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Abstract

We show that the convergence of finite state space Markov chains to stationarity

can often be considerably speeded up by alternating every step of the chain with a

deterministic move. Under fairly general conditions, we show that not only do such

schemes exist, they are numerous.
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1 Introduction

This paper started from the following example. Consider the simple random walk on

Zn (the integers mod n):

Xk+1 = Xk + εk+1 (mod n),

with X0 = 0, and ε1, ε2, . . . i.i.d. with equal probabilities of being 0, 1 or −1. This

walk takes order n2 steps to reach its uniform stationary distribution in total variation

distance. This slow, diffusive behavior is typical of low dimensional Markov chains

(“Diameter2 steps are necessary and sufficient”—see Diaconis and Saloff-Coste [19]
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for careful statements and many examples). Now change the random walk by deter-

ministic doubling:

Xk+1 = 2Xk + εk+1 (mod n).

This walk has the “same amount of randomness”. Results discussed below show that

it takes order log n steps to mix (at least for almost all n).

We would like to understand this speedup more abstractly—hopefully to be able to

speed up real world Markov chains. Our main result shows a similar speedup occurs

for fairly general Markov chains with deterministic doubling replaced by almost any

bijection of the state space into itself. We proceed to a careful statement in the next

section. In Sect. 3 a literature review offers pointers to related efforts to beat diffusive

behavior. A sketch of the proof is in Sect. 4. Proofs are in Sects. 5 and 6. A different

kind of deterministic speedup,

Xk+1 = Xk + Xk−1 + εk+1 (mod n),

is analyzed in Sect. 7. The last section has applications and some interesting open

questions.

2 Speedup by deterministic functions

Let S be a finite set and P = (pi j )i, j∈S be a Markov transition matrix on S. We assume

the following conditions on P:

(1) The Markov chain generated by P is irreducible and aperiodic.

(2) If pi j > 0 for some i, j ∈ S, then p j i > 0.

(3) For each i ∈ S, pi i > 0.

(4) The uniform distribution on S is the stationary measure of P . We will call it μ.

In addition to the above assumptions, we define

n := |S|

and

δ := min{pi j : i, j ∈ S, pi j > 0}. (2.1)

Let f : S → S be a bijection. Consider a new Markov chain defined as follows.

Apply f , and then take one step according to P . This is one step of the new chain.

The transition matrix for the new chain is

Q = �P,

where � = (πi j )i, j∈S is the permutation matrix defined by f . (That is, πi j = 1

if j = f (i) and 0 otherwise.) Clearly, μ is a stationary measure for the new chain
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Speeding up Markov chains with deterministic jumps 1195

too. The main questions that we will try to answer are the following: (a) Under what

conditions on f does this new chain mix quickly—let’s say, in time log n? (b) Is it

always possible to find f satisfying these conditions? (c) If so, are such functions rare

or commonplace?

Our first theorem answers question (a), by giving a sufficient condition for fast

mixing of Q.

Theorem 2.1 For any A ⊆ S, let E(A) be the set of j ∈ S such that pi j > 0 for some

i ∈ A. Suppose that there is some ε ∈ (0, 1) such that for any A with |A| ≤ n/2,

|E ◦ f ◦ E(A)| ≥ (1 + ε)|A|. (2.2)

Let X0, X1, . . . be a Markov chain with transition matrix Q. For each i ∈ S and k ≥ 1

let μk
i be the law of Xk given X0 = i . Then

‖μk
i − μ‖T V ≤

√
n

2

(
1 −

ε2δ8

2

)(k−2)/4

,

where δ is the quantity defined in (2.1) and T V stands for total variation distance.

This result shows that if we have a sequence of problems where n → ∞ but ε and δ

remain fixed, and the condition (2.2) is satisfied, then the mixing time of the Q-chain

is of order log n.

Let us now try to understand the condition (2.2). The set E(A) is the ‘one-step

expansion’ of A, that is, the set of all states that are accessible in one step by the

P-chain if it starts in A. By the condition that pi i > 0 for all i , we see that E(A) is a

superset of A. The condition (2.2) says that for any A of size ≤ n/2, if we apply the

one-step expansion, then apply f and then again apply the one-step expansion, the

resulting set must be larger than A by a fixed factor.

We found it difficult to produce explicit examples of functions that satisfy (2.2) with

ε independent of n. Surprisingly, the following theorem shows that they are extremely

abundant, even in our general setting, thereby answering both the questions (b) and

(c) posed earlier.

Theorem 2.2 Let all notation be as in Theorem 2.1. There are universal constants

C1, C2 > 0 and C3 ∈ (0, 1) such that all but a fraction C1n−C2/δ of bijections f

satisfy (2.2) with ε = C3δ. Consequently, for all but a fraction C1n−C2/δ of bijections

f , the corresponding Q-chain satisfies, for all i ∈ S and k ≥ 1,

‖μk
i − μ‖T V ≤

√
n

2

(
1 −

C2
3δ10

2

)(k−2)/4

.

For instance, if the P-chain is the lazy random walk on Zn with equal probabilities

of taking one step to the left, or one step to the right, or not moving, then δ = 1/3. So

in this example this result shows that for all but a fraction C1n−3C2 of bijections of Zn ,

the corresponding Q-chain mixes in time O(log n). This is a striking improvement

over the lazy random walk, which mixes in time O(n2).
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Interestingly, the doubling random walk discussed in Sect. 1 does not satisfy the

expansion condition (2.2) with ε independent of n. To see this, take n = 4m − 1 for

large enough m, and define

A = {1, 2, . . . , m − 1} ∪ {2m + 1, . . . , 3m − 1}.

Then

E(A) = {0, 1, . . . , m} ∪ {2m, . . . , 3m}.

So if f is the doubling map, an easy calculation shows that

f ◦ E(A) = {0, 1, 2, . . . , 2m + 1},

and therefore

E ◦ f ◦ E(A) = {0, 1, . . . , 2m + 2, n − 1}.

