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A Deterministic Theory of Low Rank
Matrix Completion

Sourav Chatterjee

Abstract— The problem of completing a large low rank matrix
using a subset of revealed entries has received much attention
in the last ten years. The main result of this paper gives a
necessary and sufficient condition, stated in the language of graph
limit theory, for a sequence of matrix completion problems with
arbitrary missing patterns to be asymptotically solvable. It is then
shown that a small modification of the Candes—Recht nuclear
norm minimization algorithm provides the required asymptotic
solution whenever the sequence of problems is asymptotically
solvable. The theory is fully deterministic, with no assumption
of randomness. A number of open questions are listed.

Index Terms— Matrix completion, low rank matrix, graph
limit, graphon.

I. INTRODUCTION
HE problem of reconstructing a large low rank matrix
from a subset of revealed entries has attracted widespread
attention in the statistics and machine learning literatures in
the last ten years. For a recent survey of this vast body of
work, see [15]. Notice that the problem itself is a problem
in linear algebra, with nothing random in it. However, matrix
completion in classical linear algebra is restricted to matrices
with special structure, such as positive definite matrices [10].

In the literature on low rank matrix completion, randomness
enters into the picture through the assumption that the set of
missing entries is random. In most papers, the randomness
is uniform over all subsets of a given size. This assumption,
while unrealistic, allows researchers to prove many beautiful
theorems. There are a handful of papers that strive to work
with deterministic missing patterns or missing patterns that
depend on the matrix, using spectral gap conditions [1], [9],
rigidity theory [17], algebraic geometry [12] and other meth-
ods [6], [13], [16], [18]. These are discussed in some detail
in Section V.

However, a complete characterization of missing patterns
that allow approximate completion of large low rank matrices
has remained an open question. The aim of this paper is to
give such a characterization. Here ‘approximate completion’
means that the missing entries are required to be recovered
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Fig. 1. A pattern of missing entries that cannot be completed (even
approximately) even if the rank is known to be small.

approximately and not exactly (a precise definition is given
later). The analogous criterion for exact recovery is left as an
open question. Our result is an asymptotic statement involving
limits; proving a non-asymptotic version of the result is also
left as an open question.

Right away, it is important to note that not all patterns of
revealed entries allow low rank matrix completion (even in
an approximate sense), even if a substantial fraction of entries
are revealed. For example, if we have a large square matrix of
order n, and only the top n/2 rows are revealed, the matrix
cannot be completed even if it is known to have rank 1
(see Figure 1). When we say ‘cannot be completed’, what
we really mean is that there multiple very different ways to
complete, even under the low rank assumption. This means
that any particular completion cannot be a reliable estimate of
the true matrix.

This example suggests that the set of revealed entries has to
be in some sense ‘dense’ in the set of all entries for the matrix
to be recoverable. However, one has to be cautious about this
intuition. Consider a second counterexample: Let n be even,
and consider an n x n matrix whose (i, )" entry is revealed
if and only if ¢ and j have the same parity (that is, both even
or both odd). This set of revealed entries looks sufficiently
‘dense’ (see Figure 2). Yet, we will now argue that recovery
is not possible even if the rank of the matrix is as small as
three.

To see this, note that the rows and columns can be relabeled
such that the even numbered rows and columns in the original
matrix are renumbered from 1 to n/2 and the odd numbered
rows and columns are renumbered from n/2+ 1 to n. Then in
this new arrangement of rows and columns, the (i,5)" entry
is revealed if and only if either both ¢ and j are between 1
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rows and columns

Fig. 2. A pattern of missing entries that cannot be completed. Shaded regions denote available entries and white regions are missing. Although the pattern
of available entries on the left looks ‘dense’, permuting rows and columns in a particular way gives the pattern on the right, which is clearly not completable

(even approximately) even if the rank is known to be small.

and n/2, or both 7 and j are between n/2+ 1 and n. In other
words, the matrix is a 2 X 2 block matrix with blocks of order
n/2xn/2, where only the top-left and bottom-right blocks are
revealed (again, see Figure 2). Clearly, the other two blocks
cannot be recovered using this information if the rank is three
or higher.

The problem with the above counterexample is that the
rows and columns could be relabeled so that the pattern
of revealed entries is no longer ‘dense’. This suggests that
for recoverability of low rank matrices, it is necessary that
the pattern of revealed entries remains ‘dense’ under any
relabeling of rows and columns.

It turns out that this condition is also sufficient. This is
the main theorem of this paper (Theorem 2). The precise
statement is given in the language of graph limit theory [14].
It is then proved that a modification of a popular method of low
rank matrix completion by nuclear norm minimization [2]-[4]
succeeds in approximately recovering the full matrix whenever
the above condition holds (Theorem 3). In other words, this
algorithm does the job whenever the job is doable.

The modification is as follows. The usual Candeés—Recht
algorithm finds the matrix with minimum nuclear norm among
all matrices that agree with the unknown matrix on the set of
revealed entries. In the modification, we assume that an upper
bound L on the magnitudes of the entries of the unknown
matrix is known to the user (which is usually true), and then
find the matrix that minimizes the nuclear norm subject to
the usual constraint, plus the constraint that the magnitudes of
all entries are bounded by L. Note that this is still a convex
optimization problem, just like the original algorithm.

The rest of the paper is organized as follows. Some neces-
sary notations are introduced in Section II. Several definitions
needed for stating our results in the language of graph limit
theory are given in Section III. The main results are presented
in Section IV. A brief discussion of the existing literature on
matrix completion with non-uniform missing patterns is given
in Section V. Some open problems are stated in Section VI.
The remaining sections are devoted to proofs.

