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1. Gromov hyperbolicity

Let (S, d) be a metric space. The Gromov product of two points x, y ∈ S with respect 

to a third point z ∈ S is defined as

(x, y)z :=
1

2
(d(x, z) + d(y, z) − d(x, y)).

Note that by the triangle inequality, the Gromov product is always nonnegative. 

The space is called δ-hyperbolic (as defined by Gromov [16]) if for any four points 

x, y, z, w ∈ S,

(x, y)w ≥ min{(x, z)w, (y, z)w} − δ. (1.1)

The smallest δ for which this is satisfied is known as the Gromov hyperbolicity of (S, d). 

The condition (1.1) is known as Gromov’s four point condition. It is not hard to show 

that if (1.1) is satisfied for all x, y, z for a given w0, then it can be shown that it is 

satisfied for all w with 2δ in place of δ. Thus, we may equivalently define hyperbolicity 

using a three point condition, by fixing w. If (1.1) is satisfied for all x, y, z for some fixed 

w, then we say that the space is δ-hyperbolic with base point w.

The notion of hyperbolic metric spaces is closely related to the notion of real trees. 

If (T, ρ) is a metric space and x, y ∈ T , an arc from x to y is the image of a topological 

embedding γ : [a, b] → T with γ(a) = x and γ(b) = y, where [a, b] is a closed interval in 

R (allowing the possibility that a = b). A geodesic segment from x to y is the image of 

an isometric embedding γ : [a, b] → T with γ(a) = x and γ(b) = y. A metric space (T, ρ)

is called a real tree if for any x, y ∈ T , there exists a unique arc from x to y, and this 

arc is a geodesic segment. A real tree with a distinguished point r ∈ T is called a rooted 

real tree with root r.

The most elementary connection between Gromov hyperbolicity and real trees is that 

a metric space is 0-hyperbolic if and only if it is isometric to a subset of a real tree. 

Now suppose that a metric space (S, d) is δ-hyperbolic for some small but nonzero δ. 

Is it approximately isometric to a subset of a real tree, in some sense? The following 

result shows that this is true when S has finite cardinality, with an error proportional 

to δ log |S|.

Theorem 1.1 (Ghys and de la Harpe [14]). Let (S, d) be a δ-hyperbolic metric space with 

base point w and finite cardinality. Let k be a positive integer such that |S| ≤ 2k + 2. 

Then there exists a real tree (T, ρ) with root r and a map Φ : S → T such that for all 

x ∈ S, d(x, w) = ρ(Φ(x), r), and for all x, y ∈ S, d(x, y) −2kδ ≤ ρ(Φ(x), Φ(y)) ≤ d(x, y).

It is known that the error of order δ log |S| in the above theorem cannot be im-

proved [8]. In particular, it is not possible to have a quasi-isometry where the discrepancy 

depends solely on δ.
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The notion of Gromov hyperbolicity, introduced by Gromov in a group-theoretic con-

text, has found great success in many areas of mathematics and even in science and 

engineering. There are many examples of metric spaces, both in theory and practice, 

that are almost tree-like but not exactly so. Gromov hyperbolicity is a great way to 

understand and study such examples.

Still, there is one aspect of Gromov hyperbolicity that is sometimes problematic when 

one ventures outside the domain of very regular objects coming from pure mathematics. 

It is the fact that the four point condition (1.1) is a worst-case condition: The space 

is not δ-hyperbolic if there is even a single four-tuple (x, y, z, w) for which (1.1) fails. 

There are examples from statistical physics and probability theory where (1.1) holds for 

most, but not all four-tuples [21]. Here “most” is in terms of a probability measure on 

the space. Similar examples arise in the applied sciences, such as in the analysis of social 

networks [2] and phylogeny reconstruction [9].

For these reasons, one may naturally wonder whether the condition (1.1) may be re-

placed by some kind of an averaged version. This has, indeed, been proposed recently 

in some physics papers (such as [2]), but these proposals have not been mathematically 

analyzed. The goal of this manuscript is to fill this gap: We define a natural notion of 

average Gromov hyperbolicity, and prove an analog of Theorem 1.1 for this measure. In-

terestingly, unlike Theorem 1.1, this result has no dependence on the size of S. The proof 

is more involved than the proof of Theorem 1.1, using a weighted version of Szemerédi’s 

regularity lemma from graph theory. We apply this theorem to show that hierarchically 

organized pure states can be constructed in any model of a spin glass that satisfies the 

Parisi ultrametricity ansatz.

2. Main result

We will go beyond metric spaces in our definition of average hyperbolicity. Let S be 

a set equipped with a countably generated σ-algebra F and a probability measure P

defined on F . Let b be a positive real number and s : S × S → [0, b] be a measurable 

function satisfying s(x, y) = s(y, x) for all x, y ∈ S. We will say that s is a “similarity 

function”. Intuitively, s(x, y) measures the similarity between two points x and y. Simi-

larity functions generalize the notion of Gromov product: If S has finite diameter with 

respect to a separable metric and is endowed with the Borel σ-algebra generated by this 

metric, the Gromov product (x, y)w is a similarity function for any base point w ∈ S.

Definition 2.1. We will say that (S, F , P , s) is δ-hyperbolic if

Hyp(S, F , P , s) := E(min{s(X, Z), s(Y, Z)} − s(X, Y ))+ ≤ δ,

where x+ denotes the positive part of a real number x, and X, Y, Z are i.i.d. S-valued 

random variables with law P .
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Fig. 1. A tree T compatible with S, with root r. The leaves of T , shown using dots, are the elements of S. 
The number of edges in the thickened path equals the Gromov product (x, y)r .

It is not hard to show that (S, F , P , s) is 0-hyperbolic in the above sense if and only 

if there is a real tree (T, ρ) with root r and set of leaves S, such that for all x, y in the 

support of P , we have s(x, y) = (x, y)r, where (x, y)r is the Gromov product of x and y

under the metric ρ, with respect to the base point r. We will now generalize this result 

when (S, F , P , s) is δ-hyperbolic for some small δ. First, recall that a graph-theoretic 

tree, henceforth simply called a tree, is a connected undirected graph without self-loops 

or closed paths. A rooted tree is a tree where one distinguished node is called the root. 

A node of a rooted tree is called a leaf if it is not the root and it has degree one.

Definition 2.2. We will say that a tree T with root r is compatible with (S, F) if the 

following three conditions are satisfied:

(i) S is the set of leaves of T ,

(ii) T \ S is a finite set, and

(iii) for any node v ∈ T \S, the set of leaves that are the descendants of v is a measurable 

subset of S.

Clearly, any tree that is compatible with (S, F) gives a hierarchical clustering of S, 

such that the number of clusters is finite and each cluster is measurable. Conversely, any 

such clustering defines a compatible tree. An example is shown in Fig. 1.

If T is a compatible tree with root r, and x, y ∈ S, we denote by (x, y)r the Gromov 

product of x and y under the graph distance on T , with respect to the base point r. 

From the definition of the Gromov product, it is easy to see that (x, y)r is the number 

of edges in the intersection of the paths leading from x and y to r (see Fig. 1).

Definition 2.3. We will say that (S, F , P , s) is δ-tree-like if

Tree(S, F , P , s) := inf
T,α

E|s(X, Y ) − α(X, Y )r| ≤ δ,
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where X and Y are independent S-valued random variables with law P , and the infimum 

is taken over all α ≥ 0 and all rooted trees T that are compatible with (S, F). Here r is 

the root of T and (X, Y )r is the Gromov product of X and Y under the graph distance 

on T , with respect to the base point r.

Note that in the above definition, it follows easily by the definition of compatibility 

that (X, Y )r is a bounded and measurable random variable, and therefore the expectation 

is well-defined.

The following theorem is the main result of this paper. It shows that Hyp(S, F , P , s)

is small if and only if Tree(S, F , P , s) is small.

Theorem 2.4. Let S, F , P , s and b be as above. Then given any ε > 0, there is some δ > 0

depending only on ε and b, such that if Hyp(S, F , P , s) < δ, then Tree(S, F , P , s) < ε. 

Conversely, given any ε > 0 there is some δ > 0 depending only on ε and b, such that if 

Tree(S, F , P , s) < δ, then Hyp(S, F , P , s) < ε.

The above theorem is a generalization of Theorem 1.1 to the setting of average hyper-

bolicity. The statement is more satisfactory than that of Theorem 1.1 in that the error 

has no dependence on the size of S. In particular, it remains meaningful even if S has 

infinite cardinality. Moreover, since Gromov hyperbolicity is obviously greater than or 

equal to the average hyperbolicity with respect to any probability measure (where the 

similarity function is the Gromov product with respect to a base point), Theorem 2.4

immediately implies the following corollary about Gromov hyperbolic metric spaces.

Corollary 2.5. Let (S, d) be a separable metric space with finite diameter D, which is 

δ-hyperbolic with respect to a base point w in Gromov’s sense. Then for any probability 

measure P defined on the Borel σ-algebra of S, there is a rooted tree T with root r that 

is compatible with S in the sense of Definition 2.2, and a number α ≥ 0, such that

¨

|(x, y)w − α(x, y)r|dP (x)dP (y) ≤ ε(δ, D),

where ε(δ, D) is a number depending only on δ and D which tends to 0 as δ → 0. Here 

(x, y)w is the Gromov product of x and y under the metric d, with respect to the base 

point w, and (x, y)r is the Gromov product of x and y under the graph distance on T , 

with respect to the base point r.

The dependence of δ on ε in Theorem 2.4 is an important question. The proof given 

in this paper uses Szemerédi’s regularity lemma [28], and therefore cannot be expected 

to yield useful bounds. It would be very interesting to figure out whether Szemerédi’s 

lemma can be bypassed in the proof of Theorem 2.4. If that is possible, then one can at 

least hope to get reasonable bounds on δ in terms of ε.
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To see why something like the regularity lemma may be needed, recall the triangle 

removal lemma of Ruzsa and Szemerédi [25]: If a simple graph on n vertices has o(n3)

triangles, then it is possible to delete o(n2) edges and make it triangle-free. The original 

proof of this result used Szemerédi’s regularity lemma, and although we now have other 

approaches [11], there is still no simple proof of this seemingly simple-sounding claim. 

Theorem 2.4 is a result of a similar spirit, since it asserts that a space which is nearly tree-

like in most places may be slightly modified to yield a space that is exactly embeddable 

in a tree.

3. Hyperbolicity and the Parisi ansatz

In this section we study a well-known class of systems that arise in statistical physics 

and probability theory that are hyperbolic in the average sense but not in Gromov’s 

sense.

A spin glass model assigns a random probability measure μn on a set Σn, where Σn

is usually the hypercube {−1, 1}n or the sphere of radius 
√

n centered at the origin 

in R
n. Throughout the rest of this section, we will assume that Σn is either of these 

two. The specific definitions of these measures are not particularly relevant for this 

discussion, so we will not bother to introduce them here. The interested reader may 

consult [19,22,33,34]. The measure μn is called the Gibbs measure, and the set Σn is 

called the configuration space.

An important quantity in spin glass theory is the overlap between two configurations 

σ1, σ2 ∈ Σn, defined as

R1,2 :=
1

n

n∑

i=1

σ1
i σ2

i ∈ [−1, 1].

