definition of X̃1,

kX1 − X̃1kF ≤ kX1 − X̃1k∞

≤
k1∑

i=1

σi(kui − ũik∞kvik∞ + kũik∞kvi − ṽik∞)

≤ q
√

mn

(√
mγ

δ
+

√
nη

δ

)
.

By a similar argument, the same bound holds for kY1− Ỹ1kF .

Combining with (2), we see that if A := X̃π,τ
1 and B := Ỹ π,τ

1 ,

then A and B have a simultaneous block structure with at most

b blocks, and kXπ,τ − AkF and kY π,τ − BkF are bounded

by
√

qδ

(mn)1/4
+ q

√
mn

(√
mγ

δ
+

√
nη

δ

)
.

Now take any α, β > 0 and define

δ := α
√

mn, γ :=
β√
m

, η :=
β√
n

.

Plugging these values into the previous display gives

√
qα +

2qβ

α
.

For a given β, the above quantity is minimized by taking

α = 24/3q1/3β2/3, and the minimum value is (22/3 +
2−1/3)q2/3β1/3. Choose β to make this equal to ε, which

ensures that kXπ,τ − AkF and kY π,τ − BkF are bounded

by ε. With these choices of α and β, an easy calculation gives

b = (16α−2β−2)2q/α ≤ (20000 q6ε−10)5q2ε−2

.

Also, it is easy to check (using q ≥ 1 and ε ∈ (0, 1)) that

with these choices of α and β, the inequality (3) holds. Thus,

the proof is complete except that we have not ensured that

kAk∞ ≤ 1 and kBk∞ ≤ 1 in our construction. To force

this, just take any element of either matrix; if it is bigger than

1, replace it by 1; if it is less than −1, replace it by −1.

This retains the block structures of the matrices, and it cannot

increase |xπ(i)τ(j) − aij | or |yπ(i)τ(j) − bij | for any i, j since

|xπ(i)τ(j)| ≤ 1 and |yπ(i)τ(j)| ≤ 1.

Lemma 3: Let A and B be m×n matrices with a simulta-

neous block structure. Let b be the number of blocks. Let P
and Q be m×n matrices such that P is binary and the entries

of Q are all in [0, 1]. Then

k(A − B) ◦ QkF ≤ k(A − B) ◦ PkF

+
√

bkP − Qk� kA − Bk∞.

Proof: Let each block be represented by the set of pairs

of indices (i, j) that belong to the block. Let D be the set of

all blocks. Take any block D ∈ D. By the definition the cut

norm,

1

mn

∣∣∣∣
∑

(i,j)∈D

(pij − qij)

∣∣∣∣ ≤ kP − Qk�. (4)

Recall that aij is the same for all (i, j) in a block, and the

same holds for bij . Let a(D) and b(D) denote the values of

aij and bij in a block D. Since qij ∈ [0, 1] for all i, j,

k(A − B) ◦ Qk2
F

=
1

mn

∑

i,j

(aij − bij)
2 q2

ij

≤ 1

mn

∑

i,j

(aij − bij)
2 qij

=
∑

D∈D
(a(D) − b(D))2

(
1

mn

∑

(i,j)∈D

qij

)
.

Therefore by (4),

k(A − B) ◦ Qk2
F

≤
∑

D∈D
(a(D) − b(D))2

(
1

mn

∑

(i,j)∈D

pij + kP − Qk�

)
.

Since P is binary, pij = p2
ij for all i, j. Thus, we get

k(A − B) ◦ Qk2
F
≤ 1

mn

∑

D∈D

∑

(i,j)∈D

(aij − bij)
2 p2

ij

+ kP − Qk�kA − Bk2
∞|D|

= k(A − B) ◦ Pk2
F

+ kP − Qk� kA − Bk2
∞ b.

The proof is not completed by applying the inequality√
x + y ≤ √

x +
√

y to the right side.

We are now ready to prove the main result of this section.

