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Abstract

We show that the convergence of finite state space Markov chains to stationarity
can often be considerably speeded up by alternating every step of the chain with a
deterministic move. Under fairly general conditions, we show that not only do such
schemes exist, they are numerous.
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1 Introduction

This paper started from the following example. Consider the simple random walk on
Zy (the integers mod n):

Xi+1 = Xi + €k+1 (mod n),

with Xg = 0, and €1, €, ... i.i.d. with equal probabilities of being 0, 1 or —1. This
walk takes order n? steps to reach its uniform stationary distribution in total variation
distance. This slow, diffusive behavior is typical of low dimensional Markov chains
(“Diameter? steps are necessary and sufficient”—see Diaconis and Saloff-Coste [19]
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for careful statements and many examples). Now change the random walk by deter-
ministic doubling:

Xi+1 =2Xk + €x+1  (mod n).

This walk has the “same amount of randomness”. Results discussed below show that
it takes order log n steps to mix (at least for almost all n).

We would like to understand this speedup more abstractly—hopefully to be able to
speed up real world Markov chains. Our main result shows a similar speedup occurs
for fairly general Markov chains with deterministic doubling replaced by almost any
bijection of the state space into itself. We proceed to a careful statement in the next
section. In Sect. 3 a literature review offers pointers to related efforts to beat diffusive
behavior. A sketch of the proof is in Sect.4. Proofs are in Sects.5 and 6. A different
kind of deterministic speedup,

X1 = Xk + Xj—1 + €x41 (mod n),
is analyzed in Sect.7. The last section has applications and some interesting open
questions.
2 Speedup by deterministic functions

Let S be a finite setand P = (p;;);, jes be a Markov transition matrix on S. We assume
the following conditions on P:

(1) The Markov chain generated by P is irreducible and aperiodic.

(2) If p;j > Oforsome i, j € S, then p;; > 0.

(3) Foreachi € S, p;j; > 0.

(4) The uniform distribution on § is the stationary measure of P. We will call it u.

In addition to the above assumptions, we define
n =S|
and
§ = min{p,-j 11, j €S, Dij > 0}. 2.1
Let f : § — S be a bijection. Consider a new Markov chain defined as follows.
Apply f, and then take one step according to P. This is one step of the new chain.
The transition matrix for the new chain is

Q=1IIP,

where I1T = (7;;); jes is the permutation matrix defined by f. (That is, m;; = 1
if j = f(i) and O otherwise.) Clearly, w is a stationary measure for the new chain
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too. The main questions that we will try to answer are the following: (a) Under what
conditions on f does this new chain mix quickly—let’s say, in time logn? (b) Is it
always possible to find f satisfying these conditions? (c) If so, are such functions rare
or commonplace?

Our first theorem answers question (a), by giving a sufficient condition for fast
mixing of Q.

Theorem 2.1 Forany A C S, let E(A) be the set of j € S such that p;; > 0 for some
i € A. Suppose that there is some € € (0, 1) such that for any A with |A| < n/2,

€0 fol(A)] > (1+¢€)|Al (2.2)

Let Xo, X1, ...beaMarkov chain with transition matrix Q. Foreachi € S andk > 1
let uf‘ be the law of X given Xo = i. Then

Jn
luk —pllry < 5= (1 -

€288 (k—2)/4
2 9

2

where § is the quantity defined in (2.1) and T'V stands for total variation distance.

This result shows that if we have a sequence of problems where n — oo but € and §
remain fixed, and the condition (2.2) is satisfied, then the mixing time of the Q-chain
is of order logn.

Let us now try to understand the condition (2.2). The set £(A) is the ‘one-step
expansion’ of A, that is, the set of all states that are accessible in one step by the
P-chain if it starts in A. By the condition that p;; > 0 for all i, we see that £(A) is a
superset of A. The condition (2.2) says that for any A of size < n/2, if we apply the
one-step expansion, then apply f and then again apply the one-step expansion, the
resulting set must be larger than A by a fixed factor.

We found it difficult to produce explicit examples of functions that satisfy (2.2) with
€ independent of n. Surprisingly, the following theorem shows that they are extremely
abundant, even in our general setting, thereby answering both the questions (b) and
(c) posed earlier.

Theorem 2.2 Let all notation be as in Theorem 2.1. There are universal constants
Ci,Cy > 0and C3 € (0, 1) such that all but a fraction Cin~C2/% of bijections f
satisfy (2.2) with € = C38. Consequently, for all but a fraction Cin~2/% of bijections
f, the corresponding Q-chain satisfies, foralli € S and k > 1,

(k—2)/4
2510
NS ) '

HM—thf——O

2 2

For instance, if the P-chain is the lazy random walk on Z,, with equal probabilities
of taking one step to the left, or one step to the right, or not moving, then § = 1/3. So
in this example this result shows that for all but a fraction C1n 32 of bijections of Z,,
the corresponding Q-chain mixes in time O (logn). This is a striking improvement
over the lazy random walk, which mixes in time O (n?).
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Interestingly, the doubling random walk discussed in Sect. 1 does not satisfy the
expansion condition (2.2) with € independent of n. To see this, take n = 4m — 1 for
large enough m, and define

A={1,2,... m—1}U{2m+1,...,3m —1}.
Then
EA)={0,1,...,m}U{2m,...,3m}.
Soif f is the doubling map, an easy calculation shows that
fo&(A)={0,1,2,...,2m + 1},
and therefore
EofolA)=1{0,1,....,2m+2,n—1}.