So we have |A| = 2m − 2 ≤ n/2 and |E ◦ f ◦ E(A)| = 2m + 4, which means that

the condition (2.2) cannot hold with ε > 6/(2m − 2). Therefore the speedup of the

doubling walk is not happening due to expansion, although as Theorem 2.2 shows,

expansion is the reason for speedup for “most” bijections.

3 Related previous work

The deterministic doubling example comes from work of Chung et al. [9]. They found

that for almost all n, 1.02 log2 n steps suffice. Hildebrand [32] showed that 1.004 log2 n

steps are not enough for mixing. In a recent tour-de-force, Eberhard and Varjú [23]

show that for almost all n, there is a cutoff at c log2 n where c = 1.01136 . . .. Two

companion papers by Breuillard and Varjú [7,8] relate this problem to irreducibility

of random polynomials and very deep number theory. All of these authors consider

Xk+1 = aXk +εk+1 (mod n) for general a and εi ’s having more general distributions.

Related work is in Hildebrand [32] and the Ph.D. thesis of Neville [38]. One natural

extension is that if G is a finite group with ε1, ε2, . . . i.i.d. from a probability μ on G,

the random walk Xk+1 = Xkεk+1 may be changed to Xk+1 = A(Xk)εk+1 where A

is an automorphism of G. This is studied in Diaconis and Graham [15,16] who treat

G = Z
n
p with a matrix as automorphism. Similar speedups occur.

A very rough heuristic to explain the speedup in our Theorem 2.2 goes as follows.

Composing the original random walk step with a random bijection mimics a jump

along the edge of a random graph. Since random graphs are usually expanders, and

random walks on expanders with n vertices mix in O(log n) steps, we may naturally

expect something like Theorem 2.2 to be true. Remarkable work has been done on rates

of convergence of random walks on d-regular expanders. For instance, Lubetzky and

Sly [35] show that random walks on d-regular random graphs have a cutoff for total

variation mixing at d
d−2

logd−1 n. Lubetzky and Peres [34] prove a similar result for
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Speeding up Markov chains with deterministic jumps 1197

Ramanujan graphs, with cutoff at d
d−1

logd−1 n. Related work has recently appeared

in Hermon et al. [30], who show that if you begin with any bounded degree graph

on 2n vertices (for which all connected components have size at least 3) and add a

random perfect matching, the resulting walk has a cutoff and mixes in time O(log n).

A setup very similar to ours, with different results, has been considered recently by

Bordenave et al. [6]. This paper studies a random bistochastic matrix of the form �P ,

where � is a uniformly distributed permutation matrix and P is a given bistochastic

matrix. Under sparsity and regularity assumptions on P , the authors prove that the

second largest eigenvalue of �P is essentially bounded by the normalized Hilbert–

Schmidt norm of P . They apply the result to random walks on random regular digraphs.

A different, related, literature treats piecewise deterministic Markov processes.

Here, one moves deterministically for a while, then at a random time (depending on

the path) a random big jump is made. This models the behavior of biological systems

and chemical reactions. A splendid overview is in Malrieu [36] (see also Benaïm [3]).

There is a wide swath of related work in a non-stochastic setting where various extra

“stirring” processes are shown to speed up mixing and defeat diffusive behavior. See

Constantin et al. [11], Ottino [39] and Rallabandi et al. [41]. The papers of Ding and

Peres [22], Hermon [28] and Hermon and Peres [29] are Markov chain versions of

these last results.

There are a host of other procedures that aim at defeating diffusive behavior. For

completeness, we highlight four:

• Event chain Monte Carlo.

• Hit and run.

• Lifting/non-reversible variants.

• Adding more moves.

Each of these is in active development; searching for citations to the literature below

should bring the reader up to date.

While “random walk” type algorithms are easy to implement, it is by now well

known that they suffer from “diameter2” behavior. To some extent that remains true

for general reversible Markov chains. Indeed, Neal [37] showed that the spectral gap

of any reversible Markov chain can be improved by desymmetrizing. Of course, the

spectral gap is a crude measure of convergence. A host of sharpenings are in Diaconis

and Miclo [18].

Non-reversible versions of Hamiltonian Monte Carlo introduced in Diaconis et

al. [17] have morphed into a variety of “lifting algorithms” culminating in the event

chain algorithm of Kapfer and Krauth [33]. This revolutionized the basic problem

of sampling hard disk configurations in statistical mechanics. The hard disk problem

was the inspiration for three basic tools: The Metropolis algorithm, the Gibbs sampler

(Glauber dynamics) and molecular dynamics. All gave wrong conclusions for the

problems of interest; the new algorithms showed that entirely new pictures of phase

transitions are needed. It is an important open problem to generalize these algorithms

to more general stationary distributions.

Recent, closely related work is in Bordenave and Lacoin [5] and Conchon–

Kerjan [10]. Written independently, both papers study ‘lifting’ random walks to

covering graphs to speed up mixing and both prove that most liftings have cutoffs.
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The first paper also studies non-reversible chains. The paper of Gerencsér and Hen-

drickx [25] adds ‘long distance edges’ (as in small world graphs) and non-reversibility

to get speedups. It too has close connections with the present project.

A final theme is “hit and run”: Taking long steps in a chosen direction instead of just

“going ±1”. For a survey, see Anderson and Diaconis [1]. It has been difficult to give

sharp running time estimates for these algorithms (even though they are “obviously

better”). For a recent success, see the forthcoming manuscript of Boardman and Saloff-

Coste [4].

It is natural to try to speed up convergence by adding more generators. This is a

largely open problem. For example, consider the simple random walk on the hypercube

Z
d
2 . The usual generating set is {0, e1, . . . , ed}, where ei is the i th standard basis vector.

At each step, one of these vectors is added with probability 1/(d +1). It is well known

that 1
4

d log d + O(d) steps are necessary and sufficient for mixing (Diaconis and

Shahshahani [20]). Suppose you want to add more generators (say 2d+1 generators)—

what should you choose? Wilson [42] studied this problem and showed that almost all

generating sets of size 2d + 1 mix in time 0.2458d steps. Mirroring our results above,

his methods do not give an explicit choice effecting this improvement.

