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1. Gromov hyperbolicity

Let (S, d) be a metric space. The Gromov product of two points z,y € S with respect
to a third point z € S is defined as

(0.9)= = (e, 2) +dly, 2) = d(ap).

Note that by the triangle inequality, the Gromov product is always nonnegative.
The space is called é-hyperbolic (as defined by Gromov [16]) if for any four points
Ty, z,w €S,

(a:,y)w 2 min{(m, Z)’wa (ya Z)w} — 4. (11)

The smallest § for which this is satisfied is known as the Gromov hyperbolicity of (.5, d).
The condition (1.1) is known as Gromov’s four point condition. It is not hard to show
that if (1.1) is satisfied for all z,y, z for a given wp, then it can be shown that it is
satisfied for all w with 2§ in place of §. Thus, we may equivalently define hyperbolicity
using a three point condition, by fixing w. If (1.1) is satisfied for all z,y, z for some fixed
w, then we say that the space is §-hyperbolic with base point w.

The notion of hyperbolic metric spaces is closely related to the notion of real trees.
If (T, p) is a metric space and z,y € T, an arc from x to y is the image of a topological
embedding v : [a,b] — T with y(a) = 2 and ~(b) = y, where [a, ] is a closed interval in
R (allowing the possibility that a = b). A geodesic segment from z to y is the image of
an isometric embedding v : [a,b] — T with v(a) = x and v(b) = y. A metric space (T, p)
is called a real tree if for any x,y € T, there exists a unique arc from z to y, and this
arc is a geodesic segment. A real tree with a distinguished point r € T is called a rooted
real tree with root r.

The most elementary connection between Gromov hyperbolicity and real trees is that
a metric space is 0-hyperbolic if and only if it is isometric to a subset of a real tree.
Now suppose that a metric space (5, d) is é-hyperbolic for some small but nonzero 4.
Is it approximately isometric to a subset of a real tree, in some sense? The following
result shows that this is true when S has finite cardinality, with an error proportional
to dlog|S|.

Theorem 1.1 (Ghys and de la Harpe [14]). Let (S,d) be a §-hyperbolic metric space with
base point w and finite cardinality. Let k be a positive integer such that |S| < 2F + 2.
Then there exists a real tree (T, p) with root r and a map ® : S — T such that for all
z €8, dx,w) = p(®(x),r), and for all z,y € S, d(x,y) —2kd < p(®(z), P(y)) < d(x,y).

It is known that the error of order dlog|S| in the above theorem cannot be im-
proved [8]. In particular, it is not possible to have a quasi-isometry where the discrepancy
depends solely on §.
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The notion of Gromov hyperbolicity, introduced by Gromov in a group-theoretic con-
text, has found great success in many areas of mathematics and even in science and
engineering. There are many examples of metric spaces, both in theory and practice,
that are almost tree-like but not exactly so. Gromov hyperbolicity is a great way to
understand and study such examples.

Still, there is one aspect of Gromov hyperbolicity that is sometimes problematic when
one ventures outside the domain of very regular objects coming from pure mathematics.
It is the fact that the four point condition (1.1) is a worst-case condition: The space
is not d-hyperbolic if there is even a single four-tuple (z,vy,z,w) for which (1.1) fails.
There are examples from statistical physics and probability theory where (1.1) holds for
most, but not all four-tuples [21]. Here “most” is in terms of a probability measure on
the space. Similar examples arise in the applied sciences, such as in the analysis of social
networks [2] and phylogeny reconstruction [9].

For these reasons, one may naturally wonder whether the condition (1.1) may be re-
placed by some kind of an averaged version. This has, indeed, been proposed recently
in some physics papers (such as [2]), but these proposals have not been mathematically
analyzed. The goal of this manuscript is to fill this gap: We define a natural notion of
average Gromov hyperbolicity, and prove an analog of Theorem 1.1 for this measure. In-
terestingly, unlike Theorem 1.1, this result has no dependence on the size of S. The proof
is more involved than the proof of Theorem 1.1, using a weighted version of Szemerédi’s
regularity lemma from graph theory. We apply this theorem to show that hierarchically
organized pure states can be constructed in any model of a spin glass that satisfies the
Parisi ultrametricity ansatz.

2. Main result

We will go beyond metric spaces in our definition of average hyperbolicity. Let .S be
a set equipped with a countably generated o-algebra F and a probability measure P
defined on F. Let b be a positive real number and s : S x S — [0,b] be a measurable
function satisfying s(z,y) = s(y,x) for all z,y € S. We will say that s is a “similarity
function”. Intuitively, s(x,y) measures the similarity between two points « and y. Simi-
larity functions generalize the notion of Gromov product: If S has finite diameter with
respect to a separable metric and is endowed with the Borel o-algebra generated by this
metric, the Gromov product (x,y),, is a similarity function for any base point w € S.

Definition 2.1. We will say that (S, F,P,s) is d-hyperbolic if
Hyp(S,F,P,s) := E(min{s(X, 2),s(Y,Z2)} — s(X,Y))+ <,

where z; denotes the positive part of a real number z, and XY, Z are i.i.d. S-valued
random variables with law P.
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Fig. 1. A tree T' compatible with S, with root r. The leaves of T', shown using dots, are the elements of S.
The number of edges in the thickened path equals the Gromov product (z,y).

It is not hard to show that (S, F,P,s) is O-hyperbolic in the above sense if and only
if there is a real tree (T, p) with root r and set of leaves S, such that for all ,y in the
support of P, we have s(z,y) = (z,y),, where (z,y), is the Gromov product of z and y
under the metric p, with respect to the base point . We will now generalize this result
when (S, F,P,s) is d-hyperbolic for some small §. First, recall that a graph-theoretic
tree, henceforth simply called a tree, is a connected undirected graph without self-loops
or closed paths. A rooted tree is a tree where one distinguished node is called the root.
A node of a rooted tree is called a leaf if it is not the root and it has degree one.

Definition 2.2. We will say that a tree T' with root r is compatible with (S, F) if the
following three conditions are satisfied:

(i) S is the set of leaves of T,
(if) T\ S is a finite set, and
(iii) for any node v € T'\ 'S, the set of leaves that are the descendants of v is a measurable
subset of S.

Clearly, any tree that is compatible with (S, F) gives a hierarchical clustering of S,
such that the number of clusters is finite and each cluster is measurable. Conversely, any
such clustering defines a compatible tree. An example is shown in Fig. 1.

If T is a compatible tree with root r, and z,y € S, we denote by (x,y), the Gromov
product of x and y under the graph distance on T, with respect to the base point r.
From the definition of the Gromov product, it is easy to see that (x,y), is the number
of edges in the intersection of the paths leading from z and y to r (see Fig. 1).

Definition 2.3. We will say that (S, F,P,s) is d-tree-like if

Tree(S, F,P,s) := iTanE|s(X,Y) —a(X,Y),| <4,
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where X and Y are independent S-valued random variables with law P, and the infimum
is taken over all & > 0 and all rooted trees T' that are compatible with (S, F). Here r is
the root of T and (X,Y), is the Gromov product of X and Y under the graph distance
on T, with respect to the base point r.

Note that in the above definition, it follows easily by the definition of compatibility
that (X,Y), is a bounded and measurable random variable, and therefore the expectation
is well-defined.

The following theorem is the main result of this paper. It shows that Hyp(S, F, P, s)
is small if and only if Tree(S, F, P, s) is small.

Theorem 2.4. Let S, F, P, s and b be as above. Then given any € > 0, there is some § > 0
depending only on € and b, such that if Hyp(S,F,P,s) < ¢, then Tree(S,F,P,s) < e.
Conversely, given any € > 0 there is some 6 > 0 depending only on € and b, such that if
Tree(S, F,P,s) < 4, then Hyp(S, F,P,s) < e.

The above theorem is a generalization of Theorem 1.1 to the setting of average hyper-
bolicity. The statement is more satisfactory than that of Theorem 1.1 in that the error
has no dependence on the size of S. In particular, it remains meaningful even if S has
infinite cardinality. Moreover, since Gromov hyperbolicity is obviously greater than or
equal to the average hyperbolicity with respect to any probability measure (where the
similarity function is the Gromov product with respect to a base point), Theorem 2.4
immediately implies the following corollary about Gromov hyperbolic metric spaces.

Corollary 2.5. Let (S,d) be a separable metric space with finite diameter D, which is
d-hyperbolic with respect to a base point w in Gromov’s sense. Then for any probability
measure P defined on the Borel o-algebra of S, there is a rooted tree T with root r that
is compatible with S in the sense of Definition 2.2, and a number o > 0, such that

// (2, 9w — oz, ), AP (2)dP (y) < (5, D),

where €(§, D) is a number depending only on § and D which tends to 0 as § — 0. Here
(2,9)w s the Gromov product of x and y under the metric d, with respect to the base
point w, and (x,y), is the Gromov product of x and y under the graph distance on T,
with respect to the base point r.

The dependence of § on € in Theorem 2.4 is an important question. The proof given
in this paper uses Szemerédi’s regularity lemma [28], and therefore cannot be expected
to yield useful bounds. It would be very interesting to figure out whether Szemerédi’s
lemma can be bypassed in the proof of Theorem 2.4. If that is possible, then one can at
least hope to get reasonable bounds on § in terms of e.
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To see why something like the regularity lemma may be needed, recall the triangle
removal lemma of Ruzsa and Szemerédi [25]: If a simple graph on n vertices has o(n?)
triangles, then it is possible to delete o(n?) edges and make it triangle-free. The original
proof of this result used Szemerédi’s regularity lemma, and although we now have other
approaches [11], there is still no simple proof of this seemingly simple-sounding claim.
Theorem 2.4 is a result of a similar spirit, since it asserts that a space which is nearly tree-
like in most places may be slightly modified to yield a space that is exactly embeddable
in a tree.