So we have |A| =2m — 2 < n/2and | o f o E(A)| = 2m + 4, which means that
the condition (2.2) cannot hold with € > 6/(2m — 2). Therefore the speedup of the
doubling walk is not happening due to expansion, although as Theorem 2.2 shows,
expansion is the reason for speedup for “most” bijections.

3 Related previous work

The deterministic doubling example comes from work of Chung et al. [9]. They found
that for almostall n, 1.02 log, n steps suffice. Hildebrand [32] showed that 1.004 log, n
steps are not enough for mixing. In a recent tour-de-force, Eberhard and Varju [23]
show that for almost all 7, there is a cutoff at clog, n where ¢ = 1.01136.... Two
companion papers by Breuillard and Varju [7,8] relate this problem to irreducibility
of random polynomials and very deep number theory. All of these authors consider
Xi+1 = aXp+e€x+1 (mod n) for general a and €;’s having more general distributions.
Related work is in Hildebrand [32] and the Ph.D. thesis of Neville [38]. One natural
extension is that if G is a finite group with €1, €3, . .. i.i.d. from a probability u on G,
the random walk X1 = Xjye€r4+1 may be changed to Xy4+1 = A(Xk)€x+1 where A
is an automorphism of G. This is studied in Diaconis and Graham [15,16] who treat
G = Z/, with a matrix as automorphism. Similar speedups occur.

A very rough heuristic to explain the speedup in our Theorem 2.2 goes as follows.
Composing the original random walk step with a random bijection mimics a jump
along the edge of a random graph. Since random graphs are usually expanders, and
random walks on expanders with n vertices mix in O (logn) steps, we may naturally
expect something like Theorem 2.2 to be true. Remarkable work has been done on rates
of convergence of random walks on d-regular expanders. For instance, Lubetzky and
Sly [35] show that random walks on d-regular random graphs have a cutoff for total
variation mixing at dde log,_ n. Lubetzky and Peres [34] prove a similar result for
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Ramanujan graphs, with cutoff at [f%l log,_ n. Related work has recently appeared
in Hermon et al. [30], who show that if you begin with any bounded degree graph
on 2n vertices (for which all connected components have size at least 3) and add a
random perfect matching, the resulting walk has a cutoff and mixes in time O (logn).

A setup very similar to ours, with different results, has been considered recently by
Bordenave et al. [6]. This paper studies a random bistochastic matrix of the form I1P,
where IT is a uniformly distributed permutation matrix and P is a given bistochastic
matrix. Under sparsity and regularity assumptions on P, the authors prove that the
second largest eigenvalue of IT1P is essentially bounded by the normalized Hilbert—
Schmidtnorm of P. They apply the result to random walks on random regular digraphs.

A different, related, literature treats piecewise deterministic Markov processes.
Here, one moves deterministically for a while, then at a random time (depending on
the path) a random big jump is made. This models the behavior of biological systems
and chemical reactions. A splendid overview is in Malrieu [36] (see also Benaim [3]).
There is a wide swath of related work in a non-stochastic setting where various extra
“stirring” processes are shown to speed up mixing and defeat diffusive behavior. See
Constantin et al. [11], Ottino [39] and Rallabandi et al. [41]. The papers of Ding and
Peres [22], Hermon [28] and Hermon and Peres [29] are Markov chain versions of
these last results.

There are a host of other procedures that aim at defeating diffusive behavior. For
completeness, we highlight four:

Event chain Monte Carlo.

Hit and run.
Lifting/non-reversible variants.
Adding more moves.

Each of these is in active development; searching for citations to the literature below
should bring the reader up to date.

While “random walk”™ type algorithms are easy to implement, it is by now well
known that they suffer from “diameter?” behavior. To some extent that remains true
for general reversible Markov chains. Indeed, Neal [37] showed that the spectral gap
of any reversible Markov chain can be improved by desymmetrizing. Of course, the
spectral gap is a crude measure of convergence. A host of sharpenings are in Diaconis
and Miclo [18].

Non-reversible versions of Hamiltonian Monte Carlo introduced in Diaconis et
al. [17] have morphed into a variety of “lifting algorithms” culminating in the event
chain algorithm of Kapfer and Krauth [33]. This revolutionized the basic problem
of sampling hard disk configurations in statistical mechanics. The hard disk problem
was the inspiration for three basic tools: The Metropolis algorithm, the Gibbs sampler
(Glauber dynamics) and molecular dynamics. All gave wrong conclusions for the
problems of interest; the new algorithms showed that entirely new pictures of phase
transitions are needed. It is an important open problem to generalize these algorithms
to more general stationary distributions.

Recent, closely related work is in Bordenave and Lacoin [5] and Conchon—
Kerjan [10]. Written independently, both papers study ‘lifting’ random walks to
covering graphs to speed up mixing and both prove that most liftings have cutoffs.
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The first paper also studies non-reversible chains. The paper of Gerencsér and Hen-
drickx [25] adds ‘long distance edges’ (as in small world graphs) and non-reversibility
to get speedups. It too has close connections with the present project.

A final theme is “hit and run”: Taking long steps in a chosen direction instead of just
“going +1”. For a survey, see Anderson and Diaconis [1]. It has been difficult to give
sharp running time estimates for these algorithms (even though they are “obviously
better”). For a recent success, see the forthcoming manuscript of Boardman and Saloff-
Coste [4].

