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On Nearly Assumption-Free Tests
of Nominal Confidence Interval
Coverage for Causal Parameters
Estimated by Machine Learning1
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Abstract. For many causal effect parameters of interest, doubly robust ma-
chine learning (DRML) estimators ψ̂1 are the state-of-the-art, incorporating
the good prediction performance of machine learning; the decreased bias of
doubly robust estimators; and the analytic tractability and bias reduction of
sample splitting with cross-fitting. Nonetheless, even in the absence of con-
founding by unmeasured factors, the nominal (1 − α) Wald confidence in-
terval ψ̂1 ± zα/2ŝ.e.[ψ̂1] may still undercover even in large samples, because

the bias of ψ̂1 may be of the same or even larger order than its standard error
of order n−1/2.

In this paper, we introduce essentially assumption-free tests that (i) can
falsify the null hypothesis that the bias of ψ̂1 is of smaller order than its
standard error, (ii) can provide a upper confidence bound on the true cover-
age of the Wald interval, and (iii) are valid under the null under no smooth-
ness/sparsity assumptions on the nuisance parameters. The tests, which we
refer to as Assumption Free Empirical Coverage Tests (AFECTs), are based
on a U-statistic that estimates part of the bias of ψ̂1.

Our claims need to be tempered in several important ways. First no test,
including ours, of the null hypothesis that the ratio of the bias to its standard
error is smaller than some threshold δ can be consistent [without additional
assumptions (e.g., smoothness or sparsity) that may be incorrect]. Second,
the above claims only apply to certain parameters in a particular class. For
most of the others, our results are unavoidably less sharp. In particular, for
these parameters, we cannot directly test whether the nominal Wald interval
ψ̂1 ±zα/2ŝ.e.[ψ̂1] undercovers. However, we can often test the validity of the
smoothness and/or sparsity assumptions used by an analyst to justify a claim
that the reported Wald interval’s actual coverage is no less than nominal.
Third, in the main text, with the exception of the simulation study in Sec-
tion 1, we assume we are in the semisupervised data setting (wherein there is
a much larger dataset with information only on the covariates), allowing us to
regard the covariance matrix of the covariates as known. In the simulation in
Section 1, we consider the setting in which estimation of the covariance ma-
trix is required. In the simulation, we used a data adaptive estimator which
performs very well in our simulations, but the estimator’s theoretical sam-
pling behavior remains unknown.

Key words and phrases: Causal inference, assumption-free, valid inference,
U-statistics, higher-order influence functions.
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1. INTRODUCTION AND MOTIVATION

Valid inference (i.e., valid confidence intervals) for
causal effects is of importance in many subject matter
areas. For example, in medicine it is critical to evaluate
whether a nonnull treatment effect estimate could differ
from zero simply because of sampling variability and,
conversely, whether a null treatment effect estimate is
compatible with a clinically important effect.

In observational studies, control of confounding is nec-
essary for valid inference. Historically, and assuming no
confounding by unmeasured covariates, two statistical ap-
proaches have been used to control confounding by po-
tential measured confounders, both of which require the
building of noncausal purely predictive algorithms:

• One approach builds an algorithm to predict the con-
ditional mean b(x) of the outcome of interest given
data on potential confounders and (sometimes) treat-
ment (referred to as the outcome regression);

• The other approach builds an algorithm to predict the
conditional probability p(x) of treatment given data
on potential confounders (referred to as the propensity
score).

The validity of a nominal (1 − α) Wald confidence in-
terval (CI) ψ̂1 ± zα/2ŝ.e.(ψ̂1)

2 for a parameter ψ of in-

terest centered at a particular estimator ψ̂1 quite generally
requires that the bias of ψ̂1 is much less than than its es-
timated standard error ŝ.e.(ψ̂1). A nominal (1 − α) con-
fidence interval is said to be valid if the actual coverage
rate under repeated sampling is no smaller than (1 − α).
Under either of the above approaches, obtaining estima-
tors with small bias generally depends on good perfor-
mance of the corresponding prediction algorithm. This
has motivated the application of modern machine learn-
ing (ML) methods to these prediction problems for the
following reason. When the vector of potential confound-
ing factors is high-dimensional, as is now standard ow-
ing to the “big data revolution,” it has become noted that,
so-called machine learning algorithms (e.g., neural nets
(Krizhevsky, Sutskever and Hinton, 2012), support vec-
tor machines (Cortes and Vapnik, 1995), boosting (Freund
and Schapire, 1997), regression trees and random forests
(Breiman, 2001), etc., especially when combined with
cross-validation) can often do a much better job of pre-
diction than traditional parametric or nonparametric ap-
proaches (e.g., kernel or series regression). However, even
the best machine learning methods may fail to give predic-
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tions that are sufficiently accurate to provide nearly unbi-
ased causal effect estimates, and thus, may fail to control
bias due to confounding.

To partially guard against this possibility, so-called
doubly robust machine learning (DRML) (Chernozhukov
et al., 2018) estimators have been developed that can
be nearly unbiased for the causal effect ψ , even when
both of the above approaches fail. DRML estimators em-
ploy ML estimators of both the outcome regression b(x)

and the propensity score p(x). DRML estimators are the
state-of-the-art for estimation of causal effects, combin-
ing the benefits of sample splitting, machine learning and
double robustness (Scharfstein, Rotnitzky and Robins,
1999a, 1999b, Robins and Rotnitzky, 2001, Bang and
Robins, 2005). By sample splitting, we mean that the data
is randomly divided into two (or more) samples— the es-
timation sample and the training sample. The ML esti-
mators b̂(x) and p̂(x) of b(x) and p(x) are fit using the
training sample data. The estimator ψ̂1 of our causal pa-
rameter ψ is computed from the estimation sample treat-
ing the ML estimators as fixed functions. This approach is
required because the ML estimates of the regression func-
tions generally have unknown statistical properties and,
in particular, may not lie in a so-called Donsker class—
a condition often needed for valid inference when sample
splitting is not employed. Under conditions given in The-
orem 1.4, the efficiency lost due to sample splitting can
be recovered by cross-fitting. The cross-fitting estimator
ψ̂cf,1 averages ψ̂1 with its “twin” obtained by exchang-
ing the roles of the estimation and training sample. In the
semiparametric statistics literature, the possibility of us-
ing sample-splitting with cross-fitting to avoid imposing
Donsker conditions has a long history (Schick, 1986, van
der Vaart, 1998, p. 391), although the idea of explicitly
combining cross-fitting with ML was not emphasized un-
til recently. Ayyagari (2010) Ph.D. thesis (subsequently
published as Robins et al. (2013)) and Zheng and van der
Laan (2011) are early examples that emphasized the theo-
retical and finite sample advantages of DRML estimators.

However, even the use of DRML estimators is not guar-
anteed to provide valid inferences owing to the possibility
that the two ML prediction algorithms are not sufficiently
accurate for the bias to be small compared to the standard
error. In particular, if the bias of the DRML estimator is of
the same (or greater) order than its standard error, the ac-
tual coverage of nominal (1 − α) CIs for the causal effect
will be smaller (and often much smaller) than the nominal
level, thereby producing misleading inferences.

Suppose an author publishes a paper with a nominal
(1−α) Wald CI ψ̂cf,1 ±zα/2ŝ.e.(ψ̂cf,1) for a parameter ψ .
The previous discussion leads to the following question.
Can α†-level tests be developed that have the ability to
falsify whether the bias of the DRML estimator ψ̂1 or
ψ̂cf,1 is of the same or greater order than its standard er-
ror? In particular, can we provide an upper confidence
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bound on the actual coverage of a nominal (1 − α) CI
ψ̂cf,1 ± zα/2ŝ.e.(ψ̂cf,1)? If so, when such excess bias is

detected, can we construct new estimators ψ̂2 that are less
biased? Furthermore, is it possible to construct such tests
and estimators without: (i) refitting, modifying or even
having knowledge of the ML algorithms that have been
employed and (ii) without making any assumptions about
the smoothness or sparsity of the true outcome regression
b(x) or propensity score function p(x)?

Throughout, we assume that we have been given access
to the data set used to obtain both the estimate ψ̂1 and
the estimated regression functions outputted by some ML
prediction algorithms. We do not require any knowledge
of or access to the ML algorithms used, other than the
functions b̂(x) and p̂(x) that they outputted.

In this paper, we show that, perhaps surprisingly,
for parameters in a certain class, the monotone bias

class defined in Definition 2.2 of Section 2, the an-
swer to these questions is “yes” by using higher-order
influence function tests and estimators (Robins et al.,
2008, 2017, Mukherjee, Newey and Robins, 2017). We re-
fer to such tests as Assumption-Free Empirical Coverage
Tests (AFECTs). For parameters not in the monotone bias

class, we cannot test whether the bias of ψ̂1 is small com-
pared to its standard error. The best we can do is to empir-
ically test the author’s justification for the claim that his
intervals are valid. In general, a data analyst who reports
the interval ψ̂cf,1 ± zα/2ŝ.e.(ψ̂cf,1) justifies its validity by
(i) imposing restrictive assumptions on the complexities
of b and p (in terms of smoothness or sparsity) and then
(ii) appealing to theorems that guarantee the asymptotic
validity of the Wald CI under these assumptions. How-
ever, these assumptions may be incorrect. We show that
we can often construct AFECTs that can falsify the com-
plexity reducing assumptions on b and p.