These problems are interesting, and largely open, even for the cyclic group Zp when

p is a prime. As above, the generating set {0,±1} take order p2 steps to mix. On the

other hand, almost all sets of 3 generators mix in order p steps. Greenhalgh [26] found

3 generators (roughly, 1, p1/3 and p2/3) that do the job. References to this literature

can be found in a survey by Hildebrand [31].

There has been vigorous work on adding and deleting random edges at each stage

(dynamical configuration model). See the paper of Avena et al. [2], which also has

pointers to another well studied potential speedup—the non-backtracking random

walk.

Finally we note that natural attempts at speeding things up may fail. Cutting cards

between shuffles and systematic versus random scan in the Gibbs sampler are exam-

ples. For details, see Diaconis [13].

4 Proof sketch

For the proof of Theorem 2.1, we define an auxiliary chain with kernel R = L2(LT )2,

where L := P�. This kernel is symmetric and positive semidefinite, and defines a

reversible Markov chain. The proof has two steps—first, relate the rate of convergence

of the R-chain with that of the Q-chain, and second, use the reversibility of the R-

chain to invoke Cheeger’s bound for the spectral gap. A lower bound on the Cheeger

constant is then obtained using condition (2.2).

The proof of Theorem 2.2 has its root in a beautiful idea from a paper of Ganguly and

Peres [24] (see also the related earlier work of Pymar and Sousi [40]). In our context,

the idea translates to showing the following: Let f be a uniform random bijection. First,

show that “most” sets A of size ≤ 3n/4 have the property that |E(A)| ≥ (1 + ε)|A|
for some suitable fixed ε > 0. Since |E(B)| ≥ |B| and | f (B)| = |B| for all B, this

implies that (2.2) is satisfied for “most” A of size ≤ n/2. But we want (2.2) to hold

for all A of size ≤ n/2. The Ganguly–Peres idea is to circumvent this difficulty in
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the following ingenious way. Since we know that |E(B)| < (1 + ε)|B| for only a

small number of B’s of size ≤ 3n/4, it is very unlikely that for any given set B, f (B)

has this property. Consequently, for a given set A such that |E(A)| ≤ 3n/4, it is very

unlikely that f (E(A)) has this property (taking B = E(A)). Thus, for any such set A,

it is very likely that

|E ◦ f ◦ E(A)| ≥ (1 + ε)| f (E(A))| ≥ (1 + ε)|A|.

Since the above event is very likely for any given A, it remains very likely if we take

the intersection of such events over a suitably small set of A’s. So we now take this

small set to be precisely the set of A’s that did not satisfy |E(A)| ≥ (1 + ε)|A|—that

is, our rogue set that spoiled (2.2). By some calculations, we can show that this indeed

happens, and so (2.2) holds for all A with |A| ≤ n/2.

In [24], the Ganguly–Peres idea was applied to solve a different problem for a

random walk on points arranged in a line. As noted above, the key step is to show

that the set of all A of size ≤ 3n/4 that violate |E(A)| ≥ (1 + ε)|A| is a small set.

Since we are working in a general setup here, the proof of this step from [24] does not

generalize; it is proved here by a new method.

5 Proof of Theorem 2.1

Let L := P�. Since the uniform distribution on S is the stationary measure of P ,

we deduce that P is a doubly stochastic matrix. Since � is a permutation matrix, it

is automatically doubly stochastic. Since the product of doubly stochastic matrices is

doubly stochastic, we see that L is also doubly stochastic. Thus, L and LT are both

stochastic matrices, and so is any power of either of these matrices. Consequently, the

matrix

R := L2(LT )2 = P�P��T PT �T PT = P�P PT �T PT .

is a stochastic matrix. (This identity explains why we symmetrize L2 instead of L .

Indeed, L LT = P��T PT = P PT , and the effect of � disappears.)

Lemma 5.1 The Markov chain with transition matrix R is irreducible, aperiodic and

reversible, with uniform stationary distribution. Moreover, R is symmetric and positive

semidefinite.

Proof It is evident from the definition of R that R is symmetric and positive semidef-

inite. Since R is symmetric, the Markov chain with transition matrix R is reversible

with respect to the uniform distribution on the state space.

Since pi i > 0 for any i ∈ S, it follows that

ri i ≥ pi iπi f (i) p f (i) f (i) p f (i) f (i)πi f (i) pi i > 0. (5.1)

Thus, R is aperiodic. Next, note that if pi j > 0, then

ri j ≥ pi jπ j f ( j) p f ( j) f ( j) p f ( j) f ( j)π j f ( j) p j j > 0. (5.2)
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Since P is irreducible, this shows that R is also irreducible. �


Corollary 5.2 The principal eigenvalue of R is 1, the principal eigenvector is the vector

of all 1’s (which we will henceforth denote by 1), and the principal eigenvalue has

multiplicity one. The second largest eigenvalue of R (which we will henceforth call

λ2), is strictly less than 1. All eigenvalues of R are nonnegative.

Proof Since the Markov chain defined by R is irreducible and aperiodic (on a finite

state space), and R is symmetric, all but the last claim follow from the general theory of

Markov chains. The eigenvalues are nonnegative because R is a positive semidefinite

matrix. �


The information about R collected in the above corollary allows us to prove the

next lemma.

Lemma 5.3 For any k ≥ 1, and any x ∈ R
n that is orthogonal to the vector 1,

‖Lk x‖ ≤ λ
(k−1)/4
2 ‖x‖.

Proof Take any vector x ∈ R
n that is orthogonal to 1. By the properties of R given in

Corollary 5.2, it is easy to see that

xT Rx ≤ λ2‖x‖2.

But notice that

xT Rx = xT L2(LT )2x = ‖(LT )2x‖2.

So for any x that is orthogonal to 1,

‖(LT )2x‖2 ≤ λ2‖x‖2. (5.3)

But if x is orthogonal to 1, then the stochasticity of L implies that

1T (LT )2x = 1T x = 0.