It is natural to try to speed up convergence by adding more generators. This is a
largely open problem. For example, consider the simple random walk on the hypercube
Zg. The usual generating setis {0, ey, ..., es}, where ¢; is the i th gtandard basis vector.
At each step, one of these vectors is added with probability 1/(d 4 1). It is well known
that %d logd 4+ O(d) steps are necessary and sufficient for mixing (Diaconis and
Shahshahani [20]). Suppose you want to add more generators (say 2d + 1 generators)—
what should you choose? Wilson [42] studied this problem and showed that almost all
generating sets of size 2d + 1 mix in time 0.2458d steps. Mirroring our results above,
his methods do not give an explicit choice effecting this improvement.

These problems are interesting, and largely open, even for the cyclic group Z, when
p is a prime. As above, the generating set {0, =1} take order p? steps to mix. On the
other hand, almost all sets of 3 generators mix in order p steps. Greenhalgh [26] found
3 generators (roughly, 1, p'/3 and p?/3) that do the job. References to this literature
can be found in a survey by Hildebrand [31].

There has been vigorous work on adding and deleting random edges at each stage
(dynamical configuration model). See the paper of Avena et al. [2], which also has
pointers to another well studied potential speedup—the non-backtracking random
walk.

Finally we note that natural attempts at speeding things up may fail. Cutting cards
between shuffles and systematic versus random scan in the Gibbs sampler are exam-
ples. For details, see Diaconis [13].

4 Proof sketch

For the proof of Theorem 2.1, we define an auxiliary chain with kernel R = L?(LT)?,
where L := PII. This kernel is symmetric and positive semidefinite, and defines a
reversible Markov chain. The proof has two steps—first, relate the rate of convergence
of the R-chain with that of the Q-chain, and second, use the reversibility of the R-
chain to invoke Cheeger’s bound for the spectral gap. A lower bound on the Cheeger
constant is then obtained using condition (2.2).

The proof of Theorem 2.2 has its root in a beautiful idea from a paper of Ganguly and
Peres [24] (see also the related earlier work of Pymar and Sousi [40]). In our context,
the idea translates to showing the following: Let f be a uniform random bijection. First,
show that “most” sets A of size < 3n/4 have the property that |E£(A)| > (1 + €)|A]|
for some suitable fixed € > 0. Since |E(B)| > |B| and | f(B)| = |B]| for all B, this
implies that (2.2) is satisfied for “most” A of size < n/2. But we want (2.2) to hold
for all A of size < n/2. The Ganguly—Peres idea is to circumvent this difficulty in
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the following ingenious way. Since we know that |E(B)| < (1 + €)|B| for only a
small number of B’s of size < 3n/4, it is very unlikely that for any given set B, f(B)
has this property. Consequently, for a given set A such that |E£(A)| < 3n/4, itis very
unlikely that f(E(A)) has this property (taking B = £(A)). Thus, for any such set A,
it is very likely that

€0 fol(A) = (A +elf(EA)] = (1+ €Al

Since the above event is very likely for any given A, it remains very likely if we take
the intersection of such events over a suitably small set of A’s. So we now take this
small set to be precisely the set of A’s that did not satisfy |[E(A)| > (1 4 €)|A|—that
is, our rogue set that spoiled (2.2). By some calculations, we can show that this indeed
happens, and so (2.2) holds for all A with |A| < n/2.

In [24], the Ganguly—Peres idea was applied to solve a different problem for a
random walk on points arranged in a line. As noted above, the key step is to show
that the set of all A of size < 3n/4 that violate |E(A)| > (1 + €)|A] is a small set.
Since we are working in a general setup here, the proof of this step from [24] does not
generalize; it is proved here by a new method.

5 Proof of Theorem 2.1

Let L := PII. Since the uniform distribution on § is the stationary measure of P,
we deduce that P is a doubly stochastic matrix. Since IT is a permutation matrix, it
is automatically doubly stochastic. Since the product of doubly stochastic matrices is
doubly stochastic, we see that L is also doubly stochastic. Thus, L and LT are both
stochastic matrices, and so is any power of either of these matrices. Consequently, the
matrix

R:=L*>"?=pnpnn’p'n’p’ = pnrr'n’pr.
is a stochastic matrix. (This identity explains why we symmetrize L? instead of L.

Indeed, LLT = PIIIIT PT = PPT, and the effect of IT disappears.)

Lemma 5.1 The Markov chain with transition matrix R is irreducible, aperiodic and
reversible, with uniform stationary distribution. Moreover, R is symmetric and positive
semidefinite.

Proof 1t is evident from the definition of R that R is symmetric and positive semidef-
inite. Since R is symmetric, the Markov chain with transition matrix R is reversible
with respect to the uniform distribution on the state space.

Since p;; > 0 for any i € S, it follows that

Tii = PiiTif ()P fGi) fG)PfGi)f@)Tif iy Pii > 0. (5.1)
Thus, R is aperiodic. Next, note that if p;; > 0, then
Tij Z PijTif (WP FDFDPFDFDTjf(HPjj > 0 (5.2)
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Since P is irreducible, this shows that R is also irreducible. O
Corollary 5.2 The principal eigenvalue of R is 1, the principal eigenvector is the vector
of all 1’s (which we will henceforth denote by 1), and the principal eigenvalue has

multiplicity one. The second largest eigenvalue of R (which we will henceforth call
M2), is strictly less than 1. All eigenvalues of R are nonnegative.