The usual convention in the literature is to denote by Ri,j the overlap between σi and 

σj , where σ1, σ2, . . . is an i.i.d. sequence of configurations drawn from the Gibbs measure 

μn. It was famously conjectured by Parisi [23,24] that certain spin glass models have the 

property that in the “n = ∞ limit”, R1,2 is greater than or equal to the minimum of 

R1,3 and R2,3 with probability one. This is known as the Parisi ultrametricity ansatz. 

Following a long line of deep contributions by various authors [1,4,13,30], the Parisi 

conjecture was finally proved by Panchenko [21] for spin glass models that satisfy a 

certain set of equations known as the generalized Ghirlanda–Guerra identities [13,20,29]. 

The precise statement of Panchenko’s theorem is that in such models, for any ε > 0,

lim
n→∞

E〈1{R1,2≥min{R1,3,R2,3}−ε}〉 = 1, (3.1)

where 〈·〉 denotes expectation with respect to the Gibbs measure μn, E denotes expec-

tation with respect to the randomness in μn, and 1A denotes the function that is 1 on 

the set A and 0 elsewhere.
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Fig. 2. Hierarchical organization of pure states. Here α, β, γ and γ′ are hierarchically nested clusters rep-
resenting various pure states, and σ1 ∈ γ, σ2 ∈ γ′. But R1,2 ≈ qβ , since β is the smallest cluster that 
contains both σ1 and σ2.

It was predicted in a seminal paper of Mézard, Parisi, Sourlas, Toulouse and Vira-

soro [18] that ultrametricity happens because the infinite volume limit of the Gibbs 

measure can be decomposed into “hierarchically organized pure states”. Roughly speak-

ing, this means that the configuration space admits a hierarchical clustering, with a 

number qα ∈ [−1, 1] attached to each cluster α, so that if σ1 and σ2 are drawn indepen-

dently from the Gibbs measure, then with high probability, R1,2 ≈ qα, where α is the 

smallest cluster containing both σ1 and σ2 (see Fig. 2). Here “smallest” means “lowest 

down in the hierarchy”.

It is not difficult to prove that ultrametricity implies the hierarchical organization of 

pure states if R1,2 can take only finitely many values in the infinite volume limit; this, in 

fact, is the basis of the heuristic sketched in [18]. However, if this condition does not hold 

— in which case the system is said to exhibit “full replica symmetry breaking” — then 

it is not obvious how to establish the hierarchical organization of pure states starting 

from the Parisi ansatz (3.1).

There are two kinds of systems where the pure state picture has been rigorously 

established. The first is a class of spin glass models known as pure p-spin spherical 

models, where the pure state construction was given recently by Subag [26], building 

on the earlier contributions of [5–7,27]. The second is the class of models that have 

been shown to satisfy the generalized Ghirlanda–Guerra identities. For these models, 

the construction of pure states was given by Panchenko [21] in the infinite volume limit, 

and recently by Jagannath [17] in the setting of large but finite n. (See also the earlier 

works of Talagrand [31,32].)

Incidentally, the generalized Ghirlanda–Guerra identities are believed to hold in all 

physically interesting models that satisfy the Parisi ansatz (3.1). Therefore, in principle, 

the results of [17,21] should give the pure state construction in all such models, provided 

that the identities can be established. However, there are other important models, such 

as the Sherrington–Kirkpatrick (S-K) model, where it is known that the generalized 

Ghirlanda–Guerra identities do not hold [17, Remark 2.4]. In the S-K model, it is believed 
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that the absolute value of the overlap, rather than the overlap itself, should satisfy 

the ultrametric property. To account for such cases, we formulate a generalized version 

of (3.1). We will say that a sequence of spin glass models satisfy the generalized Parisi 

ansatz if for some bounded measurable f : [−1, 1] → R,

lim
n→∞

E〈1{f(R1,2)≥min{f(R1,3),f(R2,3)}−ε}〉 = 1 (3.2)

for all ε > 0. Theorem 2.4 allows us to prove that hierarchically organized pure states 

can be constructed for any system that satisfies this generalized ansatz. Since the only 

systems where ultrametricity has been rigorously established are systems where the pure 

state construction has also been proved, the result gives no immediate gain. But it is 

intellectually satisfying and potentially useful for the future. For example, if the gen-

eralized Parisi ansatz (3.2) can be proved for the S-K model with f(x) = |x|, our 

theorem will instantly give the construction of pure states. The precise statement is 

as follows.

Theorem 3.1. Consider any sequence of spin glass models that satisfy the generalized 

Parisi ultrametricity ansatz (3.2) for some bounded measurable function f . Then there 

are sequences εn and δn tending to zero, such that with probability at least 1 − εn, the 

following happens. There is a hierarchical clustering of the configuration space Σn, such 

that the number of clusters is finite, each cluster is measurable, and for each cluster α

there is a number qα that is a function of its depth in the hierarchy, with the property 

that

〈|f(R1,2) − qα|〉 ≤ δn,

where α = α(σ1, σ2) is the smallest cluster containing two configurations σ1 and σ2

drawn independently from the Gibbs measure and R1,2 is their overlap.

Just for clarity, we note that in Theorem 3.1 the sequences εn and δn are deterministic, 

but the hierarchical clustering is a function of the Gibbs measure (and hence random). 

We also note that even though the number of clusters is finite, the number may grow 

with n. Theorem 3.1 is proved as a simple consequence of Theorem 2.4 in Section 10.

4. A vertex-weighted regularity lemma

The key to proving Theorem 2.4 is a weighted version of Szemerédi’s regularity 

lemma [28]. Although there are a number of weighted regularity lemmas in the liter-

ature (such as in [3,10] and the very recent preprint [15]), we could not find the exact 

version stated below, which is what we needed for proving Theorem 2.4. Therefore a 

complete proof is given.

Let G = (S, E) be a finite simple graph. In the following, we will adopt the convention 

that the set of edges E is the subset of S2 consisting of all (x, y) such that there is an 
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edge between x and y. In particular, if there is an edge between x and y, then both (x, y)

and (y, x) belong to E.

Let μ be a nonnegative measure on S. If U and V are disjoint subsets of S, we define 

the μ-weighted edge-density between U and V as

d(U, V ) :=
μ⊗2((x, y) ∈ E : x ∈ U, y ∈ V )

μ(U)μ(V )
.

If the denominator is zero, d(U, V ) is undefined. Given ε > 0, a pair of disjoint sets 

U, V ⊂ S will be called a μ-weighted ε-regular pair if for any A ⊂ U and B ⊂ V with 

μ(A) ≥ εμ(U) and μ(B) ≥ εμ(V ), we have

|d(A, B) − d(U, V )| ≤ ε.

The following theorem is a μ-weighted version of Szemerédi’s regularity lemma.

Theorem 4.1 (Vertex-weighted regularity lemma). Let G = (S, E) a finite simple graph 

and let μ be a finite nonnegative measure on S. Let

μ∗ := max
x∈S

μ(x).

Take any ε > 0 and any positive integer m. Then there is a positive real number p(ε, m)

and a positive integer M(ε, m), both depending only on ε and m, such that if μ∗ ≤
p(ε, m)μ(S), then there is a partition S = V0 ∪ · · · ∪ Vq with m ≤ q ≤ M(ε, m), such that

(i) μ(V0) ≤ εμ(S),

(ii) μ(Vi) > 0 and |μ(Vi) − μ(Vj)| ≤ μ∗ for all 1 ≤ i, j ≤ q, and

(iii) all but at most εq2 pairs (Vi, Vj), 1 ≤ i 
= j ≤ q, are μ-weighted ε-regular, as defined 

above.

The rest of this section is devoted to the proof of this theorem. We follow the spectral 

approach to proving Szemerédi’s lemma, pioneered by Frieze and Kannan [12] and lucidly 

explained in a blog entry of Tao [35]. If μ(S) = 0, there is nothing to prove. So let us 

assume that μ(S) > 0, and normalize μ to define a probability measure:

P (A) :=
μ(A)

μ(S)
, A ⊂ S.

Also let

P ∗ := max
x∈S

P (x) =
μ∗

μ(S)
.



10 S. Chatterjee, L. Sloman / Advances in Mathematics 376 (2021) 107417

If we prove the theorem for P instead of μ (with P ∗ instead of μ∗), it is easy to see that 

it proves the theorem for μ. So we will henceforth work with P instead of μ. We will first 

prove Theorem 4.1 in the case that P (x) is rational for all x ∈ S.

Lemma 4.2. The vertex-weighted regularity lemma holds if P (x) is rational for each x.

Proof. Note that if ε < ε′, then an ε-regular partition is also an ε′-regular partition. So 

let us assume without loss of generality that ε < 1/4.

Since P (x) is rational for every x, we can find an integer N such that K(x) := NP (x)

is an integer for every x. Let [N ] := {1, . . . , N}. Choose a map f : [N ] → S such that 

|f−1(x)| = K(x) for every x, and these inverse images are disjoint. (This is possible is 

P (S) = 1.) Let GN = ([N ], EN ) be a graph with vertices [N ], and (x, y) ∈ EN if and 

only if (f(x), f(y)) ∈ E.

Let H be the adjacency matrix of GN . Then H has a spectral decomposition

H =

N∑

i=1

λiuiu
T
i ,

where uT
i denotes the transpose of the column vector ui. We will assume the λi’s are 

numbered in order of decreasing magnitude, that is,

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |. (4.1)

Let F : Z+ → R+ be a function satisfying F (j) > j for all j. The exact choice of F will 

be made later, and it will depend on ε and m (but not on anything else). Partition the 

set {1, . . . , N} into sets of the form {i : zk ≤ i < zk+1}, where z0 = 1 and for k ≥ 1,

zk = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
k times

(1).

Note that since F (j) > j for all j, zk is a strictly increasing sequence. Also, since

tr(H2) =

N∑

i=1

λ2
i = 2|EN | ≤ N2,

there exists k ≤ 128ε−5 + 1 such that

∑

zk≤i<zk+1

λ2
i ≤ ε5N2

128
.

Consequently, there exists an integer J such that J is bounded by a constant that depends 

only on ε and m, and
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∑

J≤i<F (J)

λ2
i ≤ ε5N2

128
. (4.2)

If λJ 
= 0, then by (4.1), λi 
= 0 for all i < J . If λJ = 0, then again by (4.1), there is 

some J ′ ≤ J such that λi 
= 0 for all i < J ′ and λi = 0 for all i ≥ J ′. Thus, by decreasing 

J if necessary, we can ensure that λi 
= 0 for all i < J . Henceforth, we will assume that 

this holds. Let

H1 =
∑

i<J

λiuiu
T
i , H2 =

∑

J≤i<F (J)

λiuiu
T
i , H3 =

∑

i≥F (J)

λiuiu
T
i .

Then the number of edges EN (A, B) between sets A, B ⊂ [N ] is

EN (A, B) = 1
T
AH11B + 1T

AH21B + 1T
AH31B

where 1A is the vector that has 1 at the coordinates that belong to A and 0 elsewhere. 

For each i < J , define

W
(i)
0 =

{
y ∈ [N ] : |ui(y)| >

√
2J

εN

}
,

where ui(y) denotes the yth coordinate of ui. Then, since ui is a unit vector,

1 =
∑

y∈[N ]

ui(y)2 ≥
∑

y∈W
(i)
0

ui(y)2 ≥ 2J

εN
|W (i)

0 |,

so that |W (i)
0 | ≤ εN/2J . Thus if

W0 :=
⋃

i<J

W
(i)
0 ,

then |W0| ≤ εN/2. Now partition [N ] \ W
(i)
0 as the union of {W

(i)
k : |k| ≤ 32J2/ε2 + 1}, 

where

W
(i)
k =

{
y ∈ [N ] \ W

(i)
0 : ui(y) ∈ ε3/2

16
√

2J3N
(k − 1, k]

}
.