Thus, (LT )2x is also orthogonal to 1. So we can apply (5.3) iteratively to get

‖(LT )2k x‖2 ≤ λk
2‖x‖2

for any positive integer k. But LT , being a stochastic matrix, is an �2-contraction.

Therefore

‖(LT )2k+1x‖2 ≤ ‖(LT )2k x‖2 ≤ λk
2‖x‖2.

This completes the proof of the lemma. �
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Lemma 5.3 yields the following corollary, which relates the rate of convergence of

the Q-chain with the spectral gap of the R-chain.

Corollary 5.4 For any k ≥ 2, and any x ∈ R
n that is orthogonal to the vector 1,

‖Qk x‖ ≤ λ
(k−2)/4
2 ‖x‖.

Proof Note that Qk = (�P)k = �Lk−1 P . Being stochastic matrices, � and P are

both �2-contractions. Moreover, if 1T x = 0, then 1T Px = 1T x = 0 since P is doubly

stochastic. Therefore by Lemma 5.3,

‖Qk x‖ = ‖�Lk−1 Px‖ ≤ ‖Lk−1 Px‖

≤ λ
(k−2)/4
2 ‖Px‖ ≤ λ

(k−2)/4
2 ‖x‖.

This completes the proof of the corollary. �


Lastly, we need the following upper bound on λ2.

Lemma 5.5 Let λ2 be the second largest eigenvalue of R. Then

λ2 ≤ 1 −
ε2δ8

2
,

where ε is the constant from condition (2.2).

Proof Define a probability measure ν on S × S as

ν(i, j) = μ(i)ri j =
ri j

n
.

Recall that the Cheeger constant for the Markov chain with transition matrix R is

	 = min
A⊆S, μ(A)≤1/2

ν(A × Ac)

μ(A)
,

where Ac := S \ A. Since μ is the uniform distribution on V , this simplifies to

	 = min
A⊆S, |A|≤n/2

1

|A|
∑

i∈A, j∈Ac

ri j .

Now, if ri j > 0, then from the inequality (5.2) and the assumption that pkl ≥ δ for

all nonzero pkl , we get ri j ≥ δ4. Therefore, if A′ is the set of all vertices that are

attainable in one step from some i ∈ A by the Markov chain with transition matrix R,

then

∑

i∈A, j∈Ac

ri j ≥ δ4|A′ ∩ Ac| = δ4(|A′| − |A|), (5.4)
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where the last identity holds because A ⊆ A′ (by (5.1)). Now, since pi j > 0 if and

only if p j i > 0, the set A′ defined above can be written as

A′ = E ◦ f −1 ◦ E ◦ E ◦ f ◦ E(A).

Application of E cannot decrease the size of a set, and application of f −1 does not

alter the size. Therefore by condition (2.2),

|A′| ≥ |E ◦ f ◦ E(A)| ≥ (1 + ε)|A|,

provided that |A| ≤ n/2. Plugging this into (5.4), we get 	 ≥ εδ4. By the well-known

bound

λ2 ≤ 1 −
	2

2
,

this completes the proof of the lemma. �


We are now ready to complete the proof of Theorem 2.1

Proof of Theorem 2.1 Now take any i ∈ S and k ≥ 2. Let x ∈ R
n be the vector whose

i th component is 1 − 1/n and the other components are all equal to −1/n. Then it is

easy to see that x is orthogonal to 1, and that (QT )k x is the vector whose j th component

is μk
i ( j) − μ( j). Thus by Corollary 5.4,

‖μk
i − μ‖T V =

1

2

∑

j∈S

|μk
i ( j) − μ( j)|

≤
1

2

⎛
⎝n

∑

j∈S

(μk
i ( j) − μ( j))2

⎞
⎠

1/2

=
√

n

2
‖(QT )k x‖ ≤

√
n

2
λ

(k−2)/4
2 ‖x‖.

Since ‖x‖ ≤ 1, this proves that

‖μk
i − μ‖T V ≤

√
n

2
λ

(k−2)/4
2 . (5.5)

Using the bound on λ2 from Lemma 5.5, this completes the proof when k ≥ 2. When

k = 1, the bound is greater than 1 and therefore holds trivially. �


6 Proof of Theorem 2.2

For this proof, it will be convenient to define a graph structure on S. Join two distinct

points (vertices) i, j ∈ S by an edge whenever pi j > 0. Since pi j > 0 if and only

123



Speeding up Markov chains with deterministic jumps 1203

if p j i > 0, this defines an undirected graph on S. The irreducibility of the P-chain

implies that this graph is connected. A path in this graph is simply a sequence of

vertices such that each is connected by an edge to the one following it.

Define the external boundary of a set A ⊆ S as

∂ A := E(A)\A.

The following lemma proves a crucial property of the graph defined above.

Lemma 6.1 Take any A ⊆ S. Then the number of sets B such that ∂ B = A is at most

2|A|/δ .

The proof of this lemma is divided into several steps. Fix a set A. Define an equivalence

relation on Ac as follows. Say that two vertices i, j ∈ Ac are equivalent, and write

i ∼ j , if either i = j , or there is a path from i to j that avoids the set A (meaning

that there is no vertex in the path that belongs to A). It is easy to see that this is an

equivalence relation, because it is obviously reflexive and symmetric, and if i ∼ j and

j ∼ k, then there is a path from i to k that avoids A. To prove Lemma 6.1, we need to

prove two facts about this equivalence relation.

Lemma 6.2 If B is a set of vertices such that ∂ B = A, then B must be the union of

some equivalence classes of the equivalence relation defined above.

Proof Take any B such that ∂ B = A. Take any i ∈ B and j ∈ Ac such that i ∼ j . To

prove the lemma, we have to show that j ∈ B.

Let m be the length of the shortest path from i to j that avoids A. Since i ∼ j , we

know that there is at least one such path, and therefore m is well-defined. We will now

prove the claim that j ∈ B by induction on m. If m = 1, then j is a neighbor of i .