Proof Since the Markov chain defined by R is irreducible and aperiodic (on a finite
state space), and R is symmetric, all but the last claim follow from the general theory of
Markov chains. The eigenvalues are nonnegative because R is a positive semidefinite
matrix. O

The information about R collected in the above corollary allows us to prove the
next lemma.

Lemma 5.3 Foranyk > 1, and any x € R”" that is orthogonal to the vector 1,
k—1)/4
Il < A5 ).

Proof Take any vector x € R” that is orthogonal to 1. By the properties of R given in
Corollary 5.2, it is easy to see that

xTRx < aallx)?.
But notice that
xTRx = xTL>(LT)%x = ||(LT)*x|>.
So for any x that is orthogonal to 1,
LTl < dallx]®. (5.3)

But if x is orthogonal to 1, then the stochasticity of L implies that

1T x=1Tx = 0.
Thus, (L)% is also orthogonal to 1. So we can apply (5.3) iteratively to get

LT x)? < 25

for any positive integer k. But LT, being a stochastic matrix, is an £?-contraction.
Therefore

I )2 < @) x ) < A5 1x)2
This completes the proof of the lemma. O
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Lemma 5.3 yields the following corollary, which relates the rate of convergence of
the Q-chain with the spectral gap of the R-chain.

Corollary 5.4 For any k > 2, and any x € R”" that is orthogonal to the vector 1,

k—=2)/4
105 x] < A 274 1x]1.

Proof Note that Qk = (IIP)* = Lk-1p. Being stochastic matrices, I1 and P are
both £2-contractions. Moreover, if 17x = 0, then 17 Px = 1Tx = Osince P is doubly
stochastic. Therefore by Lemma 5.3,

10 x| = ITIL* ! Pl < IL*~ Px|
<2 pxl < a7 .
This completes the proof of the corollary. O
Lastly, we need the following upper bound on 2.

Lemma 5.5 Let Ay be the second largest eigenvalue of R. Then

)»<16
2 =< >

where € is the constant from condition (2.2).

Proof Define a probability measure v on S x S as

o . Fij
v(i, j) = plrij = o

Recall that the Cheeger constant for the Markov chain with transition matrix R is

. V(A x A°)
= min _—
ACS, w(A)=1/2 u(A)

where A¢ := S\ A. Since p is the uniform distribution on V/, this simplifies to

1

o = min — E rij.
ACS.|Al=n/2 |A] .~
i€A, jeAS

Now, if r;; > 0, then from the inequality (5.2) and the assumption that py; > & for
all nonzero py, we get rjj > 8*. Therefore, if A’ is the set of all vertices that are
attainable in one step from some i € A by the Markov chain with transition matrix R,
then

Z rij = 8Y1A N A°| = 84 (1A' — |AD, (5.4)
icA, jeAc
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where the last identity holds because A € A’ (by (5.1)). Now, since p;; > 0 if and
only if pj; > 0, the set A" defined above can be written as

A =Eocf loEo0E0 fol(A).

Application of £ cannot decrease the size of a set, and application of f~! does not
alter the size. Therefore by condition (2.2),

A’ = [0 fo(A)] = (1+e)lAl
provided that |A| < n/2. Plugging this into (5.4), we get ® > €5*. By the well-known
bound
2

A <1— —.
2= 2

this completes the proof of the lemma. O

We are now ready to complete the proof of Theorem 2.1

Proof of Theorem 2.1 Now take any i € S and k > 2. Let x € R” be the vector whose
i"™ component is 1 — 1/n and the other components are all equal to —1/n. Then it is
easy to see that x is orthogonal to 1, and that (Q7 )¥ x is the vector whose j® component
is Mi-( (j) — n(j). Thus by Corollary 5.4,

1
i = iy = 5 31 () = ()]
jes
1/2
1
<5 (22wl ) = niy?
jes
n n _
= %_II(QT)kxII < %Ag" 2 x).

Since ||x|| < 1, this proves that

(5.5)

N
Ik = pllry < TAQ )4,

Using the bound on X, from Lemma 5.5, this completes the proof when £ > 2. When
k =1, the bound is greater than 1 and therefore holds trivially. O

6 Proof of Theorem 2.2

For this proof, it will be convenient to define a graph structure on S. Join two distinct
points (vertices) i, j € S by an edge whenever p;; > 0. Since p;; > 0 if and only
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if pj; > 0, this defines an undirected graph on §. The irreducibility of the P-chain
implies that this graph is connected. A path in this graph is simply a sequence of
vertices such that each is connected by an edge to the one following it.

Define the external boundary of aset A C S as

JA = E(A)\A.

The following lemma proves a crucial property of the graph defined above.

Lemma 6.1 Take any A C S. Then the number of sets B such that 9 B = A is at most
2IAl/8

The proof of this lemma is divided into several steps. Fix a set A. Define an equivalence
relation on A€ as follows. Say that two vertices i, j € A€ are equivalent, and write
i ~ j,if either i = j, or there is a path from i to j that avoids the set A (meaning
that there is no vertex in the path that belongs to A). It is easy to see that this is an
equivalence relation, because it is obviously reflexive and symmetric, and if i ~ j and
J ~ k, then there is a path from i to k that avoids A. To prove Lemma 6.1, we need to
prove two facts about this equivalence relation.

Lemma 6.2 If B is a set of vertices such that 0B = A, then B must be the union of
some equivalence classes of the equivalence relation defined above.

Proof Take any B such that 9B = A. Take any i € B and j € A€ such thati ~ j. To
prove the lemma, we have to show that j € B.