After doing this for i = 1, . . . , J − 1, set

Wk1,...,kJ−1
=

⋂

i<J

W
(i)
ki

.

Note that {Wk1,...,kJ−1
} is a partition of [N ] \ W0. Enumerate the partition sets as 

W1, . . . , Wr. From the definition of the partition, it is clear that
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r ≤
(

64J2

ε2
+ 3

)J

. (4.3)

We will use this bound on r later. Now, since H is the adjacency matrix of a graph 

on N vertices, a standard result from linear algebra implies that |λ1| ≤ N . Thus, for 

x, y ∈ Wk1,...,kJ−1
and w, z ∈ Wk′

1,...,k′

J−1
,

|1T
wH11x − 1T

z H11y| =

∣∣∣∣∣
∑

i<J

λi (ui(w)ui(x) − ui(z)ui(y))

∣∣∣∣∣

≤ |λ1|
∑

i<J

(|(ui(w) − ui(z))ui(x)| + |ui(z)(ui(x) − ui(y))|)

≤ 2N
∑

i<J

√
2J

εN

(
ε3/2

16
√

2J3N

)
≤ ε

8
.

For 1 ≤ i, j ≤ r, define

dij :=
1

|Wi||Wj |
∑

x∈Wi,y∈Wj

1
T
x H11y. (4.4)

Then for any A ⊂ Wi and B ⊂ Wj , the above inequality shows that

∣∣1T
AH11B − dij |A||B|

∣∣ =

∣∣∣∣
∑

w∈A,x∈B

1
T
wH11x − dij |A||B|

∣∣∣∣

=

∣∣∣∣
1

|Wi||Wj |
∑

w∈A,x∈B
z∈Wi,y∈Wj

(1T
wH11x − 1T

z H11y)

∣∣∣∣

≤ 1

|Wi||Wj |
∑

w∈A,x∈B
z∈Wi,y∈Wj

|1T
wH11x − 1T

z H11y|

≤ ε

8
|A|B|. (4.5)

We will use this inequality later. We now claim that each Wj, 0 ≤ j ≤ r, is the pre-image 

of some subset of S under the map f . To see this, first note that if f(x) = f(y), then 

clearly H1x = H1y. In terms of the spectral decomposition, this can be written as

N∑

i=1

λiui(x)ui =

N∑

i=1

λiui(y)ui.

By the linear independence of the ui’s, this shows that for each i, λi = 0 or ui(x) = ui(y). 

But if i < J , then λi 
= 0, and so x and y must belong to the same W
(i)
k . Since this holds 

for all i < J , x and y belong to the same Wj .
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Next, we make the partition equitable by subdividing the Wj ’s. By what we just 

showed, Wj is the union of f−1(x) for some set of x ∈ S. Note that for each x, the 

pre-image |f−1(x)| has size at most P ∗N . Let

m∗ =
m

1 − P ∗m
.

If P ∗ is sufficiently small (depending on m), m∗ is positive. Partition Wj by sorting the 

pre-images into subsets of size as close as possible to εN/2(r + m∗) but no smaller, and 

one remainder set of size less than εN/2(r + m∗). So,

Wj = U
(j)
0 ∪

( ⋃

k≥1

U
(j)
k

)

with

|U (j)
0 | <

εN

2(r + m∗)

and for k ≥ 1,

εN

2(r + m∗)
≤ |U (j)

k | ≤
(

ε

2(r + m∗)
+ P ∗

)
N. (4.6)

The union of the remainder sets is small:

∣∣∣∣
r⋃

j=1

U
(j)
0

∣∣∣∣ ≤ εrN

2(r + m∗)
≤ εN

2
.

Define

U0 = W0 ∪
( r⋃

j=1

U
(j)
0

)

as the exceptional set, and relabel the remaining partition sets {U
(j)
k }k,j as U1, . . . , Uq. 

Then |U0| ≤ εN , and hence by (4.6),

1 − ε

ε/2(r + m∗) + P ∗
≤ q ≤ 2(r + m∗)

ε
. (4.7)

Since r can be bounded by a quantity that depends only on ε and m, we can let M(ε, m)

to be an upper bound, depending only on m and ε, for the quantity 2(r + m∗)/ε. Now 

notice that

1 − ε

ε/2(r + m∗) + P ∗
≥ 1 − ε

ε/2m∗ + P ∗
.
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Using the definition of m∗, we have

1 − ε

ε/2m∗ + P ∗
=

(
1 − ε

ε + (2 − ε)P ∗m

)
2m

Thus, sufficient smallness of P ∗ (depending on m and ε) ensures that q ≥ m.

By construction of U0, . . . , Uq, there is a partition V0, . . . , Vq of S such that Ui =

f−1(Vi) for each i. Note that

P (V0) =
1

N
|U0| ≤ ε,

and for i ≥ 1,

ε

2(r + m∗)
≤ P (Vi) ≤ ε

2(r + m∗)
+ P ∗, (4.8)

which implies, in particular, that |P (Vi) − P (Vj)| ≤ P ∗ for all 1 ≤ i, j ≤ q. This also 

shows that P (Vi) > 0 for all 1 ≤ i ≤ q.

Next, note that by (4.2), tr(H2
2 ) ≤ ε5N2/128. Thus if H2 = [xab]Na,b=1, then

ε5N2

128
≥

N∑

a,b=1

x2
ab. (4.9)

Let Xij =
∑

a∈Ui,b∈Uj
x2

ab, and let

Σ :=

{
(i, j) : Xij >

ε4

64
|Ui||Uj |

}
.

Let ν be the measure on {1, . . . , q}2 such that ν(i, j) = |Ui||Uj | for each i and j. Then

ν (Σ) =
∑

(i,j)∈Σ

|Ui||Uj |

≤ 64

ε4

q∑

i,j=1

Xij =
64

ε4

q∑

i,j=1

∑

a∈Ui,b∈Uj

x2
ab ≤ 64

ε4

N∑

a,b=1

x2
ab.

Thus, by (4.9), ν(Σ) ≤ εN2/2. We can use this to bound |Σ|, as follows. By the inequal-

ities (4.6) and (4.7),

1

|Ui|
≤ 2(r + m∗)

εN

≤ 2(r + m∗)

εN

(
(ε/2(r + m∗) + P ∗)q

1 − ε

)

=

(
ε + 2P ∗(r + m∗)

ε(1 − ε)

)
q

N
.
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Thus,

|Σ| =
∑

(i,j)∈Σ

ν(i, j)

|Ui||Uj |

≤ ν(Σ)

(
ε + 2P ∗(r + m∗)

ε(1 − ε)

)2
q2

N2
≤ ε

2

(
ε + 2P ∗(r + m∗)

ε(1 − ε)

)2

q2.

Recall that r is bounded by a constant that depends only on ε and m, and that ε < 1/4. 

Thus, if P ∗ is sufficiently small (depending on ε and m), this gives

|Σ| ≤ εq2.

Suppose that (i, j) /∈ Σ. Then for Q ⊂ Ui and R ⊂ Uj with |Q| ≥ ε|Ui| and |R| ≥ ε|Uj |, 
the Cauchy–Schwarz inequality and the definition of Σ imply that

|1T
QH21R| ≤

∑

a∈Q,b∈R

|xab|

≤
√

|Q||R|
( ∑

a∈Q,b∈R

x2
ab

)1/2

≤
√

|Q||R|
( ∑

a∈Ui,b∈Uj

x2
ab

)1/2

≤ ε2

8

√
|Q||R||Ui||Uj | ≤ ε

8
|Q||R|. (4.10)

Next, note that for any choice of (i, j) ∈ {1, . . . , q}2, and for any Q ⊂ Ui and R ⊂ Uj ,

1
T
QH31R =

∑

k≥F (J)

λk1
T
QukuT

k 1R.

Since 
∑N

k=1 λ2
k ≤ N2, and the λk are in order of decreasing magnitude, we have

N2 ≥ kλ2
k,

so that |λk| ≤ N/
√

k. Thus,

|1T
QH31R| ≤ N√

F (J)

∑

k≥F (J)

|1T
QukuT

k 1R|

≤ N√
F (J)

‖1Q‖‖1R‖

=
N√
F (J)

√
|Q||R|. (4.11)



16 S. Chatterjee, L. Sloman / Advances in Mathematics 376 (2021) 107417

Now take any 1 ≤ i, j ≤ q. Let k and l be indices such that Ui ⊂ Wk and Uj ⊂ Wl. 

Define δij := dkl, where dkl is the quantity defined in (4.4). Then by (4.5), (4.10) and 

(4.11), we see that if Q ⊂ Ui and R ⊂ Uj , with (i, j) ∈ {1, . . . , q}2 \ Σ, and |Q| ≥ ε|Ui|
and |R| ≥ ε|Uj |, then

|1T
QH1R − δij |Q||R|| ≤ |1T

QH1R − 1T
QH11R| +

ε

8
|Q||R|

≤ |1T
QH21R| + |1T

QH31R| +
ε

8
|Q||R|

≤ ε

4
|Q||R| +

N√
F (J)

√
|Q||R|.

Now take any (i, j) ∈ {1, . . . , q}2 \ Σ, and any A ⊂ Vi and B ⊂ Vj with P (A) ≥ εP (Vi)

and P (B) ≥ εP (Vj). Let Q := f−1(A) and R := f−1(B). Then Q ⊂ Ui, R ⊂ Uj , 

|Q| ≥ ε|Ui| and |R| ≥ ε|Uj |. Also,

1
T
QH1R = N2

P (A)P (B)d(A, B),

and |Q||R| = N2
P (A)P (B). Thus, the above calculations show that

|1T
QH1R − δijN2

P (A)P (B)| = |1T
QH1R − δij |Q||R||

≤ ε

4
|Q||R| +

N√
F (J)

√
|Q||R|

=
ε

4
N2

P (A)P (B) +
N2

√
F (J)

√
P (A)P (B).

Combining the last two displays and dividing throughout by N2
P (A)P (B), we get

|d(A, B) − δij | ≤ ε

4
+

1√
F (J)P (A)P (B)

.

Recalling that P (A) ≥ εP (Vi) and P (B) ≥ εP (Vj), and applying (4.8), we get

1√
P (A)P (B)

≤ 1

ε
√

P (Vi)P (Vj)
≤ 2(r + m∗)

ε2
.

Now suppose F is chosen in such a way that we can guarantee

1√
F (J)

(
2(r + m∗)

ε2

)
≤ ε

4
. (4.12)

Then from the above bounds it will follow that

|d(A, B) − δij | ≤ ε

2
.
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Replacing A be Vi and B by Vj , we also have |d(Vi, Vj) − δij | ≤ ε/2. Thus, we would get

|d(A, B) − d(Vi, Vj)| ≤ ε,

which would complete the proof. So we only have to guarantee (4.12). By the bound on 

r from (4.3), we see that (4.12) holds if

F (J) ≥
(
8(64J2/ε2 + 3)J + 8m/(1 − P ∗m)

)2

ε6
.