Since i ∈ B, j is a neighbor of i and j /∈ ∂ B, the only possibility is that j ∈ B. This

proves the claim when m = 1.

Let us now assume that the claim holds for all m′ < m. Take a path of length m

from i to j that avoids A. Let k be the vertex on this path that comes immediately

before j . Then k ∈ Ac, and k can be reached from i by a path of length m − 1 that

avoids A. Therefore by the induction hypothesis, k ∈ B. Applying the case m = 1 to

k, we see that j must be a member of B. This completes the induction step. �


Lemma 6.3 If D is any equivalence class of the equivalence relation defined above,

then there is at least one element of D that is adjacent to some element of A.

Proof Take any i ∈ D and j ∈ A. Since the graph is connected, there is a path from i

to j . Along this path, let k be the first vertex that belongs to A. (This is well-defined

because at least one vertex of the path, namely j , is in A.) Let l be the vertex that

immediately precedes k in the path. Then we see that there is a path from i to l that

avoids A, and so i ∼ l. Therefore l ∈ D and l is adjacent to an element of A, which

proves the lemma. �


Lastly, we need an upper bound on the maximum degree of our graph on S.

Lemma 6.4 The maximum degree of the graph defined on S is at most 1/δ.

123



1204 S. Chatterjee, P. Diaconis

Proof Since pi j ≥ δ for every i and j that are connected by an edge, and

∑

j∈S

pi j = 1

because P is a stochastic matrix, the number of neighbors of i must be ≤ 1/δ. �


We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1 Since each equivalence class of our equivalence relation has at

least one element that is adjacent to an element of A (by Lemma 6.3), the number of

equivalence classes can be at most the size of ∂ A. But by Lemma 6.4, |∂ A| ≤ |A|/δ.

Thus, there are at most |A|/δ equivalence classes.

But by Lemma 6.2, if B is any set such that ∂ B = A, then B must be a union of

equivalence classes. Consequently, the number of such B is at most the size of the

power set of the set of equivalence classes. By the previous paragraph, this is bounded

above by 2|A|/δ . �


Lemma 6.1 has the following corollary, which shows that not too many sets can

have a small external boundary.

Corollary 6.5 Take any 1 ≤ k ≤ n. The number of sets B ⊆ S such that |∂ B| = k is

at most
(

n
k

)
2k/δ .

Proof We can choose the external boundary of B in at most
(

n
k

)
ways. Having chosen

the external boundary, Lemma 6.1 says that B can be chosen in at most 2k/δ ways.

Thus, the number of ways of choosing B with the given constraint is at most
(

n
k

)
2k/δ .

�


For each ε > 0, let Aε be the set of all A ⊆ S such that |E(A)| < (1 + ε)|A|. For

each 1 ≤ m ≤ n, let Aε,m be the set of all sets A ∈ Aε that are of size m. Let

A
′
ε,m :=

⋃

1≤k≤m

Aε,k .

The following lemma uses the bound from Corollary 6.5 to get a bound on the size of

A′
ε,m .

Lemma 6.6 For any ε > 0 and 1 ≤ m ≤ n,

|A′
ε,m | ≤

∑

1≤k<εm

(
n

k

)
2k/δ.

Proof Take any A ∈ A′
ε,m . Then note that

|∂ A| = |E(A)| − |A| < ε|A| ≤ εm.

The claim is now proved by Corollary 6.5. �
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Now fix some ε ∈ (0, 1/2). Let f be a random bijection chosen uniformly from

the set of all bijections of S. Define an event

E := { f ◦ E(A) ∈ Aε for some A ∈ Aε with 1/ε ≤ |A| ≤ n/2}.

We want to show that E is a rare event. The following lemma is the first step towards

that.

Lemma 6.7 Let E be the event defined above. Then

P(E) ≤
∑

1/ε≤m≤3n/4

1(
n
m

)

⎛
⎝ ∑

1≤k<εm

(
n

k

)
2k/δ

⎞
⎠

2

.

Proof Take any A ∈ Aε with 1/ε ≤ |A| ≤ n/2. Let B = E(A). Then observe the

following about B:

• Since f is a uniform random bijection, the random set f (B) is uniformly dis-

tributed among all subsets of size |B|.
• Since A ∈ Aε , ε ∈ (0, 1/2), and 1/ε ≤ |A| ≤ n/2,

|B| < (1 + ε)|A| <
3

2
|A| ≤

3n

4
,

and |B| ≥ |A| ≥ 1/ε.

These two observations imply that

P(E) ≤
∑

1/ε≤m≤3n/4

∑

A∈Aε ,
|E(A)|=m

P( f (E(A)) ∈ Aε)

=
∑

1/ε≤m≤3n/4

∑

A∈Aε ,
|E(A)|=m

|Aε,m |(
n
m

)

≤
∑

1/ε≤m≤3n/4

|A′
ε,m ||Aε,m |(

n
m

) .

Since A′
ε,m is a superset of Aε,m , plugging in the bound from Lemma 6.6 completes

the proof. �


The bound in Lemma 6.7 is not straightforwardly understandable. The following

lemma clarifies the matter.

Lemma 6.8 There are universal constants C0, C1, C2 and C3 such that if ε ≤ C0δ,

then

∑

1/ε≤m≤3n/4

1(
n
m

)

⎛
⎝ ∑

1≤k<εm

(
n

k

)
2k/δ

⎞
⎠

2

≤ C1e−C2
√

n + C
1/ε

3 n2−1/4ε .
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Proof Recall the well-known inequalities

nk

kk
≤

(
n

k

)
≤

eknk

kk
.

Also, check that the map x �→ (en/x)x is increasing in [1, n]. Thus,

∑

1/ε≤m≤3n/4

1(
n
m

)
( ∑

k<εm

(
n

k

)
2k/δ

)2

≤
∑

1/ε≤m≤3n/4

mm

nm
n2

(
en21/δ

εm

)2εm

= n2
∑

1/ε≤m≤3n/4

(
m1−2ε

n1−2ε
22ε/δe2ε(1+log(1/ε))

)m

.