3. Hyperbolicity and the Parisi ansatz

In this section we study a well-known class of systems that arise in statistical physics
and probability theory that are hyperbolic in the average sense but not in Gromov’s
sense.

A spin glass model assigns a random probability measure p,, on a set 3,, where %,
is usually the hypercube {—1,1}" or the sphere of radius \/n centered at the origin
in R™. Throughout the rest of this section, we will assume that X, is either of these
two. The specific definitions of these measures are not particularly relevant for this
discussion, so we will not bother to introduce them here. The interested reader may
consult [19,22,33,34]. The measure u,, is called the Gibbs measure, and the set X, is
called the configuration space.

An important quantity in spin glass theory is the overlap between two configurations
ol, 0% € ¥, defined as

1 n
Ry =~ Z;a}af € [-1,1].
P

The usual convention in the literature is to denote by R; ; the overlap between o' and
o, where o', 02, ... is an i.i.d. sequence of configurations drawn from the Gibbs measure
tn- It was famously conjectured by Parisi [23,24] that certain spin glass models have the
property that in the “n = oo limit”, R; » is greater than or equal to the minimum of
R, 3 and Ry 3 with probability one. This is known as the Parisi ultrametricity ansatz.
Following a long line of deep contributions by various authors [1,4,13,30], the Parisi
conjecture was finally proved by Panchenko [21] for spin glass models that satisfy a
certain set of equations known as the generalized Ghirlanda—Guerra identities [13,20,29].

The precise statement of Panchenko’s theorem is that in such models, for any € > 0,

nh_{{.loE<1{R1,2Zmin{R1,3,R2,3}*€}> =1, (31)
where (-) denotes expectation with respect to the Gibbs measure p,, E denotes expec-
tation with respect to the randomness in p,, and 14 denotes the function that is 1 on
the set A and 0 elsewhere.
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Fig. 2. Hierarchical organization of pure states. Here «, 3, v and ~’ are hierarchically nested clusters rep-
resenting various pure states, and o' € v, 02 € ~'. But Ri2 = qp, since 8 is the smallest cluster that
contains both ¢! and o2.

It was predicted in a seminal paper of Mézard, Parisi, Sourlas, Toulouse and Vira-
soro [18] that ultrametricity happens because the infinite volume limit of the Gibbs
measure can be decomposed into “hierarchically organized pure states”. Roughly speak-
ing, this means that the configuration space admits a hierarchical clustering, with a
number ¢, € [—1, 1] attached to each cluster «, so that if 0! and 02 are drawn indepen-
dently from the Gibbs measure, then with high probability, R; 2 ~ qo, where o is the
smallest cluster containing both o! and o2 (see Fig. 2). Here “smallest” means “lowest
down in the hierarchy”.

It is not difficult to prove that ultrametricity implies the hierarchical organization of
pure states if R; 2 can take only finitely many values in the infinite volume limit; this, in
fact, is the basis of the heuristic sketched in [18]. However, if this condition does not hold
— in which case the system is said to exhibit “full replica symmetry breaking” — then
it is not obvious how to establish the hierarchical organization of pure states starting
from the Parisi ansatz (3.1).

There are two kinds of systems where the pure state picture has been rigorously
established. The first is a class of spin glass models known as pure p-spin spherical
models, where the pure state construction was given recently by Subag [26], building
on the earlier contributions of [5-7,27]. The second is the class of models that have
been shown to satisfy the generalized Ghirlanda—Guerra identities. For these models,
the construction of pure states was given by Panchenko [21] in the infinite volume limit,
and recently by Jagannath [17] in the setting of large but finite n. (See also the earlier
works of Talagrand [31,32].)

Incidentally, the generalized Ghirlanda—Guerra identities are believed to hold in all
physically interesting models that satisfy the Parisi ansatz (3.1). Therefore, in principle,
the results of [17,21] should give the pure state construction in all such models, provided
that the identities can be established. However, there are other important models, such
as the Sherrington—Kirkpatrick (S-K) model, where it is known that the generalized
Ghirlanda—Guerra identities do not hold [17, Remark 2.4]. In the S-K model, it is believed
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that the absolute value of the overlap, rather than the overlap itself, should satisfy
the ultrametric property. To account for such cases, we formulate a generalized version
of (3.1). We will say that a sequence of spin glass models satisfy the generalized Parisi
ansatz if for some bounded measurable f : [-1,1] — R,

im E(L{(R, 2)>min{f(Ris),f(Ra)}—e}) = 1 (3.2)

n—oQ

for all € > 0. Theorem 2.4 allows us to prove that hierarchically organized pure states
can be constructed for any system that satisfies this generalized ansatz. Since the only
systems where ultrametricity has been rigorously established are systems where the pure
state construction has also been proved, the result gives no immediate gain. But it is
intellectually satisfying and potentially useful for the future. For example, if the gen-
eralized Parisi ansatz (3.2) can be proved for the S-K model with f(z) = |z|, our
theorem will instantly give the construction of pure states. The precise statement is
as follows.

Theorem 3.1. Consider any sequence of spin glass models that satisfy the generalized
Parisi ultrametricity ansatz (3.2) for some bounded measurable function f. Then there
are sequences €, and &, tending to zero, such that with probability at least 1 — €,, the
following happens. There is a hierarchical clustering of the configuration space ¥, such
that the number of clusters is finite, each cluster is measurable, and for each cluster «
there is a number qo that is a function of its depth in the hierarchy, with the property
that

<|f(R1,2> - Qa|> < 57“

where o = a(ol,0?) is the smallest cluster containing two configurations o' and o

drawn independently from the Gibbs measure and Ry 2 is their overlap.

Just for clarity, we note that in Theorem 3.1 the sequences €, and J,, are deterministic,
but the hierarchical clustering is a function of the Gibbs measure (and hence random).
We also note that even though the number of clusters is finite, the number may grow
with n. Theorem 3.1 is proved as a simple consequence of Theorem 2.4 in Section 10.

4. A vertex-weighted regularity lemma

The key to proving Theorem 2.4 is a weighted version of Szemerédi’s regularity
lemma [28]. Although there are a number of weighted regularity lemmas in the liter-
ature (such as in [3,10] and the very recent preprint [15]), we could not find the exact
version stated below, which is what we needed for proving Theorem 2.4. Therefore a
complete proof is given.

Let G = (S, E) be a finite simple graph. In the following, we will adopt the convention
that the set of edges F is the subset of S? consisting of all (z,y) such that there is an
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edge between z and y. In particular, if there is an edge between x and y, then both (z,y)
and (y,x) belong to E.

Let p be a nonnegative measure on S. If U and V are disjoint subsets of S, we define
the py-weighted edge-density between U and V as

p2*(zy) e E:xelUyeV)

dOV) = WO (V)

If the denominator is zero, d(U, V) is undefined. Given ¢ > 0, a pair of disjoint sets
U,V C S will be called a u-weighted e-regular pair if for any A C U and B C V with
w(A) > ep(U) and p(B) > eu(V), we have

d(A, B) - d(U, V)| < e.
The following theorem is a u-weighted version of Szemerédi’s regularity lemma.

Theorem 4.1 (Vertex-weighted regularity lemma). Let G = (S, E) a finite simple graph
and let p be a finite nonnegative measure on S. Let

p” = max p().
Take any € > 0 and any positive integer m. Then there is a positive real number p(e, m)

and a positive integer M(e,m), both depending only on € and m, such that if p* <
p(e,m)u(S), then there is a partition S = Vo U---UV, withm < g < M(e,m), such that

(i) u(Vo) < eu(S),
(i) p(Vi) >0 and |pw(V;) — w(V;)| < p* for all1 <i,j <gq, and
(iii) all but at most eq* pairs (Vi, V;), 1 <i # j < q, are p-weighted e-regular, as defined
above.

The rest of this section is devoted to the proof of this theorem. We follow the spectral
approach to proving Szemerédi’s lemma, pioneered by Frieze and Kannan [12] and lucidly
explained in a blog entry of Tao [35]. If u(S) = 0, there is nothing to prove. So let us
assume that p(S) > 0, and normalize 4 to define a probability measure:

Also let
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If we prove the theorem for P instead of p (with P* instead of u*), it is easy to see that
it proves the theorem for p. So we will henceforth work with P instead of u. We will first
prove Theorem 4.1 in the case that P(x) is rational for all € S.

Lemma 4.2. The vertez-weighted reqularity lemma holds if P(x) is rational for each x.

Proof. Note that if € < ¢/, then an e-regular partition is also an €-regular partition. So
let us assume without loss of generality that € < 1/4.