To make the above more concrete, we describe our ap-
proach at a high level. Throughout, we let A denote the
treatment indicator, Y a bounded outcome of interest, and
X the vector of potential confounders with compact sup-
port. Let ψ̂1 and ψ̂1 ± zα/2ŝ.e.(ψ̂1) denote a DRML es-
timator of and associated (1 − α) Wald CI for a particu-
lar parameter ψ . In this paper, for didactic purposes only,
we will choose ψ to be (components) of the so-called
variance-weighted average treatment effect (ATE) of a bi-
nary treatment A on Y given a vector X of confound-
ing variables. Specifically, these components are the ex-
pected conditional variance E[var(A|X)] of A given X

and the expected conditional covariance E[cov(A,Y |X)]
of A and Y given X, with the variance weighted ATE be-
ing E[cov(A,Y |X)]/E[var(A|X)]. We chose the variance
weighted ATE precisely because E[var(A|X)] is in the
monotone bias class but E[cov(A,Y |X)] is not, thereby
allowing us to highlight the critical difference between
these classes. The methods developed herein can be ap-
plied essentially unchanged to many other causal effect
parameters (e.g., the average treatment effect and the ef-

fect of treatment on the treated) regardless of the state
spaces of A and Y , as well as to many noncausal parame-
ters.

Even for the parameter E[var(A|X)], as explained in
Remark 1.2, there is an unavoidable limitation to what
can be achieved with our or any other method: No test,
including ours, of the null hypothesis that the bias of a
DRML estimator is negligible compared to its standard
error can be consistent [without making additional, pos-
sibly incorrect, complexity reducing assumptions on b(x)

and p(x)]. Thus, when our α†-level test rejects the null for
α† small, we can have strong evidence that the estimators
ψ̂1 and ψ̂cf,1 have bias at least the order of its standard er-
ror; nonetheless, when the test does not reject, we cannot
conclude that there is good evidence that the bias is less
than the standard error, no matter how large the sample
size. In fact, in the absence of complexity reducing as-
sumptions, no consistent estimator of E[var(A|X)] exists;
hence we can never empirically rule out that the bias of ψ̂1

and ψ̂cf,1 is as large as order 1, and thus n1/2 times greater
than ŝ.e.(ψ̂1)! Put another way, because we make essen-
tially no assumptions, no methodology can (nontrivially)
upper bound the bias of any estimator or lower bound the
coverage of any confidence interval.

In this paper, we are adopting a skeptic’s stance, which
is illuminated by comparing two social norms. The first
is the social norm most of our parents taught us and the
second is the skeptic’s social norm.

• Parental Social Norm: If You Don’t Have Anything
Positive to Contribute, Don’t Go Criticizing Others.

• Skeptic’s Social Norm: Not Having Anything Positive
to Contribute Does Not Relieve You of Your Duty to
Criticize What Others Say.

As we saw above, because we do not impose complex-
ity reducing assumptions on b and p, we have nothing to
contribute if we follow parental social norms. However,
in this paper, we adopt the skeptic’s social norms and crit-
icize, where possible, an author who reports a state of the
art (1 −α) Wald CI ψ̂cf,1 ± zα/2ŝ.e.(ψ̂cf,1) as valid. How-
ever, our critique will have to be stronger than simply in-
forming the author that one can prove (when possible) that
his interval will not be valid if his complexity-reducing
assumptions are incorrect, as he will likely respond that
he believes his assumptions to be reasonable and likely
true under the law actually generating the data. Instead,
for parameters in the monotone bias class, we will em-
ploy AFECTs to prove to the author that his Wald CI is
invalid.

For other parameters such as the E[cov(A,Y |X)], we
can only falsify the validity of the author’s Wald interval
under the so-called faithfulness assumption given in Sec-
tion 4.1. Heuristically, faithfulness is the assumption that
near perfect cancelling of the nonnegligible bias of two
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separate components of the bias of ψ̂cf,1 (one estimable
and the other not) to give near zero total bias will essen-
tially never occur.

If we do not assume faithfulness, we must consider the
less ambitious goal of demonstrating to the author, when
possible, that his complexity reducing assumptions are in-
correct [without being able to ever empirically prove that
the bias of his estimator is of the order of its standard er-
ror or greater]. If successfully achieved, the author would
then have to admit that he can no longer justify his ear-
lier claim of validity for his state-of-the-art confidence in-
terval. The approach described here is one of being “in
dialogue with current practices and practitioners.” This is
not surprising, as it is the justifications of the practitioners
that the skeptic is critiquing.

To be concrete, suppose, as is often the case, an au-
thor justifies the validity of ψ̂1 ± zα/2ŝ.e.(ψ̂1), and thus

its cross-fit version ψ̂cf,1 ±zα/2ŝ.e.(ψ̂cf,1) by (i) first prov-
ing that, under his complexity reducing assumptions, the
Cauchy–Schwarz (CS) bias functional

CSBias(ψ̂1) =
{
E

[(
b̂(X) − b(X)

)2]}1/2

×
{
E

[(
p̂(X) − p(X)

)2]}1/2

is o(n−1/2),3 conditional on the training sample4 (and
thus also on the functions b̂, p̂ computed from the train-
ing sample) and (ii) then noting the CS bias upper bounds
the absolute conditional bias

∣∣E
[(

b̂(X) − b(X)
)(

p̂(X) − p(X)
)]∣∣

of ψ̂1 for ψ(θ) = Eθ [covθ (A,Y |X)]. It then follows if
we can empirically show that CSBias(ψ̂1) exceeds some
given multiple δ > 0, for example, δ = 0.75, times ψ̂1’s
conditional standard error of order n−1/2, then we have
falsified the analysts’ justification of the claim that his
nominal (1 − α) Wald CIs are valid.

To this end, we shall construct α†-level AFECTs of the
null hypothesis CSBias(ψ̂1) < s.e.(ψ̂1)δ, which can be
done because, as we shall see, the CSBias(ψ̂1) parameter
is in the monotone bias class.

We now describe our AFECT tests and related estima-
tors at a high level. DRML estimators are based on the
first-order influence function of the parameter ψ (van der
Vaart, 1998). Our proposed approach begins by comput-
ing a second-order influence function estimator ÎF22,k of
the estimable part of the conditional bias E[ψ̂1 −ψ] of ψ̂1

given the training sample data. The bias corrected estima-
tor is ψ̂2,k ≡ ψ̂1 − ÎF22,k , where ÎF22,k is a second-order

3Here, the asymptotic statement would be in probability had we not
treated the training sample as fixed.

4In this paper, essentially all expectations and probabilities are to be
understood as conditioning on the training sample. Hence we can and
do omit this conditioning event in our notation.

U-statistic that depends on a choice of k (with k = o(n2)

for reasons explained in Remark 2.9), a vector of basis
functions Z̄k ≡ z̄k(X) ≡ (z1(X), . . . , zk(X))⊤ of X and
an estimator �̂−1

k of the inverse expected outer product

�−1
k := {E[z̄k(X)z̄k(X)⊤]}−1. Both ψ̂2,k and ÎF22,k will

be asymptotically normal when, as in our asymptotic set-
up, k → ∞ and k = o(n2) as n → ∞. (If k did not in-
crease with n, the asymptotic distribution of ÎF22,k would
be the so-called Gaussian chaos distribution (Rubin and
Vitale, 1980).)

The degree of the bias corrected by ÎF22,k depends crit-
ically on (i) the choice of k, (ii) the accuracy of the es-
timator �̂−1

k of �−1
k when �−1

k is unknown (see Sec-
tion S3), and (iii) the particular k-vector of (basis) func-
tions Z̄k ≡ z̄k(X) selected from a much larger, possibly
countably infinite, dictionary of candidate functions.

One sometimes has X-semisupervised data available;
that is, a data set in which the number N of subjects
with complete data on (A,Y,X) is many fold less than
the number of subjects on whom only data on the covari-
ates X are available. In that case, assuming the subjects
with complete data are effectively a random sample of
all subjects, we can estimate �k by the empirical covari-
ance matrix from subjects with incomplete data; and then
treat �−1

k as known in an analysis based on the N subjects
with complete data (Chapelle, Schölkopf and Zien, 2010,
Chakrabortty and Cai, 2018). Since, for the most of
the paper we assume access to semisupervised data, we
will omit the notational dependence on �−1

k and denote

ÎF22,k(�
−1
k ) and ψ̂2,k(�

−1
k ) by ÎF22,k and ψ̂2,k . However,

we write ÎF22,k(�̂
−1
k ) and ψ̂2,k(�̂

−1
k ) when an estimator

�̂−1
k is substituted for �−1

k . In the simulations below, we

use a particular data-adaptive estimator �̂−1
k , described

in the Appendix. Both ÎF22,k(�̂
−1
k ) and ψ̂2,k(�̂

−1
k ) per-

formed very well in our simulations; nonetheless, in con-
trast to ÎF22,k and ψ̂2,k , we, as yet, lack a theoretical un-
derstanding of their statistical behavior. Consequently, we
have relegated the definition and discussion of the esti-
mators ÎF22,k(�̂

−1
k ) and ψ̂2,k(�̂

−1
k ) to the Appendix and

the Supplementary Material (Liu, Mukherjee and Robins,
2020), as requested by a referee.