Assuming that P ∗ ≤ 1/2m, it is now easy to choose F , depending only on ε and m, 

satisfying the above criterion for every J ∈ Z+. �

In the final step, we now drop the rationality assumption and prove Theorem 4.1.

Proof of Theorem 4.1. Enumerate S = {x1, . . . , xn} and let pi := P (xi). Take any posi-

tive real number ν. Let q1, . . . , qn be positive rational numbers such that pi ≤ qi ≤ pi +ν

for each i. Let ri := qi/ 
∑

qj , so that r1, . . . , rn are again rational, 
∑

ri = 1, and for 

each i,

|pi − ri| ≤ |pi − qi| + |qi − ri|

≤ ν + qi

∣∣∣∣1 − 1∑
qj

∣∣∣∣

≤ ν + (1 + ν)

∑ |qj − pj |∑
qj

≤ ν + (1 + ν)
∑

|qj − pj | ≤ ν + n(1 + ν)ν.

Define the modified weight P (ν)(xi) := ri. Suppose that P ∗ ≤ 1
2p(ε, m), where p(ε, m) is 

the bound on the maximum atom required in Lemma 4.2. Then for sufficiently small ν, 

the above display shows that we can apply Lemma 4.2 to P (ν). Suppose that we get an ε-

regular partition V
(ν)

0 , . . . , V
(ν)

q of S. Now let ν → 0. We get a partition as above for each 

ν. Since the number of possible partitions is finite, there is a subsequence along which the 

partitions stabilize for sufficiently small ν. This allows us to define a limiting partition 

along this subsequence. Since P
(ν)(x) → P (x) for every x (by the above display), is 

straightforward to verify that this limiting partition is ε-regular for P . �

5. Preliminary steps

In this section we begin the steps towards the proof of Theorem 2.4. First, note that by 

rescaling s if necessary, we may assume that b = 1. We will work under this assumption 

for the rest of the paper.
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Right away, we begin by observing that the converse statement in Theorem 5.1 is very 

easy to prove: Take any δ > 0. Suppose that

Tree(S, F , P , s) < δ.

Then there exists a tree T with root r, finite diameter, and set of leaves S, and some 

α ≥ 0, such that (X, Y )r is a measurable random variable and

E|s(X, Y ) − α(X, Y )r| < δ,

where X and Y are i.i.d. draws from P . By Markov’s inequality,

P (|s(X, Y ) − α(X, Y )r| ≥
√

δ) ≤
√

δ.

Therefore if X, Y and Z are i.i.d. draws from P , then with probability at least 1 − 3
√

δ, 

the quantities |s(X, Z) − α(X, Z)r|, |s(Y, Z) − α(Y, Z)r| and |s(X, Y ) − α(X, Y )r| are all 

bounded above by 
√

δ. If this happens, then

min{s(X, Z), s(Y, Z)} − s(X, Y )

≤ min{α(X, Z)r, α(Y, Z)r} − α(X, Y )r + 2
√

δ

= α(min{(X, Z)r, (Y, Z)r} − (X, Y )r) + 2
√

δ.

Now, since (x, y)r is a Gromov product under the graph distance on a tree, it satisfies

(x, y)r ≥ min{(x, z)r, (y, z)r}

for all x, y, z. Thus, we get

min{s(X, Z), s(Y, Z)} − s(X, Y ) ≤ 2
√

δ.

Recall that this happens with probability at least 1 − 3
√

δ. Also, we have assumed that 

b = 1. Thus,

Hyp(S, F , P , s) = E(min{s(X, Z), s(Y, Z)} − s(X, Y ))+

≤ 2
√

δ + 3
√

δ = 5
√

δ.

This proves the converse part of Theorem 2.4.

We now start our journey towards the proof of the main assertion of Theorem 2.4, 

namely, that if Hyp(S, F , P , s) is small, then Tree(S, F , P , s) is also small. We will first 

prove the following weaker theorem. At the very end of the paper, we will complete the 

proof of Theorem 2.4 using this theorem.
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Theorem 5.1. Assume that S is a finite set, F is the power set of S, P is a probability 

measure defined on F , and s : S × S → [0, 1] is a symmetric function. Let P ∗ :=

maxx∈S P (x). Then given any ε > 0, there is some δ > 0 depending only on ε, such that 

if P ∗ < δ and Hyp(S, F , P , s) < δ, then Tree(S, F , P , s) < ε.

From here until the end of the proof of Theorem 5.1, we will work under the assump-

tions stated above. Take any δ > 0 and suppose that

Hyp(S, F , P , s) < δ.

A basic step is to show that for most values of t ∈ [0, 1], the set

Rt := {(x, y, z) : s(x, y) < t ≤ min{s(x, z), s(y, z)}} (5.1)

has small probability. For convenience, let

δ0 := δ1/8.

The above definition of δ0 will be fixed throughout the remainder of the proof.

Lemma 5.2. Let R := {t : P
⊗3(Rt) ≥ δ4

0}. Then L (R) ≤ δ4
0, where L is Lebesgue 

measure.

Proof. Define

R(x, y, z) = {r ∈ [0, 1] : s(x, y) < r ≤ min{s(x, z), s(y, z)}}.

Note that

P
⊗3(Rt) =

∑

x,y,z∈S

P
⊗3(x, y, z)1R(x,y,z)(t).

Thus,

1
ˆ

0

P
⊗3(Rt)dt =

∑

(x,y,z)∈S3

1
ˆ

0

P
⊗3(x, y, z)1R(x,y,z)(t)dt

=
∑

(x,y,z)∈S3

P
⊗3(x, y, z)(min{s(x, z), s(y, z)} − s(x, y))+

= Hyp(S, F , P , s) ≤ δ = δ8
0 .

If L is Lebesgue measure on [0, 1], the definition of R implies that
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1
ˆ

0

P
⊗3(Rt)dt ≥ δ4

0L (R).

The claimed result now follows easily by combining the two displays. �

Let us now fix some ε ∈ (0, 1) and m ≥ 2. This ε and m will remain fixed throughout 

the rest of the proof. At various steps, we will need to assume that ε is smaller than 

some universal constant (such as ε < 1/9) or m is bigger than some universal constant 

(such as m ≥ 20), and we will make these assumptions without explicitly stating so.

Having chosen ε and m, define

κ := max{ε1/24, m−1/2}. (5.2)

Assume that δ0 < κ/2. Let N be the largest integer such that Nκ < 1. Note that 

N ≤ 1/κ ≤ 1/δ0. In particular, N is bounded by a constant that depends only on ε and 

m. We will use this information later. By Lemma 5.2, any subinterval of [0, 1] of length 

≥ δ0 intersects Rc. Thus, we can find a sequence 0 < t1 < t2 < · · · < tN < 1 such that 

for each i, ti ∈ Rc and

|ti − iκ| ≤ δ0. (5.3)

For y, z ∈ S and i ∈ {1, . . . , N}, define three sets:

R
1(y, z) :=

N⋃

i=1

{x ∈ S : s(x, y) < ti ≤ min{s(x, z), s(y, z)}},

R
2(z) :=

N⋃

i=1

{(x, y) ∈ S2 : s(x, y) < ti ≤ min{s(x, z), s(y, z)},

B(z) := {y ∈ S : P (R1(y, z)) > δ0}.

Finally, let

A := {z : P (B(z)) > δ0}.

We now prove two lemmas that will be used several times in the sequel.

Lemma 5.3. Let A be the set defined above. Then P (A) ≤ δ0.

Proof. By the choice of ti, P
⊗3(Rti

) ≤ δ4
0 for every i. Since N ≤ 1/δ0, this gives

P
⊗3

( N⋃

i=1

Rti

)
≤ δ3

0 .
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Thus

δ3
0 ≥

∑

z∈A

P (z)P ⊗2((x, y) : (x, y, z) ∈ Rti
for some i)

≥
∑

z∈A

P (z)

( ∑

y∈B(z)

P (y)P (R1(y, z))

)

≥
∑

z∈A

P (z)P (B(z))δ0 ≥ P (A)δ2
0 ,

which gives P (A) ≤ δ0. �

Lemma 5.4. If z /∈ A, then P ⊗2(R2(z)) ≤ 2δ0.

Proof. By the definition of B(z),

P
⊗2(R2(z)) =

∑

y∈B(z)

P (y)P (R1(y, z)) +
∑

y /∈B(z)

P (y)P (R1(y, z))

≤ P (B(z)) + δ0.

On the other hand, since z /∈ A, P (B(z)) ≤ δ0. This completes the proof. �

6. Formation of approximate cliques

In this section we carry out the main step in the proof of Theorem 5.1. We continue 

with the notations introduced in the previous section. In particular, P ∗, δ0, R, Rt, 

R
1(y, z), R2(z), B(z), A, ε, m, κ, N and t1, . . . , tN remain the same as before.

Take any nonempty set S′ ⊂ S \ A. Take any t ∈ {t1, . . . , tN }, and put an edge 

between x, y ∈ S′ if and only if s(x, y) ≥ t. Let E denote this set of edges, and let G be 

the graph (S′, E). Let us continue to denote the restriction of P to S′ by P . Note that 

this restriction is a measure on S′, but not necessarily a probability measure.

Let p(ε, m) and M(ε, m) be as in Theorem 4.1. Throughout this section, we will assume 

that P (S′) is sufficiently large in comparison to P ∗ so that

P ∗ ≤ min

{
p(ε, m),

1

4M(ε, m)

}
P (S′). (6.1)

A first consequence of this assumption is that we can apply Theorem 4.1 to get a partition 

V0, . . . , Vq of S′ with the required properties. For B′, B ⊂ S′, let

ρ(B′, B) := P
⊗2((x, y) ∈ E : x ∈ B′, y ∈ B),

so that in the notation of Theorem 4.1,
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d(B′, B) =
ρ(B′, B)

P (B)P (B′)
.

We will fix all of the above throughout the rest of this section. The main result of the 

section is that G can be slightly modified to make it a disjoint union of cliques. We 

arrive at this result in several steps. First, we show that P (Vi) is appropriately close to 

P (S′)/q.

Lemma 6.1. For each 1 ≤ i ≤ q,

∣∣∣∣P (Vi) − P (S′)

q

∣∣∣∣ ≤ P (S′)

2q
.

In particular, P (Vi) ≥ C(ε, m)P (S′), where C(ε, m) is a positive real number that depends 

only on ε and m.

Proof. By construction, |P (Vi) −P (Vj)| ≤ P ∗ for all 1 ≤ i, j ≤ q. Thus, for any 1 ≤ i ≤ q,

P (Vi) ≥ 1

q

q∑

j=1

(P (Vj) − P ∗)

=
P (S′) − P (V0)

q
− P ∗ ≥ (1 − ε)P (S′)

q
− P ∗

≥
(

1 − ε

q
− 1

4M(ε, m)

)
P (S′),

where the last inequality follows from (6.1). Similarly,

P (Vi) ≤ 1

q

q∑

j=1

(P (Vj) + P ∗) ≤ P (S′)

q
+ P ∗

≤
(

1

q
+

1

4M(ε, m)

)
P (S′).

Assume that ε < 1/4 (which we can, by our stated convention that ε can be taken to be 

less than any universal constant). Since q ≤ M(ε, m), this completes the proof. �

Next, we prove two key lemmas. The first one shows that for any regular pair (Vi, Vj), 

d(Vi, Vj) is either close to zero or close to one.