Now choose ε so small that 1 − 2ε ≥ 1/2 and

22ε/δe2ε(1+log(1/ε)) <

√
8

7
.

Note that this can be ensured by choosing ε to be less than some universal constant

times δ (noting that δ ≤ 1). With such a choice of ε, we get

n2
∑

√
n≤m≤3n/4

(
m1−2ε

n1−2ε
22ε/δe2ε(1+log(1/ε))

)m

≤ n2
∑

√
n≤m≤3n/4

(√
3

4

√
8

7

)m

= n2
∑

√
n≤m≤3n/4

(
6

7

)m/2

≤ C1e−C2
√

n,

where C1 and C2 are universal constants. On the other hand, if 1/ε ≤ m ≤
√

n, then

m1−2ε

n1−2ε
≤ n−1/4,

and so

n2
∑

1/ε≤m≤
√

n

(
m1−2ε

n1−2ε
22�εe2ε(1+log(1/ε))

)m
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≤ n2
∑

1/ε≤m≤
√

n

(
n−1/4

√
8

7

)m

≤ C
1/ε

3 n2−1/4ε .

Adding up the two parts, we get the required bound. �


We are now ready to finish the proof of Theorem 2.2.

Proof By Lemmas 6.7 and 6.8, we see that there are universal constants C4, C5 > 0

and C6 ∈ (0, 1) such that if we choose ε = C6δ, then

P(E) ≤ C4n−C5/δ. (6.1)

Suppose that E does not happen. Then for any A ∈ Aε with 1/ε ≤ |A| ≤ n/2, we

have f (E(A)) /∈ Aε and hence

|E ◦ f ◦ E(A)| ≥ (1 + ε)| f ◦ E(A)| ≥ (1 + ε)|A|.

On the other hand, if A /∈ Aε , then

|E ◦ f ◦ E(A)| ≥ |E(A)| ≥ (1 + ε)|A|.

Finally, if |A| ≤ 1/ε and |A| ≤ n/2, then since the P-chain is irreducible,

|E ◦ f ◦ E(A)| ≥ |E(A)| ≥ |A| + 1 ≥ (1 + ε)|A|.

So if E does not happen, then the random bijection f satisfies the condition (2.2). By

(6.1), this completes the proof of Theorem 2.2. �


7 A different speedup

Going back to the original example (simple random walk on Zn), there is a different

way to speed this up. Define a process X0, X1, . . . on Zn by X0 = 0, X1 = 1 and

Xk+1 = Xk + Xk−1 + εk+1 (mod n),

where εi are independent, taking values 0, 1 and −1 with equal probabilities. Let

Pk( j) := P(Xk = j) and U ( j) := 1/n for j ∈ Zn .

Theorem 7.1 For any n ≥ 22 and k = 5[(log n)2 + c log n],

‖Pk − U‖T V ≤ 1.6e−c/2.

Remark The best lower bound we have is that at least log n steps are required. It is

natural to suspect that this is the right answer, but numerical experiments do not make

a clear case. At any rate, we find it interesting that a simple recurrence speeds things

up from order n2 to order (log n)2.
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By running the recurrence, the chain can be represented as

Xk = Fk + Fk−1ε2 + Fk−2ε3 + · · · F1εk (mod n),

with Fk the usual Fibonacci numbers 0, 1, 1, 2, 3, 5, . . . (so F5 = 5). The (mod n)

Fourier transform of Pk is

P̂k(a) = E(e2π ia Xk/n) = e2π iaFk/n

k−1∏

b=1

(
1

3
+

2

3
cos(2πaFb/n)

)
. (7.1)

We will use the inequality (see Diaconis [12, Chapter 3])

4‖Pk − U‖2
T V ≤

n−1∑

a=1

|P̂k(a)|2 (7.2)

to obtain an upper bound on the total variation distance between Pk and U . We thus need

to know about the distribution of Fibonacci numbers mod n. We were surprised that

we couldn’t find what was needed in the literature (see Diaconis [14]). The following

preliminary proposition is needed. Let x0, x1, x2, . . . be any sequence of integers

satisfying the Fibonacci recursion

xk = xk−1 + xk−2.

Take any n such that at least one xi is not divisible by n. Let bk be the remainder of

xk modulo n. We will prove the following property of this sequence.

Proposition 7.2 For any j , there is some j ≤ k ≤ j + 8 + 3 log3/2 n such that

bk ∈ [n/3, 2n/3].

We need several lemmas to prove this proposition.

Lemma 7.3 There cannot exist k such that bk = bk+1 = 0.

Proof If bk = bk+1 = 0 for some k, then xk+1 and xk are both divisible by n. So the

Fibonacci recursion implies that x j is divisible by n for all j . But we chose n such

that at least one xi is not divisible by n. Thus, we get a contradiction. �


Lemma 7.4 If b j , b j+1 ∈ [1, n/3) for some j , then there is some j + 2 ≤ k <

j + 2 log2 n such that bk ∈ [n/3, 2n/3].

Proof Since the bi ’s satisfy the Fibonacci recursion modulo n, it follows that if bi and

bi+1 are both in [1, n/3) for some i , then bi+2 = bi+1 + bi ∈ [1, 2n/3). So there

exists an index k which is the first index bigger than j + 1 such that bk ∈ [n/3, 2n/3).

We claim that for any i ∈ [ j + 2, k], bi ≥ 2(i− j)/2. To see this, first note that for any

i ∈ [ j + 2, k], bi = bi−1 + bi−2. Therefore, since b j , b j+1 ≥ 1, the claim is true for

i = j + 2. Suppose that it is true up to i − 1. Then

bi = bi−1 + bi−2 ≥ 2(i−1− j)/2 + 2(i−2− j)/2
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= 2(i− j)/2(2−1/2 + 2−1) ≥ 2(i− j)/2.

In particular, bk ≥ 2(k− j)/2. But we know that bk < 2n/3. Combining these two

inequalities gives k − j < 2 log2 n. �


Lemma 7.5 If b j , b j+1 ∈ (2n/3, n − 1] for some j , then there is some j + 2 ≤ k <

j + 2 log2 n such that bk ∈ [n/3, 2n/3].