The result roughly says the following. Let X and Y be

matrices with relatively small nuclear norms (of the same order

as that for low rank matrices). Let P be a binary matrix and

Q be a matrix with entries in [0, 1], such that P is close to

Q in the cut norm. Then, the closeness of X ◦ P to Y ◦ P
in average Frobenius norm implies the closeness of X ◦Q to

Y ◦ Q in average Frobenius norm.
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Theorem 4: Let X and Y be m×n matrices with `∞ norms

bounded by 1. Let q be a number such that the nuclear norms

of X and Y are bounded by q
√

mn. Let P and Q be m × n
matrices such that P is binary and the entries of Q are all in

[0, 1]. Then

k(X − Y ) ◦ QkF ≤ k(X − Y ) ◦ PkF

+ C(q)

√
log(− log kP − Qk�)

− log kP − Qk�

,

where C(q) depends only on q.

Proof: Without loss of generality, assume that q ≥ 1. Take

any ε > 0. Let A, B, π and τ be as in Lemma 2. Let

b := (20000 q6ε−10)5q2ε−2

be the upper bound on the number of blocks given by

Lemma 2. Note that

k(X − Y ) ◦ QkF = k(Xπ,τ − Y π,τ ) ◦ Qπ,τkF

≤ k(Xπ,τ − A) ◦ Qπ,τkF + k(A − B) ◦ Qπ,τkF

+ k(B − Y π,τ ) ◦ Qπ,τkF

≤ kXπ,τ − AkF + k(A − B) ◦ Qπ,τkF + kB − Y π,τkF

≤ 2ε + k(A − B) ◦ Qπ,τkF .

By Lemma 3,

k(A − B) ◦ Qπ,τkF

≤ k(A − B) ◦ P π,τkF +
√

bkP π,τ − Qπ,τk� kA − Bk∞
≤ k(A − B) ◦ P π,τkF + 2

√
bkP − Qk�.

But

k(A − B) ◦ P π,τkF

≤ k(A − Xπ,τ) ◦ P π,τkF + k(Xπ,τ − Y π,τ ) ◦ P π,τkF

+ k(Y π,τ − B) ◦ P π,τkF

≤ kA − Xπ,τkF + k(X − Y ) ◦ PkF + kY π,τ − BkF

≤ 2ε + k(X − Y ) ◦ PkF .

Adding up, we get

k(X − Y ) ◦ QkF ≤ k(X − Y ) ◦ PkF

+ 4ε + 2
√

bkP − Qk�

≤ k(X − Y ) ◦ PkF + 4ε

+ (Cq6ε−10)3q2ε−2
√
kP − Qk�,

where C is a universal constant. This bound holds for ε ∈
(0, 1), but it also holds for ε ≥ 1 due to the presence of the

4ε term. The required bound is now obtained by choosing

ε = C(q)

√
log(− log kP − Qk�)

− log kP − Qk�

for some sufficiently large constant C(q) that depends only

on q.

VIII. PROOF OF THEOREM 2

Let {Pk}k≥1 be a sequence of binary matrices converging

to a graphon W . Suppose that W is nonzero everywhere. Let

mk and nk be the number of rows and the number columns

in Pk. Suppose that mk and nk tend to infinity as k → ∞.

We will first prove the following generalization of the ‘if’ part

of Theorem 2.

Theorem 5: Let Pk and W be as above. Take any two

sequences of mk × nk matrices {Ak}k≥1 and {Bk}k≥1.

Suppose that there are numbers q and L such that kAkk∗ and

kBkk∗ are bounded by q
√

mknk and kAkk∞ and kBkk∞
are bounded by L for each k. Then for any ε > 0 there is

some δ > 0, depending only on ε, q and L, such that if

lim supk→∞ k(Ak−Bk)◦PkkF ≤ δ, then lim supk→∞ kAk−
BkkF ≤ ε.