Lemma 6.2. There exists a number δ∗ depending only on ε, m and P (S′), such that if 

δ0 ≤ δ∗, then the following holds. If (Vi, Vj) is an ε-regular pair, and d(Vi, Vj) ≥ 3ε, then 

d(Vi, Vj) ≥ 1 − 2ε.
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Vi Vj

x0 y0

b a

Ni(y0) Nj(x0)

Fig. 3. Proof sketch for Lemma 6.2. The solid lines are edges that are known to be present. The dashed lines 
are edges that are likely to be present, due to small average hyperbolicity.

The plan of the proof is roughly as follows (see Fig. 3 for a schematic representation). 

We will first find some x0 ∈ Vi that connects to a substantial fraction of points in Vj, 

where “substantial” means a set of P -measure greater than CεP (Vj) for some universal 

constant C. Call this set Nj(x0). By regularity, the edge density between Nj(x0) and Vi

will be substantial. This will allow us to find y0 ∈ Nj(x0) which connects to a substantial 

fraction of points in Vi. Call this set Ni(y0). Now take any b ∈ Ni(y0) and a ∈ Nj(x0). 

Since x0 is a neighbor of y0 and x0 is also a neighbor of a, the small hyperbolicity of S will 

allow us to conclude that it is highly likely that a is a neighbor of y0. But if that happens, 

then since b is a neighbor of y0 and a is also a neighbor of y0, it is highly likely that 

b is a neighbor of a. From this, we will conclude that the edge density between Nj(x0)

and Ni(y0) is close to 1. Since these sets have substantial size, regularity of (Vi, Vj) will 

imply that d(Vi, Vj) is close to 1.

Proof of Lemma 6.2. Throughout this proof, C(ε, m) denotes any positive real number 

that depends only on ε and m. The value of C(ε, m) may change from line to line. For 

x ∈ S′, let N(x) denote the neighborhood of x in G. Let Nk(x) := N(x) ∩ Vk for each 

k. Let Vi and Vj be as in the statement of the lemma. Since d(Vi, Vj) ≥ 3ε, we have 

ρ(Vi, Vj) ≥ 3εP (Vi)P (Vj), and so there is some x0 ∈ Vi for which

P (Nj(x0)) ≥ 3εP (Vj). (6.2)

By ε-regularity,

d(Vi, Nj(x0)) ≥ d(Vi, Vj) − ε ≥ 2ε,

and therefore
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ρ(Vi, Nj(x0)) ≥ 2εP (Vi)P (Nj(x0)). (6.3)

Now notice that

ρ(Vi, Nj(x0)) = ρ(Vi, Nj(x0) ∩ B(x0)) + ρ(Vi, Nj(x0) ∩ B(x0)c)

≤ ρ(Vi, B(x0)) + ρ(Vi, Nj(x0) ∩ B(x0)c)

≤ P (Vi)P (B(x0)) + ρ(Vi, Nj(x0) ∩ B(x0)c).

Since x0 /∈ A, P (B(x0)) ≤ δ0. Thus

ρ(Vi, Nj(x0)) ≤
(

δ0

P (Nj(x0))

)
P (Vi)P (Nj(x0))

+ ρ(Vi, Nj(x0) ∩ B(x0)c),

so that by (6.3),

(
2ε − δ0

P (Nj(x0))

)
P (Vi)P (Nj(x0)) ≤ ρ(Vi, Nj(x0) ∩ B(x0)c). (6.4)

By Lemma 6.1 and the inequality (6.2),

P (Nj(x0)) ≥ 3εP (Vj) ≥ C(ε, m)P (S′).

Combining this with (6.4), we get

(
2ε − δ0

C(ε, m)P (S′)

)
P (Vi)P (Nj(x0)) ≤ ρ(Vi, Nj(x0) ∩ B(x0)c).

If δ0 is sufficiently small (depending on ε, m and P (S′)), the quantity in brackets on the 

left is bounded below by ε, and so there is y0 ∈ Nj(x0) ∩ B(x0)c such that

P (Ni(y0)) ≥ εP (Vi). (6.5)

Recalling (6.2), we see that by ε-regularity,

d(Vi, Vj) ≥ d(Nj(x0), Ni(y0)) − ε. (6.6)

The quantity d(Nj(x0), Ni(y0)) can be bounded from below as follows:

d(Nj(x0), Ni(y0)) =
P

⊗2((a, b) ∈ Nj(x0) × Ni(y0) : s(a, b) ≥ t)

P (Nj(x0))P (Ni(y0))

≥ P
⊗2((a, b) ∈ Nj(x0) × Ni(y0) : s(a, b), s(a, y0) ≥ t)

P (Nj(x0))P (Ni(y0))
.
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We wish to show that the right side is close to 1. For that purpose, we write the right 

side as (1 − (i))(1 − (ii)), where

(i) := 1 − P
⊗2((a, b) ∈ Nj(x0) × Ni(y0) : s(a, b), s(a, y0) ≥ t)

P (a ∈ Nj(x0) : s(a, y0) ≥ t)P (Ni(y0))

=
P

⊗2((a, b) ∈ Nj(x0) × Ni(y0) : s(a, b) < t ≤ s(a, y0))

P (a ∈ Nj(x0) : s(a, y0) ≥ t)P (Ni(y0))

and

(ii) := 1 − P (a ∈ Nj(x0) : s(a, y0) ≥ t)

P (Nj(x0))

=
P (a ∈ Nj(x0) : s(a, y0) < t)

P (Nj(x0))
.

We will now show that (i) and (ii) are small. (To understand heuristically why they 

should be small, recall Fig. 3.) Recalling the definition of R2(y0), we see that

R
2(y0) ⊃ {(a, b) ∈ Nj(x0) × Ni(y0) : s(a, b) < t ≤ min{s(a, y0), s(b, y0)}}.

But if b ∈ Ni(y0), then b is a neighbor of y0 in G and so s(b, y0) ≥ t. Thus the above 

display can be simplified to

R
2(y0) ⊃ {(a, b) ∈ Nj(x0) × Ni(y0) : s(a, b) < t ≤ s(a, y0)}.

Moreover, recalling that y0 ∈ Nj(x0), so that s(x0, y0) ≥ t, and recalling the definition 

of R1(y, z), it is easy to see that

P (a ∈ Nj(x0) : s(a, y0) < t)

≤ P (a : s(a, y0) < t ≤ min{s(a, x0), s(x0, y0)})

≤ P (R1(y0, x0)). (6.7)

Thus,

P (a ∈ Nj(x0) : s(a, y0) ≥ t) ≥ P (Nj(x0)) − P (R1(y0, x0)).

By (6.2) and (6.5), P (Nj(x0)) and P (Ni(y0)) are both bounded below by C(ε, m)P (S′). 

Since y0 /∈ A, Lemma 5.4 gives

P
⊗2(R2(y0)) ≤ 2δ0.

On the other hand, since y0 /∈ B(x0),
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P (R1(y0, x0)) ≤ δ0.

Combining all of the above observations, we get

(i) ≤ P
⊗2(R2(y0))

(P (Nj(x0)) − P (R1(y0, x0))) P (Ni(y0))

≤ 2δ0

(C(ε, m)P (S′) − δ0)C(ε, m)P (S′)
.

If δ0 is small enough (depending on ε, m and P (S′)), the above quantity is smaller than 

ε/2. For (ii), we re-use (6.7) to get

(ii) ≤ P (R1(y0, x0))

P (Nj(x0))
≤ δ0

C(ε, m)P (S′)
.

Again, this is smaller than ε/2 if δ0 is small enough. Thus,

d(Nj(x0), Ni(y0)) ≥ 1 − (i) − (ii) ≥ 1 − ε,

and hence by (6.6), d(Vi, Vj) ≥ 1 − 2ε. �

Our second key lemma shows that the property of high density between regular pairs 

has a certain transitivity property.

Lemma 6.3. There exists a number δ∗ depending only on ε, m and P (S′), such that if 

δ0 ≤ δ∗, then the following holds. Suppose that (Va, Vb) is an ε-regular pair. Suppose that 

i0, i1, . . . , ik are distinct elements of {1, . . . , q} such that i0 = a, ik = b, d(Vij
, Vij+1

) ≥
1 − 2ε for each 0 ≤ j ≤ k − 1, and 2 ≤ k ≤ ε−1/2. Then d(Va, Vb) ≥ 1 − 2ε.

The proof of this lemma is intuitively quite simple, given that we already have 

Lemma 6.2. The small hyperbolicity ensures that if we have a path in G that is not 

too long, then it is likely that the beginning and ending points of the path are connected 

by an edge. This allows us to conclude that d(Va, Vb) is close to 1, as long as k is not too 

large. In particular, d(Va, Vb) ≥ 3ε. But then Lemma 6.2 implies that d(Va, Vb) ≥ 1 − 2ε.

Proof of Lemma 6.3. Take any sequence of points xj ∈ Vij
, 0 ≤ j ≤ k, such that for each 

0 ≤ j ≤ k − 1, s(xj , xj+1) ≥ t, and s(x0, xk) < t. Let L be the set of all such sequences 

(L is allowed to be empty). Since s(x0, xk) < t, then there is a minimum j such that 

s(x0, xj) < t. But s(x0, x1) ≥ t. Thus, j ≥ 2, and hence s(x0, xj−1) ≥ t. But we also 

know that s(xj−1, xj) ≥ t. Therefore, (x0, xj , xj−1) ∈ Rt, where Rt is the set defined in 

(5.1). Since t /∈ R and k ≤ ε−1/2, this implies that
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∑

(x0,...,xk)∈L

P (x0) · · · P (xk) ≤
k∑

j=2

∑

x0,...,xk∈S,
(x0,xj ,xj−1)∈Rt

P (x0) · · · P (xk)

≤ kP (Rt) ≤ δ4
0√
ε
. (6.8)

On the other hand, let B := Vi0
× · · · × Vik

. Then

∑

(x0,...,xk)∈B\L

P (x0) · · · P (xk)

≤
k−1∑

j=0

∑

(x0,...,xk)∈B
s(xj ,xj+1)<t

P (x0) · · · P (xk) +
∑

(x0,...,xk)∈B
s(x0,xk)≥t

P (x0) · · · P (xk)

= P (Vi0
) · · · P (Vik

)

(k−1∑

j=0

(1 − d(Vij
, Vij+1

)) + d(Va, Vb)

)

≤ P (Vi0
) · · · P (Vik

)(2kε + d(Va, Vb))

≤ P (Vi0
) · · · P (Vik

)(2
√

ε + d(Va, Vb)).

But by (6.8),

∑

(x0,...,xk)∈B\L

P (x0) · · · P (xk)

=
∑

(x0,...,xk)∈B

P (x0) · · · P (xk) −
∑

(x0,...,xk)∈L

P (x0) · · · P (xk)

≥ P (Vi0
) · · · P (Vik

) − δ4
0√
ε
.

Combining the last two displays, we get

d(Va, Vb) ≥ 1 − δ4
0√

εP (Vi0
) · · · P (Vik

)
− 2

√
ε.

By Lemma 6.1, this shows that if δ0 is sufficiently small (depending on ε, m and P (S′)), 

then

d(Va, Vb) ≥ 1 − 3
√

ε.