Let m be the length of the shortest path from i to j that avoids A. Since i ~ j, we
know that there is at least one such path, and therefore m is well-defined. We will now
prove the claim that j € B by induction on m. If m = 1, then j is a neighbor of i.
Since i € B, j is aneighbor of i and j ¢ 9B, the only possibility is that j € B. This
proves the claim when m = 1.

Let us now assume that the claim holds for all m’ < m. Take a path of length m
from i to j that avoids A. Let k be the vertex on this path that comes immediately
before j. Then k € A€, and k can be reached from i by a path of length m — 1 that
avoids A. Therefore by the induction hypothesis, k € B. Applying the case m = 1 to
k, we see that j must be a member of B. This completes the induction step. O

Lemma 6.3 If D is any equivalence class of the equivalence relation defined above,
then there is at least one element of D that is adjacent to some element of A.

Proof Take anyi € D and j € A. Since the graph is connected, there is a path from i
to j. Along this path, let k be the first vertex that belongs to A. (This is well-defined
because at least one vertex of the path, namely j, is in A.) Let [ be the vertex that
immediately precedes k in the path. Then we see that there is a path from i to / that
avoids A, and so i ~ [. Therefore [ € D and [ is adjacent to an element of A, which
proves the lemma. O

Lastly, we need an upper bound on the maximum degree of our graph on S.

Lemma 6.4 The maximum degree of the graph defined on S is at most 1/6.
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1204 S. Chatterjee, P. Diaconis

Proof Since p;; > & for every i and j that are connected by an edge, and
2 pij=1
Jjes
because P is a stochastic matrix, the number of neighbors of i must be < 1/4. O

We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1 Since each equivalence class of our equivalence relation has at
least one element that is adjacent to an element of A (by Lemma 6.3), the number of
equivalence classes can be at most the size of 9 A. But by Lemma 6.4, |0 A| < |A|/S.
Thus, there are at most |A|/§ equivalence classes.

But by Lemma 6.2, if B is any set such that 9B = A, then B must be a union of
equivalence classes. Consequently, the number of such B is at most the size of the
power set of the set of equivalence classes. By the previous paragraph, this is bounded
above by 214179, O

Lemma 6.1 has the following corollary, which shows that not too many sets can
have a small external boundary.

Corollary 6.5 Take any 1 < k < n. The number of sets B C S such that |0B| = k is
at most (',:)2]‘/8.

Proof We can choose the external boundary of B in at most (Z) ways. Having chosen
the external boundary, Lemma 6.1 says that B can be chosen in at most 2¥/% ways.
Thus, the number of ways of choosing B with the given constraint is at most (2)2"/ 8
O

For each € > 0, let A, be the set of all A C S such that |E£(A)| < (1 + €)|A]|. For
each 1 <m <n, let A¢ ,, be the set of all sets A € A, that are of size m. Let

AL, = U Ack.

1<k<m

The following lemma uses the bound from Corollary 6.5 to get a bound on the size of

/
At -

Lemma 6.6 Foranye >0and1 <m <n,

A= <Z>z’</5.

I<k<em
Proof Take any A € A, . Then note that
|0A] = |E(A)] — |A] < €]A] < em.
The claim is now proved by Corollary 6.5. O
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Now fix some € € (0, 1/2). Let f be a random bijection chosen uniformly from
the set of all bijections of S. Define an event

E :={fo&(A) € A forsome A € A, with1/e < |A| <n/2}.

We want to show that E is a rare event. The following lemma is the first step towards
that.

Lemma 6.7 Let E be the event defined above. Then

2

P(E)y< Y. % 3 <Z>2k/<s

1/e<m<3n/4 \m 1<k<em

Proof Take any A € A with 1/e < |A| < n/2. Let B = £(A). Then observe the
following about B:

e Since f is a uniform random bijection, the random set f(B) is uniformly dis-
tributed among all subsets of size | B]|.
e Since A € Ac, e € (0,1/2),and 1/e < |A| < n/2,

1B < (1 +)A] < 2[A] <
< € < = —,
2 — 4

and |B| > |A] > 1/e.
These two observations imply that

P(E)

IA

Y. Y PUE@) €A
1/e<m<3n/4 AcA.,
IE(A)|=m

e

1/e<m<3n/4 AcA., m
IE(A)|=m
Z AL 1 Aeml
= n
1/e<m<3n/4 (m)

Since A, is a superset of A ,, plugging in the bound from Lemma 6.6 completes
the proof. O

The bound in Lemma 6.7 is not straightforwardly understandable. The following
lemma clarifies the matter.

Lemma 6.8 There are universal constants Co, C1, Co and Cs such that if € < Coé,
then

2

Z % Z (Z)zk/a Scle—c2ﬁ+c31/en2—1/4e_

1/e<m<3n/4 \m 1<k<em
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Proof Recall the well-known inequalities

nk< n <eknk
ke = \k) = kK-

Also, check that the map x — (en/x)* is increasing in [1, n]. Thus,

> Az @)
n
1/e<m<3n/4 (m) k<em k

2em
m™ , (en2!/?
D D T
m em

1/e<m<3n/4

2 m' 7 oess 2e(i+iog(1/e))

_ M Y/3 e(14+log(1/e€

it (e )
1/e<m<3n/4

m

Now choose € so small that 1 —2¢ > 1/2 and

92€/8 y2e(1+log(1/€)) _ \/g

Note that this can be ensured by choosing € to be less than some universal constant
times § (noting that § < 1). With such a choice of €, we get

2 m' 2 oess aeirton(ten)
€ € og(l/e
Y (e )
Jn<m<3n/4

Jn<m<3n/4

= I’l2 Z <5) < C]E_Czﬁ,

Jn<m<3n/4
where C; and C; are universal constants. On the other hand, if 1/e < m < \/n, then

1-2¢
m
<n 14
nl—2e

and so

2 m!=% oA 2e(1+log(1/€)) "
€ 2e(1+log(l/e
DY Tl e >
1/e<m<./n
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m

1/e<m<.n

Adding up the two parts, we get the required bound. O

We are now ready to finish the proof of Theorem 2.2.