II. NOTATIONS
All our matrices will have real entries. We will denote the
(i,7)™ entry of a matrix A by a;;, of B by b;;, and so on. The
transpose of a matrix A will be denoted by A7, and the trace

by Tr(A), and the rank by rank(A). Vectors will be treated
as matrices with one column.

Let A be an m x n matrix. We will have occasions to use the
following matrix norms. The Frobenius norm of A is defined

as
m n

Al = (Zzagj)m.

i=1 j=1

More frequently, we will use the following averaged version
of the Frobenius norm:

1 ) 1/2
(LE5a)"

i=1 j=1

X

m

For us, the average Frobenius norm will be more useful than
the usual Frobenius norm because it is a measure of the size
of a typical entry of A.

If 01,...,0, are the non-zero singular values of A,
the nuclear norm of A is defined as

K
Al =) .
=1

The ¢°° norm of A is simply
[Alloe := max|as].
iJ

We will also use a somewhat non-standard matrix norm, called
the cut norm, defined as

1Allo

1
— max{|zT Ay| : x € R™, y € R",
mn
[#lloo <1, [[ylloe <1}

In the usual definition of the cut norm for matrices, the maxi-
mum is not divided by mn. We divide by mn because it will
be more convenient for us to work with this version, and also
because this is the custom in graph limit theory.

For each k, let Sy be the group of all permutations of
{1,...,k}. For m € S,, and 7 € S,,, let A™7 be the matrix
whose (i, 7)™ entry is @r(i)r(;)- The cut norm is used to define
the cut distance between two m x n matrices A and B as

oo(A, B) := [A™T = Bl[o. (1

min
TESm, TES,
We will say that a matrix is a binary matrix if each of its entries
is either 0 or 1. We will use binary matrices to denote the
locations of revealed entries in matrix completion problems.
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If A and B are two m x n matrices, the Hadamard product
of A and B, denoted by A o B, is the m X n matrix whose
(i,7)™ entry is a;;b;;. Hadamard products will be useful for
us in the following way. If A is a matrix which is partially
revealed, and P is a binary matrix indicating the locations of
the revealed entries, then A o P is the matrix whose entries
equal the entries of A wherever they are revealed, and zero
elsewhere.

III. DEFINITIONS

As mentioned earlier, certain patterns of revealed entries
may not suffice for approximately recovering the full matrix,
whereas other patterns may suffice. While this makes intuitive
sense, we need to give a precise mathematical definition of the
notion of recoverability before proceeding further with this.
Roughly speaking, approximate recoverability should mean
that if two low rank matrices are approximately equal on
the revealed entries, they should also be approximately equal
everywhere. To make this fully precise, we need to state it in
terms of sequences of matrices rather than a single matrix.

Definition 1: Let {P},>1 be a sequence of binary matri-
ces. We will say that this sequence admits stable recovery of
low rank matrices if it has the following property. Take any
two sequences of matrices { Ay }r>1 and { By }r>1, where Ay
and By have the same dimensions as Pj. Suppose that there
are numbers K and L such that rank(Ay) and rank(By) are
bounded by K and || Ak || and || Bx|| are bounded by L for
each k. Then for any £ > 0 there is some J > 0, depending
only on ¢, K and L, such that if limsup,_, .. [|(Ax — Bg) o
Pyl <6, then limsup,,_, . ||Ar — Brll& < e.

The word ‘stable’ is added in the above definition to
emphasize that we only need approximate equality of the
revealed entries, rather than exact equality.

To understand the essence of the above definition, it is
probably helpful to revisit the counterexample mentioned
earlier. For each k, let Py be the k x k binary matrix whose
entries are 1 in the first [k/2] rows, and O elsewhere. Let
Ay be the £ x k matrix of all zeros, and By be the k x k
matrix whose entries are 0 in the top [k/2] rows and 1
elsewhere. Then ||Ag||loo and ||Bg|loc are bounded by 1 for
all k, and rank(Ay) and rank(Bj) are bounded by 1 for all
k. Now clearly limy_.o ||(Ar — Bi) o Px||z = 0, but a simple
calculation shows that

1
([ Ay = Billz = 7
Thus, the sequence {Pj}r>1 does not admit stable recovery
of low rank matrices.

To verify that a sequence {P};>1 admits stable recovery
of low rank matrices according to Definition 1, one needs
to verify the stated condition for all sequences { Ay }x>1 and
{Bk}r>1. It would however be much more desirable to have
an equivalent criterion in terms of some intrinsic property of
the sequence {Py}y>1. The main result of this paper gives
such a criterion. To state this result, we need to introduce
some further definitions.

In graph limit theory [14], a graphon is a Borel measurable
function from [0,1]? into [0,1], which is symmetric in its
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arguments. Since we are dealing with matrices that need not be
symmetric, we need to generalize this definition by dropping
the symmetry condition.

Definition 2: An asymmetric graphon is a Borel measurable
function from [0, 1]? into [0, 1].

If W is an asymmetric graphon and m and n are two
positive integers, we define the m x n discrete approximation
of W to be the m x n matrix W, ,,, whose (i, j)™ entry is
the average value of W in the rectangle [% L] x [EEL) 4,

‘m n ’'n
that is,
i/m
mn/
(i=1)/m J(G-1)/n

If A is an m X n matrix and W is an asymmetric graphon,
we define the cut distance between A and W to be

(5|:|(A, W) = (5|:|(A, Wm,n);

j/n
Wz, y)dydz.

where the right side is as defined in equation (1).