Proof Define ci := n −bi for each i . Then the ci ’s also satisfy the Fibonacci recursion

modulo n. Moreover, c j , c j+1 ∈ [1, n/3). Therefore by the proof of Lemma 7.4,

there exist k < j + 2 log2 n such that ck ∈ [n/3, 2n/3]. But this implies that bk ∈
[n/3, 2n/3]. �


Lemma 7.6 If b j ∈ [1, n/3) and b j+1 ∈ (2n/3, n − 1] for some j , then there is some

j + 2 ≤ k < j + 6 + 3 log3/2 n such that bk ∈ [n/3, 2n/3].

Proof For each i , let

di :=

{
bi if bi ∈ [0, n/2],
bi − n if bi ∈ (n/2, n − 1].

Clearly, the di ’s also satisfy the Fibonacci recursion modulo n, and |di | ≤ n/2 for

each i . Take any i such that

• di > 0, di+1 < 0, di+2 > 0, di+3 < 0 and di+4 > 0, and

• |di | and |di+1| are less than n/3.

Under the above conditions, di ∈ (0, n/3) and di+1 ∈ (−n/3, 0). This implies that

di + di+1 < di < n/3 and di + di+1 > di+1 > −n/3. Thus, |di + di+1| < n/3. But

we know that di+2 ≡ di + di+1 (mod n), and |di+2| ≤ n/2. Thus, we must have that

di+2 is actually equal to di + di+1, and therefore also that |di+2| < n/3. Similarly,

|di+3| and |di+4| are also less than n/3, and satisfy the equalities di+3 = di+2 + di+1

and di+4 = di+3 + di+2. Thus,

0 < di+4 = 3di+1 + 2di ,

which gives

|di+1| = −di+1 <
2di

3
=

2|di |
3

.

Similarly, if di < 0, di+1 > 0, di+2 < 0, di+3 > 0 and di+4 < 0, and |di | and |di+1|
are less than n/3, then also all of the absolute values are less than n/3, and

0 > di+4 = 3di+1 + 2di ,

which gives

|di+1| = di+1 < −
2di

3
=

2|di |
3

.
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Now let j be as in the statement of the lemma. Then d j > 0, d j+1 < 0, and |d j | and

|d j+1| are both less than n/3. Let l be an index greater than j such that d j , d j+1, . . . , dl

are all nonzero, with alternating signs. Suppose that l ≥ j + 4. The above deductions

show that |di | < n/3 for all i ∈ [ j, l] and |di+1| < 2|di |/3 for all i ∈ [ j, l − 4]. Since

|dl−4| ≥ 1 and |d j | < n/3, this proves that l cannot be greater than j + 4 + log3/2 n.

Thus, if we define l to be the largest number greater than j with the above properties,

then l is well-defined and is ≤ j + 4 + log3/2 n.

By the definition of l, it follows that either dl+1 = 0, or dl+1 has the same sign

as dl . We already know that dl and dl−1 are nonzero, have opposite signs, and are in

(−n/3, n/3). So, if dl+1 = 0, then dl+2 = dl+3 = dl ∈ (−n/3,−1] ∪ [1, n/3), and if

dl+1 is nonzero and has the same sign as dl , then |dl+1| < n/3. In the first situation,

either both bl+2 and bl+3 are in [1, n/3) or both are in (2n/3, n − 1]. In the second

situation, we can make the same deduction about bl and bl+1. The claim now follows

by Lemmas 7.4 and 7.5. �


Lemma 7.7 If b j ∈ (2n/3, n − 1] and b j+1 ∈ [1, n/3) for some j , then there is some

j + 2 ≤ k < j + 6 + 3 log3/2 n such that bk ∈ [n/3, 2n/3].

Proof The proof is exactly the same as for Lemma 7.6. �


We are now ready to prove Proposition 7.2.

Proof of Proposition 7.2 Take any j . If one of b j and b j+1 is in [n/3, 2n/3], there is

nothing to prove. If b j and b j+1 are both in [1, n/3) ∪ (2n/3, n − 1], then one of

Lemmas 7.4–7.7 can be applied to complete the proof. If b j = 0 and b j+1 �= 0, then

b j+2 = b j+1 �= 0, and so we can again apply one of the four lemmas. If b j �= 0 and

b j+1 = 0, then b j+2 = b j+3 = b j �= 0, and so again one of the four lemmas can be

applied. Finally, note that by Lemma 7.3, we cannot have b j = b j+1 = 0. �


Having proved Proposition 7.2, we can now complete the proof of Theorem 7.1.

Proof of Theorem 7.1 By (7.1) and (7.2), we get

4‖Pk − U‖2
T V ≤

n−1∑

a=1

k−1∏

b=1

(
1

3
+

2

3
cos(2πaFb/n)

)2

.

Now take any 1 ≤ a ≤ n − 1. The sequence aF1, aF2, . . . satisfies the Fibonacci

recursion, and the first term of the sequence is not divisible by n since a < n. Thus,

Proposition 7.2 is applicable to this sequence. Letting m = 8 + 3 log3/2 n, we get

that at least [(k − 1)/m] among aF1, . . . , aFk−1 are in [n/3, 2n/3] modulo n. Now if

x ∈ [n/3, 2n/3], then cos(2πx/n) ∈ [−1,−1/2], and so

1

3
+

2

3
cos(2πaFb/n) ∈ [−1/3, 0].

Combining these observations, we get
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4‖Pk − U‖2
T V ≤ n9−[(k−1)/m].

It is easy to verify numerically that 30 ≤ m ≤ 10 log n for n ≥ 22, and also that

log(9)/10 ≥ 1/5. Thus, for n ≥ 22 and k = 5[(log n)2 + c log n],

4‖Pk − U‖2
T V ≤ n9−(k−1)/m+1

≤ n9−k/m+31/30 ≤ 931/30e−c.