Proof By Lemmas 6.7 and 6.8, we see that there are universal constants C4, C5 > 0
and Cg € (0, 1) such that if we choose € = C¢é, then

P(E) < Can~ /3, 6.1)

Suppose that E does not happen. Then for any A € A with 1/e < |A| < n/2, we
have f(£(A)) ¢ A¢ and hence

€0 fol(A)] = (1 +e)lfol(A)=+e)lAl

On the other hand, if A ¢ A, then
€0 fol(A)] = EA) = (I +e)Al

Finally, if |[A| < 1/€ and |A| < n/2, then since the P-chain is irreducible,

€0 fol(A] = 1EA) = [Al+1= (14 €Al
So if E does not happen, then the random bijection f satisfies the condition (2.2). By
(6.1), this completes the proof of Theorem 2.2. O
7 A different speedup

Going back to the original example (simple random walk on Z,), there is a different
way to speed this up. Define a process Xo, X1, ...onZ, by Xo =0, X; = 1 and

Xiv1 = Xi + Xj—1 + €41 (mod n),

where ¢; are independent, taking values 0, 1 and —1 with equal probabilities. Let
Pr(j) =P Xy =j)and U(j) := 1/nfor j € Z,.

Theorem 7.1 For any n > 22 and k = 5[(logn)* + clogn],

|Pe — Ullry < 1.6e7/2

Remark The best lower bound we have is that at least logn steps are required. It is
natural to suspect that this is the right answer, but numerical experiments do not make
a clear case. At any rate, we find it interesting that a simple recurrence speeds things
up from order n? to order (logn)?.
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By running the recurrence, the chain can be represented as
Xk = Fx + Fr_1€2 + Fr 263+ --- Fiee  (mod n),

with Fj the usual Fibonacci numbers 0,1, 1,2,3,5,... (so F5 = 5). The (mod n)
Fourier transform of Py is

k—1

- ) . 1 2

Pia) = E(e2man/n) — p2miaFi/n l_[ (g + 3 cos(Znan/n)> . (7.1)
b=1

We will use the inequality (see Diaconis [12, Chapter 3])

n—1

AP = Ully <Y IP(@) (7.2)

a=1

to obtain an upper bound on the total variation distance between Py and U. We thus need
to know about the distribution of Fibonacci numbers mod n. We were surprised that
we couldn’t find what was needed in the literature (see Diaconis [14]). The following
preliminary proposition is needed. Let xp, x1, x2, ... be any sequence of integers
satisfying the Fibonacci recursion

Xk = Xg—1 + Xp—2.
Take any n such that at least one x; is not divisible by n. Let by be the remainder of

x; modulo n. We will prove the following property of this sequence.

Proposition 7.2 For any j, there is some j < k < j + 8 + 3logz,, n such that
by € [n/3,2n/3].

We need several lemmas to prove this proposition.

Lemma 7.3 There cannot exist k such that by = by+1 = 0.

Proof If by = b1 = 0 for some k, then x4 and x; are both divisible by n. So the
Fibonacci recursion implies that x; is divisible by » for all j. But we chose n such
that at least one x; is not divisible by n. Thus, we get a contradiction. O

Lemma7.4 If b;,bj11 € [1,n/3) for some j, then there is some j +2 < k <
Jj + 2log, n such that by € [n/3,2n/3].

Proof Since the b;’s satisfy the Fibonacci recursion modulo #, it follows that if b; and
bi41 are both in [1, n/3) for some i, then b; o = b;jy1 + b; € [1,2n/3). So there
exists an index k which is the first index bigger than j + 1 such that by € [n/3, 2n/3).
We claim that for any i € [j + 2, k], b; > 20=//2_ To see this, first note that for any
i €[j+2,kl, b =bj_1+ bj_». Therefore, since bj, bj1 > 1, the claim is true for
i = j + 2. Suppose that it is true up to i — 1. Then

bi =bi_1 +bip = 207172 4 o202
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_ 2D 12 4071y 5 2l=D2,

In particular, by > 2%~/ But we know that by < 2n/3. Combining these two
inequalities gives k — j < 2log, n. O

Lemma7.5 Ifb;,bjr1 € 2n/3,n — 1] for some j, then there is some j +2 < k <
J + 2log, n such that by € [n/3,2n/3].

Proof Define ¢; := n — b; for each i. Then the ¢;’s also satisfy the Fibonacci recursion
modulo n. Moreover, cj,cj+1 € [1,n/3). Therefore by the proof of Lemma 7.4,
there exist k < j + 2log, n such that ¢y € [n/3,2n/3]. But this implies that by €
[n/3,2n/3]. O

Lemma?7.6 Ifb; € [1,n/3)andbji1 € 2n/3,n — 1] for some j, then there is some
J+2=<k<j+6+3logy,n suchthat by € [n/3,2n/3].