Definition 3: We will say that a sequence of matri-
ces {Ap}r>1 converges to an asymmetric graphon W if
5[](Ak,W) — 0 as k — oc.

Note that the limit defined in the above sense may not be
unique. The same sequence may converge to many different
limits. In graph limit theory, all of these different limits are
considered to be equivalent by defining an equivalence relation
on the space of graphons. It is possible to do a similar thing
for asymmetric graphons, but that is not needed for this paper.

We will use asymmetric graphons to represent limits of
binary matrices. Not every sequence has a limit, but subse-
quential limits always exist.

Theorem 1: Any sequence of binary matrices with dimen-
sions tending to infinity has a subsequence that converges to
an asymmetric graphon.

The above theorem is the asymmetric analog of a fun-
damental compactness theorem in graph limit theory [14,
Theorem 9.23]. It is probable that the asymmetric version
already exists in the literature, but since the proof is not
difficult, it is presented in Section X.

IV. RESULTS

Our main objective is to give a necessary and sufficient
condition for a sequence of binary matrices to admit stable
recovery of low rank matrices. Because of Theorem 1, it suf-
fices to only consider convergent sequences.

Theorem 2: A sequence of binary matrices with dimensions
tending to infinity and converging to an asymmetric graphon
W admits stable recovery of low rank matrices (in the sense of
Definition 1) if and only if W is nonzero almost everywhere.

To understand this result, first consider the familiar case of
entries missing at random. Suppose that each entry is revealed
with probability p, independently of each other. Then the
corresponding sequence of binary matrices converges to the
graphon that is identically equal to p on [0,1]% If p > 0,
Theorem 2 tells us that this sequence of revelation patterns
admits stable recovery of low rank matrices. On the other hand,
consider our running counterexample, where only the top half
of the rows are revealed. The corresponding sequence of binary
matrices converges to the graphon that is 1 in [0,1/2] x [0, 1]
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and 0 in (1/2,1] x [0, 1]. Therefore this sequence does not
admit stable recovery of low rank matrices, as we observed
before.

At this point the reader may be slightly puzzled by the fact
that Theorem 2 implies that recovery is impossible if the set
of revealed entries is sparse (because then the limit graphon
is identically zero), whereas there are many existing results
about recoverability of low rank matrices from a sparse set
of revealed entries. The reason is that we are not assuming
randomness and at the same time demanding that the recovery
is ‘stable’. Suppose that most entries are the same for two
matrices, but the entries that differ are the only ones that are
revealed. Then there is no way to tell that the matrices are
mostly the same. Thus, stable recovery is impossible from
a small set of revealed entries if there is no assumption of
randomness.

Theorem 2 succeeds in giving an intrinsic characteriza-
tion of recoverability in terms of the locations of revealed
entries. However, it does not tell us how to actually recover
a matrix from a set of revealed entries when recovery is
possible. Fortunately, it turns out that this is doable by a small
modification of an algorithm that is already used in practice,
namely, the Candes—Recht algorithm for matrix completion
by nuclear norm minimization [2]-[4]. The Candés—Recht
estimator of a partially revealed matrix A is the matrix with
minimum nuclear norm among all matrices that agree with
A at the revealed entries. The modified estimator is the
following.

Definition 4: Let A be a matrix whose entries are partially
revealed. Suppose that ||A||o, < L for some known constant
L. We define the modified Candés—Recht estimator of A as the
matrix that minimizes nuclear norm among all B that agree
with A at the revealed entries and satisfy || B|oc < L.

The assumption of a known upper bound on the /*° norm
is not unrealistic. Usually such upper bounds are known, for
example in recommender systems. The modified estimator is
the solution of a convex optimization problem, just like the
original estimator, and should therefore be computable on a
computer if the dimensions are not too large. The following
theorem shows that this algorithm is able to approximately
recover the full matrix whenever the pattern of revealed entries
allows stable recovery.

Theorem 3: Let { Py },>1 be a sequence of binary matrices
with dimensions tending to infinity that admits stable recovery
of low rank matrices. Let { A;}x>1 be a sequence of matrices
such that for each k, A, has the same dimensions as P.
Suppose that rank(Ay) and ||Ag|leo are uniformly bounded
over k. Let Ek be the modified Candés—Recht estimate of Ay,
(as defined in Definition 4) when the locatioAns of the revealed
entries are defined by Pj. Then limy_.o ||Ax — Akl = 0.

The modified Candes—Recht estimator, just like the original
estimator, will run into computational cost issues for very large
matrices. It would be interesting to figure out if there is a
faster algorithm (for example, by some kind of singular value
thresholding [5], [8], [11]) that also has the above ‘universal
recovery’ feature.

Another interesting and important problem is to develop an
analog of the above theory when the set of revealed entries
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is sparse. As noted before, the problem is unsolvable in this
setting if we demand that the recovery be stable. However,
dropping the stability requirement may render it possible to
recover the full matrix from a sparse set of revealed entries
even in the absence of randomness. In particular, Theorem 3
may have an extension to the sparse setting under appropriate
assumptions. The methods of this paper would need to be
significantly extended to make this possible.

This concludes the statements of results. The proofs are
organized as follows. The proof of Theorem 2 is divided
between Sections VII and VIII. Theorem 3 is proved
in Section IX, and Theorem 1 is proved in Section X.