For further motivation, we now summarize the results
from one of the simulation studies that are described in
detail in Section S9. We simulated 100 estimation sam-
ples each with sample size n = 5000. The same training
sample, also of size 5000, and thus the same estimates of
the nuisance regression functions were used in each sim-
ulation. Thus the results are conditional on that training
sample. The dimension d of X is chosen to be 2 in order
to allow estimation of the nuisance functions by kernel
regression (with bandwidth selected by cross validation)
in a timely fashion. We let ψ = E[var(A|X)]. We took k

to be less than n for the following three reasons: k < n

is necessary (i) for CIs centered at ψ̂2,k ≡ ψ̂1 − ÎF22,k to
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have length approximately equal to CIs centered at ψ̂1,
(ii) for s.e.(ÎF22,k) to be of order smaller than or equal to
the order n−1/2 of the standard error of ψ̂1, thereby cre-
ating the possibility of detecting that the ratio of the bias
of ψ̂1 to its standard error exceeds a constant δ, if n is
sufficiently large and (iii) to be able to estimate �−1

k ac-
curately without imposing the additional (possibly incor-
rect) smoothness or sparsity assumptions on the marginal
density fX . Thus we were able to use quite nonsmooth
densities fX in simulations; see Section S9.

In simulation studies, we chose a data generating pro-
cess for which the minimax rates of estimation were
known, in order to be able to better evaluate the prop-
erties of our proposed procedures. Specifically, both the
true propensity score and outcome regression functions
in our simulation studies were chosen to lie in particular
Hölder smoothness classes chosen to ensure that ψ̂1 had
significant asymptotic bias. We estimated these regression
functions using nonparametric kernel regression estima-
tors that are known to obtain the minimax optimal rate
of convergence for these smoothness classes (Tsybakov,
2009), thereby guaranteeing that ψ̂1 performed close to
as well as any other DRML estimator. [Out of interest, in
Section S9, we also report simulation results when the re-

gression functions are estimated by neural networks.] The
basis functions z̄k(x) were chosen to be particular Cohen–
Vial–Daubechies wavelets that Robins et al. (2009, 2017)
showed to be minimax optimal for estimation of ψ by
ψ̂2,k for the chosen smoothness classes. In summary, we
used optimal versions of ψ̂1 and ψ̂2,k to ensure a fair com-
parison.

Table 1 reports results from this simulation study.
We examined the empirical behavior of our data adap-
tive estimator as k varies by comparing the estimators
ÎF22,k(�̂

−1
k ) and ψ̂2,k(�̂

−1
k ) that use �̂−1

k to the oracle

estimators ÎF22,k and ψ̂2,k that use the true inverse co-
variance matrix �−1

k (see the Appendix and Section S3).
The target parameter ψ of this simulation study is the ex-
pected conditional variance of A given X. Simulation re-
sults for the expected conditional covariance were similar
and are reported in Section S9.

Note the unmodified estimator ψ̂1 is included as the first
row of Table 1 as, by definition, it equals ψ̂2,k for k = 0.
Also by definition, ÎF22,k=0 and ÎF22,k=0(�̂

−1
k ) are zero.

As seen in row 1, column 2 of Table 1, nominal 90% Wald
CIs centered at ψ̂1 = ψ̂2,k=0 had empirical coverage of
0% in 100 simulations. However, as seen in column 2 of
both the upper and lower panels of the last row, 90% Wald

TABLE 1
A simulation result

MC coverage

k ÎF22,k (ψ̂2,k 90% Wald CI) Bias(ψ̂2,k) χ̂k(�
−1
k ; z0.10, δ = 0.75(1.5))

0 0 (0) 0% 0.229 (0.0161) 0% (0%)
64 0.0457 (0.00782) 0% 0.183 (0.0144) 99% (44%)

128 0.0484 (0.00831) 0% 0.180 (0.0145) 100% (54%)
256 0.125 (0.0144) 0% 0.103 (0.0114) 100% (100%)
512 0.127 (0.0147) 0% 0.101 (0.0122) 100% (100%)

1024 0.129 (0.0172) 0% 0.100 (0.0147) 100% (100%)
2048 0.161 (0.0238) 4% 0.0672 (0.0191) 100% (100%)
4096 0.180 (0.0271) 46% 0.0483 (0.0259) 100% (100%)

MC coverage

k ÎF22,k(�̂
−1
k ) (ψ̂2,k(�̂

−1
k ) 90% Wald CI) Bias(ψ̂2,k(�̂

−1
k )) χ̂k(�̂

−1
k ; z0.10, δ = 0.75(1.5))

0 0 (0) 0% 0.229 (0.0252) 0% (0%)
64 0.0465 (0.00785) 0% 0.182 (0.0143) 100% (47%)

128 0.0498 (0.00831) 0% 0.180 (0.0143) 100% (64%)
256 0.131 (0.0142) 0% 0.0972 (0.0116) 100% (100%)
512 0.136 (0.0150) 0% 0.0922 (0.0125) 100% (100%)

1024 0.142 (0.0173) 0% 0.0868 (0.0143) 100% (100%)
2048 0.165 (0.0222) 4% 0.0636 (0.0185) 100% (100%)
4096 0.225 (0.0374) 90% 0.00314 (0.0296) 100% (100%)

Here, the parameter of interest is ψ(θ) = Eθ [varθ (A|X)]. We reported the Monte Carlo averages (MCavs) of point estimates and Monte Carlo

standard deviations (MCsds) in the parenthesis (first column in each panel) of ÎF22,k and ÎF22,k(�̂
−1
k ), together with the coverage probability

of 90% CIs (second column in each panel) of ψ̂2,k and ψ̂2,k(�̂
−1
k ), the MCavs of the bias and MCsds in the parenthesis (third column in each

panel) of ψ̂2,k and ψ̂2,k(�̂
−1
k ) and the empirical rejection rate based on the test statistic χ̂k(ζk, δ = 0.75 or 1.5) and χ̂k(�̂

−1
k ; ζk, δ = 0.75 or 1.5)

(see Section 2) with ζk = z0.10 = 1.28 (fourth column in each panel). In the simulation, we choose A ∼ p(X) + N(0,1). For more details on the
simulation setup, see Section S9.
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CIs centered at ψ̂2,k at k = 4096 had empirical coverage
around 46%.5 The standard error of ψ̂2,k did not greatly
exceed that of ψ̂1.

In more detail, the left panel of Table 1 displays the
Monte Carlo averages (MCavs) of the point estimates and
Monte Carlo standard deviations (MCsds) (in parenthe-
ses) of ÎF22,k in the first column; the empirical proba-
bility that a nominal 90% Wald CI centered at ψ̂2,k cov-
ered the true parameter value in the second column; the
MC bias (i.e., MCav of ψ̂2,k − ψ) and MCsd of ψ̂2,k

in the third column; and, in the fourth column, the em-
pirical rejection rate of a one-sided α† = 0.10 level test

χ̂
(1)
k (zα†=0.10, δ = 0.75 or 1.5) (defined in equation (3.2)

of Section 2) of the null hypothesis that the bias of ψ̂1 is
smaller than δ = 0.75 or 1.5 of its standard error. The test
rejects when the ratio ÎF22,k/ŝ.e.(ψ̂1) is large. Similarly,
the bottom panel displays these same summary statistics
but with the data adaptive estimator �̂−1

k in place of �−1
k .

The difference between the MC bias of ψ̂2,k(�̂
−1
k ) and

ψ̂2,k is an estimate of the additional bias due to the esti-
mation of �−1

k by �̂−1
k . (The uncertainty in the estimate

of the bias itself is not given in the table but it is negligible
as it approximately equals (1/100)1/2 times the standard
error given in the table.)

Reading from the first row of Table 1, we see that the
MC bias of ψ̂1 was 0.229. The MC bias of ψ̂2,k and
ψ̂2,k(�̂

−1
k ) decreased with increasing k, becoming nearly

zero at k = 4096. The observation that the bias decreases
as k increases is predicted by the theory developed in Sec-
tion 2 and reflects the fact that ψ = E[var(A|X)] is in the
monotone bias class. The decrease in bias reflects the in-
crease in the absolute value of ÎF22,k with k. Note fur-
ther that both the MCavs of ÎF22,k and ÎF22,k(�̂

−1
k ) are

relatively close, as are their MCsds, implying that our es-
timator �̂−1

k performs similar to the true �−1
k . The ac-

tual coverages of 90% Wald CIs centered at ψ̂2,k and
ψ̂2,k(�̂

−1
k ) both increase from 0% at k = 0 to more than

40% at k = 4096. Also, reading from the third column,
we see that the MCsd (0.0259) of ψ̂2,k=4096 is only 1.6
times the standard error (0.0161) of ψ̂1, confirming that
the dramatic difference in coverage rates of their associ-
ated CIs is due to the bias of ψ̂1. Reading from the 4th col-
umn of each panel, we see that the rejection rates of both

χ̂
(1)
k (zα†=0.10, δ) and χ̂

(1)
k (�̂−1

k ; zα†=0.10, δ) for δ = 0.75
(for δ = 1.5) are already 100% when k is 64 (256), indi-
cating that the bias of ψ̂1 is much greater than 0.75 (1.5)
of its standard error. Indeed, reading from row 1 of col-
umn 3, we see that the ratio of the MC bias of ψ̂1 = ψ̂2,k=0

5Our data generating process implied that ψ̂2,k was
√

n-consistent
but asymptotically biased, so the expected coverage of the Wald CI
centered at ψ̂2,k was less than 90%.