Since P (z) is rational for every z, we can find an integer N such that K(z) := NP (x)
is an integer for every z. Let [N] := {1,...,N}. Choose a map f: [N] — S such that
|f~1(x)| = K(x) for every x, and these inverse images are disjoint. (This is possible is
P(S) = 1.) Let Gy = ([N], En) be a graph with vertices [N], and (z,y) € Ey if and

only if (f(2), (1)) € E.
Let H be the adjacency matrix of Gn. Then H has a spectral decomposition

N
H = E )\iuiu;,
=1

where uZT denotes the transpose of the column vector u;. We will assume the \;’s are
numbered in order of decreasing magnitude, that is,

A1l > Aol > -0 > [An]. (4.1)

Let F': Z,+ — R, be a function satisfying F'(j) > j for all j. The exact choice of F will
be made later, and it will depend on € and m (but not on anything else). Partition the
set {1,..., N} into sets of the form {i: zx < i < zp41}, where zp = 1 and for k > 1,

zp=FoFo---0F(1).
—_—

k times
Note that since F'(j) > j for all j, z is a strictly increasing sequence. Also, since
N
tr(H?) =Y A\ =2|Ex| < N?,
i=1

there exists k < 128¢ =2 + 1 such that

5 2

9 €N

2 < )

Z )\’_128

21 <t<Zp41

Consequently, there exists an integer J such that J is bounded by a constant that depends
only on € and m, and
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€O N2
A2 < . )
> Moy (4.2)
J<i<F(J)

If Ay # 0, then by (4.1), A\; # 0 for all ¢ < J. If A\; = 0, then again by (4.1), there is
some J' < J such that A\; # 0 for all 4 < J’ and \; = 0 for all 4 > J’. Thus, by decreasing
J if necessary, we can ensure that \; # 0 for all i < J. Henceforth, we will assume that
this holds. Let

H1 = Z)\iuiu?, H2 = Z )\iuiu?, H3 = Z /\ﬂLl’U,IT
i<J J<i<F(J) i>F(J)

Then the number of edges En (A, B) between sets A, B C [N] is
En(A,B) =1%H 15+ 14 Hy15 + 14 Hslp

where 14 is the vector that has 1 at the coordinates that belong to A and 0 elsewhere.
For each i < J, define

; 2J
Wl = NJ: |u; —
0 {ye[ J: Jui(y)] > GN},
where u;(y) denotes the yth coordinate of u;. Then, since u; is a unit vector,
1= Y wlPz Y w2z )
‘ = o TeN'TO T
y€E[N] yEWO“)
so that [W{”| < eN/2J. Thus if

Wo = [ Wi,
i<J
then |Wp| < eN/2. Now partition [N]\ Wéi) as the union of {W,gl) s k| < 32J%/€? + 1},

where

) ) 3/2
(i) (4) €
W =y e NN\ W u(y) e k—1,k .
i {y [N\ W5 s uy(y) T TBN( ]}

After doing this fori=1,...,J — 1, set

Note that {Wy, .k, ,} is a partition of [N]\ Wy. Enumerate the partition sets as
Wi, ..., W,. From the definition of the partition, it is clear that
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64.72 J
r<< > +3> ) (4.3)

We will use this bound on r later. Now, since H is the adjacency matrix of a graph
on N vertices, a standard result from linear algebra implies that |[A1| < N. Thus, for
T,y € Wkl,...,kj_l and w, z € Wki,m,kfj,lv

(UL H T, — TTH Ly = D> A (wi(w)ui(z) — ui(2)us(y))

i<J

< Il D (us(w) = wil(2))ui ()] + i (2) (ui(x) = wily))])

1<J
2J €3/2 €
<ANY W= (——=) <<
- ; eN (16\/2J3N>_8

For 1 <i,j <r, define

1

WillWil ,cpimew,

dij = ]lg;Hl ]ly (44)

Then for any A C W; and B C W;, the above inequality shows that

[LiH11p — dij| Al|B]| =

> 10H 1, - dij|A|B|‘

weA,xeB
1
S 1TH1, —1TH 1
‘|Wz-|w-| PN 2
zeW,;,yeW;
1
< 1TH1, — 17 H 1
S 2, Tt -1
zeW;,yeW;
< SlAlB| (4.5)

We will use this inequality later. We now claim that each W;, 0 < j < r, is the pre-image
of some subset of S under the map f. To see this, first note that if f(x) = f(y), then
clearly H1, = H1,. In terms of the spectral decomposition, this can be written as

N N
Z A (T)u; = Z A (y)u
i=1 i=1

By the linear independence of the w;’s, this shows that for each i, \; = O or u;(z) = u;(y).
But if ¢ < J, then \; # 0, and so x and y must belong to the same Wk Since this holds
for all ¢ < J, x and y belong to the same W;.
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Next, we make the partition equitable by subdividing the W;’s. By what we just
showed, W; is the union of f~!(x) for some set of z € S. Note that for each z, the
pre-image |f~!(z)| has size at most P*N. Let

. m
T 1—P*m’

m*

If P* is sufficiently small (depending on m), m* is positive. Partition W; by sorting the
pre-images into subsets of size as close as possible to eN/2(r + m*) but no smaller, and
one remainder set of size less than eN/2(r +m*). So,

W, =U{ u (U U,S'))

E>1
with
; N
U(J) < €
U™ 2(r +m*)
and for k > 1,
eN () €
— << | =—+P*|N. 4.6
2(r+m*)_| k |_<2(r+m*)+ ) (4.6)
The union of the remainder sets is small:
o< o<
e 2(r +m*) 2
Define
Uyg =Wy U (U Ué”)
j=1
as the exceptional set, and relabel the remaining partition sets {U,Ej)}k’j as Uy,...,U,.
Then |Uy| < eN, and hence by (4.6),
1—¢ < M (4.7)

<
€/2(r + m*) + P* == €

Since r can be bounded by a quantity that depends only on € and m, we can let M (e, m)
to be an upper bound, depending only on m and e, for the quantity 2(r + m*)/e. Now
notice that

1—e€ 1—e¢
€/2(r +m*) + P* ~ ¢/2m* + P*’
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Using the definition of m*, we have

1—ce€ _ 1—¢€ 9
e/2m* + P*  \e+ (2—¢€)P*m "

Thus, sufficient smallness of P* (depending on m and ¢) ensures that ¢ > m.
By construction of Uy, ...,U,, there is a partition Vp,...,V, of S such that U; =
f71(V;) for each i. Note that

1
P(Vp) = ﬁ'U()' <e

and for ¢ > 1,

€ €

m <PV;) < m + P, (4.8)

which implies, in particular, that [P(V;) — P(V;)| < P* for all 1 < i,j < ¢. This also
shows that P(V;) > 0 for all 1 <i < gq.
Next, note that by (4.2), tr(H3) < e?N?/128. Thus if Hy = [2ap]},_;, then

eSO N? N
123 > Z Ty (4.9)
a,b=1

Let Xij = > ucu, vev, oy, and let

Y= {(Z,j) : X,‘j > aU1|UJ}

Let v be the measure on {1,...,¢}? such that v(i,j) = |U;||U;| for each i and j. Then

v(Z)= Y |UlUl
(i,7)€T
64 64 < 64
<Oy xRy Y @iy
3,j=1 1,j=1a€U;,bel; a,b=1

Thus, by (4.9), ¥(X) < eN?/2. We can use this to bound ||, as follows. By the inequal-
ities (4.6) and (4.7),

L. 2(r +m*)

Uil = eN
< 2(r + m*) ((e/Q(T +m*) + P*)q)
- eN 1—c¢

<6+2P*(r+m*)) q

e(l—e) N’
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Thus,

< V(E)<W)21qv22 < ;(e+261(91*(j$m*)>2q2'

Recall that r is bounded by a constant that depends only on € and m, and that € < 1/4.
Thus, if P* is sufficiently small (depending on € and m), this gives

3] < eq?.

Suppose that (4, j) ¢ X. Then for Q C U; and R C U; with |Q] > €|U;| and |R| > €|U;,],
the Cauchy—Schwarz inequality and the definition of ¥ imply that

IGHAR < > [aa]
a€Q,bER

< v ¥ )"

ac€Q,beER

vam( ¥ )"

acU;,beU;

62 €
< SV IRIRIIT| < SIQIIR) (410)

Next, note that for any choice of (i, j) € {1,...,¢}?, and for any Q C U; and R C Uj,

IN

A

15Hs1R = Z Aeldupuf 1g.
k>F(J)

Since Zszl A7 < N2, and the Ay are in order of decreasing magnitude, we have
N2 > kN2,

so that |A\,| < N/vk. Thus,

N
|15H313\§ﬁ > 1Guruf1g]

E>F(J)

<N ol
NGO
- N_Qm (4.11)

F(J)
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Now take any 1 < 4,j < q. Let k and [ be indices such that U; C Wy and U; C W}.
Define 0;; := dj;, where dj; is the quantity defined in (4.4). Then by (4.5), (4.10) and
(4.11), we see that if @ C U; and R C Uj, with (i,7) € {1,...,¢}*\ &, and |Q| > €|U;]
and |R| > €|Uj|, then

€
[1QHR = 05lQIRI| < [1GH 1R — 1GH 1r| + £|QI|R|

€
< 1§ Ho1g| + |15 Hs1p| + gl@lIE]

N
< $1QIIRl + ——VIQIIR].

F(J)
Now take any (i,7) € {1,...,¢}*\ %, and any A C V; and B C V; with P(4) > eP(V;)
and P(B) > eP(V;). Let Q := f~'(A) and R := f~'(B). Then Q C U;, R C Uj,
|Q| > €|U;| and |R| > €|U;|. Also,
1,H1 R = N*P(A)P(B)d(A, B),
and |Q||R| = N?P(A)P(B). Thus, the above calculations show that

[15H1g — 6;;N°P(A)P(B)| = [15H1R — 6;|Q||R||

€ N
< ZIQUR] + F(J)\/IQllRl
€ 5 N2
= ZN ]P’(A)]P’(B)—FW P(A)P(B).

Combining the last two displays and dividing throughout by N?P(A)P(B), we get

Recalling that P(A) > eP(V;) and P(B) > €P(V;), and applying (4.8), we get

1 < 1 < 2(r +m*)
P(A)P(B) — e/P(Vy)P(V;) — €2 '

Now suppose F' is chosen in such a way that we can guarantee

b ()

Then from the above bounds it will follow that

€
A4, B) = 5] < .
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Replacing A be V; and B by V;, we also have |d(V;, V;) — 6;;] < €/2. Thus, we would get
|d(A’B) - d(V;7V3)‘ <e

which would complete the proof. So we only have to guarantee (4.12). By the bound on
r from (4.3), we see that (4.12) holds if

(8(64.72/€2 +3)7 + 8m/(1 — P*m))

P(J) > 5

€

Assuming that P* < 1/2m, it is now easy to choose F, depending only on ¢ and m,
satisfying the above criterion for every J € Z,. O

In the final step, we now drop the rationality assumption and prove Theorem 4.1.