V. SOME RELATED LITERATURE

A small number of papers in the literature investigate
the problem of matrix completion when the entries are not
missing uniformly at random. As mentioned earlier, this list
is minuscule in comparison to the vast body of literature on
matrix completion under the assumption of missing uniformly
at random. The following is a non-exhaustive list of some of
the notable contributions.

A general recovery method was developed in [1] when the
pattern of revealed entries is the adjacency matrix of a bipartite
graph with a large spectral gap. A similar question was inves-
tigated in a slightly different setting in [9]. Inhomogeneous
— but still independent and random — patterns of missing
entries were studied in [6].

The very interesting paper [17] applied rigidity theory to
understand whether a partially revealed low rank matrix is
completable or not. However, this paper did not give an
algorithm for completion when completion is possible. A com-
parison of the criterion from [17] with our Theorem 2 is an
interesting question that merits further investigation.

An attempt at giving a criterion for completability using
algebraic geometry was made in [12]. This paper has a
criterion for recoverability of specific entries of the matrix. But
again, a recovery algorithm was not given. Algebraic criteria
have also been investigated in other recent papers, such as [16].

A different approach was taken in [13], which proposed
a new way of interpreting the quality of the output of a
given matrix completion algorithm under arbitrary patterns of
missing entries.

The idea of using the EM algorithm for matrix completion
under data-dependent missing patterns was recently studied
in [18].

The main advantage of our results over most of the papers
mentioned above is that we give a condition that is both nec-
essary and sufficient for completability, and also demonstrate
that a small modification of a popular algorithm can do the job
when it is doable. The main disadvantage, on the other hand,
is that our results are of an asymptotic nature. Developing
non-asymptotic versions is an important goal. This is further
discussed in the next section.

VI. OPEN PROBLEMS

The results of this paper leave a lot of questions unanswered.
The following is a partial list.
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1) The definition of °‘stable recovery’ entails that the
revealed entries are only approximately equal to the
corresponding entries of the unknown matrix. What if
we drop this condition and assume that the revealed
entries are exactly equal to the true entries? How should
the theory be modified?

2) Developing non-asymptotic versions of Theorems 2
and 3 is extremely desirable. Note that it is not quite
clear what should be the proper non-asymptotic state-
ments that one can aspire to prove. A precise formulation
of the non-asymptotic problem is itself an open question.
The non-asymptotic formulation is needed for dealing
with sparse recovery problems, for the following reason.
The theorems of this paper have meaningful implications
when the fraction of revealed entries remains fixed as
the size of the matrix goes to infinity. To properly
understand the level of sparsity allowable for a matrix
of a given size, one needs a non-asymptotic result.

3) It is not clear if the Candés—Recht algorithm indeed
needs to be modified, or if the original version is good
enough for Theorem 3. We believe that the modification
is necessary, but we do not have a counterexample to
show that the original algorithm will not work.

4) As mentioned before, the Candeés—Recht algorithm is
rather slow for very large matrices. Is there a faster
algorithm that can take its place in Theorem 3?

VII. TOWARDS THE PROOF OF THEOREM 2

The goal of this section is to prove a quantitative result that
underlies the proof of Theorem 2. We need to prove a number
of lemmas before arriving at this theorem.

Lemma 1: Let X be an m x n matrix with || X || < 1 and
singular value decomposition

k
§ T
X = O;U;V; .
i=1

Then for each ¢,

o; < V/mn, vn and ||v;]|ee < \/ﬁ

i i

uilloo <

Proof: Let u;; denote the 4™ component of wu;. Since
Xv; = oyu; and || X || < 1, we get

n n n 1/2
ilui| < |joa| < Jval < (nzvﬁ) =/n.
=1 =1 =1
Dividing throughout by o; and maximizing over j, we get the
required bound for ||u;||oc. The bound for ||v;||o is obtained
similarly. For the bound on o;, notice that since »_ j ufj =1
there is some j such that |u;;| > m~'/2 and use this
information in the above display. O
Recall that a matrix is called a block matrix if its entries are
constant in rectangular blocks — in other words, if the matrix
can be expressed as an array of constant matrices. We will
say that two matrices A and B have a simultaneous block
structure if they are both block matrices and the rows and
columns defining the blocks are the same. Note that block
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structures may not be uniquely defined, but that will not be a
problem for us.

Lemma 2: Let X and Y be m xn matrices with || X ||cc < 1
and ||Y||oc < 1. Let ¢ > 1 be a number such that || X||. and
[IY||« are bounded by ¢\/mn. Take any ¢ € (0,1). Then,
there exist m x n matrices A and B with a simultaneous
block structure with at most (20000 q65_10)5q25*2 blocks, and
permutations 7 € Sy, and 7 € S, such that | X™7 - Az < ¢
and ||Y™7 — B||z < e. Moreover, it can be ensured that
[Alloc < 1 and [[Blloc < 1.

Proof: Fix some ¢ > 0. Let §, v and n be three other
positive numbers, to be chosen later. Let

k l
X = E O'iui’l)iT, Y = E AleZ,LT
i=1 =1

be the singular value decompositions of X of Y, with 1 >
c-- >0 >0and A\ > --- > )\; > 0. Choose two numbers
k1 and [y such that o, > § > 0,41 and A;;, > 0 > A 4.
If o; < ¢ for all 7, let ky = 0, and if o; > ¢ for all ¢, let
k1 = k. Similarly, if \; <6 for all 7, let [; = 0, and if \; > §
for all 4, let {1 = 1. Let

k)l ll
Xi = ZUW@‘U@T7 Y, = Z )\iwiziT.
i=1 i=1
Then by the definition of %1,

1
2 _
X - Xillz=—

X[«
Sizaizn ||5S q5. @)

mn

g
S

Similarly, the same bound holds for [|Y" — V1 |/2.