But then by Lemma 6.2 (assuming that ε is sufficiently small), this gives d(Va, Vb) ≥
1 − 2ε. �
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We now begin the main quest of this section, namely, to show that a small fraction of 

the edges of G can be modified to transform it into a disjoint union of cliques. Throughout 

the rest of this section, we will assume that:

δ0 is so small, depending on ε, m and P (S′), that the

conclusions of Lemma 6.2 and Lemma 6.3 hold. (6.9)

First, we define a graph structure on {V1, . . . , Vq}. We will say that there is an edge 

between Vi and Vj if (Vi, Vj) is ε-regular and d(Vi, Vj) ≥ 1 − 2ε. In this case we will say 

that Vi and Vj are neighbors. A subset N of {V1, . . . , Vq} will be called a “neighborhood” 

if there is some Vi ∈ N such that all other elements of N are neighbors of Vi. In this 

case we will say that N is a neighborhood of Vi. Note that N need not contain all the 

neighbors of Vi. Let N be a maximal collection of disjoint neighborhoods such that each 

neighborhood has size ≥ ε1/4q. Note that N is allowed to be empty, in case there is no 

neighborhood of size ≥ ε1/4q.

Lemma 6.4. For any distinct N1, N2 ∈ N, there is some Vi ∈ N1 and Vj ∈ N2 such that 

(Vi, Vj) is an ε-regular pair.

Proof. Since |N1| and |N2| are both ≥ ε1/4q, there are at least ε1/2q2 pairs (Va, Vb) such 

that Va ∈ N1 and Vb ∈ N2. Since the number of irregular pairs is at most εq2, this shows 

that at least one of the above pairs must be ε-regular. �

Now define a graph structure on N as follows. Say that two neighborhoods N1, N2 ∈ N

are connected by an edge if there exist Vi ∈ N1 and Vj ∈ N2 such that Vi and Vj are 

neighbors (in the sense defined above).

Lemma 6.5. Under the graph structure defined above, N is a disjoint union of cliques.

Proof. For distinct N1, N2, N3 ∈ N, we have to show that if N1 is a neighbor of N2, and 

N3 is a neighbor of N2, then N3 is a neighbor of N1. This will imply that N is a disjoint 

union of cliques.

Accordingly, let Vi ∈ N1 and Vj ∈ N2 be neighbors, and let Vk ∈ N2 and Vl ∈ N3

be neighbors. By Lemma 6.4, there is an ε-regular pair (Va, Vb) such that Va ∈ N1 and 

Vb ∈ N3. Suppose that Ni is a neighborhood of Vti
, for i = 1, 2, 3. Then the sequence 

Va, Vt1
, Vi, Vj , Vt2

, Vk, Vl, Vt3
, Vb is a path in the graph defined on {V1, . . . , Vq} (see Fig. 4). 

Since (Va, Vb) is ε-regular, Lemma 6.3 implies that d(Va, Vb) ≥ 1 − 2ε. In other words, Va

and Vb are neighbors. Thus, N1 is a neighbor of N3. �

Take each clique in N, and take the union of its elements. This yields a new collection 

C of disjoint subsets of {V1, . . . , Vq}.
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Vt1
Vt2

Vt3

Vi Vj

VlVk

Va Vb

N1 N2 N3

Fig. 4. Illustration of the proof of Lemma 6.5. The solid lines are known to be edges in the graph defined on 
{V1, . . . , Vq}. We deduce that the dashed line is also an edge, by invoking Lemma 6.3.

Lemma 6.6. We have |C| ≤ ε−1/4.

Proof. Simply note that each C ∈ C has size at least ε1/4q, these sets are disjoint, and 

their union is a subset of {V1, . . . , Vq}. Thus, |C|ε1/4q ≤ q. �

Lemma 6.7. If Vi ∈ C1 and Vj ∈ C2 for two distinct elements C1 and C2 of C, then Vi

and Vj are not neighbors. On the other hand, if Vi, Vj ∈ C for some C ∈ C, then either 

(Vi, Vj) is an irregular pair, or Vi and Vj are neighbors. Moreover, in this case even if 

(Vi, Vj) is irregular, there is a path with ≤ 6 vertices joining Vi and Vj.

Proof. If Vi ∈ C1 and Vj ∈ C2 for two distinct elements C1 and C2 of C, it follows directly 

from the definition of C that Vi and Vj cannot be neighbors. Next, suppose that Vi, Vj ∈ C
for some C ∈ C, and (Vi, Vj) is ε-regular. Then either Vi, Vj ∈ N for some N ∈ N, or 

Vi ∈ N1 and Vj ∈ N2 for some N1, N2 ∈ N that are neighbors. In the first case, suppose 

that N is a neighborhood of some Va. Then Vi, Va, Vj is a path, and hence by Lemma 6.3, 

Vi is a neighbor of Vj. In the second case, suppose that N1 is a neighborhood of Va and N2

is a neighborhood of Vb. Since N1 and N2 are neighbors, there exist Vk ∈ N1 and Vl ∈ N2

which are neighbors. Then Vi, Va, Vk, Vl, Vb, Vj is a path, and hence by Lemma 6.3, Vi

and Vj are neighbors. This argument also establishes that even if (Vi, Vj) is an irregular 

pair, we can find a path with ≤ 6 vertices joining Vi and Vj . �

Next, let D be the set of all Vi that are not elements of any C ∈ C.

Lemma 6.8. For any Vi ∈ D, there are less than ε1/4q many Vj ∈ D that are neighbors 

of Vi.
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· · · CkC2C1 D′

C′

kC′

2C′

1

Fig. 5. Schematic picture of the components of C′ (where k is the number of components) and the remainder 
set D′. The union of the light gray regions is D.

Proof. Suppose that there is some Vi ∈ D that has ≥ ε1/4q neighbors in D. Then there 

is a neighborhood N ⊂ D of size ≥ ε1/4q. But this neighborhood is disjoint from all the 

neighborhoods in N. This contradicts the maximality of N. �

Lemma 6.9. Suppose that Vi ∈ D and C ∈ C are such that Vi has at least ε1/3q neighbors 

in C. Then Vi has less than ε1/3q neighbors in the union of all members of C other 

than C.

Proof. Let S1 be the set of all neighbors of Vi in C, and let S2 be the set of all neighbors 

of Vi in the union of all elements of C other than C. By assumption, |S1| ≥ ε1/3q. If 

also |S2| ≥ ε1/3q, then there are ≥ ε2/3q2 pairs (Vj , Vk) such that Vj ∈ S1 and Vk ∈ S2. 

Therefore at least one such pair (Vj , Vk) must be ε-regular. Since Vj , Vi, Vk is a path, 

Lemma 6.3 shows that Vj and Vk are neighbors. But this contradicts the first assertion 

of Lemma 6.7. �

For each C ∈ C, let C′ be the superset of C consisting of all elements of C and all 

elements of D that have ≥ ε1/3q neighbors in C. Let C′ be the set of all such C′. Lemma 6.9

shows for any Vi ∈ D, there can be at most one C ∈ C such that Vi has ≥ ε1/3q neighbors 

in C. Thus, the elements of C′ are disjoint. Let D′ be the set of all elements of D that do 

not belong to any C′. A schematic picture depicting C′ and D′ is given in Fig. 5.

Lemma 6.10. For any C ∈ C, the set C′ has the property that any two distinct elements 

of C′ are either neighbors, or an irregular pair.

Proof. Take any distinct Vi, Vj ∈ C′ such that (Vi, Vj) is an ε-regular pair. If they are 

both in C, then the assertion is proved by Lemma 6.7.

If Vi ∈ C and Vj ∈ D, then Vj has a neighbor Vk ∈ C. By Lemma 6.7, there is a path 

with ≤ 6 vertices joining Vk and Vi. Since Vj and Vk are neighbors, we can concatenate Vj

at the beginning of this path to get a path with ≤ 7 vertices joining Vj and Vi. Therefore 

by Lemma 6.3, Vj and Vi are neighbors.
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Lastly, if Vi and Vj are both in D, then they have neighbors Vk and Vl in C. By 

Lemma 6.7, there is a path with ≤ 6 vertices joining Vk and Vl. Since Vi and Vk are 

neighbors, and Vj and Vl are neighbors, we can concatenate Vi at the beginning of the 

path and Vj to the end of the path to get a path with ≤ 8 vertices joining Vi and Vj . 

Therefore by Lemma 6.3, Vi and Vj are neighbors. �

Call a pair (Vi, Vj) “bad” if Vi and Vj are neighbors, but they belong to distinct 

elements of C′.

Lemma 6.11. The number of bad pairs is at most 3ε1/12q2.

Proof. Let (Vi, Vj) be a bad pair. We consider several cases. First, by Lemma 6.7, it 

cannot be that both Vi and Vj are in the complement of D.

Next, suppose that Vi ∈ D and Vj /∈ D. Then Vi ∈ C′
1 for some C1 ∈ C and Vj ∈ C2

for some C2 
= C1. By Lemma 6.9, there are less than ε1/3q neighbors of Vi in C2. By 

Lemma 6.6, there are at most ε−1/4 choices of C2. Thus, there are at most ε−1/4ε1/3q =

ε1/12q choices of Vj for this Vi, and therefore at most ε1/12q2 choices of (Vi, Vj) of this 

type.

Finally, suppose that both Vi, Vj ∈ D. Then by Lemma 6.8, there are less than ε1/4q

choices of Vj for each Vi. Thus, there are at most ε1/4q2 pairs of this type. �

Lemma 6.12. Any element of D′ has at most 2ε1/12q neighbors among {V1, . . . , Vq}.

Proof. Take any Vi ∈ D′ and any neighbor Vj of Vi. Then by Lemma 6.8, there are less 

than ε1/4q choices of Vj ∈ D. On the other hand, by definition of D′, Vi has less than 

ε1/3q neighbors in each C ∈ C. Thus, by Lemma 6.6, there are at most ε1/12q choices of 

such Vj . Since any neighbor of Vi is either in D or in C for some C ∈ C, this completes 

the proof. �

We finally arrive at the main result of this section, which says that the graph G can 

be modified into a disjoint union of cliques by adding and deleting a set of edges that 

has small P ⊗2-measure.

Lemma 6.13. Under the assumptions (6.1) and (6.9), the graph G can be modified into 

a disjoint union of cliques by adding and deleting edges in such a way that if ∆E is the 

set of all edges that were added or deleted, then

P
⊗2(∆E) ≤ C(ε1/12 + m−1)P (S′)2, (6.10)

where C is a universal constant. Moreover, any non-singleton clique B in the resulting 

graph has

P (B) ≥ 1

2
ε1/4

P (S′). (6.11)



32 S. Chatterjee, L. Sloman / Advances in Mathematics 376 (2021) 107417

Proof. Edges are added and deleted in several steps. First, delete all edges with at least 

one endpoint in V0. Let ∆E1 be the set of deleted edges. Then clearly

P
⊗2(∆E1) ≤ 2P (V0)P (S′) ≤ 2εP (S′)2.

Next, add all edges between vertices within the same Vi, 1 ≤ i ≤ q. Let ∆E2 be the set 

of all edges added in this step. Then by Lemma 6.1,

P
⊗2(∆E2) ≤

q∑

i=1

P (Vi)
2 ≤ q

9P (S′)2

4q2

=
9P (S′)2

4q
≤ 9P (S′)2

4m
.

In the next step, add all missing edges between any Vi and Vj that are members of the 

same C′ ∈ C
′. By Lemma 6.10, such pairs are either irregular, or they are neighbors of 

each other. In the latter case, the total mass of the missing edges is at most 2εP (Vi)P (Vj). 