Proof For each i, let

4o b if b € [0,n/2],
" bi—n ifbie@n/2,n—1].

Clearly, the d;’s also satisfy the Fibonacci recursion modulo #n, and |d;| < n/2 for
each i. Take any 7 such that

[ di > 0, di+l < 0, di+2 > 0, di+3 < 0and d,‘+4 > 0, and

e |d;i| and |d; 4] are less than n/3.
Under the above conditions, d; € (0,n/3) and d;+; € (—n/3, 0). This implies that
di +diy1 <di <n/3andd; +diy1 > diy1 > —n/3. Thus, |d; + di+1] < n/3. But
we know thatd; 1 = d; +d;+1 (mod n), and |d; 42| < n/2. Thus, we must have that
d;42 is actually equal to d; + d; 41, and therefore also that |d; 2| < n/3. Similarly,
|di4+3| and |d;+4] are also less than n/3, and satisfy the equalities d; 13 = d;j12 + di+1
and dj+4 = dj+3 + d;i12. Thus,

0 < djya =3di41 + 2d;,
which gives

o] 2d; _ 2|di
i+1 i+1 3 3

Similarly, if d; < 0,di+1 > 0,di42 <0,d;j43 > 0and di+4 < 0, and |d;| and |d; 1|
are less than n/3, then also all of the absolute values are less than n/3, and

0> di+4 = 3d,'+1 + 2di,
which gives

2d;  2|di]
ldi1| = dit1 < —TZ = T’

@ Springer



1210 S. Chatterjee, P. Diaconis

Now let j be as in the statement of the lemma. Then d; > 0,d;y; < 0, and |d;| and
|dj41]are bothless thann /3. Let/ be an index greater than j suchthatd;, djy1, ..., d;
are all nonzero, with alternating signs. Suppose that > j 4 4. The above deductions
show that |d;| < n/3foralli € [j,!]and |di+1]| < 2|d;|/3 foralli € [j, [ —4]. Since
|d;—4] > 1 and |d;| < n/3, this proves that / cannot be greater than j + 4 + logs ) n.
Thus, if we define [ to be the largest number greater than j with the above properties,
then [ is well-defined and is < j + 4 + logs ) n.

By the definition of /, it follows that either dj4; = 0, or dj+1 has the same sign
as d;. We already know that d; and d;_; are nonzero, have opposite signs, and are in
(=n/3,n/3).So,ifdj+1 =0, thendjy» = dj43 = d; € (—n/3, —1]U[1, n/3), and if
dj41 is nonzero and has the same sign as dj, then |d;y1| < n/3. In the first situation,
either both b;4> and b;43 are in [1, n/3) or both are in (2n/3, n — 1]. In the second
situation, we can make the same deduction about b; and by 1. The claim now follows
by Lemmas 7.4 and 7.5. O

Lemma7.7 Ifb; € 2n/3,n—1]and b,y € [1,n/3) for some j, then there is some
Jj+2=<k<j+6+3logs,n suchthat by € [n/3,2n/3].

Proof The proof is exactly the same as for Lemma 7.6. O

We are now ready to prove Proposition 7.2.

Proof of Proposition 7.2 Take any j. If one of b; and b is in [n/3, 2n/3], there is
nothing to prove. If b; and b;; are both in [1,n/3) U (2n/3,n — 1], then one of
Lemmas 7.4-7.7 can be applied to complete the proof. If b; = 0 and b;,1 # 0, then
bjy2 =bjy1 # 0, and so we can again apply one of the four lemmas. If b; # 0 and
bjy1 =0,then b =bjy3 = bj # 0, and so again one of the four lemmas can be
applied. Finally, note that by Lemma 7.3, we cannot have b; = b1 = 0. O

Having proved Proposition 7.2, we can now complete the proof of Theorem 7.1.

Proof of Theorem 7.1 By (7.1) and (7.2), we get
n—1k—1 1 ) 2
AP —Ulizy <D T (g +3 cos(Znan/n)) .
a=1b=1
Now take any 1 < a < n — 1. The sequence aF1, aF>, ... satisfies the Fibonacci
recursion, and the first term of the sequence is not divisible by n since a < n. Thus,
Proposition 7.2 is applicable to this sequence. Letting m = 8 + 3logs , n, we get

that at least [(k — 1)/m] among a F, ...,aFy_; are in [n/3, 2n/3] modulo n. Now if
x € [n/3,2n/3], then cos(2rx/n) € [—1, —1/2], and so

1 2
3 + 3 cos(2rakFy,/n) € [—1/3,0].

Combining these observations, we get
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4| Py = Ullgy < no~tE=D/ml,

It is easy to verify numerically that 30 < m < 10logn for n > 22, and also that
log(9)/10 > 1/5. Thus, for n > 22 and k = 5[(log n)* + clogn],

4| P — Ull3y < n9~k=D/m+l
< n9—k/m+31/30 _ 931/30 ,~c

It can now be numerically verified that the claimed bound holds. O

8 Applications and open problems

One class of problems where uniform sampling is needed arises from exponential
families. Let X be a finite set and T : X — RY be a given statistic. For 6 € Rd, let
po be the probability density

po(x) = Z@) e T,

where Z(0) is the normalizing constant. The family {pg}yge 1S called an exponential
family of probability densities with sufficient statistic 7. If X ~ pg, the conditional
distribution of X given 7 (X) = t is the uniform distribution on &; := {x € RY -
T (x) = t}. Such models appear in myriad statistical applications such as contingency
tables and graphical models. They also appear in physics as Ising and related models.
Uniform sampling on A&} is required to test if a given dataset fits the model. An overview
is in Diaconis and Sturmfels [21], who introduced Grobner basis techniques to do the
sampling. These are typically diffusive and it would be wonderful to have speedups. A
second use for uniform sampling comes from drawing samples from the original py.
For low-dimensional T, this can be done by sampling from the marginal distribution
of T', and along the way, sampling X given 7 (X) = ¢.