(0.229) to its MCsd (0.0161) is nearly 14. In Remark 2.4,
we show that this ratio is close to that predicted by theory.

Figure S1 in Section S10.1 provides a histogram over
the 100 estimation samples of (1 − α†) upper confi-
dence bounds UCB(1)(�−1

k=2048;α,α†) (defined in equa-

tion (3.4) of Section 2) and UCB(1)(�̂−1
k=2048;α,α†) (de-

fined in equation (A.2) of the Appendix) for the ac-
tual conditional asymptotic coverage of the nominal
(1 − α) CI ψ̂1 ± zα/2ŝ.e.(ψ̂1). To clarify the meaning

of UCB(1)(�−1
k=2048;α,α†), let coverage(α) = P(ψ ∈

{ψ̂1 ± zα/2ŝ.e.(ψ̂1)}) be the conditional actual cover-
age of ψ , given the training sample. Then, by defini-
tion, a (1 − α†) conditional upper confidence bound
UCB(1)(�−1

k=2048;α,α†) is a random variable satisfying6

(1.1)
P

{
coverage(α) ≤ UCB(1)(�−1

k=2048;α,α†)}

≥ 1 − α†.

Recall from row 1, column 2 of the right panel of
Table 1, that the actual Monte Carlo coverage of the
nominal 90% interval ψ̂1 ± 1.64ŝ.e.(ψ̂1) was 0%. As
expected, our nominal 90% upper confidence bounds
UCB(1)(�−1

k=2048;α,α†) and UCB(1)(�̂−1
k=2048;α,α†)

were nearly 0% in all the 100 simulated estimation sam-
ples.

Organization of the paper. The remainder of the paper
is organized as follows. In Section 1.1 to Section 1.3, we
describe our data structure, our parameters of interest ψ ,
the state of the art DRML estimators and the statistical
properties of these estimators.

In Section 2, we present a second-order U-statistic
ÎF22,k that is an unbiased estimator of the “estimable” part
of the bias of ψ̂1.

In Section 3 and Section 4, we develop α† level tests
that have the ability to detect whether the bias of ψ̂1

is of the same or greater order than its standard er-
ror, for the expected conditional variance; in the case of
the expected conditional covariance we test whether the
Cauchy–Schwarz (CS) bias is the same or greater than the
standard error of ψ̂1.

In the Appendix and the Supplementary Material (Liu,
Mukherjee and Robins, 2020), we propose an estimator
�̂−1

k of �−1
k which performs well in simulations but lacks

theoretical guarantees.
In Section 5, we consider a semisupervised setting with

k > n, based on the following motivation. The estima-
tor ψ̂2,k = ψ̂1 − ÎF22,k of ψ = E[var(A|X)] with k less

6For example, if UCB(1)(�−1
k=2048;α = 0.10, α† = 0.10) = 0.14,

then the actual coverage of the nominal 90% interval ψ̂1 ±
1.64ŝ.e.(ψ̂1) is no more than 14% with confidence at least 1 − α† =
0.90. More precisely, the random interval [0,UCB(1)(�−1

k=2048;α =
0.10, α† = 0.10)] is guaranteed to include the actual coverage of
ψ̂1 ± 1.64ŝ.e.(ψ̂1) at least 90% of the time in repeated sampling of
the estimation sample with the training sample fixed.
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than but near n has standard error not much larger than
the standard error of ψ̂1, but has smaller bias. This sug-
gests foregoing the estimation of an upper bound on the
actual coverage of a nominal (1 − α) Wald CI centered
at ψ̂1; rather always report, with �−1

k known, the nomi-

nal (1 −α) Wald CI ψ̂2,k ± zα/2ŝ.e.(ψ̂2,k) with k just less
than n. However, doing so naturally raises the question of
whether the interval ψ̂2,k ± zα/2ŝ.e.(ψ̂2,k) itself covers ψ

at its nominal 1−α rate. In Section 5, we develop a test of
the null hypothesis that the ratio of the conditional bias of
ψ̂2,k to its standard error is smaller than a fraction δ using
an AFECT statistic based on ÎF22,k′ with k′ > n.

In Section 6, we conclude by discussing several open
problems.

The following common asymptotic notation are used
throughout the paper: x � y (equivalently x = O(y)) de-
notes that there exists some constant C > 0 such that x ≤
Cy, x ≍ y means there exist some constants c1 > c2 > 0
such that c2|y| ≤ |x| ≤ c1|y|. x = o(y) or y ≫ x is equiv-
alent to limx,y→∞ x

y
= 0. For a random variable Xn with

law P possibly depending on the sample size n, Xn =
OP (an) denotes that Xn/an is bounded in P -probability,
and Xn = oP (an) means that limn→∞ P(|Xn/an| ≥ ǫ) =
0 for every positive real number ǫ.

1.1 Parameter of Interest

In this part, we begin to make precise the issues dis-
cussed above. For didactic purposes, we will restrict our
discussion to the variance-weighted average treatment ef-
fect (variance weighted ATE, defined below) for a binary
treatment A and binary outcome Y given a vector X of d-
dimensional baseline covariates compactly supported in
[0,1]d . We suppose we observe N i.i.d. copies from the
joint distribution of (Y,A,X).

We parametrize the joint distribution Pθ of (Y,A,X)

by the variation independent parameters θ ≡ (b,p,fX,

ORYA|X=x), where

b(X) ≡ Eθ [Y |X],
p(X) ≡ Eθ [A|X]

are respectively the regression of Y on X and the re-
gression of A on X, fX is the marginal density of X,
and ORYA|X=x is the conditional odds ratio. We let θ̂ =
(b̂, p̂, θ \ {b,p}). Throughout the paper, we use Eθ , varθ
and covθ with subscript θ to indicate the conditional
expectation, variance and covariance, given the training
sample, under the probability measure Pθ indexed by θ .
We assume a nonparametric infinite dimensional model
M(�) := {Pθ , θ ∈ �} where � indexes all possible θ

subject to weak regularity conditions given later in Con-
dition W.

Under the assumption that the vector X of mea-
sured covariates suffices to control confounding, the

variance weighted ATE τ(θ) is identified as τ(θ) :=
Eθ [γθ (X)varθ (A|X)]

Eθ [varθ (A|X)] where γθ (X) ≡ Eθ [Y |A = 1,X] −
Eθ [Y |A = 0,X] is the conditional treatment effect given
X and varθ (A|X) = p(X)(1 −p(X)). In applications, the
variance weighted ATE arises when we want to down-
weight the subjects whose propensity scores are extreme.
Moreover, the parameter τ(θ) can also be identified as the
regression coefficient of A7 in the classical semiparamet-
ric partially linear model Y = τA + b(X) + noise.

Some algebra shows that

τ(θ) = Eθ [covθ (Y,A|X)]
Eθ [varθ (A|X)] .

Henceforth, we shall restrict attention to the estimation of
the expected conditional covariance

ψ(θ) ≡ Eθ

[
covθ (Y,A|X)

]

= Eθ

[{
Y − b(X)

}{
A − p(X)

}]
.

and the expected conditional variance Eθ [varθ (A|X)],
which is simply the special case of Eθ [covθ (Y,A|X)] in
which A = Y w.p.1. If we can construct asymptotically
unbiased and normal estimators of Eθ [covθ (Y,A|X)] and
Eθ [varθ (A|X)], we also can construct the same for τ(θ)

by the functional delta method.

REMARK 1.1. We shall see that the statistical guaran-
tees of our bias correction methodology differ depending
on whether the parameter of interest is Eθ [covθ (Y,A|X)]
versus Eθ [varθ (A|X)]. In fact, the insight into our
methodology offered by this difference is the reason
we chose the variance weighted average treatment effect
rather than the average treatment effect as the causal effect
of interest in this paper.

In the next section, we describe the current state-of-the-
art DRML estimators ψ̂1 and ψ̂cf,1. They will depend on
estimators b̂(x) and p̂(x) of b(x) and p(x), which may
have been outputted by machine learning algorithms for
estimating conditional means, with completely unknown
statistical properties.

REMARK 1.2. The methods in Robins et al. (2009)
and Ritov et al. (2014) can be straightforwardly combined
to show that, without further unverifiable assumptions
(such as smoothness or sparsity assumptions that may be
incorrect), for some σ > 0, no consistent α-level test of
the null hypothesis Eθ [covθ (A,Y |X)] = σ for σ > 0 ver-
sus the alternative Eθ [covθ (A,Y |X)] = σ + c for some
fixed constant c > 0 exists, whenever some components
of X have a continuous distribution. Furthermore, there
is no consistent estimator of the expected conditional co-
variance without further unverifiable assumptions. The
above negative result also applies to the expected condi-
tional variance Eθ [varθ (A|X)].

7A does not need to be binary.
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1.2 State-of-the-Art Estimators ψ̂1 and ψ̂cf,1 and

Their Asymptotic Properties

The state-of-the-art DRML estimator ψ̂1 uses sample
splitting, because b̂(x) and p̂(x) have unknown statisti-
cal properties and, in particular, may not lie in a so-called
Donsker class (see, e.g., van der Vaart and Wellner, 1996,
Chapter 2)—a condition often needed for valid inference
when we do not split the sample. The cross-fitting estima-
tor ψ̂cf,1 is a DRML estimator that can recover the infor-
mation lost by ψ̂1 due to sample splitting, provided that
ψ̂1 is asymptotically unbiased given the training sample.