Proof of Theorem 4.1. Enumerate S = {z1,...,x,} and let p; := P(x;). Take any posi-

tive real number v. Let q1, .. ., ¢, be positive rational numbers such that p; < ¢; < p; +v
for each 4. Let r; := ¢;/ > q;, so that r,...,r, are again rational, > r; = 1, and for
each i,

Ipi — il < |pi — il + |ai — 74

1
<v4gq|l—
Y
Sy+(1+y)2\%*pj\

Z%‘
<v+(A+1)> g —pil Sv+n(d+v.

Define the modified weight P*)(z;) := ;. Suppose that P* < %p(e, m), where p(e,m) is
the bound on the maximum atom required in Lemma 4.2. Then for sufficiently small v,
the above display shows that we can apply Lemma 4.2 to P(*). Suppose that we get an e-
regular partition VO(V), e Vq(y) of S. Now let v — 0. We get a partition as above for each
v. Since the number of possible partitions is finite, there is a subsequence along which the
partitions stabilize for sufficiently small v. This allows us to define a limiting partition
along this subsequence. Since P)(z) — P(z) for every = (by the above display), is
straightforward to verify that this limiting partition is e-regular for P. O

5. Preliminary steps
In this section we begin the steps towards the proof of Theorem 2.4. First, note that by

rescaling s if necessary, we may assume that b = 1. We will work under this assumption
for the rest of the paper.
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Right away, we begin by observing that the converse statement in Theorem 5.1 is very
easy to prove: Take any 6 > 0. Suppose that

Tree(S, F,P,s) < 0.

Then there exists a tree T' with root r, finite diameter, and set of leaves S, and some
a > 0, such that (X,Y), is a measurable random variable and

Els(X,Y) — a(X,Y),] <4,
where X and Y are i.i.d. draws from P. By Markov’s inequality,
P(|s(X,Y) — (X, Y),]| > V§) < V3.
Therefore if X, Y and Z are i.i.d. draws from P, then with probability at least 1 — 3v/6,

the quantities |s(X, Z) — a(X, Z),|, |s(Y, Z) —a(Y, Z),| and |s(X,Y) —a(X,Y),| are all
bounded above by V8. If this happens, then

min{s(X,Z),s(Y,Z)} — s(X,Y)
< min{o(X, Z),,a(Y, Z),} — (X, Y), +2V6
= a(min{(X, 2),, (Y, Z),} — (X,Y),) + 2.

Now, since (x,y), is a Gromov product under the graph distance on a tree, it satisfies

(@,y)r = min{(z, 2),, (y, 2)r }

for all x,y, z. Thus, we get
min{s(X, Z),s(Y,Z)} — s(X,Y) < 2V6.

Recall that this happens with probability at least 1 — 3v/8. Also, we have assumed that
b = 1. Thus,

Hyp(S, F,P,s) = E(min{s(X, Z),s(Y,Z)} — s(X,Y))+
< 2V§ + 3V = 5V6.

This proves the converse part of Theorem 2.4.

We now start our journey towards the proof of the main assertion of Theorem 2.4,
namely, that if Hyp(S, F, P, s) is small, then Tree(S, F, P, s) is also small. We will first
prove the following weaker theorem. At the very end of the paper, we will complete the
proof of Theorem 2.4 using this theorem.
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Theorem 5.1. Assume that S is a finite set, F is the power set of S, P is a probability
measure defined on F, and s : S x S — [0,1] is a symmetric function. Let P* :=
maxges P(x). Then given any € > 0, there is some § > 0 depending only on €, such that
if P* <4 and Hyp(S,F,P,s) < d, then Tree(S, F,P,s) < e.

From here until the end of the proof of Theorem 5.1, we will work under the assump-
tions stated above. Take any § > 0 and suppose that

Hyp(S, F,P,s) <.
A basic step is to show that for most values of ¢ € [0, 1], the set
Ry :={(z,y,2): s(z,y) <t <min{s(z,2),s(y,2)}} (5.1)
has small probability. For convenience, let
Jo == 6'/8.
The above definition of dy will be fixed throughout the remainder of the proof.

Lemma 5.2. Let R := {t: P®3(R;) > &3}. Then £ (R) < 43, where £ is Lebesgue

measure.
Proof. Define

H(x,y,z) ={r€l0,1]: s(z,y) < r <min{s(z, 2), s(y, 2) } }.
Note that

PR = 3 PO,y 2)Lgeyn ()

x,y,2€S8

Thus,

P®3 (l‘, Y, Z) ]1.%(3:711,2) (t)dt

—

1
/P®3(Rt)dt =
0

(z,y,2)€5%

= P (2, y, z)(min{s(z, 2), s(y, 2)} — s(z,9))+
(z,y,2)€S3

= Hyp(S,F,P,s) <= 53.

If .Z is Lebesgue measure on [0, 1], the definition of R implies that
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1
/]P®3(Rt)dt > 55-Z(R).
0

The claimed result now follows easily by combining the two displays. O

Let us now fix some € € (0,1) and m > 2. This € and m will remain fixed throughout
the rest of the proof. At various steps, we will need to assume that € is smaller than
some universal constant (such as e < 1/9) or m is bigger than some universal constant
(such as m > 20), and we will make these assumptions without explicitly stating so.

Having chosen € and m, define

r = max{e!/?* m~1/2} (5.2)

Assume that §y < x/2. Let N be the largest integer such that Nk < 1. Note that
N <1/k <1/6g. In particular, N is bounded by a constant that depends only on € and
m. We will use this information later. By Lemma 5.2, any subinterval of [0, 1] of length
>y intersects R°. Thus, we can find a sequence 0 < t1 < ty < --- < tny < 1 such that
for each i, t; € R° and

|ti — Z'I<6| S (50. (53)

For y,z € Sand i € {1,..., N}, define three sets:

N
Ry, 2) = U{x € S: s(z,y) <t; <min{s(z,2),s(y,z)}},
i=1
N
R (2) = U{(a:,y) € 8% s(x,y) < t; < min{s(x, 2), s(y,2)},

B(z) :={y € S: P(M'(y,2)) > do}-
Finally, let
A:={z: P(B(z)) > do}-
We now prove two lemmas that will be used several times in the sequel.
Lemma 5.3. Let A be the set defined above. Then P(A) < dg.

Proof. By the choice of t;, P®3(R;,) < 5 for every i. Since N < 1/, this gives

N
P®3 (U Rt,.) < 3.

i=1
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Thus

> N P(2)P(B(2))8 > P(A)62,

z€EA

which gives P(A4) < dp. O
Lemma 5.4. If 2 ¢ A, then P®2(R?(2)) < 25.

Proof. By the definition of B(z),

PR (2)) = > PPR'(y,2)+ >, PuPR (y,2))

yeB(2) y&B(z)

< P(B(z)) + do-
On the other hand, since z ¢ A, P(B(z)) < . This completes the proof. O
6. Formation of approximate cliques

In this section we carry out the main step in the proof of Theorem 5.1. We continue
with the notations introduced in the previous section. In particular, P*, &y, R, Ry,
R(y,2), R2(2), B(z), 4, ¢, m, k, N and t1,...,tx remain the same as before.

Take any nonempty set S’ C S\ A. Take any ¢t € {¢1,...,tn}, and put an edge
between x,y € S’ if and only if s(z,y) > t. Let E denote this set of edges, and let G be
the graph (S, E). Let us continue to denote the restriction of P to S’ by P. Note that
this restriction is a measure on S’, but not necessarily a probability measure.

Let p(e, m) and M (e, m) be as in Theorem 4.1. Throughout this section, we will assume
that P(S’) is sufficiently large in comparison to P* so that

P < min{p(e,m), m}ms'). (6.1)

A first consequence of this assumption is that we can apply Theorem 4.1 to get a partition
Vo,...,Vy of S with the required properties. For B', B C S’, let

p(B',B) :=P®*((z,y) € E:x € B,y € B),

so that in the notation of Theorem 4.1,
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p(B', B)

455 = s BBy

We will fix all of the above throughout the rest of this section. The main result of the
section is that G can be slightly modified to make it a disjoint union of cliques. We
arrive at this result in several steps. First, we show that P(V};) is appropriately close to

P(5)/q.

Lemma 6.1. For each 1 <1i<gq,

<

In particular, P(V;) > C(e,m)P(S’), where C(e,m) is a positive real number that depends
only on € and m.

Proof. By construction, |P(V;)—P(V;)| < P*forall1 <4,j < g. Thus, forany 1 <i <g,

2

)
(5") =P (W)

q q
> (%"~ e PO

where the last inequality follows from (6.1). Similarly,

SEE
—

P(Vi) > (Vj) = P7)
= ]P) —

=

P(V;) < ézq:(]P(Vj) +P*) < MQS/) + P*
1 1 )
< (5 4M<e,m>)P(S )

Assume that € < 1/4 (which we can, by our stated convention that e can be taken to be
less than any universal constant). Since ¢ < M (¢, m), this completes the proof. O

Next, we prove two key lemmas. The first one shows that for any regular pair (V;, V;),
d(V;,V;) is either close to zero or close to one.
Lemma 6.2. There exists a number 6* depending only on €, m and P(S’), such that if
do < &%, then the following holds. If (V;,V}) is an e-regular pair, and d(V;, V;) > 3¢, then
dVi,V;) > 1 —2e.