For 1 < i <kand 1l < a < m, let u;, denote the a™
component of u;. Define u;, to be the integer multiple of ~y
that is closest to u;, under the constraint that |[U;,| < |uqal-
Then note that |u;, — %;q| < 7. Let u; be the vector whose
a™ component is ;,. Let w; be defined similarly. Define v;

and Z; the same way, but using 7 instead of ~. Let
kl ll

X1 = ZO’ZaZ;l\)JzT, Y1 = Z )\11’1712?
i=1 i=1

Now take any 1 < ¢ < k;. By Lemma 1 and the choice of ki,

we have

4D

T.
Therefore for any 1 < a < m, the set of possible values of
U;, has size at most

—Qﬁ +1< —4\/ﬁ,
oy oy

where the inequality was obtained under the assumption that

2

ﬂ > 1. 3)

oy

We will later choose § and ~y such that this assumption is valid.
We can give similar bounds on the sizes of the sets of possible
values of the components of v;, w; and z;.

[uilloo <
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Declare that two rows a and o’ are ‘equivalent’ if U;q = ;q/
and Wyq = Wye forall 1 < ¢ < ky and 1 < ¢/ < [4.
Similarly declare that two columns b and b’ are equivalent if
@b = @y and gi/b = Ei/b« for all 1 S ) S kl and 1 S i/ § ll.
Clearly, these define equivalence relations. By the previous
paragraph, there are at most (4y/n/(87v))*¥ i1 equivalence
classes of rows, and at most (4y/m/(6n))¥*+1 equivalence
classes of columns.

Let 7 be a permutation of the rows that ‘clumps together’
equivalent rows, and let 7 be a permutation of the columns
that clumps together equivalent columns. Then it is clear that
X" and Y{" are block matrices. By the previous paragraph,
the number of blocks is at most (16/mn/(§2vn))*1+h,

Now note that

k
ko, <Y o =[|X]. < gv/mn.
i=1

But oy, > 4. Thus,

hy < q/mn
— 5 .

Similarly, [; is also bounded by the same quantity. Thus,
the number of blocks is at most

(mm)zqm/é

52y
Now notice that by Lemma 1 and the definition of X 1

X1 — Xl < 1X1 — X1l
k1

<Y oi(lls — Uillool[vill oo + [1Tillso [0 — il o0)
=1

Sq\/ﬂﬁ(@Jr@).

By a similar argument, the same bound holds for ||Y; — Y; 1532
Combining with (2), we see that if A := X’{TT and B := }for’T,
then A and B have a simultaneous block structure with at most
b blocks, and || X™ 7 — A|l& and [|[Y™7 — B||& are bounded
by

g v (g

Now take any «, 5 > 0 and define
§:=aymn, v:= g

Plugging these values into the previous display gives

v TR
293

vaa + ==

For a given (3, the above quantity is minimized by taking
a = 24/3¢V/332/3 and the minimum value is (2%/3 +
2-1/3)¢?/331/3. Choose 8 to make this equal to e, which
ensures that ||X™7" — A/ and ||[Y™" — B are bounded
by €. With these choices of o and (3, an easy calculation gives

b= (160[72&72)2(1/& (20000 qG 710)5q e 2

vmy \/5_77>

p

Also, it is easy to check (using ¢ > 1 and € € (0,1)) that
with these choices of « and 3, the inequality (3) holds. Thus,
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the proof is complete except that we have not ensured that
oo < 1 and |Blloc < 1 in our construction. To force
this, just take any element of either matrix; if it is bigger than
1, replace it by 1; if it is less than —1, replace it by —1.
This retains the block structures of the matrices, and it cannot
increase | (i) (;) — @ij| OF |Yr(iyr(;) — bij| for any 4, j since
l@nyr(y] < 1 and [yrgr(l < 1. O

Lemma 3: Let A and B be m x n matrices with a simulta-
neous block structure. Let b be the number of blocks. Let P
and @) be m x n matrices such that P is binary and the entries
of @ are all in [0, 1]. Then

(A= B)oQllz < (A= B)oPlz
+ V[P =Qllo A - Bl
Proof: Let each block be represented by the set of pairs
of indices (7, j) that belong to the block. Let D be the set of

all blocks. Take any block D € D. By the definition the cut
norm,

1

— Z (Pij — @iz)

(i,5)eD

<[P -Qlo. @

Recall that a;; is the same for all (4,7) in a block, and the
same holds for b;;. Let a(D) and b(D) denote the values of
a;; and b;; in a block D. Since ¢;; € [0, 1] for all 4, j,

1
I(4-B)oQlF= % D _(ai = by)* )

2]

)
[0,

<

= % Z az]
Y (a(D) = b(D))?