It can now be numerically verified that the claimed bound holds. �


8 Applications and open problems

One class of problems where uniform sampling is needed arises from exponential

families. Let X be a finite set and T : X → R
d be a given statistic. For θ ∈ R

d , let

pθ be the probability density

pθ (x) = Z(θ)−1eθ ·T (x),

where Z(θ) is the normalizing constant. The family {pθ }θ∈Rd is called an exponential

family of probability densities with sufficient statistic T . If X ∼ pθ , the conditional

distribution of X given T (X) = t is the uniform distribution on Xt := {x ∈ R
d :

T (x) = t}. Such models appear in myriad statistical applications such as contingency

tables and graphical models. They also appear in physics as Ising and related models.

Uniform sampling on Xt is required to test if a given dataset fits the model. An overview

is in Diaconis and Sturmfels [21], who introduced Gröbner basis techniques to do the

sampling. These are typically diffusive and it would be wonderful to have speedups. A

second use for uniform sampling comes from drawing samples from the original pθ .

For low-dimensional T , this can be done by sampling from the marginal distribution

of T , and along the way, sampling X given T (X) = t .

Our main result shows that almost every bijection gives a speedup. This is not

the same as having a specific bijection (such as x �→ ax (mod n)). Finding these,

even in simple examples, seems challenging. One case where lots of bijections can

be specified comes from permutation polynomials. Let us work mod p for a prime p.

Then a permutation polynomial is a polynomial f with coefficients mod p such that

j �→ f ( j) is one-to-one mod p. Large classes of these are known. The Wikipedia

entry is useful and the article by Guralnick and Müller [27] shows how these can be

found in several variables to map varieties (mod p) to themselves.

As an example, suppose that (3, p − 1) = 1. Then the map j �→ j3 (mod p) is

one-to-one. The corresponding walk is

Xk+1 = X3
k + εk+1 (mod p).

We have no idea how to work with this but (weakly) conjecture that it mixes in order

log p steps.
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Our colleague Kannan Soundararajan has suggested f (0) = 0, f ( j) = j−1

(mod p) for j �= 0. Preliminary exploration did not reveal this as an easy problem.

It is natural to try to generalize the Fibonacci recurrence walk further. The following

generalization was proved by Jimmy He, who kindly allowed us to include his result

in this paper.

Let X be a finite set and P be a Markov kernel on X . Let f : Xn → X be

a function such that f (·, x2, . . . , xn) is a bijection for all x2, . . . , xn ∈ X . Define

a Markov chain P f on Xn by moving from the state (X1, . . . , Xn) to the state

(X2, . . . , Xn, f (X1, . . . , Xn)), and then taking a step from P in the last coordinate.

Here the last coordinate can be viewed as a higher order Markov chain on X , which

depends on the previous n steps of the walk.

To see that this is a generalization of the Fibonacci walk, note that if n = 2, X = G

is a finite Abelian group, P is a random walk on G generated by a measure Q on G,

and f (x1, x2) = x1 + x2, then the walk moves from (X1, X2) to (X2, X1 + X2 + ε)

where ε is drawn from Q, and this is exactly the original Fibonacci walk.

Proposition 8.1 (Due to Jimmy He, personal communication) Assume that P is lazy

and ergodic, and has a uniform stationary distribution. Then P f is ergodic, and has

a uniform stationary distribution.

Proof First, note that the assumption that f (·, x2, . . . , xn) is a bijection for all

x2, . . . , xn ∈ X implies that the function g : Xn → Xn defined by

g(x1, . . . , xn) = (x2, . . . , xn, f (x1, . . . , xn))

is a bijection. Then P f can be described as applying the function g, followed by a step

from P in the last coordinate.

Now we describe how to mimic steps from P using P f . Note that since g is a per-

mutation, gm is the identity permutation for some m. Since P is lazy, we can alternate

applying g, and then remaining stationary when taking a step from P . Doing so m −1

times, and then applying g one last time, we can then take a step from P in the last

coordinate. Thus, it is possible to move from (x1, . . . , xn−1, xn) to (x1, . . . , xn−1, x ′
n)

in m steps of P f , where x ′
n ∈ X is some state for which P(xn, x ′

n) > 0. We call this

mimicking a step from P .

To show that P f is irreducible, we simply repeat the above procedure. Since P

is irreducible, we can reach any state in X in the last coordinate, while keeping the

first n − 1 coordinates fixed. But now, we can apply g once, and then repeat the above

procedure, and now the last two coordinates can be made arbitrary (since the procedure

described fixes the first n − 1 coordinates). Repeating this n times allows any state in

Xn to be reached.

Now we show that P f is aperiodic. Starting from any state, we can return in m

steps by mimicking a lazy step from P using the above procedure. But we can also

first take a single step from P f , and then use the same procedure as in the proof of

irreducibility to return to the initial state, using a path of length km for some k. This

gives a path from the state to itself of length km + 1. As m and km + 1 are coprime,

this implies that P f is aperiodic.
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Finally, it is clear that the stationary distribution is uniform, since g is a bijection and

so preserves the uniform distribution, and taking a step from P in the last coordinate

also preserves the uniform distribution. �


Proposition 8.1 allows us to generalize the Fibonacci walk to finite non-Abelian

groups. If G is a finite group and Q is a probability on G with support generating G and

having nonzero mass at the identity, then Proposition 8.1 implies that the second order

Markov chain which proceeds by Xk+1 = Xk Xk−1εk+1 (with the εi drawn i.i.d. from

Q), is ergodic with uniform stationary distribution.

Proposition 8.1 also allows generalization of Fibonacci walks to nonlinear recur-

rences on finite fields. For example, take a prime p such that (3, p − 1) = 1, and

consider the random walk on Fp which proceeds as

Xk+1 = X3
k + Xk−1 + εk+1,

where εi are i.i.d. uniform from Fp. Proposition 8.1 implies that this has uniform

stationary distribution, since f (x, y) = x3 + y is a bijection in x for every fixed y.

Getting rates of convergence in any of the above examples seems like a challenging

problem.
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