The following algorithm defines ψ̂1 and ψ̂cf,1 for
ψ(θ) = Eθ [covθ (A,Y |X)] and can be easily modified for
ψ(θ) = Eθ [varθ (A|X)]:

(i) The N study subjects are randomly split into 2
parts: an estimation sample of size n and a training (nui-
sance) sample of size ntr = N −n with n/N ≈ 1/2. With-
out loss of generality we shall assume that i = 1, . . . , n

corresponds to the estimation sample.
(ii) Estimators b̂(x), p̂(x) are constructed from the

training sample data using ML methods.
(iii) Compute

ψ̂1 = 1

n

n∑

i=1

[{
Yi − b̂(Xi)

}{
Ai − p̂(Xi)

}]

from n subjects in the estimation sample and

ψ̂cf,1 = (ψ̂1 + ψ̂1)/2,

where ψ̂1 is ψ̂1 but with the training and estimation sam-
ples reversed.

1.3 Asymptotic Properties of ψ̂1 and ψ̂cf,1

The following theorems (Theorem 1.3 and Theo-
rem 1.4) give the asymptotic properties of the estimator
ψ̂1 of the expected conditional covariance, conditional on
the training sample.

THEOREM 1.3. Conditional on the training sample,
ψ̂1 is asymptotically normal with conditional bias

(1.2)
Biasθ (ψ̂1) := Eθ

[
ψ̂1 − ψ(θ)

]

= Eθ

[{
b(X) − b̂(X)

}{
p(X) − p̂(X)

}]
.

PROOF. Since conditionally b̂(x) and p̂(x) are fixed
functions, ψ̂1 is the sum of i.i.d. bounded random vari-
ables and thus is asymptotically normal. A straightfor-
ward calculation shows Biasθ (ψ̂1) is the conditional bias.

�

We note that ψ̂1 is, by definition, doubly robust be-
cause Biasθ (ψ̂1) = 0 if either b(X) = b̂(X) or p(X) =
p̂(X) with Pθ -probability 1. Finally, before proceeding,
we summarize the statistical properties of the DRML es-
timator in the following theorem, the proof of which is

standard and can be found in Chernozhukov et al. (2018).
Recall that Biasθ (ψ̂1) is random only through its depen-
dence on the training sample data via b̂ and p̂.

THEOREM 1.4. If (a) Biasθ (ψ̂1) is o(n−1/2) and

(b) b̂(x) and p̂(x) converge to b(x) and p(x) in L2(Pθ ),
then:

1.

ψ̂1 − ψ(θ) = n−1
n∑

i=1

IF1,i(θ) + o
(
n−1/2)

,

ψ̂cf,1 − ψ(θ) = N−1
N∑

i=1

IF1,i(θ) + o
(
N−1/2)

,

where IF1(θ) = {Y − b(X)}{A − p(X)} − ψ(θ) is the

first-order influence function of ψ(θ) under Pθ . Fur-

ther, n1/2(ψ̂1 − ψ(θ)) converges conditionally and un-

conditionally to a normal distribution with mean zero;
ψ̂cf,1 is a regular, asymptotically linear estimator; that is,
N1/2(ψ̂cf,1 − ψ(θ)) converges unconditionally to a nor-

mal distribution with mean zero and variance equal to the

semiparametric variance bound varθ [IF1(θ)].
2. The (1 − α) nominal Wald CIs (CIs)

ψ̂1 ± zα/2ŝ.e.[ψ̂1],

ψ̂cf,1 ± zα/2ŝ.e.[ψ̂cf,1]

are (1 − α) asymptotic CI for ψ(θ). Here, ŝ.e.[ψ̂1] =
(v̂ar[ψ̂1])1/2 with

v̂ar[ψ̂1] = 1

n2

n∑

i=1

[{
Yi − b̂(Xi)

}{
Ai − p̂(Xi)

}]2
,

v̂ar[ψ̂cf,1] = 1

4

{
v̂ar[ψ̂1] + v̂ar[ψ̂1]

}
.

REMARK 1.5. Had we chosen ψ(θ) = Eθ [Eθ [Y |
A = 1,X]], the mean response of Y under missing at ran-
dom rather than the variance weighted ATE as our param-
eter of interest, the outcome regression function appear-
ing in the first-order influence function would be Eθ [Y |
A = 1,X] rather than Eθ [Y |X] and ψ̂1 = 1

n

∑n
i=1

Ai

p̂(Xi)
×

(Y − b̂(Xi)) + b̂(Xi).

REMARK 1.6 (Training sample squared error loss
cross-validation). How can we choose among the many
(say, J ) available ML algorithms if our goal is to min-
imize the conditional mean squared error Eθ [(b(X) −
b̂(X))2]? One approach is to let the data decide by ap-
plying cross-validation restricted to the training sample.
Specifically, we randomly split the training sample into S

subsamples of size ntr/S. For each subsample s, we fit the
j th ML algorithm to the other S − 1 subsamples to obtain

outputs b̂
(j)
s (·), for j = 1, . . . , J . Next, we compute, for

each j , the squared error loss CV(j) = ∑S
s=1 CV

(j)
s with
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CV
(j)
s = ∑

i∈s{Yi − b̂
(j)
s (Xi)}2, and finally select the ML

algorithm j∗ = arg minj CV(j). Analogous results apply
to the estimation of p(X).

REMARK 1.7. Although a standard result, Theo-
rem 1.4 is of minor interest to us in this paper for several
reasons. First, because of their asymptotic nature, there is
no finite sample size n at which any test could empirically
falsify Biasθ (ψ̂1) = o(n−1/2). Rather, as discussed in Sec-
tion 1, our interest, instead, lies in testing and rejecting
hypotheses such as, at the actual estimation sample size
n, the actual coverage of the interval ψ̂1 ± zα/2ŝ.e.[ψ̂1],
conditional on the training sample, is less than a fraction
̺ < 1 of its nominal coverage.

Second, we make no assumptions concerning either the
complexity of the unknown functions b and p or the sta-
tistical behavior of their ML estimators b̂ and p̂, our infer-
ential statements will regard the training sample as fixed
rather than random. In particular, the only randomness re-
ferred to in any theorem is that of the estimation sample.
Our inferences rely on being in “asymptopia” to be able
to posit that, at our estimation sample size of n, (1) the
quantiles of the finite sample distribution of a condition-
ally asymptotically normal statistic (e.g., ÎF22,k defined
later in equation (2.8)) are close to the quantiles of a nor-
mal and (2) the standard error estimators of ψ̂1 and ÎF22,k

are close to their true standard errors. (It will often be use-
ful to consider the power functions of our proposed tests
as a function of the sample size, which we do by taking
n → ∞.)

REMARK 1.8. Indeed, when the constants in the
nonasymptotic concentration inequalities (Boucheron,
Lugosi and Massart, 2013, Vershynin, 2018) are explicit
and can be estimated from data, then our reliance on
asymptotics could be eliminated at the expense of de-
creased power and increased CI width. However, such
finite sample bounds are beyond the scope of this paper.

Before starting to explain our methodology in detail, we
collect some frequently used notation.

Notation. For a (random) vector V , ‖V ‖θ ≡
Eθ [V ⊤V ]1/2 denotes its L2(Pθ ) norm conditioning on
the training sample, ‖V ‖ ≡ (V ⊤V )1/2 denotes its ℓ2 norm
and ‖V ‖∞ denotes its L∞ norm. For any matrix A, ‖A‖
will be used for its operator norm. Given a k, the ran-
dom vector Z̄k = z̄k(X) = (z1(X), . . . , zk(X))⊤, �[·|Z̄k]
denotes the population linear projection operator onto the
space spanned by Z̄k conditioning on the training sam-
ple: with �k := Eθ [Z̄kZ̄⊤

k ], �[·|Z̄⊥
k ] = I − �[·|Z̄k] is the

projection onto the orthogonal complement of Z̄k in the
Hilbert space L2(fX). Hence, for a random variable W ,

(1.3) �[W |Z̄k] = Z̄⊤
k βk,W ,�

[
W |Z̄⊥

k

]
= W − �[W |Z̄k],

where βk,W = �−1
k Eθ [Z̄kW ] is the vector of population

regression coefficients. It should be noted that we allow

selection of the vector Z̄k to depend on the training sample
data (for further discussions, see Section 6). �̂−1

k denotes

a generic estimator of �−1
k . When referring to a particular

estimator of �−1
k (mostly in the Appendix), an identifying

superscript will often be attached.
We also denote the following commonly used residuals

as

ε̂b,i := Yi − b̂(Xi), ε̂p,i := Ai − p̂(Xi),

ξ̂b,i := b(Xi) − b̂(Xi), ξ̂p,i := p(Xi) − p̂(Xi)

for i = 1,2, . . . , n, where b̂ and p̂ are estimated from the
training sample.

If Z̄k1 and Z̄k2 are vectors depending on different values
of k, we impose the following restriction.

CONDITION B. For any k1 < k2 = o(n2), the space
spanned by Z̄k1 is a subspace of the space spanned by Z̄k2 .

REMARK 1.9. For example, when choosing the basis
functions Z̄k from a dictionary V of (candidate) functions
greedily, Condition B holds.