Proof: For simplicity of notation, let us denote the matrix

Wmk,nk
by W (k). The convergence of Pk to W means that

for each k, there are permutations πk ∈ Smk
and τk ∈ Snk

such that

lim
k→∞

kP πk,τk

k − W (k)k� = 0.

Rearranging the rows and columns of Pk, Ak and Bk, we may

assume without loss of generality that πk and τk are the

identity permutations, so that

lim
k→∞

kPk − W (k)k� = 0. (5)

Let δ > 0 be a number such that

lim sup
k→∞

k(Ak − Bk) ◦ PkkF ≤ δ. (6)

Without loss of generality, L = 1. Then by (5), (6) and

Theorem 4,

lim sup
k→∞

k(Ak − Bk) ◦ W (k)kF ≤ δ. (7)

Now take any η ∈ (0, 1). Define two functions f, g : [0, 1] →
[0, 1] as

f(x) :=

{
η if x ≤ η,

x if x > η,

and g(x) := (f(x) − x)/η. Let U (k) be the matrix whose

(i, j)th element is f(w
(k)
ij ) and let V (k) be the matrix whose

(i, j)th element is g(w
(k)
ij ). Since f(x) ≥ η for all x,

kAk − BkkF ≤ 1

η
k(Ak − Bk) ◦ U (k)kF

≤ 1

η
k(Ak − Bk) ◦ (U (k) − W (k))kF

+
1

η
k(Ak − Bk) ◦ W (k)kF

= k(Ak − Bk) ◦ V (k)kF

+
1

η
k(Ak − Bk) ◦ W (k)kF .

Therefore by (7),

lim sup
k→∞

kAk − BkkF

≤ lim sup
k→∞

k(Ak − Bk) ◦ V (k)kF +
δ

η
. (8)
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Since L = 1,

k(Ak − Bk) ◦ V (k)k2
F
≤ 4

mknk

∑

i,j

g(w
(k)
ij )2

= 4

∫∫
g(W (k)(x, y))2 dxdy,

where W (k) now denotes the function which equals w
(k)
ij for

all (x, y) in the rectangle [ i−1
mk

, i
mk

]×[ j−1
nk

, j
nk

]. In other words,

W (k) is obtained by averaging W within each such rectangle.

Since mk and nk tend to ∞ and W is measurable, it follows

by a standard result from analysis (see, for example, [14,

Proposition 9.8]) that W (k)(x, y) → W (x, y) as k → ∞ for

almost every (x, y). Since g is a bounded continuous function,

this shows that

lim sup
k→∞

k(Ak − Bk) ◦ V (k)k2
F
≤ 4

∫∫
g(W (x, y))2 dxdy,

On the other hand, g(x) ≤ 1{x≤δ} for all x. Thus,

lim sup
k→∞

k(Ak − Bk) ◦ V (k)k2
F
≤ 4φ(η),

where φ(η) is the Lebesgue measure of the set of all (x, y)
where W (x, y) ≤ η. Combining with (8), we get

lim sup
k→∞

kAk − BkkF ≤ 2
√

φ(η) +
δ

η
.

Note that this holds for any η ∈ (0, 1). Since W is nonzero

almost everywhere, φ(η) → 0 as η → 0. Thus, given ε > 0,

we can first choose η so small that 2
√

φ(η) ≤ ε/2, and then

choose δ so small that δ/η ≤ ε/2. If the sequences Ak and

Bk satisfy (6) with this δ, then the above display allows us to

conclude that lim supk→∞ kAk − BkkF ≤ ε.

We are now ready to prove Theorem 2.

Proof of Theorem 2: The ‘if’ part of Theorem 2 fol-

lows immediately from Theorem 5 and the observation,

by Lemma 1, that

kXk∗ ≤ rank(X)kXk∞
√

mn (9)

for any m × n matrix X .