S. Chatterjee, L. Sloman / Advances in Mathematics 376 (2021) 107417 23

Fig. 3. Proof sketch for Lemma 6.2. The solid lines are edges that are known to be present. The dashed lines
are edges that are likely to be present, due to small average hyperbolicity.

The plan of the proof is roughly as follows (see Fig. 3 for a schematic representation).
We will first find some z¢ € V; that connects to a substantial fraction of points in Vj,
where “substantial” means a set of P-measure greater than CeP (V;) for some universal
constant C. Call this set N;(xz¢). By regularity, the edge density between Nj(z¢) and V;
will be substantial. This will allow us to find yo € N;(zo) which connects to a substantial
fraction of points in V;. Call this set N;(yo). Now take any b € N;(yo) and a € N;(zo).
Since x is a neighbor of yg and xg is also a neighbor of a, the small hyperbolicity of S will
allow us to conclude that it is highly likely that a is a neighbor of y4. But if that happens,
then since b is a neighbor of yg and a is also a neighbor of yg, it is highly likely that
b is a neighbor of a. From this, we will conclude that the edge density between Nj(x¢)
and N;(yo) is close to 1. Since these sets have substantial size, regularity of (V;,V;) will
imply that d(V;, V) is close to 1.

Proof of Lemma 6.2. Throughout this proof, C(e,m) denotes any positive real number
that depends only on € and m. The value of C(e, m) may change from line to line. For
x € 5, let N(z) denote the neighborhood of z in G. Let Ni(z) := N(x) NV for each
k. Let V; and V; be as in the statement of the lemma. Since d(V;,V;) > 3¢, we have
p(Vi, V) > 3elP(V;)P(V;), and so there is some zo € V; for which

P(N;(zo)) = 3eP(Vj). (6.2)
By e-regularity,

d(Viij(xO)) > d(Viv Vj) — € 2> 2,

and therefore
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p(Vi, Nj(z0)) = 2eP (Vi)P(N;(z0)). (6.3)
Now notice that

p(Vi, Nj(wo)) = p(Vi, Nj(x0) N B(wo)) + p(Vi, Nj(w0) N B(zo))
< p(Vi, B(xo)) + p(Vi, Nj (o) N B(20)°)
< P(Vi)P(B(xo)) + p(Vi, Nj(x0) N B(x0)°).

Since xo ¢ A, P(B(z)) < dp. Thus

+ p(Vi, Nj(zo) N B(x0)°),

so that by (6.3),

6 C
(26 - m>P(W)P(Nj($O)) < p(Vi, Nj(x0) N B(xo)°). (6.4)

By Lemma 6.1 and the inequality (6.2),
P(N;(z0)) > 3eP(V;) > C(e, m)P(S").
Combining this with (6.4), we get

o
(26 T ClemP ()

If § is sufficiently small (depending on €, m and P(S’)), the quantity in brackets on the
left is bounded below by €, and so there is yo € N;(zo) N B(xp)® such that

)P(Vi)P(Nj(Io)) < p(Vir Ny(z0) N B(ao)°).

P(Ni(yo)) = €P(V5). (6.5)
Recalling (6.2), we see that by e-regularity,
d(Vi, Vj) = d(N; (o), Ni(yo)) — €. (6.6)
The quantity d(N;(xo), Ni(yo)) can be bounded from below as follows:

A(N; (o), V(o)) = 2D € e (z(;)))xf(w?o))) s(a,b) > 1)
X N,

- P®2((a,b) € N;(zo) i(yo): s(a,b),s(a,yo) >1t)
- P(Nj(20))P(Ni(yo)) '
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We wish to show that the right side is close to 1. For that purpose, we write the right
side as (1 — (4))(1 — (7)), where

(Z) =1 P®2((a b) € N; (5170) X N (yO) ( vb)v ( yO) > t)
' P(a € Nj(zo): s(a,yo0) = )P (Ni(yo))
_ P®((a,b) € Nj(xo) x Ni(yo): s(a,b) <t < s(a,y0))
P(a € Nj(zo): s(a,yo) = t)P(Ni(y0))

and
P(a € Nj(zo0): s(a,yo) > 1)
P(N;(zo))

_ P(a € Nj(xo): s(a,yo) <1t)
P (Nj(zo)) '

(19) :=1—

We will now show that (7) and (i¢) are small. (To understand heuristically why they
should be small, recall Fig. 3.) Recalling the definition of ]:2(yy), we see that

R2(yo) D {(a,b) € N;(x0) x Ni(yo): s(a,b) <t < min{s(a,yo), s(b,y0)}}.

But if b € N;(yo), then b is a neighbor of yg in G and so s(b,yo) > t. Thus the above
display can be simplified to

R?(y0) O {(a,b) € Nj(wo) x Ni(yo): s(a,b) <t < s(a,yo)}.

Moreover, recalling that yo € N;(x¢), so that s(zo,yo) > t, and recalling the definition
of Ri(y, 2), it is easy to see that

P(a € Nj(z0): s(a,y0) < t)
<P(a:s(a,y) <t <min{s(a,xo),s(x0,%0)})
< P(R'(yo,20))- (6.7)

Thus,
P(a € Nj(zo): s(a,y0) > t) > P(Nj(0)) — P(R' (y0, 0))-

By (6.2) and (6.5), P(N,(x0)) and P(N;(yo)) are both bounded below by C(e, m)P (S).
Since yg ¢ A, Lemma 5.4 gives

PE2(R% (1)) < 26o.

On the other hand, since yo ¢ B(zo),
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P(%R' (yo, 70)) < do.
Combining all of the above observations, we get

Pm(mz(yo))
(P (Nj(z0)) — P(R(yo, x0))) P (Ni(yo))
< 200
= (Cle,m)P(S") — 60)C(e,m)P(S")"

(1) <

If ¢ is small enough (depending on €, m and P(S’)), the above quantity is smaller than
€/2. For (i1), we re-use (6.7) to get

P(Nj(zo)) ~ Cle,;m)P(S)
Again, this is smaller than €/2 if dy is small enough. Thus,

d(Nj(x0), Ni(yo)) 2 1 = (i) — (i) = 1 — ¢,
and hence by (6.6), d(V;,V;) >1—2e. O

Our second key lemma shows that the property of high density between regular pairs
has a certain transitivity property.

Lemma 6.3. There exists a number §* depending only on €, m and P(S’), such that if
do < 0%, then the following holds. Suppose that (V,, Vi) is an e-regular pair. Suppose that
io, 11, -.,1 are distinct elements of {1,...,q} such that ig = a, ip = b, d(V;;,Vi,,,) >
1—2¢ for each0<j<k—1, and 2 <k <e 2. Then d(Va, V) > 1 = 2e.

The proof of this lemma is intuitively quite simple, given that we already have
Lemma 6.2. The small hyperbolicity ensures that if we have a path in G that is not
too long, then it is likely that the beginning and ending points of the path are connected
by an edge. This allows us to conclude that d(V,, V) is close to 1, as long as k is not too
large. In particular, d(V,, V) > 3e. But then Lemma 6.2 implies that d(V,,V,) > 1 — 2e.

Proof of Lemma 6.3. Take any sequence of points z; € V;,, 0 < j < k, such that for each
0<j<k-—1,s(z;,zjr1) >t, and s(xg, ) < t. Let L be the set of all such sequences
(L is allowed to be empty). Since s(zo,zr) < t, then there is a minimum j such that
s(xo, ;) < t. But s(xg,z1) > ¢. Thus, j > 2, and hence s(zg,z;—1) > t. But we also
know that s(z;_1,z;) > t. Therefore, (xo,2;,2;-1) € R, where R; is the set defined in
(5.1). Since t ¢ R and k < ¢~ '/2] this implies that
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k
> P(zo)---P(xk)gz > P(ao)- - Plaw)

(z0,...,xk)EL z0,...,2 €S,
(z0,25,7j—1)ER:

<kIP>(R)<ﬁ
p— t—\/g'

On the other hand, let B :=V;, x --- x V;,. Then

Z P(xo)---P(zk)

(zo,...,x)EB\L

k-1
SZ Z P(zo) - P(xx) + Z P(xo) - - P(xk)

7=0 (zo ..... Ik)GB (120 ..... azk)GB
s(xj,wj+1)<t S(Jio,alk)zt

k—1
=P<wo>-~-P<v;k>(Z<1—d(v;j, ij+1>>+d<va,v;,>>

=0

<P(Vi,) - P(Vi,)(2ke +d(Va, V2))
< P(va) T IP’(V”)(Q\/E + d(Va7 ‘/b))
But by (6.8),
> P(wo)--Plak)
(zo,...,x)EB\L
= Z P(zo) - P(xx) — Z P(zo) -+ P(a)
(zo,...,x1)EB (zo,...,xK)EL
%

> P(Ve) B(V) =

Combining the last two displays, we get

%

d(Va,Vb) >1- \/g]p(Vl )P(Vzk)

— 2/

27

By Lemma 6.1, this shows that if d is sufficiently small (depending on €, m and P (S")),

then

d(Vaa %) Z 1- 3\/E

But then by Lemma 6.2 (assuming that e is sufficiently small), this gives d(V,,V}) >

1—-2¢. O
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We now begin the main quest of this section, namely, to show that a small fraction of
the edges of G can be modified to transform it into a disjoint union of cliques. Throughout
the rest of this section, we will assume that:

do is so small, depending on €, m and P(S"), that the

conclusions of Lemma 6.2 and Lemma 6.3 hold. (6.9)

First, we define a graph structure on {Vi,...,V,}. We will say that there is an edge
between V; and V; if (V;,V}) is eregular and d(V;, V;) > 1 — 2¢. In this case we will say
that V; and V; are neighbors. A subset N of {V4,...,V,} will be called a “neighborhood”
if there is some V; € N such that all other elements of N are neighbors of V. In this
case we will say that A/ is a neighborhood of V;. Note that N need not contain all the
neighbors of V;. Let 91 be a maximal collection of disjoint neighborhoods such that each
1/4

neighborhood has size > €*/%q. Note that 91 is allowed to be empty, in case there is no

neighborhood of size > €'/4q.