2. THE PROJECTED CONDITIONAL BIAS AND TWO

DIFFERENCES BETWEEN Eθ [varθ (A|X)] AND

Eθ [covθ (A,Y |X)]

In the main text, following the recommendation by a
referee, we only discuss an “oracle” procedure that as-
sumes �−1

k to be known, as with semisupervised data.
Let V be a set (i.e., dictionary) of (basis) functions of

X that is either countable or finite with cardinality p > n.
Given the vector X = (Xl; l = 1, . . . , d) of d covariates,
many choices for V are possible. For example, V could
be tensor products of spline, wavelet or local polynomial
partition series (or the union of all three types) in defin-
ing V .

We decompose b(X) − b̂(X) = �[b(X) − b̂(X)|Z̄k] +
�[b(X) − b̂(X)|Z̄⊥

k ] (and similarly for p(X) − p̂(X)),
where the first term is the L2(Pθ )-orthogonal (popula-
tion least squares) projection of b(X)− b̂(X) on the linear
span of the vector Z̄k and the second term is the projec-
tion onto the orthocomplement Z̄⊥

k . Specifically, follow-
ing equation (1.3), we have

�
[
b(X) − b̂(X)|Z̄k

]
= Z̄⊤

k β
k,b−b̂

= Z̄⊤
k �−1

k Eθ

[
Z̄k

(
b(X) − b̂(X)

)]
(2.1)

= Z̄⊤
k �−1

k Eθ

[
Z̄k

(
Y − b̂(X)

)]

= Z̄⊤
k �−1

k Eθ [Z̄k ε̂b],

�
[
p(X) − p̂(X)|Z̄k

]
= Z̄⊤

k βk,p−p̂

= Z̄⊤
k �−1

k Eθ

[
Z̄k

(
p(X) − p̂(X)

)]
(2.2)

= Z̄⊤
k �−1

k Eθ

[
Z̄k

(
A − p̂(X)

)]

= Z̄⊤
k �−1

k Eθ [Z̄k ε̂p],
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where in the second lines of the above two equations we
use the definitions of b(X), p(X), ε̂b and ε̂p .

Then we have the following lemma that decomposes
Biasθ (ψ̂1) (see the LHS of equation (1.2)).

LEMMA 2.1. Biasθ (ψ̂1) can be decomposed into the

sum of two terms Biasθ,k(ψ̂1) and TBθ,k(ψ̂1):8

(2.3) Biasθ (ψ̂1) ≡ Biasθ,k(ψ̂1) + TBθ,k(ψ̂1),

where we define

Biasθ,k(ψ̂1) := Eθ

[{
�

[
b(X) − b̂(X)|Z̄k

]}

×
{
�

[
p(X) − p̂(X)|Z̄k

]}]
.

Then

Biasθ,k(ψ̂1) = β⊤
k,b−b̂

�kβk,p−p̂

≡ Eθ [ε̂bZ̄k]⊤�−1
k Eθ [Z̄k ε̂p],

TBθ,k(ψ̂1) = Eθ

[{
�

[
b(X) − b̂(X)|Z̄⊥

k

]}

×
{
�

[
p(X) − p̂(X)|Z̄⊥

k

]}]
.

(2.4)

PROOF. By definition,

Biasθ,k(ψ̂1) := Eθ

[{
�

[
b(X) − b̂(X)|Z̄k

]}

×
{
�

[
p(X) − p̂(X)|Z̄k

]}]

= Eθ

[
β⊤

k,b−b̂
Z̄kZ̄⊤

k βk,p−p̂

]

= β⊤
k,b−b̂

�kβk,p−p̂

= Eθ

[(
Y − b̂(X)

)
Z̄k

]⊤
�−1

k

×Eθ

[
Z̄k

(
A − p̂(X)

)]
,

(2.5)

where the last equality follows from equation (2.1). The
second part of equation (2.4) directly follows from the
Pythagorean theorem. �

We now define the monotone bias class of parameters
that we mentioned in Section 1.

DEFINITION 2.2 (Monotone bias class of parameters).
For the parameter ψ(θ), given any DRML estimator ψ̂1,
under Condition B, if |TBθ,k(ψ̂1)| is nonincreasing with
k, or equivalently if |Biasθ,k(ψ̂1)| is nondecreasing with
k, ψ(θ) is said to be in the monotone bias class.

2.1 Orderings Between Biasθ (ψ̂1) and Biasθ,k(ψ̂1):

Difference Between Eθ [covθ [Y,A|X]] and

Eθ [varθ [A|X]]

We first compare certain properties of the parame-
ters Eθ [covθ (Y,A|X)] = Eθ [(Y − b(X))(A − p(X))]
and Eθ [varθ (A|X)] = Eθ [(A − p(X))2], where we note

8The notation TBθ,k(ψ̂1) was adopted because it is the so-called
truncation bias in Robins et al. (2008).

that all the earlier results and definitions concerning
Eθ [covθ (Y,A|X)] also apply to ψ(θ) = Eθ [varθ (A|X)]
when we everywhere substitute A,p, p̂ for Y,b, b̂. How-
ever, we observe a first key difference between these
two parameters, which are collected in the following
lemma, whose proof is trivial once we note that for
Eθ [varθ (A|X)], unlike Eθ [covθ (Y,A|X)], Biasθ (ψ̂1) =
Eθ [(p(X) − p̂(X))2], Biasθ,k(ψ̂1) = Eθ [{�[p(X) −
p̂(X)|Z̄k]}2] and TBθ,k(ψ̂1) = Eθ [{�[p(X) − p̂(X)|
Z̄⊥

k ]}2] are all nonnegative. We thus have the following.

LEMMA 2.3. The following statements are true for

ψ(θ) = Eθ [varθ [A|X]] but not always true for ψ(θ) =
Eθ [covθ [Y,A|X]]:

(i) Biasθ,k(ψ̂1) is nondecreasing in k (since, by Con-

dition B, the space spanned by Z̄k increases with k), and

thus, TBθ,k(ψ̂1) is nonincreasing in k. That is, for k2 > k1,

0 ≤ Biasθ,k1(ψ̂1) ≤ Biasθ,k2(ψ̂1) ≤ Biasθ (ψ̂1),

TBθ,k1(ψ̂1) ≥ TBθ,k2(ψ̂1) ≥ 0.

(ii) Biasθ (ψ̂2,k) ≤ Biasθ (ψ̂1).
(iii) For any δ > 0, consider the null hypotheses

(2.6)
H0(δ) : |Biasθ (ψ̂1)|

s.e.θ [ψ̂1]
≡ |Biasθ,k(ψ̂1) + TBθ,k(ψ̂1)|

s.e.θ [ψ̂1]
< δ

and its surrogate hypothesis

(2.7) H0,k(δ) : |Biasθ,k(ψ̂1)|
s.e.θ [ψ̂1]

< δ.

If H0(δ) (2.6) is true, then the surrogate null H0,k(δ)

(2.7) is true. Hence rejection of the surrogate H0,k(δ) (2.7)
implies rejection of H0(δ) (2.6).

Thus ψ(θ) = Eθ [varθ (A|X)], unlike ψ(θ) =
Eθ [covθ (A,Y |X)], belongs to the monotone bias class.
The null hypothesis H0(δ) (2.6) states that Biasθ (ψ̂1) is
less than a fraction δ of its standard error. In Theorem 3.2
and Theorem 4.2 below, we construct valid α†-level tests
for the null hypothesis H0,k(δ) (2.7). In Section 3.1 and
Section 4.1, we consider the role of these null hypotheses
when our goal is to either falsify (i) an analyst’s claim
that the Wald confidence interval centered at ψ̂1 has at
least nominal coverage or (ii), less ambitiously, the ana-
lyst’s justification for the claim.

REMARK 2.4. The simulation study reported in Ta-
ble 1 was for the parameter ψ(θ) = Eθ [varθ (A|X)]. Were
it not, our claim that the observation that the bias of ψ̂2,k

decreases as k increases as predicted by the theory devel-
oped in Section 2 would have been false. Similarly, our

claim that the test χ̂
(1)
k (zα†, δ) is an α†-level test of H0(δ)

(2.6) would also have been false.
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In our simulation studies for the parameter
Eθ [covθ (Y,A|X)] reported in Table S8 and Table S11 in
Section S9, the results were qualitatively similar to those
in Table 1 (e.g., the MCav of ψ̂2,k increased with k). How-
ever, this was due to the particular data generating process
used and is not always true for ψ(θ) = Eθ [covθ (Y,A|X)].

An additional point in regard to the study reported in
Table 1, the ratio of the MC bias 0.229 of ψ̂1 for ψ(θ) =
Eθ [varθ (A|X)] to the MCav 0.0161 of its estimated stan-
dard error was approximately 14. The theoretical predic-
tion based on rates of convergence, ignoring constants,
was reasonably close (given that we ignore unknown con-
stants), being equal to 4.1, calculated as follows. In the
simulation, p(x) had a Hölder exponent sp of 0.25 and,
therefore, the conditional bias Eθ [{p̂(X) − p(X)}2] was
of order n−2sp/(2sp+1) = n−1/3, because we used a rate
minimax estimator p̂(x) (see Section S9). Hence the or-
der of the bias over the standard error is n−1/3/n−1/2 =
n1/6, which evaluated at the sample size n = 5000 gives
4.1 = 50001/6.