Qz]

DeD (i,5)€D
Therefore by (4),
(A= B)oQ|%
1
< Z(G(D —b(D )2<% Z pij+|P_Q|D)-
DeD (i,5)€D

Since P is binary, pi; = p7; for all i, j. Thus, we get

(A= B)oQIz <~ > 3" (ay -

DeD (i,j)eD
+P-QlolA- Bl

= (A~ B)oP|%
+[[P=Qllo A~ Bl b

pl]

D

The proof is not completed by applying the inequality
VT +y <z + /y to the right side. ]

We are now ready to prove the main result of this section.
The result roughly says the following. Let X and Y be
matrices with relatively small nuclear norms (of the same order
as that for low rank matrices). Let P be a binary matrix and
@ be a matrix with entries in [0, 1], such that P is close to
Q@ in the cut norm. Then, the closeness of X o P to Y o P
in average Frobenius norm implies the closeness of X o () to
Y o @ in average Frobenius norm.
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Theorem 4: Let X and Y be m x n matrices with /°° norms
bounded by 1. Let ¢ be a number such that the nuclear norms
of X and Y are bounded by ¢y/mn. Let P and Q) be m x n
matrices such that P is binary and the entries of () are all in
[0,1]. Then

(X =Y)oQlz <[(X =Y)oPlz

log(— log P — Qll0)
+C@\/ “TogllP—Qln

where C'(¢) depends only on gq.

Proof: Without loss of generality, assume that ¢ > 1. Take
any € > 0. Let A, B, m and 7 be as in Lemma 2. Let
2

b := (20000 ¢8e—10)50*<"

be the upper bound on the number of blocks given by
Lemma 2. Note that

(X =Y)oQlz=[(X™T =Y™7) 0 Q™75

<X™T=A) 0 Q77| + (A= B) o Q™77
FIB-Y"T) e Q"7

<XTT = Al + (A= B) o QT lp+ I1B=Y"" |5

<2 +[(A=B)oQ" |z

By Lemma 3,

I(A=B)e Q™|
< (A= B)o P™7 g+ V/b[P™" — Q™70 A~ Bl

<A =B)o PTTz+ 2V P = Qo

But

(A= B)o P""|&

< (A= XTT) o PP + [[(X™7 = Y™T) 0 P77
+ (Y™ = B) o P75

< A= X"+ (X =Y) o Pl + Y™ = Bz

<24+ ||(X -Y)oPl&.

Adding up, we get

(X = Y)oQllz < (X ~Y) o Plz
+4e + 2+/0||P - Q|lg
< (X~ Y) o Pllg+4e
0.2 _—2
+(Cq% 1% /P - Qllo,
where C' is a universal constant. This bound holds for ¢ €

(0,1), but it also holds for € > 1 due to the presence of the
4e term. The required bound is now obtained by choosing

- fog“10g 1P~ Qlin)
= C@\/ “ToglP— Qo

for some sufficiently large constant C'(¢q) that depends only
on q. ]
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VIII. PROOF OF THEOREM 2

Let {Py}r>1 be a sequence of binary matrices converging
to a graphon W. Suppose that W is nonzero everywhere. Let
my, and ny be the number of rows and the number columns
in Pg. Suppose that m;, and nj tend to infinity as k£ — oo.
We will first prove the following generalization of the ‘if” part
of Theorem 2.

Theorem 5: Let P, and W be as above. Take any two
sequences of my X nj matrices {Ap}r>1 and {Bp}r>1.
Suppose that there are numbers ¢ and L such that || Ag||. and
| Bi||« are bounded by ¢/miny; and [|[Ag|lc and || Bgleo
are bounded by L for each k. Then for any € > 0 there is
some § > 0, depending only on ¢, ¢ and L, such that if
limsupy,_, ., || (Ax — By)o Pr||& < 9, then limsup,_, . [|Ar—
Billp <e.

Proof: For simplicity of notation, let us denote the matrix
Wing.ne DY W) The convergence of Pj, to W means that
for each k, there are permutations 7, € S,,, and 7, € S,
such that

Jim (P77 =W g =0,
Rearranging the rows and columns of Py, Ay and By, we may

assume without loss of generality that 7, and 75, are the
identity permutations, so that

Jim [P = W®|g = 0. ®)
Let § > 0 be a number such that
li]rcrisip (A — Bg) o Pil|& < 6. (6)
Without loss of generality, L = 1. Then by (5), (6) and
Theorem 4,
limsup [|(Ay, — Bi) o W®) | < 4. @)

k—oo

Now take any 1 € (0, 1). Define two functions f, g : [0,1] —

[0,1] as
n if x <n,
f(z) = { .
x ifx>mn,
and g(z) := (f(z) — z)/n. Let U®) be the matrix whose

(i,7)" element is f (wi;C ) and let V(*) be the matrix whose
(i,7)™ element is g(wl(jk)) Since f(z) > 7 for all z,

1

| Ak = Bilw < =(Ax — Br) o UM |5

< =|l(Ax = Bg) o (UM — WW)|5

IS |I—=3|

i %H(Ak — By) o W |
= [(Ax = By) o VP|x
+ (A = Bi) o W
Therefore by (7),
fim sup Ak — Brll#

, 1)
shmamﬂmk—Bon“wf+5- ®)

k—o0
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Since L =1,

4
)12 w2
[(Ax — Br) o VW12 < ng( )’

= 4/ W(k) (z,v))? dxdy,

where W (*) now denotes the function which equals w( ) for
all (x, y) in the rectangle [m . [jn: , nk -L]. In other words
W) is obtained by averaging W within each such rectangle.
Since my and n, tend to oo and W is measurable, it follows
by a standard result from analysis (see, for example, [14,
Proposition 9.8]) that W*)(z,4) — W (z,y) as k — oo for
almost every (z,y). Since g is a bounded continuous function,
this shows that

timsup (s — Bi) o VI <4 [ [ g

k—o0

2 dzdy,

On the other hand, g(x) < 1f,<4 for all x. Thus,
limsup [|(Ay, — Bx) o VW12 < 46(n),

k—o0
where ¢(7) is the Lebesgue measure of the set of all (z,y)
where W (z,y) < n. Combining with (8), we get

_ 1)
h]rcnsup | Ak — Brllz < 2v/9(n) + n

Note that this holds for any n € (0,1). Since W is nonzero
almost everywhere, ¢(n) — 0 as 7 — 0. Thus, given £ > 0,
we can first choose 7 so small that 24/¢(n) < €/2, and then
choose § so small that /n < /2. If the sequences Aj, and
By, satisfy (6) with this §, then the above display allows us to
conclude that limsup,_,  [[Ax — Bi|7 < €. O
We are now ready to prove Theorem 2.