Our main result shows that almost every bijection gives a speedup. This is not
the same as having a specific bijection (such as x — ax (mod r)). Finding these,
even in simple examples, seems challenging. One case where lots of bijections can
be specified comes from permutation polynomials. Let us work mod p for a prime p.
Then a permutation polynomial is a polynomial f with coefficients mod p such that
Jj +— f(j) is one-to-one mod p. Large classes of these are known. The Wikipedia
entry is useful and the article by Guralnick and Miiller [27] shows how these can be
found in several variables to map varieties (mod p) to themselves.

As an example, suppose that (3, p — 1) = 1. Then the map j +— j3 (mod p) is
one-to-one. The corresponding walk is

Xir1 = X} 4+ €q1 (mod p).

We have no idea how to work with this but (weakly) conjecture that it mixes in order
log p steps.
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Our colleague Kannan Soundararajan has suggested f(0) = 0, f(j) = j!

(mod p) for j # 0. Preliminary exploration did not reveal this as an easy problem.
Itis natural to try to generalize the Fibonacci recurrence walk further. The following
generalization was proved by Jimmy He, who kindly allowed us to include his result
in this paper.
Let X be a finite set and P be a Markov kernel on X. Let f : X" — X be

a function such that f(-, x3, ..., x,) is a bijection for all x3, ..., x, € X. Define
a Markov chain Py on X" by moving from the state (Xi,..., X,) to the state
(X2, ..., Xn, f(X1,..., Xyn)), and then taking a step from P in the last coordinate.

Here the last coordinate can be viewed as a higher order Markov chain on X, which
depends on the previous n steps of the walk.

To see that this is a generalization of the Fibonacci walk, note thatifn =2, X = G
is a finite Abelian group, P is a random walk on G generated by a measure Q on G,
and f(x1, x2) = x1 + x2, then the walk moves from (X1, X») to (X2, X1 + X2 + ¢)
where ¢ is drawn from Q, and this is exactly the original Fibonacci walk.

Proposition 8.1 (Due to Jimmy He, personal communication) Assume that P is lazy
and ergodic, and has a uniform stationary distribution. Then Py is ergodic, and has
a uniform stationary distribution.

Proof First, note that the assumption that f(-,x2,...,x,) is a bijection for all
X2, ...,%, € X implies that the function g : X" — X" defined by

gx1, ..o xpn) = (X2, ..oy Xp, (X1, .., Xn))

is a bijection. Then Py can be described as applying the function g, followed by a step
from P in the last coordinate.

Now we describe how to mimic steps from P using Py. Note that since g is a per-
mutation, g is the identity permutation for some m. Since P is lazy, we can alternate
applying g, and then remaining stationary when taking a step from P. Doing som — 1
times, and then applying g one last time, we can then take a step from P in the last
coordinate. Thus, it is possible to move from (xq, ..., x,—1, X,) to (X1, ..., Xp—1, x,’l)
in m steps of Py, where x), € X is some state for which P (x,, x,,) > 0. We call this
mimicking a step from P.

To show that Py is irreducible, we simply repeat the above procedure. Since P
is irreducible, we can reach any state in X in the last coordinate, while keeping the
first n — 1 coordinates fixed. But now, we can apply g once, and then repeat the above
procedure, and now the last two coordinates can be made arbitrary (since the procedure
described fixes the first n — 1 coordinates). Repeating this n times allows any state in
X" to be reached.

Now we show that Py is aperiodic. Starting from any state, we can return in m
steps by mimicking a lazy step from P using the above procedure. But we can also
first take a single step from Py, and then use the same procedure as in the proof of
irreducibility to return to the initial state, using a path of length km for some k. This
gives a path from the state to itself of length km + 1. As m and km + 1 are coprime,
this implies that P is aperiodic.
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Finally, itis clear that the stationary distribution is uniform, since g is a bijection and
so preserves the uniform distribution, and taking a step from P in the last coordinate
also preserves the uniform distribution. O

Proposition 8.1 allows us to generalize the Fibonacci walk to finite non-Abelian
groups. If G is a finite group and Q is a probability on G with support generating G and
having nonzero mass at the identity, then Proposition 8.1 implies that the second order
Markov chain which proceeds by Xy4+1 = X X—1€x+1 (with the €; drawn i.i.d. from
Q), is ergodic with uniform stationary distribution.

Proposition 8.1 also allows generalization of Fibonacci walks to nonlinear recur-
rences on finite fields. For example, take a prime p such that 3, p — 1) = 1, and
consider the random walk on IF, which proceeds as

Xk+1 = XZ + Xi—1 + €41,

where ¢; are i.i.d. uniform from F,. Proposition 8.1 implies that this has uniform
stationary distribution, since f(x, y) = x3 + y is a bijection in x for every fixed y.

Getting rates of convergence in any of the above examples seems like a challenging
problem.
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