Thus, if ∆E3 is the set of edges added in this step, then by Lemma 6.1,

P
⊗2(∆E3) ≤ (εq2 + 2εq2)

9P (S′)2

4q2
≤ 7εP (S′)2.

Next, delete all edges between any Vi ∈ C′
1 and Vj ∈ C′

2 where C′
1 
= C′

2. Then (Vi, Vj) is 

either an irregular pair, or (Vi, Vj) is regular but Vi and Vj are not neighbors, or (Vi, Vj)

is a bad pair. Thus, if ∆E4 is the set of edges added in this step, then by Lemma 6.2, 

Lemma 6.11 and Lemma 6.1,

P
⊗2(∆E4) ≤ (εq2 + 3εq2 + 3ε1/12q2)

9P (S′)2

4q2

≤ 16ε1/12
P (S′)2.

Finally, delete all edges with at least one vertex in some Vi ∈ D′. Let ∆E5 be the set 

of deleted edges. Given Vi ∈ D′ and any Vj , by Lemma 6.12 there are at most 2ε1/12q

choices of Vj such that Vj is a neighbor of Vi. The other possibilities are that (Vi, Vj)

is an irregular pair, or (Vi, Vj) is regular but Vj is not a neighbor of Vi, or Vj = Vi. 

Therefore by Lemma 6.2 and Lemma 6.1,

P
⊗2(∆E5) ≤ (εq2 + 3εq2 + 2ε1/12q2 + q)

9P (S′)2

4q2

≤ (14ε1/12 + 3m−1)P (S′)2.

This completes the process of adding and deleting edges. If ∆E is the set of all edges 

that were either added or deleted, then the above estimates show that (6.10) holds.
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Let us now verify that the resulting graph is a disjoint union of cliques. For each 

C′ ∈ C
′, let V (C′) be the union of all V ∈ C′. In the new graph, each V (C′) is a clique, 

and there are no edges between two such cliques. Moreover, any vertex that belongs to 

some Vi ∈ D′ has no edges incident to it in the new graph. Thus, the new graph is the 

disjoint union of the above cliques and a bunch of singleton vertices that are disconnected 

from all else. This also shows that any non-singleton clique in the new graph must be 

one of the V (C′)’s. But for any C′ ∈ C
′, Lemma 6.1 gives

P (V (C′)) =
∑

V ∈C′

P (V )

≥ |C′|P (S′)

2q
≥ |C|P (S′)

2q
≥ ε1/4q

P (S′)

2q
=

1

2
ε1/4

P (S′).

This completes the proof. �

7. Constructing the tree

Let P ∗, δ0, A, ε, m, κ, N and t1, . . . , tN remain as defined in Section 5. We will 

now repeatedly apply Lemma 6.13 to extract from S a nested hierarchy of subsets with 

desirable properties. The subsets will be constructed in such a way that each subset is 

either a singleton, or has P -measure uniformly bounded below by a positive constant 

that depends only on ε and m. Any such constant will henceforth be denoted by C(ε, m). 

This will allow us to apply Lemma 6.13 to partition such a non-singleton subset if P ∗ and 

δ0 are small enough, depending only on ε and m. We will keep dividing the non-singleton 

subsets until we are left with only singletons.

Henceforth, whenever we say “δ0 and P ∗ are small enough”, we will mean “δ0 and P ∗

are smaller than constants depending only on ε and m”.

Let S′ = S \ A. By Lemma 5.3, P (S′) ≥ 1/2 if δ0 is small enough. Define a graph 

on S′ as in the beginning of Section 6, using t = t1, and obtain a partition of S′ using 

Lemma 6.13. Obtain a partition of S by taking this partition of S′ and appending to it 

singleton sets consisting of the elements of A. Let V1 denote this partition. By (6.11), 

any non-singleton element V ∈ V1 does not intersect A and satisfies P (V ) ≥ C(ε, m). 

Thus we can apply Lemma 6.13 to any such V with t = t2, if δ0 and P ∗ are small enough. 

In this manner, we obtain a collection V2 of disjoint sets, each of which is a subset of 

some non-singleton element of V1. Then we partition each non-singleton element of V2 by 

applying the procedure of Section 6 with t = t3 to obtain V3, and continue this recursive 

partitioning until we arrive at VN . This is possible since N ≤ C(ε, m), which, by (6.11), 

ensures that the conditions (6.1) and (6.9) are never violated if δ0 and P ∗ are small 

enough.

Having defined V1, . . . , VN , define VN+1 to be the set of all singleton sets {x} such 

that x belongs to some non-singleton member of VN . Note, in particular, that we are 

not applying Lemma 6.13 while partitioning the elements of VN into singletons. Lastly, 

define V0 := {S}.
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Let T be the set of all pairs (i, V ) where 0 ≤ i ≤ N +1 and V ∈ Vi. This is sort of like 

the union of the Vi’s, except that we pair each element V with the corresponding i to 

deal with the problem of the same V appearing in two different Vi’s (which can happen 

if some V is partitioned into just one set in some step). For simplicity, we will refer to 

the element (i, V ) ∈ T as just V .

We will now define a tree structure on T . Note that by construction, if an element 

V ∈ T belongs to some Vi, i ≥ 1, then it has a uniquely defined parent U ∈ Vi−1. Putting 

edges between such parent-child pairs creates a graph which is obviously a tree. Also, it 

is clear that the set of leaves of this tree can be identified with S. Define r := (0, S) to 

be the root of T .

For each non-singleton node V ∈ Vi for 1 ≤ i ≤ N − 1, let ∆E(V ) be the set of edges 

of V that need to be modified while applying Lemma 6.13 to convert V into a disjoint 

union of cliques. If V is a singleton set, let ∆E(V ) be empty. Let ∆E(S′) be the set of 

edges that need to be modified while applying Lemma 6.13 to S′. Lastly, let ∆E(A) be 

the set of all pairs (x, y) with at least one of x and y in A. Let ∆E be the union of all 

these sets.

We prove three lemmas in this section. In all of these, we assume that P ∗ and δ0 are 

sufficiently small, depending on ε and m, so that Lemma 6.13 can be applied. We will 

view the elements of S as the leaves of T , and for any x, y ∈ S, we will denote by (x, y)r

the Gromov product of x and y under the graph distance on T , with respect to the base 

point r.

Lemma 7.1. For the set ∆E defined above, we have

P
⊗2(∆E) ≤ Cε1/24 + Cm−1/2 + 2δ0,

where C is a universal constant.

Proof. Note that by Lemma 6.13 and Lemma 5.3,

P
⊗2(∆E) ≤ P

⊗2(∆E(S′)) +
N−1∑

i=1

∑

V ∈Vi

P
⊗2(∆E(V )) + 2P (A)

≤ C(ε1/12 + m−1)

(
P (S′)2 +

N−1∑

i=1

∑

V ∈Vi

P (V )2

)
+ 2δ0.

Since each Vi is a partition of a subset of S,

∑

V ∈Vi

P (V )2 ≤
∑

V ∈Vi

P (V ) ≤ P (S) = 1.

Therefore, since Nκ < 1 by the definition of N , we get
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P
⊗2(∆E) ≤ C(ε1/12 + m−1)N + 2δ0

≤ C(ε1/12 + m−1)κ−1 + 2δ0.

By the definition (5.2) of κ, this gives the desired result. �

Lemma 7.2. For any (x, y) /∈ ∆E such that x 
= y,

s(x, y) ≤ ((x, y)r + 1)κ + δ0.

Proof. Let i := (x, y)r, so that i is the largest integer such that x and y both belong 

to the same member of Vi. First, suppose that 1 ≤ i ≤ N − 1 and s(x, y) ≥ ti+1. Let 

V be the element of Vi that contains x and y. Then while applying Lemma 6.13 to V , 

there is an edge between x and y in the original graph, but that edge is deleted in the 

modification. Thus, (x, y) ∈ ∆E(V ) ⊂ ∆E, which is not true by assumption. Therefore 

s(x, y) must be less than ti+1.

If i = 0, then also the above deduction holds: If s(x, y) ≥ t1 and x and y are both in 

S′, then by the same logic as above we conclude that (x, y) ∈ ∆E. On the other hand, 

if s(x, y) ≥ t1 and at least one of x and y is outside S′, then (x, y) ∈ ∆E(A) ⊂ ∆E.

Combining the above observations, and recalling the bound (5.3), we get that if 0 ≤
i ≤ N − 1, then

s(x, y) < ti+1 ≤ (i + 1)κ + δ0

= ((x, y)r + 1)κ + δ0.

If i = N , then note that since (N + 1)κ ≥ 1 (by the definition of N),

s(x, y) ≤ 1 ≤ (N + 1)κ = ((x, y)r + 1)κ.

Finally, note that since x 
= y, we cannot have i = N + 1. �

Lemma 7.3. For any (x, y) /∈ ∆E such that x 
= y,

s(x, y) ≥ (x, y)rκ − δ0.

Proof. As in the proof of Lemma 7.2, let i := (x, y)r, and note that since x 
= y, we must 

have 0 ≤ i ≤ N . First, suppose that 2 ≤ i ≤ N and s(x, y) < ti. We know that x and y

are both in some V ∈ Vi. Let U ∈ Vi−1 be the parent of V in T . Then while applying 

Lemma 6.13 to U , (x, y) is not an edge in the original graph, but since x and y both 

belong to V , (x, y) must be an edge in the modified graph. Thus, (x, y) ∈ ∆E(U) ⊂ ∆E, 

which is false by assumption. Consequently, s(x, y) ≥ ti.

If i = 1 and s(x, y) < t1, then either x and y are both in S′, in which case the same 

argument shows that (x, y) ∈ ∆E(S′) ⊂ ∆E, or at least one of x and y is in A, in which 

case (x, y) ∈ ∆E(A) ⊂ ∆E.
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Combining, and applying (5.3), we get that if 1 ≤ i ≤ N , then

s(x, y) ≥ ti ≥ iκ − δ0 = (x, y)rκ − δ0.

Lastly, if i = 0, note that the inequality is automatic since (x, y)r = 0. This completes 

the proof of the lemma. �

8. Completing the proof of Theorem 5.1

Take any η > 0. We have to prove the existence of a γ > 0, depending only on η, 

such that if P ∗ < γ and Hyp(S, F , P , s) < γ, then Tree(S, F , P , s) < η. To do this, first 

choose ε so small and m so large that

Cε1/24 + Cm−1/2 ≤ η

4
,

where C is the universal constant from Lemma 7.1, and also

κ = max{ε1/24, m−1/2} ≤ η

4
.

Let δ := Hyp(S, F , P , s), and let δ0 := δ1/8. If P ∗ and δ0 are small enough (depending 

on ε and m), then the method of Section 7 yields ∆E and T satisfying the conclusions of 

Lemmas 7.1, 7.2 and 7.3. Recall also that 0 ≤ s(x, y) ≤ 1 and 0 ≤ (x, y)rκ ≤ (N + 1)κ ≤
1 + κ for all x and y. Consequently, if X and Y are i.i.d. draws from P , then

E|s(X, Y ) − (X, Y )rκ| ≤ κ + δ0 + (1 + κ)(P ⊗2(∆E) + P (X = Y ))

≤ η

4
+ δ0 +

(
1 +

η

4

)(
η

4
+ 2δ0 + P ∗

)
.