For the ‘only if’ part, suppose that W is zero on a set of

positive Lebesgue measure. Denote this set by S and let λ(S)
denote its Lebesgue measure. Take any ε > 0. By a standard

measure-theoretic argument, there exists T ⊆ [0, 1]2 such that

T is a union of dyadic squares of equal size and λ(S∆T ) < ε.

Let D be the set of all dyadic squares of this size in [0, 1]2.

For each k, let Ak be the zero matrix of order mk × nk.

Let Bk be the mk × nk matrix whose (i, j)th entry is 1 if

( i
mk

, j
nk

) ∈ T and 0 otherwise. Since T is a union of elements

of D, it is not difficult to see that Bk is a block matrix with

at most |D| blocks. In particular, its rank is bounded above

by |D|.
Now note that kAk − Bkk2

F
equals the fraction of indices

(i, j) such that ( i
mk

, j
nk

) ∈ T . Therefore as k → ∞, kAk −
Bkk2

F
tends to λ(T ). If ε is small enough, this ensures that

lim
k→∞

kAk − BkkF ≥
√

λ(S)

2
> 0. (10)

On the other hand, k(Ak −Bk) ◦Pkk2
F

equals the fraction of

indices (i, j) such that ( i
mk

, j
nk

) ∈ T and the (i, j)th entry of

Pk is 1. Let D be one of the constituent dyadic cubes of T .

Let fk(D) be the fraction of (i, j) such that ( i
mk

, j
nk

) ∈ D

and the (i, j)th entry of Pk is 1. From the definition of cut

norm, it follows that

lim
k→∞

fk(D) =

∫∫

D

W (x, y)dxdy.

Summing over all D as above, we get

lim
k→∞

k(Ak − Bk) ◦ Pkk2
F

=

∫∫

T

W (x, y)dxdy.

Since λ(S∆T ) ≤ ε, W takes values in [0, 1], and W = 0 on

S, this shows that

lim
k→∞

k(Ak − Bk) ◦ Pkk2
F
≤ ε +

∫∫

S

W (x, y)dxdy = ε.

(11)

Since ε is arbitrary, the combination of (10) and (11) shows

that the sequence Pk does not admit stable recovery of low

rank matrices. This completes the proof of Theorem 2.

IX. PROOF OF THEOREM 3

To prove that kAk − ÂkkF → 0, we will show that for any

subsequence, there is a further subsequence through which

this convergence takes place. By Theorem 1, we know that

any subsequence has a further subsequence along which Pk

converges to a limit graphon. Moreover, it is easy to see that

if a sequence of binary matrices admits stable recovery of low

rank matrices, then any subsequence also does so. Therefore

by Theorem 2, we may assume without loss of generality that

Pk → W for some W that is nonzero almost everywhere.

Also without loss of generality, suppose that kAkk∞ ≤ 1
for all k. Let L be a uniform upper bound on rank(Ak). Then

by (9),
kAkk∗ ≤ L

√
mknk,

where mk and nk are the number of rows and number

of columns in Ak. Consequently, kÂkk∗ is also bounded

by L
√

mknk. Moreover, by construction, kÂkk∞ ≤ 1 and

k(Ak − Âk) ◦ PkkF = 0 for all k. Therefore by Theorem 5,

we can now conclude that kÂk − AkkF → 0 as k → ∞.

X. PROOF OF THEOREM 1

Let m and n be two positive integers. Let P be a partition

of {1, . . . , m} and let Q be a partition of {1, . . . , n}. The pair

(P ,Q) defines a block structure for m × n matrices in the

natural way: Two pairs of indices (i, j) and (i′, j′) belong to

the same block if and only if i and i′ belong to the same

member of P and j and j′ belong to the same member of Q.