Proof of Theorem 2: The ‘if’ part of Theorem 2 fol-
lows immediately from Theorem 5 and the observation,
by Lemma 1, that

[ X1 < rank(X)|[ X | oo v/mn ©)

for any m X n matrix X.

For the ‘only if” part, suppose that W is zero on a set of
positive Lebesgue measure. Denote this set by .S and let A(S)
denote its Lebesgue measure. Take any € > 0. By a standard
measure-theoretic argument, there exists 7' C [0, 1] such that
T is a union of dyadic squares of equal size and A\(SAT) < ¢.
Let D be the set of all dyadic squares of this size in [0, 1]2.

For each k, let A, be the zero matrix of order my X ng.
Let Bk be the my, x nj matrix whose (i,5)" entry is 1 if
(Wzk e -L) € T and 0 otherwise. Since T is a union of elements
of D, it is not difficult to see that By is a block matrix with
at most |D| blocks. In particular, its rank is bounded above
by |D|.

Now note that |4 — BkH equals the fraction of indices
(4,7) such that (mk, nk) € T Therefore as k — oo, ||Ar —

BkH2 tends to A(7"). If € is small enough, this ensures that

A5) s,

5 (10)

lim ||Ak — Bka Z
k—oo
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On the other hand, ||(Ax — By) o Py ||2f equals the fraction of
indices (7, j) such that (mL,u nik) € T and the (i,7)" entry of
P is 1. Let D be one of the constituent dyadic cubes of T.
Let fi(D) be the fraction of (4,7) such that (m =) €eD
and the (i, )™ entry of P, is 1. From the definition of cut
norm, it follows that

hm fx(D / Wz, y)dzdy.

Summing over all D as above, we get
lim ||(Ay, — By) o Py||% = / W (z, y)dzdy.
k—o0 T

Since A(SAT') < e, W takes values in [0, 1], and W = 0 on
S, this shows that

klim [[(Ar — Bg) o Pk||2f <e+ / W(z,y)dedy = e.
—00 S
(1D

Since ¢ is arbitrary, the combination of (10) and (11) shows
that the sequence P, does not admit stable recovery of low
rank matrices. This completes the proof of Theorem 2. O]

IX. PROOF OF THEOREM 3

To prove that || Ay — ngf — 0, we will show that for any
subsequence, there is a further subsequence through which
this convergence takes place. By Theorem 1, we know that
any subsequence has a further subsequence along which Py
converges to a limit graphon. Moreover, it is easy to see that
if a sequence of binary matrices admits stable recovery of low
rank matrices, then any subsequence also does so. Therefore
by Theorem 2, we may assume without loss of generality that
P, — W for some W that is nonzero almost everywhere.

Also without loss of generality, suppose that ||Ag|lco < 1
for all k. Let L be a uniform upper bound on rank(Ay). Then

by (9),
| Akll« < Ly/ming,

where myj and n; are the number of rows and number
of columns in Aj. Consequently, ||Ay]|. is also bounded
by L./mgny. Moreover, by construction, |\Ak||oo < 1 and
(A — Ag) o Pyl = 0 for all k. Therefore by Theorem 5,
we can now conclude that || A, — Aillz — 0 as k — oc.

X. PROOF OF THEOREM 1

Let m and n be two positive integers. Let P be a partition
of {1,...,m} and let Q be a partition of {1,...,n}. The pair
(P, Q) defines a block structure for m X n matrices in the
natural way: Two pairs of indices (7, ) and (i’, j’) belong to
the same block if and only if ¢ and i’ belong to the same
member of P and j and j' belong to the same member of Q.

If A is an m x n matrix, let A”>2 be the ‘block averaged’
version of A, obtained by replacing the entries in each block
(in the block structure defined by (P, Q)) by the average value
in that block. It is easy to see from the definition of the cut
norm that

|A72]g < || Allo. (12)

We need the following lemma.
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Lemma 4: For any m x n matrix A with ||All < 1,
there is a sequence of partitions {P;},>1 of {1,...,m} and
a sequence of partitions {Q;};>1 of {1,...,n} such that for
each j,

1) Pj41 is a refinement of P; and Q;; is a refinement of

Qj,

2) |P;| and |Q;| are bounded by (2”2 )7°, and
3) A— AP |n <2571 +65%27.
Proof: Let
T
A= Z O’Z‘Uﬂ)iT
be the singular value decomposition of A, where o1 > -+ >

o, > 0 are the nonzero singular values. Take any 7 > 1. Let
[ be the largest number such that o; > /mn/j. If there is no
such [, let [ = 0. Let

l
Al = g UiuwiT
i=1

For 1 < i <land 1 < a < m, let u;, denote the a™
component of u;. Let ﬂgé) be the largest integer multiple of
2=Im~Y2 that is < w;,. Let ﬂz(j) be the vector whose a
component is u(j ). Similarly, for 1 < b < n, let '171(5) be the
largest integer multiple of 2771~ 1/2 that is < vg). Define

l
12[1 = ZO’Z‘&Z‘T};T.
i=1
(@ _ a(]?