It follows from Remark 1.2 above that in the absence
of further assumptions, TBθ,k(ψ̂1) could be of order 1 and
cannot be consistently estimated without further assump-
tions on (b,p, b̂, p̂). However, it is immediate from equa-
tion (2.4) that the oracle second-order U-statistic estima-
tor ÎF22,k

9 is an unbiased estimator of Biasθ,k(ψ̂1) condi-
tional on the training sample,10 where

ÎF22,k ≡ ÎF22,k

(
�−1

k

)

:= 1

n(n − 1)

∑

1≤i1 �=i2≤n

ÎF22,k,i1,i2

(
�−1

k

)
,(2.8)

ÎF22,k,i1,i2

(
�−1

k

)
=

[
ε̂bz̄k(X)

]⊤
i1
�−1

k

[
z̄k(X)ε̂p

]
i2
.

Thus the conditional bias of the bias corrected estima-
tor11 ψ̂2,k ≡ ψ̂2,k(�

−1
k ) := ψ̂1 − ÎF22,k for ψ(θ) and con-

ditional mean of ψ̂2,k are

Biasθ (ψ̂2,k) ≡ Eθ

[
ψ̂2,k − ψ(θ)

]
= TBθ,k(ψ̂1),

Eθ [ψ̂2,k] = ψ(θ) + TBθ,k(ψ̂1)
(2.9)

9Following the definitions in Robins et al. (2008), ÎF22,k is the

unique second-order influence function of Biasθ,k(ψ̂1) under the law
P

θ̂
. But the definition of ÎF22,k in Robins et al. (2008) differs from

that in the current paper in the sign; thus ψ̂2,k ≡ ψ̂1 − ÎF22,k would

be ψ̂1 + ÎF22,k in Robins et al. (2008). We reversed the sign because
it seems didactically useful to have ÎF22,k be an unbiased estimator

of Biasθ,k(ψ̂1). Robins et al. (2008) refer to ψ(θ) + TBθ,k(ψ̂1) as the
truncated parameter.

10Because it simply replaces the expectations of equation (2.5) by
U-statistics.

11We discuss in Section S1.1 the connection between ψ̂2,k and a
triple sample splitting estimator proposed in Newey and Robins (2018)
for ψ(θ) = Eθ [varθ (A|X)].

since

Eθ

[
ψ̂2,k − ψ(θ)

]
= Eθ

[
ψ̂1 − ψ(θ)

]
−Eθ [ÎF22,k]

= Biasθ (ψ̂1) − Biasθ,k(ψ̂1)

= TBθ,k(ψ̂1).

Thus for ψ(θ) = Eθ [varθ (A|X)], we are certain that ψ̂2,k

has smaller bias than ψ̂1 and the bias of ψ̂2,k decreases as
we increase k, following Lemma 2.3(i).

2.2 Statistical Properties of ÎF22,k: Another

Difference Between Eθ [covθ (Y,A|X)] and

Eθ [varθ (A|X)]

Throughout the rest of this paper, our results require
the following weak regularity conditions (Condition W)
to hold:

CONDITION W.

1. All the eigenvalues of �k are bounded away from 0
and ∞;

2. A, Y , b(X), b̂(X), p(X) and p̂(X) are bounded with
probability 1;

3. ‖Z̄⊤
k Z̄k‖∞ ≤ Bk for some constant B > 0, ‖�[b −

b̂|Z̄k]‖∞ ≤ C (where ‖�[b − b̂|Z̄k] ≡ Z̄⊤
k β

k,b−b̂
) and

‖�[p−p̂|Z̄k]‖∞ ≤ C (where ‖�[p−p̂|Z̄k] ≡ Z̄⊤
k βk,p−p̂)

for some constant C > 0.

REMARK 2.5. Condition W(2) was assumed to allow
us to focus on important issues. We believe we should
be able replace the boundedness assumption with an as-
sumption of light tails (Vershynin, 2018, Kuchibhotla and
Chakrabortty, 2018). However, most of the existing re-
sults on U-statistics that we use, require the U-statistic
kernel to be bounded.

Condition W(3) will only be needed in Section S3 when
�−1

k is unknown. Even though the main text only con-

cerns the case with known �−1
k , we still keep this as-

sumption to emphasize its importance in the setting where
�−1

k must be estimated. Condition W(3) holds for Cohen–
Daubechies–Vial wavelet series, B-spline series, and local
polynomial partition series following from Belloni et al.
(2015), Examples 3.8–3.10.

We have the following result regarding the statistical
properties of the oracle estimator ÎF22,k of the projected
bias Biasθ,k(ψ̂1). For notational convenience, we define
the following L2(Pθ ) norms:

L2,b,k :=
{
Eθ

[
�

[
b(X) − b̂(X)|Z̄k

]2]}1/2
,

L2,p,k :=
{
Eθ

[
�

[
p(X) − p̂(X)|Z̄k

]2]}1/2
.

Note that L2,p,k is equal to Biasθ,k(ψ̂1) when ψ(θ) =
Eθ [varθ (A|X)].
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THEOREM 2.6. Under Condition W, with k,n → ∞,
and k = o(n2), conditional on the training sample, we

have:

(i) ÎF22,k is unbiased for Biasθ,k(ψ̂1) with variance of

order

1

n
max

{
k

n
,L2

2,b,k,L
2
2,p,k

}
,

where L2,b,k and L2,p,k are defined above.

(ii) ÎF22,k−Biasθ,k(ψ̂1)

s.e.θ [ÎF22,k]
converges in law to a standard

normal N(0,1). Further, s.e.θ [ÎF22,k] := var
1/2
θ [ÎF22,k]

can be estimated by ŝ.e.[ÎF22,k] := v̂ar1/2[ÎF22,k] defined

in Section S5 satisfying
ŝ.e.[ÎF22,k]
s.e.θ [ÎF22,k]

= 1 + oPθ (1).

(iii) ÎF22,k ± zα†/2ŝ.e.[ÎF22,k] (resp., [ÎF22,k − zα† ×
ŝ.e.[ÎF22,k],∞)) is a (1 − α†) asymptotic two-sided

(resp., one-sided) Wald CI for Biasθ,k(ψ̂1) with length of

order

1√
n

max

{√
k

n
,L2,b,k,L2,p,k

}
.

PROOF. The variance order of ÎF22,k is proved in Sec-
tion S5. When k = o(n2) and k → ∞ as n → ∞, the con-

ditional asymptotic normality of ÎF22,k−Biasθ,k(ψ̂1)

s.e.θ [ÎF22,k]
follows

directly from Hoeffding decomposition, with the condi-
tional asymptotic normality of the degenerate second-
order U-statistic part implied by Bhattacharya and Ghosh
(1992), Corollary 1.2. �

REMARK 2.7. Now we consider a second key differ-
ence between the parameters Eθ [varθ (A|X)] and
Eθ [covθ (A,Y |X)]. It follows from Theorem 2.6(i) that
for Eθ [cov(A,Y |X)],

varθ [ÎF22,k] = O

(
1

n

{
k

n
+L

2
2,b,k +L

2
2,p,k

})
,

whereas for Eθ [var(A|X)],

varθ [ÎF22,k] = O

(
1

n

{
k

n
+L

2
2,p,k

})
.

For Eθ [varθ (A|X)], when L
2
2,p,k = O(n−1/2), with k =

o(n), we always have varθ [ÎF22,k] ≪ n−1. However,
for Eθ [covθ (A,Y |X)], when Biasθ,k(ψ̂1) = O(n−1/2),
L

2
2,b,k and L

2
2,p,k can still be O(1), with k = o(n), and

then we have varθ [ÎF22,k] ≍ n−1. We shall see below
that the above implies the statistical behavior of tests
of the hypothesis H0,k(δ) differ for Eθ [varθ (A|X)] and
Eθ [covθ (A,Y |X)].

REMARK 2.8. The qqplots in the left panel of Fig-
ure S2 (see Section S10.2) provide empirical evidence
that, in our simulation experiments, in Section S9, the
quantiles of ÎF22,k/s.e.θ [ÎF22,k] are close to normal quan-
tiles.

REMARK 2.9. When k is of order greater than or
equal to n2, the conditional asymptotic normality of
ÎF22,k−Biasθ,k(ψ̂1)

s.e.θ [ÎF22,k]
does not hold. Moreover, when k ≫ n2,

varθ [ÎF22,k] ≍ k
n2 is of order greater than 1 and, there-

fore, ÎF22,k is not consistent for Biasθ,k(ψ̂1) even if
Biasθ,k(ψ̂1) is of order 1. As mentioned in Section 1,
when k is bounded (not growing with n), after standard-
ization ÎF22,k converges to a Gaussian chaos distribution
instead of a normal distribution, conditional on the train-
ing sample.

3. THE NULL HYPOTHESIS AND AN ORACLE TEST

FOR Eθ [varθ (A|X)]

3.1 The Null Hypothesis

We next consider the implications of rejection of
the null hypothesis H0,k(δ) in the case of ψ(θ) =
Eθ [varθ (A|X)]. In Section 4.1, we extend this discussion
to ψ(θ) = Eθ [covθ (A,Y |X)]. We shall require the fol-
lowing elementary lemma, which follows from the condi-
tional asymptotic normality of ψ̂1 in Theorem 1.4.

LEMMA 3.1. If
Biasθ (ψ̂1)

s.e.θ (ψ̂1)
= δ, the actual asymp-

totic coverage of a two-sided (1 − α) Wald CI ψ̂1 ±
zα/2ŝ.e.[ψ̂1] for ψ(θ) is

(3.1) TCα(δ) := �(zα/2 − δ) − �(−zα/2 − δ).