This shows that if P ∗ and Hyp(S, F , P , s) are small enough, depending on η, then 

Tree(S, F , P , s) < η.

9. From Theorem 5.1 to Theorem 2.4

In this section we prove Theorem 2.4 using Theorem 5.1. Initially, let us continue 

working under the assumption that S is finite and F is the power set of S. Take any ε > 0. 

Then by Theorem 5.1, there is some δ > 0 such that if P ∗ < δ and Hyp(S, F , P , s) < δ, 

then Tree(S, F , P , s) < ε. Suppose that P ∗ ≥ δ. Then we first create a new system where 

this violation does not happen. Take each x ∈ S divide it up into k(x) vertices, where 

k(x) is chosen so large that P (x)/k(x) < δ. Let S′ be the new set of vertices, consisting 

of k(x) copies of each x ∈ S. Let f be a map from S′ into S that takes any copy of x ∈ S

to x, so that |f−1(x)| = k(x). Define a probability measure P ′ on S′ as
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P
′(y) :=

P (f(y))

k(f(y))
.

The probability measure P ′ can be described in words as follows. Drawing a vertex from 

P
′ is the same as first picking a vertex from P , and then choosing one of its copies in S′

uniformly at random. Note that if Y ∼ P
′, then f(Y ) ∼ P .

Define also a similarity function s′ on S′ as

s′(y, z) := s(f(y), f(z)).

Then by the observations from the previous paragraph, it follows that

Hyp(S′, F ′, P
′, s′) = Hyp(S, F , P , s),

where F ′ is the power set of S′. On the other hand maxy∈S P
′(y) < δ by construction. 

Thus, by Theorem 5.1,

Tree(S′, F ′, P
′, s′) < ε.

Consequently, there exists a tree T ′ that is compatible with S′ (in the sense of Defini-

tion 2.2), with root r, and a number α such that

E|s′(Y, Z) − α(Y, Z)r| < ε, (9.1)

where Y and Z are i.i.d. draws from P ′, and (Y, Z)r is the Gromov product of Y and Z

under the graph distance on T ′, with respect to the base point r.

Now, for each x ∈ S, let Y (x) be a vertex chosen uniformly at random from f−1(x). 

Modify the tree T ′ by deleting all leaves other than the Y (x)’s, and also deleting the 

edges joining these leaves to their parents. The resulting graph is still a tree, and its 

leaves are in one-to-one correspondence with the set S. Thus we can relabel its leaves to 

define a tree T̃ with set of leaves S and root r.

Let X1 and X2 be i.i.d. draws from P , independent of T̃ . Then Y (X1) and Y (X2) are 

i.i.d. draws from P ′, and hence by (9.1),

E|s′(Y (X1), Y (X2)) − α(Y (X1), Y (X2))r| < ε.

But s′(Y (X1), Y (X2)) = s(X1, X2), and by our definition of T̃ ,

dT ′(Y (X1), Y (X2)) = dT̃ (X1, X2),

dT ′(Y (X1), r) = dT̃ (X1, r), dT ′(Y (X2), r) = dT̃ (X2, r).

Therefore (Y (X1), Y (X2))r = (X1, X2)r, where the Gromov product on the left is on 

the tree T ′, and the Gromov product on the right is on the tree T̃ . This gives
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E|s(X1, X2) − α(X1, X2)r| < ε,

where the expectation is now taken over X1, X2 and T̃ . Since T̃ is independent of X1

and X2, this proves the existence of a tree T with set of leaves S and root r, such that

E|s(X1, X2) − α(X1, X2)r| < ε.

Thus, we may conclude that Tree(S, F , P , s) < ε. This completes the proof of Theo-

rem 2.4 under the assumptions that S is finite and F is the power set of S.

Let us now consider general (S, F , P , s), where F is countably generated. Take any 

ε > 0. The case of finite S gives a δ corresponding to ε/2. Take this δ, and suppose that

Hyp(S, F , P , s) <
δ

2
. (9.2)

We will show that in the general case, this implies Tree(S, F , P , s) < ε.

Let {A1, A2, . . .} be a set of generators of F . For each n, let Pn be the partition of S

generated by A1, . . . , An. Let P2
n be the set of all sets of the form A ×B where A, B ∈ Pn. 

Let Gn be the set of subsets of S2 that are unions of elements of P2
n. Define

G :=

∞⋃

n=1

Gn.

It is not difficult to show that G is an algebra of sets that generates the σ-algebra F × F
on S2. Now take any k ≥ 1. For 0 ≤ j ≤ k, let

Bj := {(x, y) ∈ S2 : j/k ≤ s(x, y) < (j + 1)/k}.

By the measurability of s, Bj ∈ F × F . Therefore by a basic result of measure theory, 

given any η > 0 there exists B′
j ∈ G such that P ⊗2(Bj∆B′

j) ≤ η. Define

D :=

k⋃

j=0

Bj∆B′
j ,

so that P ⊗2(D) ≤ (k + 1)η.

Since Gn is an increasing sequence, there is some large enough n such that B′
j ∈ Gn

for all j. Define a function s̃ : S2 → [0, 1] as s̃(x, y) = j/k where j is a smallest number 

such that (x, y) ∈ B′
j . If there is no such j, let s̃(x, y) = 0. Since each B′

j is a union of 

members of P2
n, it follows that s̃ is constant on each element of P2

n.

Now suppose that s̃(x, y) = j/k, but (x, y) /∈ Bj . Then there are two possibilities: 

(a) (x, y) ∈ B′
j . Then clearly, (x, y) ∈ D. (b) (x, y) /∈ B′

j . In this case, j must be 

zero and (x, y) must not belong to any B′
i. But (x, y) ∈ Bi for some i. Thus again, 

(x, y) ∈ D.
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On the other hand, suppose that (x, y) ∈ Bj but s̃(x, y) 
= j/k. Again, this implies 

that either (x, y) is not in any B′
i, or (x, y) ∈ B′

i for some i 
= j. In the first case, we 

clearly have (x, y) ∈ D. In the second, (x, y) /∈ Bi and hence (x, y) ∈ D.

Combining the observations of the last two paragraphs, we see that if |s̃(x, y) −
s(x, y)| > 1/k, then (x, y) ∈ D. Thus, if X and Y are i.i.d. draws from P , then

E|s̃(X, Y ) − s(X, Y )| ≤ 1

k
+ P

⊗2(D) ≤ 1

k
+ (k + 1)η. (9.3)

Now recall the assumption (9.2) and the fact that δ is a function of ε. Therefore, the 

above display shows that by choosing k large enough (depending on ε), and then choosing 

η small enough (depending on k and ε), we can ensure that

Hyp(S, F , P , s̃) < δ.

Now let X̃ be the element of Pn that contains X and let Ỹ be the element of Pn

that contains Y . Since Pn is a finite set, we can endow it with its power set σ-algebra 

2Pn (which identifies with Gn), and may consider X̃ and Ỹ to be Pn-valued random 

variables. Then X̃ and Ỹ are i.i.d. random variables with law P̃ , where P̃ identifies with 

the restriction of P to Gn. Since s̃ is constant on elements of P2
n, we can naturally view 

s̃ as a function on Pn × Pn. Lastly, observe that s̃(X̃, Ỹ ) = s̃(X, Y ). Combining all of 

these observations, we get

Hyp(Pn, 2Pn , P̃ , s̃) = Hyp(S, F , P , s̃) < δ.

Since Pn has finite cardinality, this implies that

Tree(Pn, 2Pn , P̃ , s̃) <
ε

2
.

In particular, there is a tree T̃ with root r that is compatible with (Pn, 2Pn), and a 

number α ≥ 0, such that

E|s̃(X̃, Ỹ ) − α(X̃, Ỹ )r| <
ε

2
, (9.4)

where (X̃, Ỹ )r is the Gromov product of X̃ and Ỹ under the graph distance on T̃ , with 

respect to the base point r. Let us now extend the tree T̃ by appending S to the set of 

nodes, and adding an edge between each x ∈ S and the element of Pn that contains x. 

Call the new tree T . Then S is the set of leaves of T . The set T \ S is just T̃ , which is 

finite. Lastly, for any v ∈ T \ S, the set of leaves that are descendants of v is a union of 

elements of Pn, and therefore measurable. Thus, T is compatible with (S, F).

Next, note that (X̃, Ỹ )r = (X, Y )r, because if dT is the graph distance on T , then 

dT (X, r) = dT̃ (X̃, r) + 1, dT (Y, r) = dT̃ (Ỹ , r) + 1, and dT (X, Y ) = dT̃ (X̃, Ỹ ) + 2. Also, 

we know that s̃(X̃, Ỹ ) = s̃(X, Y ). Therefore by (9.4),
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E|s̃(X, Y ) − α(X, Y )r| <
ε

2
.

Invoking (9.3), this shows that if k is chosen large enough (depending on ε), and then η

is chosen small enough (depending on k and ε), we can ensure that

E|s(X, Y ) − α(X, Y )r| < ε.

Consequently, Tree(S, F , P , s) < ε, completing the proof of Theorem 2.4.

10. Proof of Theorem 3.1

Take any strictly increasing continuous function ρ : R → [0, ∞), and define the 

similarity function

sn(σ1, σ2) := ρ(f(R1,2)).

If three configurations σ1, σ2 and σ3 satisfy

f(R1,2) ≥ min{f(R1,3), f(R2,3)} − ε

for some ε ≥ 0, then by the monotonicity and uniform continuity of ρ on the range of f ,

ρ(f(R1,2)) ≥ ρ(min{f(R1,3), f(R2,3)} − ε)

≥ ρ(min{f(R1,3), f(R2,3)}) − δ(ε)

= min{ρ(f(R1,2)), ρ(f(R1,3))} − δ(ε),

where δ(ε) → 0 as ε → 0. From this and the boundedness of ρ on the range of f , we see 

that if (3.2) holds, then

lim
n→∞

E〈(min{ρ(f(R1,3)), ρ(f(R2,3))} − ρ(f(R1,2)))+〉 = 0.

Consequently, Hyp(Σn, Fn, μn, sn) → 0 in probability as n → ∞, where Fn is the power 

set of Σn if Σn = {−1, 1}n and the Borel σ-algebra of Σn if Σn =
√

nS
n−1. Thus, 

Theorem 2.4 implies that

Tree(Σn, Fn, μn, sn) → 0 in probability as n → ∞.

Therefore, there are sequences εn and δn tending to zero as n → ∞, such that the 

following holds. With probability at least 1 − εn, there exists a tree Tn with root rn, 

that is compatible with (Σn, Fn) in the sense of Definition 2.2, and a number an ≥ 0, 

satisfying

〈
|ρ(f(R1,2)) − an(σ1, σ2)rn

|
〉

≤ δn,
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where (σ1, σ2)rn
is the Gromov product under graph distance on the tree Tn, with respect 

to the base point rn.

By the remark immediately below Definition 2.2, the nodes of Tn give a hierarchical 

clustering of Σn into measurable clusters. For each node α, let qα := ρ−1(andα), where 

dα is the length of path from rn to α. If α is the smallest cluster containing σ1 and σ2, 

then (σ1, σ2)rn
= dα. Therefore if ρ(f(R1,2)) ≈ an(σ1, σ2)rn

, then f(R1,2) ≈ qα. This 

completes the proof.
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