Lemma 6.4. For any distinct N1,Na € N, there is some V; € N1 and V; € Ny such that
(Vi, V) is an e-regular patr.

Proof. Since |[Ni| and |[Ns| are both > €'/4¢, there are at least €'/2¢? pairs (V, V4) such
that V, € M, and V; € Ns. Since the number of irregular pairs is at most eq?, this shows
that at least one of the above pairs must be e-regular. O

Now define a graph structure on 91 as follows. Say that two neighborhoods N1, N2 € M
are connected by an edge if there exist V; € Nj and V; e N, such that V; and V; are
neighbors (in the sense defined above).

Lemma 6.5. Under the graph structure defined above, N is a disjoint union of cliques.

Proof. For distinct N7, N5, N3 € M, we have to show that if A] is a neighbor of N5, and
N3 is a neighbor of N, then N3 is a neighbor of A7. This will imply that 91 is a disjoint
union of cliques.

Accordingly, let V; € N7 and V; € N> be neighbors, and let Vj, € Mo and V; € N
be neighbors. By Lemma 6.4, there is an e-regular pair (V,,V}) such that V, € A7 and
V, € N3. Suppose that A is a neighborhood of V;,, for 4 = 1,2,3. Then the sequence
Vas Vie, Vi, Vi, Vi, Vie, Vi, Vi, Vs, is & path in the graph defined on {V4,. .., V,} (see Fig. 4).
Since (V,, V}) is e-regular, Lemma 6.3 implies that d(V,, V}) > 1 — 2e. In other words, V,
and Vj, are neighbors. Thus, N is a neighbor of V3. O

Take each clique in 91, and take the union of its elements. This yields a new collection
¢ of disjoint subsets of {V4,...,V,}.
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N1 N> N3

Fig. 4. Illustration of the proof of Lemma 6.5. The solid lines are known to be edges in the graph defined on
{Vi,...,V4}. We deduce that the dashed line is also an edge, by invoking Lemma 6.3.

Lemma 6.6. We have |€] < e~ /4,

Proof. Simply note that each C € € has size at least €'/%g, these sets are disjoint, and
their union is a subset of {Vi,...,V,}. Thus, €l /4g < q. O

Lemma 6.7. If V; € Ci and V; € Cy for two distinct elements Ci and Co of €, then V;
and V; are not neighbors. On the other hand, if V;,V; € C for some C € €, then either
(Vi,V}) is an irregular pair, or V; and V; are neighbors. Moreover, in this case even if
(Vi, V) is irregular, there is a path with <6 vertices joining V; and V;.

Proof. If V; € C; and Vj € Cy for two distinct elements C; and C; of €, it follows directly
from the definition of € that V; and V; cannot be neighbors. Next, suppose that V;, V; € C
for some C € €, and (V;,Vj) is eregular. Then either V;,V; € N for some N € N, or
Vi € N7 and V; € N for some N7, N> € N that are neighbors. In the first case, suppose
that AV is a neighborhood of some V,. Then V;, V,, V; is a path, and hence by Lemma 6.3,
V; is a neighbor of V;. In the second case, suppose that N; is a neighborhood of V, and N,
is a neighborhood of V. Since N7 and N5 are neighbors, there exist Vj, € N7 and V; € N3
which are neighbors. Then Vi, V,, Vi, Vi, V4, V; is a path, and hence by Lemma 6.3, V;
and V; are neighbors. This argument also establishes that even if (V;,V}) is an irregular
pair, we can find a path with < 6 vertices joining V; and V;. O

Next, let D be the set of all V; that are not elements of any C € €.

Lemma 6.8. For any V; € D, there are less than €'/*q many V; € D that are neighbors
of V;.
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G o C

Fig. 5. Schematic picture of the components of €’ (where k is the number of components) and the remainder
set D’. The union of the light gray regions is D.

Proof. Suppose that there is some V; € D that has > €'/*¢ neighbors in D. Then there
is a neighborhood N C D of size > €'/4q. But this neighborhood is disjoint from all the
neighborhoods in M. This contradicts the maximality of 9. O

Lemma 6.9. Suppose that V; € D and C € € are such that V; has at least €'/3q neighbors
in C. Then Vi has less than €'/3q neighbors in the union of all members of € other
than C.

Proof. Let S; be the set of all neighbors of V; in C, and let Sz be the set of all neighbors
of V; in the union of all elements of € other than C. By assumption, |S;| > €/3¢. If
also |Sy| > €'/3¢, then there are > €2/3¢? pairs (V;, V) such that V; € Sy and Vj, € Sa.
Therefore at least one such pair (V}, V) must be e-regular. Since V;,V;, V; is a path,
Lemma 6.3 shows that V; and V} are neighbors. But this contradicts the first assertion
of Lemma 6.7. O

For each C € €, let C' be the superset of C consisting of all elements of C and all
elements of D that have > €!/3¢ neighbors in C. Let @ be the set of all such C’. Lemma 6.9
shows for any V; € D, there can be at most one C € € such that V; has > €/3¢ neighbors
in C. Thus, the elements of € are disjoint. Let D’ be the set of all elements of D that do
not belong to any C’. A schematic picture depicting €’ and D’ is given in Fig. 5.

Lemma 6.10. For any C € €, the set C' has the property that any two distinct elements
of C' are either neighbors, or an irreqular pair.

Proof. Take any distinct V;,V; € C’" such that (V;,V}) is an e-regular pair. If they are
both in C, then the assertion is proved by Lemma 6.7.

If V; € C and V; € D, then V; has a neighbor Vj, € C. By Lemma 6.7, there is a path
with < 6 vertices joining Vj and V;. Since V; and V}, are neighbors, we can concatenate V;
at the beginning of this path to get a path with < 7 vertices joining V; and V;. Therefore
by Lemma 6.3, V; and V; are neighbors.
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Lastly, if V; and V; are both in D, then they have neighbors Vj and V; in C. By
Lemma 6.7, there is a path with < 6 vertices joining Vi and V. Since V; and Vj, are
neighbors, and V; and V; are neighbors, we can concatenate V; at the beginning of the
path and V; to the end of the path to get a path with < 8 vertices joining V; and V;.
Therefore by Lemma 6.3, V; and V; are neighbors. O

Call a pair (V;,V;) “bad” if V; and V; are neighbors, but they belong to distinct

elements of @’.

Lemma 6.11. The number of bad pairs is at most 3e/12¢>.

Proof. Let (V;,V;) be a bad pair. We consider several cases. First, by Lemma 6.7, it
cannot be that both V; and V; are in the complement of D.

Next, suppose that V; € D and V; ¢ D. Then V; € C] for some C; € € and V; € Cy
for some Cy # C;. By Lemma 6.9, there are less than €'/3¢ neighbors of V; in Co. By
Lemma 6.6, there are at most e~ /4 choices of Cs. Thus, there are at most e~ */4¢!/3¢ =
€'/12¢ choices of V; for this V;, and therefore at most €'/*2¢? choices of (V;, V;) of this
type.

Finally, suppose that both V;,V; € D. Then by Lemma 6.8, there are less than /g
choices of Vj for each V;. Thus, there are at most €'/*¢? pairs of this type. O

1/12

Lemma 6.12. Any element of D' has at most 2¢'/12q neighbors among {V1,...,V,}.

Proof. Take any V; € D’ and any neighbor V; of V;. Then by Lemma 6.8, there are less
than €'/4¢ choices of V; € D. On the other hand, by definition of D’, V; has less than
€!/3¢ neighbors in each C € €. Thus, by Lemma 6.6, there are at most €'/12¢ choices of
such Vj. Since any neighbor of V; is either in D or in C for some C € €, this completes

the proof. 0O

We finally arrive at the main result of this section, which says that the graph G can
be modified into a disjoint union of cliques by adding and deleting a set of edges that
has small P®2-measure.

Lemma 6.13. Under the assumptions (6.1) and (6.9), the graph G can be modified into
a disjoint union of cliques by adding and deleting edges in such a way that if AE is the
set of all edges that were added or deleted, then

P®2(AE) < C(e'/12 + m™HP(5")?, (6.10)

where C' is a universal constant. Moreover, any non-singleton clique B in the resulting
graph has

P(B) > %el/‘lp(s'). (6.11)
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Proof. Edges are added and deleted in several steps. First, delete all edges with at least
one endpoint in V. Let AE; be the set of deleted edges. Then clearly

PP2(AE;) < 2P(Vo)P(S') < 2P (S5")2.

Next, add all edges between vertices within the same V;, 1 < i < q. Let AFE5 be the set
of all edges added in this step. Then by Lemma 6.1,

P(S/)Z
442

q
P2(AE,) SZ ?<q

_ 9P(9)? <91P’(5’)2
 4q T 4m

In the next step, add all missing edges between any V; and V; that are members of the
same C’ € ¢’. By Lemma 6.10, such pairs are either irregular, or they are neighbors of
each other. In the latter case, the total mass of the missing edges is at most 2P (V;)P(V}).
Thus, if AFEj3 is the set of edges added in this step, then by Lemma 6.1,

P 1\ 2
PE2(AE,) < (eq? + 26q%) > 4(52) < 7eP(S)2.
q

Next, delete all edges between any V; € C{ and V; € Cj where C| # C5. Then (V;,V}) is
either an irregular pair, or (V;,V;) is regular but V; and V; are not neighbors, or (V;,V})
is a bad pair. Thus, if AF, is the set of edges added in this step, then by Lemma 6.2,
Lemma 6.11 and Lemma 6.1,

9P (S’)?
P®3(AEy) < (eq® + 3eq® + 361/12(]2)74((12)
< 16€/12P (872

Finally, delete all edges with at least one vertex in some V; € D’. Let AF5 be the set
of deleted edges. Given V; € D’ and any Vj}, by Lemma 6.12 there are at most 2¢1/12¢
choices of V; such that Vj is a neighbor of V;. The other possibilities are that (V;,V})
is an irregular pair, or (V;,V;) is regular but V; is not a neighbor of V;, or V; = V;.