If A is an m× n matrix, let AP,Q be the ‘block averaged’

version of A, obtained by replacing the entries in each block

(in the block structure defined by (P ,Q)) by the average value

in that block. It is easy to see from the definition of the cut

norm that

kAP,Qk� ≤ kAk�. (12)

We need the following lemma.
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Lemma 4: For any m × n matrix A with kAk∞ ≤ 1,

there is a sequence of partitions {Pj}j≥1 of {1, . . . , m} and

a sequence of partitions {Qj}j≥1 of {1, . . . , n} such that for

each j,

1) Pj+1 is a refinement of Pj and Qj+1 is a refinement of

Qj ,

2) |Pj | and |Qj | are bounded by (2j+2j)j2

, and

3) kA − APj ,Qjk� ≤ 2j−1 + 6j32−j .

Proof: Let

A =
r∑

i=1

σiuiv
T
i

be the singular value decomposition of A, where σ1 ≥ · · · ≥
σr > 0 are the nonzero singular values. Take any j ≥ 1. Let

l be the largest number such that σi >
√

mn/j. If there is no

such l, let l = 0. Let

A1 :=
l∑

i=1

σiuiv
T
i .

For 1 ≤ i ≤ l and 1 ≤ a ≤ m, let uia denote the ath

component of ui. Let ũ
(j)
ia be the largest integer multiple of

2−jm−1/2 that is ≤ uia. Let ũ
(j)
i be the vector whose ath

component is ũ
(j)
ia . Similarly, for 1 ≤ b ≤ n, let ṽ

(j)
ib be the

largest integer multiple of 2−jn−1/2 that is ≤ v
(j)
ib . Define

Ã1 :=

l∑

i=1

σiũiṽ
T
i .

Declare that two rows a and a′ are equivalent if ũ
(j)
ia = ũ

(j)
ia′

for all 1 ≤ i ≤ l. Similarly declare that two columns b and

b′ are equivalent if ṽ
(j)
ib = ṽ

(j)
ib′ for all 1 ≤ i ≤ l. Let Pj

be the set of equivalence classes of rows and Qj be the set

equivalence classes of columns.

From the above definition, it is clear that if ũ
(j+1)
ia = ũ

(j+1)
ia′ ,

then ũ
(j)
ia = ũ

(j)
ia′ . This shows that Pj+1 is a refinement of Pj .

Similarly, Qj+1 is a refinement of Qj .

Next, note that by Lemma 1 and the definition of l,

kuik∞ ≤
√

n

σi
≤ j√

m

for 1 ≤ i ≤ l. Thus, the set of possible values of ũia has size

at most
2j/

√
m

2−j/
√

m
+ 1 = 2j+1j + 1 ≤ 2j+2j.

Therefore, |Pj | ≤ (2j+2j)l. Now,

lσ2
l ≤

r∑

i=1

σ2
i = kAk2

F ≤ mn,

where the last inequality holds because kAk∞ ≤ 1. Since

σl ≥
√

mn/j, this gives

l ≤ j2. (13)

Thus, |Pj | ≤ (2j+2j)j2

. Similarly, |Qj | ≤ (2j+2j)j2

.

Now recall that the operator norm kMkop of a matrix M
is the maximum of kMxk over all vectors x with kxk ≤ 1.

The operator norm of a matrix is equal to its largest singular

value. From our definition of the cut norm, it is not difficult

to see that for an m × n matrix M ,

kMk� ≤ kMkop√
mn

.

Thus,

kA − A1k� ≤ kA − A1kop√
mn

=
σl+1√
mn

≤ 1

j
.

Next, by (13), Lemma 1 and the (easy) fact that the cut norm

is bounded above by the average Frobenius norm,

kA1 − Ã1k� ≤ kA1 − Ã1kF

≤
l∑

i=1

σi(kui − ũik∞kvik∞ + kũik∞kvi − ṽik∞)

≤
l∑

i=1

σi

(
kui − ũik∞kvik∞

+ (kũi − uik∞ + kuik∞)kvi − ṽik∞
)

≤ l
√

mn

(
2−jm−1/2jn−1/2

+ 2−jm−1/22−jn−1/2 + jm−1/22−jn−1/2

)

≤ 3j32−j.