Declare that two rows a and o’ are equivalent if u;;
for all 1 <4 < [. Similarly declare that two columns b and
b’ are equivalent if v(j) = '17(5,) forall 1 < i < [. Let Pj
be the set of equlvalence classes of rows and Q; be the set
equivalence classes of columns.

From the above definition, it is clear that if u(] ) _ ugj H),
then ug 7 = u( 7). This shows that Pj41 is a refinement of P;.
Similarly, Q]Jrl is a refinement of Q;.

Next, note that by Lemma 1 and the definition of [,
f < L
for 1 < ¢ <. Thus, the set of p0551ble values of u;, has size

at most 9 / \/_
PRIV

Therefore, |P;| < (27125)!. Now,

[uilloo <
2j+1j +1< 2j+2j.

T
lof <Y of =||A|F < mn,
i=1
where the last inequality holds because |[A|o. < 1. Since

o; > v/mn/j, this gives

1< 42 (13)

Thus, |P;| < (20+2)7°. Similarly, |Q;| < (20+2j)7"

Now recall that the operator norm || M||,, of a matrix M
is the maximum of ||Mz|| over all vectors = with ||z| < 1.
The operator norm of a matrix is equal to its largest singular
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value. From our definition of the cut norm, it is not difficult
to see that for an m x n matrix M,
M| op
M < .
M < e
Thus,
|A — Aillop N 1
vmn vmn ~ j
Next, by (13), Lemma 1 and the (easy) fact that the cut norm
is bounded above by the average Frobenius norm,

|41 — Aillg <A — Al

A= Aillo <

MN

< ) oilllui = Uilloo[[villoo + llTillool[vi = Tilloo)

<.
Il
i

-

w@m—wwwmw

1

+ (s = willoo + [Juilloo) [l = E'Ioo>

< lv/mn <2jm1/2jn1/2

(2

1 9iym=1/29=ip=1/2 +jm1/22jn1/2)
< 353277,
Combining, we get
|A - Aillg <j~'+355%277.

Now note that A; is constant within the blocks defined by the
pair (P;, Q;). Thus, by (12),

|A—AP#9|g <|[A-Aillg + |4 — AP ||g

e TPi,Qj .
<A- Al + A7 - A7
<24 - Ao

This completes the proof. O

We are now ready to prove Theorem 1. In this proof, we will
use the following scheme to define a graphon using a matrix.
Suppose that A is an m x n matrix. The graphon defined by A,
which we will also denote by A, is the function A : [0,
[0, 1] which equals a;; in the rectangle (=2, L) x (4, L)
foreach 1 <7 <m and 1 < j < n. On the boundaries of the
rectangles, A can be defined arbitrarily.

In the proof, we will need to work with cut norms of

asymmetric graphons. The cut norm of an asymmetric graphon

W is defined as

where the supremum is taken over all Borel measurable a, b :
[0,1] — [—1,1]. If the graphon is defined by a matrix as in
the previous paragraph, it is easy to see that the cut norm of
the graphon equals the cut norm of the matrix. A property of
the cut norm that we will use in the proof is that the cut norm
of an asymmetric graphon is bounded above by its L' norm.

Proof of Theorem 1: Let {Ap}r>1 be a sequence of
matrices with dimensions tending to infinity. Let mj and nj be

1]2 —

W = sup W (x,y)dzdy|,
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the number of rows and number of columns in A;. Lemma 4
tells us that for each k and j, we can find a partition Py, ; of
{1,...,my} and a partition Qy, ; of {1,...,n;} such that

1) Pk j+1 is a refinement of Py ; and Qy ;11 is a refine-

ment of Qy ;,

2) |P,| and |Qy ;| are bounded by (27+25)7", and

3) [|A — AR < 2571 4 653277,

For simplicity, let us denote Afk’j kg by A, j. By permuting
rows and columns of Ay, let us assume that the members of
Pr,; and Qy ; are intervals, so that Ay ; is a block matrix.
As described in the paragraph preceding this proof, the matrix
Ay, ; defines an asymmetric graphon which is also denoted by
Ay ;. This graphon is constant in rectangular blocks, where
the number of blocks is bounded by (2772 j)2j2. Passing to a
subsequence if necessary, we may assume that for each fixed 7,
these blocks tend to limiting blocks as & — oo, and moreover,
that the value of Ay, ; within each block also tends to a limit.
This limit defines an asymmetric graphon; let us call it Wj.
Clearly, Ay ; — Wj in the L' metric as k — oo.

Now note that by construction, the block structure for W ;
is a refinement of the block structure for ;. Moreover, also
by construction, the value of W in one of its blocks is the
average value of W,,; within that block. From this, by a
standard martingale argument (for example, as in the proof of
[14, Theorem 9.23]) it follows that WW; converges pointwise
almost everywhere to an asymmetric graphon W as j — oo.
In particular, W; — W in L'. We claim that Ay, — W in the
cut norm as k — oo. To show this, take any ¢ > 0. Find 5 so
large that [|[W — W, ;1 < e and 257! 4 655277 < e. Then
for any k,

W —Akllo < IW=Wjllo +[[W; — Akjlo
+ || Ak,; — Axllo
S e+ [Wy — Apgllo +2571 + 65727
< 2+ |[W) — Akl

Since Ay ; — Wj in L' as k — oo and ¢ is arbitrary, this
completes the proof. O]
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