Therefore by Lemma 6.2 and Lemma 6.1,

9P (S')2
4q?

P®2(AEs) < (eq? + 3eq® + 26Y/12¢% + q)
< (1412 £ 3m~HP(S")2,

This completes the process of adding and deleting edges. If AF is the set of all edges
that were either added or deleted, then the above estimates show that (6.10) holds.
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Let us now verify that the resulting graph is a disjoint union of cliques. For each
C' € @ let V(C') be the union of all V' € C’. In the new graph, each V(C’) is a clique,
and there are no edges between two such cliques. Moreover, any vertex that belongs to
some V; € D’ has no edges incident to it in the new graph. Thus, the new graph is the
disjoint union of the above cliques and a bunch of singleton vertices that are disconnected
from all else. This also shows that any non-singleton clique in the new graph must be
one of the V(C')’s. But for any C’ € ¢/, Lemma 6.1 gives

vec’

P(S") P(S") P(S) 1
T A T i YT Ll G A VSN G A V' .
> |C| 2 C| 2y 2 T, T 3f P(S")

This completes the proof. O
7. Constructing the tree

Let P*, dg, A, ¢, m, kK, N and t1,...,t5y remain as defined in Section 5. We will
now repeatedly apply Lemma 6.13 to extract from S a nested hierarchy of subsets with
desirable properties. The subsets will be constructed in such a way that each subset is
either a singleton, or has P-measure uniformly bounded below by a positive constant
that depends only on € and m. Any such constant will henceforth be denoted by C(e, m).
This will allow us to apply Lemma 6.13 to partition such a non-singleton subset if P* and
dp are small enough, depending only on € and m. We will keep dividing the non-singleton
subsets until we are left with only singletons.

Henceforth, whenever we say “dg and P* are small enough”, we will mean “dg and P*
are smaller than constants depending only on € and m”.

Let S’ = S\ A. By Lemma 5.3, P(S’) > 1/2 if §y is small enough. Define a graph
on S’ as in the beginning of Section 6, using ¢t = ¢;, and obtain a partition of S’ using
Lemma 6.13. Obtain a partition of S by taking this partition of S’ and appending to it
singleton sets consisting of the elements of A. Let V; denote this partition. By (6.11),
any non-singleton element V' € V; does not intersect A and satisfies P(V) > C(e,m).
Thus we can apply Lemma 6.13 to any such V' with t = ¢5, if §g and P* are small enough.
In this manner, we obtain a collection Vs of disjoint sets, each of which is a subset of
some non-singleton element of V;. Then we partition each non-singleton element of Vs by
applying the procedure of Section 6 with ¢ = t3 to obtain V3, and continue this recursive
partitioning until we arrive at Vy. This is possible since N < C(e, m), which, by (6.11),
ensures that the conditions (6.1) and (6.9) are never violated if §p and P* are small
enough.

Having defined Vi, ..., Vy, define Vn41 to be the set of all singleton sets {z} such
that x belongs to some non-singleton member of Vy. Note, in particular, that we are
not applying Lemma 6.13 while partitioning the elements of Vy into singletons. Lastly,
define Vy := {S}.
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Let T be the set of all pairs (i, V') where 0 < i < N+1 and V € V;. This is sort of like
the union of the V;’s, except that we pair each element V' with the corresponding i to
deal with the problem of the same V appearing in two different V;’s (which can happen
if some V is partitioned into just one set in some step). For simplicity, we will refer to
the element (i,V) € T as just V.

We will now define a tree structure on 7. Note that by construction, if an element
V € T belongs to some V;, ¢ > 1, then it has a uniquely defined parent U € V;_;. Putting
edges between such parent-child pairs creates a graph which is obviously a tree. Also, it
is clear that the set of leaves of this tree can be identified with S. Define r := (0, .5) to
be the root of T'.

For each non-singleton node V € V; for 1 <i < N — 1, let AE(V) be the set of edges
of V' that need to be modified while applying Lemma 6.13 to convert V into a disjoint
union of cliques. If V' is a singleton set, let AE(V) be empty. Let AE(S") be the set of
edges that need to be modified while applying Lemma 6.13 to S’. Lastly, let AE(A) be
the set of all pairs (z,y) with at least one of  and y in A. Let AE be the union of all
these sets.

We prove three lemmas in this section. In all of these, we assume that P* and §, are
sufficiently small, depending on € and m, so that Lemma 6.13 can be applied. We will
view the elements of S as the leaves of T, and for any x,y € S, we will denote by (z,y),
the Gromov product of  and y under the graph distance on T', with respect to the base
point 7.

Lemma 7.1. For the set AE defined above, we have
P®2(AE) < Cet/* + Om™Y? + 25,
where C' is a universal constant.

Proof. Note that by Lemma 6.13 and Lemma 5.3,

P®2(AE) < PP2(AE(S")) + Z > POAE(V)) +2P(A)
i=1 Vey;

N—-1
< (2 4 m™) (1@(5’)2 +y ) IP’(V)2> + 280.

=1 Vey;

Since each Vj; is a partition of a subset of S,

S PWV)Y <Y P(V)<SP(S) =1

Vey; Vev;

Therefore, since Nk < 1 by the definition of N, we get
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P®2(AE) < C(e'/12 £+ m™ 1N + 26,
< C(E2 L m Ykt + 26,.

By the definition (5.2) of &, this gives the desired result. O
Lemma 7.2. For any (z,y) ¢ AE such that x # vy,
s(z,y) < ((z,y)r + 1)k + do.

Proof. Let i := (x,y),, so that ¢ is the largest integer such that  and y both belong
to the same member of V;. First, suppose that 1 <i < N — 1 and s(z,y) > t;+1. Let
V be the element of V; that contains x and y. Then while applying Lemma 6.13 to V,
there is an edge between x and y in the original graph, but that edge is deleted in the
modification. Thus, (z,y) € AE(V) C AE, which is not true by assumption. Therefore
s(z,y) must be less than t;.

If ¢ = 0, then also the above deduction holds: If s(x,y) > ¢; and z and y are both in
S’, then by the same logic as above we conclude that (z,y) € AE. On the other hand,
if s(x,y) > t1 and at least one of x and y is outside S’, then (z,y) € AE(A) C AE.

Combining the above observations, and recalling the bound (5.3), we get that if 0 <
1 < N —1, then

S(J?,y) < ti+1 < (Z + 1)%3 + 50
= ((x,y)r + 1)k + do.

If ¢ = N, then note that since (N + 1)k > 1 (by the definition of N),
s(z,y) <1< (N4 1Dk = ((2,y)r + 15
Finally, note that since x # y, we cannot have i = N +1. O

Lemma 7.3. For any (z,y) ¢ AE such that x # y,

S($,y) 2 (37, y)r“ - 50~

Proof. As in the proof of Lemma 7.2, let ¢ := (x, y),, and note that since x # y, we must
have 0 <14 < N. First, suppose that 2 <i < N and s(z,y) < t;. We know that x and y
are both in some V € V;. Let U € V;_; be the parent of V' in T. Then while applying
Lemma 6.13 to U, (z,y) is not an edge in the original graph, but since x and y both
belong to V, (x,y) must be an edge in the modified graph. Thus, (x,y) € AE(U) C AE,
which is false by assumption. Consequently, s(z,y) > t;.

If i = 1 and s(z,y) < t1, then either z and y are both in S, in which case the same
argument shows that (z,y) € AE(S") C AE, or at least one of z and y is in A, in which
case (z,y) € AE(A) C AE.



36 S. Chatterjee, L. Sloman / Advances in Mathematics 376 (2021) 107417

Combining, and applying (5.3), we get that if 1 <i < N, then
s(x,y) > t; > ik — d = (z,y)rk — do.

Lastly, if ¢ = 0, note that the inequality is automatic since (z,y), = 0. This completes
the proof of the lemma. 0O

8. Completing the proof of Theorem 5.1

Take any n > 0. We have to prove the existence of a v > 0, depending only on 7,
such that if P* < v and Hyp(S, F,P,s) <+, then Tree(S, F,P,s) < n. To do this, first
choose € so small and m so large that

Cet/2 4 Om~1/2 < n
— 47
where C' is the universal constant from Lemma 7.1, and also
k= max{e'/?* m1/?2} < Z

Let 6 := Hyp(S, F,P,s), and let &y := 6'/8. If P* and §y are small enough (depending
on € and m), then the method of Section 7 yields AE and T satisfying the conclusions of
Lemmas 7.1, 7.2 and 7.3. Recall also that 0 < s(z,y) <1and 0 < (z,y),k < (N+1)x <
1+ « for all x and y. Consequently, if X and Y are i.i.d. draws from P, then

E[s(X,Y) — (X,Y),k| <5+ 6 + (1 + &) (P*(AE) + P(X =Y))

n n\(n .
<X 1+ 2 ) (2426 + P ).
_4+60+<+4><4+ do + )

This shows that if P* and Hyp(S,F,P,s) are small enough, depending on 7, then
Tree(S, F,P,s) <n.