Combining, we get

kA − Ã1k� ≤ j−1 + 3j32−j.

Now note that Ã1 is constant within the blocks defined by the

pair (Pj ,Qj). Thus, by (12),

kA − APj ,Qjk� ≤ kA − Ã1k� + kÃ1 − APj ,Qjk�

≤ kA − Ã1k� + kÃPj ,Qj

1 − APj ,Qjk�

≤ 2kA− Ã1k�.

This completes the proof.

We are now ready to prove Theorem 1. In this proof, we will

use the following scheme to define a graphon using a matrix.

Suppose that A is an m×n matrix. The graphon defined by A,

which we will also denote by A, is the function A : [0, 1]2 →
[0, 1] which equals aij in the rectangle ( i−1

m , i
m ) × ( j−1

m , j
m )

for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. On the boundaries of the

rectangles, A can be defined arbitrarily.

In the proof, we will need to work with cut norms of

asymmetric graphons. The cut norm of an asymmetric graphon

W is defined as

kWk� := sup
a,b

∣∣∣∣
∫∫

a(x)b(y)W (x, y)dxdy

∣∣∣∣,

where the supremum is taken over all Borel measurable a, b :
[0, 1] → [−1, 1]. If the graphon is defined by a matrix as in

the previous paragraph, it is easy to see that the cut norm of

the graphon equals the cut norm of the matrix. A property of

the cut norm that we will use in the proof is that the cut norm

of an asymmetric graphon is bounded above by its L1 norm.

Proof of Theorem 1: Let {Ak}k≥1 be a sequence of

matrices with dimensions tending to infinity. Let mk and nk be
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the number of rows and number of columns in Ak . Lemma 4

tells us that for each k and j, we can find a partition Pk,j of

{1, . . . , mk} and a partition Qk,j of {1, . . . , nk} such that

1) Pk,j+1 is a refinement of Pk,j and Qk,j+1 is a refine-

ment of Qk,j ,

2) |Pk,j | and |Qk,j | are bounded by (2j+2j)j2

, and

3) kAk − A
Pk,j ,Qk,j

k k� ≤ 2j−1 + 6j32−j .

For simplicity, let us denote A
Pk,j ,Qk,j

k by Ak,j . By permuting

rows and columns of Ak, let us assume that the members of

Pk,j and Qk,j are intervals, so that Ak,j is a block matrix.

As described in the paragraph preceding this proof, the matrix

Ak,j defines an asymmetric graphon which is also denoted by

Ak,j . This graphon is constant in rectangular blocks, where

the number of blocks is bounded by (2j+2j)2j2

. Passing to a

subsequence if necessary, we may assume that for each fixed j,

these blocks tend to limiting blocks as k → ∞, and moreover,

that the value of Ak,j within each block also tends to a limit.

This limit defines an asymmetric graphon; let us call it Wj .

Clearly, Ak,j → Wj in the L1 metric as k → ∞.

Now note that by construction, the block structure for Wj+1

is a refinement of the block structure for Wj . Moreover, also

by construction, the value of Wj in one of its blocks is the

average value of Wj+1 within that block. From this, by a

standard martingale argument (for example, as in the proof of

[14, Theorem 9.23]) it follows that Wj converges pointwise

almost everywhere to an asymmetric graphon W as j → ∞.

In particular, Wj → W in L1. We claim that Ak → W in the

cut norm as k → ∞. To show this, take any ε > 0. Find j so

large that kW − WjkL1 ≤ ε and 2j−1 + 6j32−j ≤ ε. Then

for any k,

kW − Akk� ≤ kW − Wjk� + kWj − Ak,jk�

+ kAk,j − Akk�

≤ ε + kWj − Ak,jkL1 + 2j−1 + 6j32−j

≤ 2ε + kWj − Ak,jkL1 .

Since Ak,j → Wj in L1 as k → ∞ and ε is arbitrary, this

completes the proof.
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