9. From Theorem 5.1 to Theorem 2.4

In this section we prove Theorem 2.4 using Theorem 5.1. Initially, let us continue
working under the assumption that S is finite and F is the power set of S. Take any € > 0.
Then by Theorem 5.1, there is some § > 0 such that if P* < § and Hyp(S, F,P,s) < 9§,
then Tree(S, F, P, s) < e. Suppose that P* > §. Then we first create a new system where
this violation does not happen. Take each x € S divide it up into k(z) vertices, where
k(x) is chosen so large that P(x)/k(z) < 6. Let S’ be the new set of vertices, consisting
of k(z) copies of each x € S. Let f be a map from S’ into S that takes any copy of x € S
to z, so that | f~1(z)| = k(x). Define a probability measure P’ on S’ as
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The probability measure P’ can be described in words as follows. Drawing a vertex from
P’ is the same as first picking a vertex from P, and then choosing one of its copies in S’
uniformly at random. Note that if Y ~ P’  then f(Y) ~ P.

Define also a similarity function s’ on S’ as

s'(y,2) = s(f(y), f(2)).
Then by the observations from the previous paragraph, it follows that
Hyp(S', 7', P’, s') = Hyp(S, F, P, s),

where F' is the power set of S’. On the other hand max,csP’(y) < ¢ by construction.
Thus, by Theorem 5.1,

Tree(S’, F',P',s') < e.

Consequently, there exists a tree T” that is compatible with S’ (in the sense of Defini-
tion 2.2), with root r, and a number « such that

E|s'(Y,Z2) —a(Y,Z),| <, (9.1)

where Y and Z are i.i.d. draws from P’, and (Y, Z),. is the Gromov product of Y and Z
under the graph distance on 7", with respect to the base point 7.

Now, for each = € S, let Y (z) be a vertex chosen uniformly at random from f~1(z).
Modify the tree 77 by deleting all leaves other than the Y'(z)’s, and also deleting the
edges joining these leaves to their parents. The resulting graph is still a tree, and its
leaves are in one-to-one correspondence with the set S. Thus we can relabel its leaves to
define a tree T with set of leaves S and root 7.

Let X; and X5 be i.i.d. draws from P, independent of 7. Then Y (X1) and Y (X,) are
i.i.d. draws from P’, and hence by (9.1),

E|s'(Y(X1),Y(X2)) — a(Y(X1),Y(X2)),| <e.
But s/ (Y (X1),Y (X5)) = s(X1, X3), and by our definition of T,

dr (Y (X1),Y(X2)) = du(X1, Xa),
dT’(Y(Xl)a T) = dT(ler)’ dT’(Y(X2)a 7’) = dT(X%T)'

Therefore (Y(X1),Y(Xs)), = (X1, X2),, where the Gromov product on the left is on
the tree T”, and the Gromov product on the right is on the tree 7. This gives
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]E|S(X1,X2) — a(Xl,Xg),«| < €,

where the expectation is now taken over X, X, and T. Since T is independent of X,
and Xs, this proves the existence of a tree T' with set of leaves S and root r, such that

]E|S(X1,X2) — Oé(Xl,Xg)r| < €.

Thus, we may conclude that Tree(S, F,P,s) < e. This completes the proof of Theo-
rem 2.4 under the assumptions that S is finite and F is the power set of S.

Let us now consider general (S, F,P,s), where F is countably generated. Take any
€ > 0. The case of finite S gives a § corresponding to €/2. Take this §, and suppose that

Hyp(S,F.,P,s) < g (9.2)

We will show that in the general case, this implies Tree(S, F, P, s) < e.

Let {A1, Aa, ...} be a set of generators of F. For each n, let P,, be the partition of S
generated by A1, ..., A,. Let P2 be the set of all sets of the form A x B where A, B € P,,.
Let G,, be the set of subsets of S? that are unions of elements of 732. Define

It is not difficult to show that G is an algebra of sets that generates the o-algebra F x F
on S2. Now take any k > 1. For 0 < j <k, let

B, = {(x,y) € §*: j/k < s(x,y) < (j + )/k}.

By the measurability of s, B; € F x F. Therefore by a basic result of measure theory,
given any 1 > 0 there exists B; € G such that P®? (BjAB;-) < 7. Define

k
D:= | B;AB;,
j=0

so that P®2(D) < (k + 1)n.

Since G, is an increasing sequence, there is some large enough n such that B;» € Gy
for all j. Define a function 5: S — [0,1] as 5(z,y) = j/k where j is a smallest number
such that (z,y) € Bj. If there is no such j, let 5(z,y) = 0. Since each Bj is a union of
members of P2, it follows that $ is constant on each element of P2.

Now suppose that s(z,y) = j/k, but (z,y) ¢ B;. Then there are two possibilities:
(a) (z,y) € Bj. Then clearly, (z,y) € D. (b) (z,y) ¢ Bj. In this case, j must be
zero and (x,y) must not belong to any B. But (z,y) € B; for some i. Thus again,
(x,y) € D.
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On the other hand, suppose that (x,y) € B; but s(z,y) # j/k. Again, this implies
that either (x,y) is not in any Bj, or (z,y) € B] for some i # j. In the first case, we
clearly have (z,y) € D. In the second, (z,y) ¢ B; and hence (z,y) € D.

Combining the observations of the last two paragraphs, we see that if |s(x,y) —
s(z,y)| > 1/k, then (x,y) € D. Thus, if X and Y are i.i.d. draws from P, then

E[5(X,Y) - s(X,Y)| < % +P®*(D) < — + (k+ 1)n. (9.3)

1
k
Now recall the assumption (9.2) and the fact that ¢ is a function of e. Therefore, the
above display shows that by choosing & large enough (depending on €), and then choosing
1 small enough (depending on k and €), we can ensure that

Hyp(S, F,P,3) < 6.

Now let X be the element of P, that contains X and let Y be the element of Pn
that contains Y. Since P, is a finite set, we can endow it with its power set o-algebra

" (which identifies with G,), and may consider X and Y to be Pp-valued random
vamableb Then X and Y are i.i.d. random variables with law IP’ where P identifies with
the restriction of P to G,,. Since s is constant on elements of 73721, we can naturally view
$ as a function on P, x P,. Lastly, observe that E(f( Y) = 3(X,Y). Combining all of
these observations, we get

Hyp(Pn’2’Pn7@7,§) = Hyp(S,]‘-,P7§) < 0.
Since P,, has finite cardinality, this implies that

Tree(Pn,ZP”,ﬁ,g) < %

In particular, there is a tree T with root 7 that is compatible with (P,,277), and a
number « > 0, such that

E3(X,Y) - o(X,V),| < % (9.4)

where ()? , }N/)r is the Gromov product of X and Y under the graph distance on 7', with
respect to the base point r. Let us now extend the tree T by appending S to the set of
nodes, and adding an edge between each = € S and the element of P,, that contains x.
Call the new tree T. Then S is the set of leaves of T. The set T'\ S is just T, which is
finite. Lastly, for any v € T'\ S, the set of leaves that are descendants of v is a union of
elements of P, and therefore measurable. Thus, T is compatible with (.S, F).

Next, note that (X,Y), = (X,Y),, because if dp is the graph distance on T, then
dr(X,r) = dsx ( ,7) + 1, dr(Y,r) = dT(Y,r) +1, and dr(X,Y) = dT(X,Y) + 2. Also,
we know that S(X ) =3(X,Y). Therefore by (9.4),
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E5(X,Y) - a(X,Y),| < %

Invoking (9.3), this shows that if &k is chosen large enough (depending on ¢€), and then 7
is chosen small enough (depending on k and €), we can ensure that

Els(X,Y) —a(X,Y),| <e.
Consequently, Tree(S, F, P, s) < €, completing the proof of Theorem 2.4.

10. Proof of Theorem 3.1

Take any strictly increasing continuous function p : R — [0,00), and define the
similarity function

sn(0,0%) == p(f(R12)).

1

If three configurations o', o2 and o2 satisfy

J(Ry2) > min{f(Ry3), f(R23)} —

for some ¢ > 0, then by the monotonicity and uniform continuity of p on the range of f,

p(f(R12)) > p(min{ f(R13), f(R23)} —¢€)
> p(min{f(R13), f(R2,3)}) — d(e)
= min{p(f(R1,2)), p(f(R1,3))} — (e),

where (¢) — 0 as ¢ — 0. From this and the boundedness of p on the range of f, we see
that if (3.2) holds, then

lim E((min{p(f(R13)), p(f(R23))} — p(f(R12)))+) = 0.

n—roo

Consequently, Hyp(X,,, Fn, thn, Sn) — 0 in probability as n — oo, where F,, is the power
set of ¥, if ¥, = {—1,1}" and the Borel o-algebra of ¥, if ¥, = /nS"~!. Thus,
Theorem 2.4 implies that

Tree(X,,, Fn, lin, Sn) — 0 in probability as n — oo.

Therefore, there are sequences €, and J, tending to zero as n — oo, such that the
following holds. With probability at least 1 — ¢, there exists a tree T,, with root r,,
that is compatible with (X,,, F,,) in the sense of Definition 2.2, and a number a,, > 0,
satisfying

<|/J R12 _an(o'lvo-Q)rnD S 5717
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where (01, 02),., is the Gromov product under graph distance on the tree T},, with respect
to the base point 7.

By the remark immediately below Definition 2.2, the nodes of T, give a hierarchical
clustering of ¥,, into measurable clusters. For each node «, let g, := p_l(anda), where
d,, is the length of path from 7, to a. If v is the smallest cluster containing o' and o2,
then (0',0%),, = d,. Therefore if p(f(R12)) ~ an(o',0?),,, then f(R12) ~ go. This
completes the proof.
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