The dependence of TCα(δ) on δ for several α is shown
in Figure 1. It follows that if H0(δ) is false, the true
coverage rate is no more than TCα(δ). It follows that
H0(δ) is equivalent to the null hypothesis that the actual
asymptotic coverage (given the training sample) of ψ̂1 ±
zα/2ŝ.e.[ψ̂1] for ψ(θ) is greater than or equal to TCα(δ).
This result holds for both ψ(θ) = Eθ [covθ (A,Y |X)] and
ψ(θ) = Eθ [varθ (A|X)]. For ψ(θ) = Eθ [varθ (A|X)], but
not for ψ(θ) = Eθ [covθ (A,Y |X)], if H0,k(δ) is false and,
therefore, H0(δ) is false, the true coverage rate is no more
than TCα(δ).

In Theorem 3.2 below, we construct an asymptotically
level α† test for the surrogate null hypothesis H0,k(δ),
which by Lemma 2.3(iii) is also an asymptotically level
α† test of H0(δ) for ψ(θ) = Eθ [varθ (A|X)] but not for
ψ(θ) = Eθ [covθ (Y,A|X)]. Thus, one might reasonably
ask whether our methods are useful for inference concern-
ing the parameter Eθ [covθ (Y,A|X)], a question to which
we return in Section 4.

3.2 An Oracle Test

Based on the statistical properties of ψ̂1 and ÎF22,k

summarized in Theorem 1.4 and Theorem 2.6, for
ψ(θ) := Eθ [varθ (A|X)], we now consider the properties



530 L. LIU, R. MUKHERJEE AND J. M. ROBINS

FIG. 1. TCα(δ) ≡ �(zα/2 − δ) − �(−zα/2 − δ) as a function of δ over several different α’s.

of the following one-sided test χ̂
(1)
k (ζk, δ) of the surrogate

null H0,k(δ):

χ̂
(1)
k (ζk, δ) ≡ χ̂

(1)
k

(
�−1

k ; ζk, δ
)

:= 1
{

ÎF22,k

ŝ.e.[ψ̂1]
− ζk

ŝ.e.[ÎF22,k]
ŝ.e.[ψ̂1]

> δ

}(3.2)

for user-specified ζk, δ > 0. We use a one-sided test be-
cause the sign of Biasθ,k(ψ̂1) ≥ 0 is known a priori.

The following theorem characterizes the asymptotic

level and power of the oracle one-sided test χ̂
(1)
k (ζk, δ) of

the surrogate null H0,k(δ) when ψ(θ) = Eθ [varθ (A|X)].
THEOREM 3.2. For ψ(θ) = Eθ [varθ (A|X)], under

Condition W, when k → ∞ but k = o(n), for any given

δ, ζk > 0, suppose that
L

2
2,p,k

s.e.θ [ψ̂1]
= Biasθ,k(ψ̂1)

s.e.θ [ψ̂1]
= γ for some

(sequence) γ = γ (n) (where γ (n) can diverge with n),

then the rejection probability of χ̂
(1)
k (ζk, δ) converges to

1 − �

(
ζk − lim

n→∞(γ − δ)
s.e.θ [ψ̂1]

s.e.θ [ÎF22,k]

)
(3.3)

as n → ∞. In particular,

(1) under H0,k(δ) : γ ≤ δ, χ̂
(1)
k (ζk, δ) rejects the null

with probability less than or equal to 1 − �(ζk), as n →
∞;

(2) under the following alternative to H0,k(δ): γ =
δ + c, for any fixed c > 0 or any diverging sequence

c = c(n) → ∞, χ̂
(1)
k (ζk, δ) rejects the null with proba-

bility converging to 1, as n → ∞.

REMARK 3.3. In Section S2, we prove equation
(3.3). We now prove that equation (3.3) implies Theo-
rem 3.2(1)–(2).

• Regarding (1), under H0,k(δ),

−(γ − δ)
s.e.θ [ψ̂1]

s.e.θ [ÎF22,k]
≥ 0,

which implies that the rejection probability is less than
1 − �(ζk), as n → ∞. Choose ζk = zα† , 1 − �(ζk) =
1 − �(zα†) = α† and conclude that the test is a valid
level α† test of the null.

• Regarding (2), under the alternative γ = δ + c for some
c > 0, it follows from Remark 2.7 and equation (3.3)

that the rejection probability of χ̂
(1)
k (ζk, δ), as n → ∞,

is no smaller than

1 − �

(
ζk − c�(p, p̂, fX, Z̄k)

{
k

n
+L2,p,k

}−1)
,

where �(p, p̂, fX, Z̄k) is some positive constant de-
pending on the true regression function p, the esti-
mated function p̂ from the training sample, the den-
sity fX of X and the chosen basis functions Z̄k . For
fixed c > 0, Biasθ,k(ψ̂1) ≡ L

2
2,p,k = (δ+c)s.e.θ (ψ̂1) =

O(n−1/2) = o(1), which implies that the power con-
verges to 1 − �(−∞) = 1.

Theorem 3.2 implies that χ̂
(1)
k (zα†, δ) is an asymptot-

ically valid level α† one-sided test of the surrogate null
H0,k(δ). This allows us to define the following upper con-
fidence bound that we briefly described in Section 1:

UCB(1)(�−1
k ;α,α†)

:= TCα

([
ÎF22,k − zα† ŝ.e.[ÎF22,k]

ŝ.e.[ψ̂1]

])
.

(3.4)

Given the mapping TCα(δ) between δ and the minimal
asymptotic coverage of a nominal (1−α) two-sided Wald
CI centered at ψ̂1 under H0,k(δ), the following corollary
is an immediate consequence of Theorem 3.2:

COROLLARY 3.4. Under the conditions in Theo-

rem 3.2, UCB(1)(�−1
k ;α,α†) is an asymptotically valid12

12Recall that the validity of a nominal (1 − α†) upper confidence
bound is defined in equation (1.1) with P replaced by Pθ . That is,
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nominal (1−α†) upper confidence bound for the true cov-

erage of a nominal (1 −α) two-sided Wald CI centered at

ψ̂1 for the parameter Eθ [ψ̂2,k] ≡ ψ(θ)+ TBθ,k(ψ̂1) when

ψ(θ) = Eθ [varθ (A|X)].
Finally, the following corollary, implied by Theo-

rem 3.2, Corollary 3.4 and Lemma 2.3, summarizes

(1) the implication of χ̂
(1)
k (ζk, δ) on the actual null hy-

pothesis of interest H0(δ) and (2) the implication of a
nominal (1 − α†) upper confidence bound UCB(1)(�−1

k ;
α,α†) on the true coverage of a nominal (1−α) two-sided
Wald CI centered at ψ̂1 for ψ(θ).

COROLLARY 3.5. Under the conditions in Theo-

rem 3.2:

• χ̂
(1)
k (ζk, δ) is an asymptotically level 1 − �(ζk) one-

sided test of H0(δ), as n → ∞.
• UCB(1)(�−1

k ;α,α†) is an asymptotically valid nominal

(1 − α†) upper confidence bound for the true coverage

of a nominal (1 − α) two-sided Wald CI centered at

ψ̂1 for ψ(θ) = Eθ [varθ (A|X)]. That is, actual asymp-

totic coverage of a nominal (1 − α) two-sided Wald CI

centered at ψ̂1 is no greater than the random variable

UCB(1)(�−1
k ;α,α†) with probability at least 1 − α†.

For ψ(θ) = Eθ [varθ (A|X)], when χ̂
(1)
k (ζk, δ) rejects

H0,k(δ), we should also reject H0(δ). Nevertheless,

χ̂
(1)
k (ζk, δ) can be a powerless test under the alternative

to H0(δ) for which H0,k(δ) holds. In fact, as discussed
earlier, Biasθ,k(ψ̂1) may be zero and yet Biasθ (ψ̂1) =
TBθ,k(ψ̂1) may be order 1, owing to the fact we are not
controlling the magnitude of TBθ,k(ψ̂1) by imposing spar-
sity or smoothness assumptions.

4. THE NULL HYPOTHESIS AND AN ORACLE TEST

FOR Eθ [covθ (A,Y |X)]

4.1 The Null Hypothesis

In this section, we turn our attention to the parame-
ter ψ(θ) = Eθ [covθ (A,Y |X)]. In fact, the discussion in
this section actually applies to any parameter ψ(θ) with
a unique first order influence function depending on un-
known regression functions or densities for which the ab-
solute value |TBθ,k(ψ̂1)| of the truncation bias need not be
a nonincreasing function of k, that is, outside the mono-

tone bias class. In particular, it applies to the class of dou-
bly robust functionals in Robins et al. (2008). Such pa-
rameters cover many causal parameters, including the av-
erage treatment effect and the effect of treatment on the

UCB(1)(�−1
k ;α,α†) must be greater than the true asymptotic coverage

probability of a (1 − α) two-sided Wald CI covering Eθ [ψ̂2,k] more

than (1 − α†) × 100% of the time over repeated sampling from the
true data generating law Pθ.

treated, as well as many noncausal parameters. It is the
class of parameters mentioned in the Section 1 for which
our results are unavoidably less sharp. For the mono-

tone bias class, we obtain much sharper results, as for
ψ(θ) = Eθ [varθ (A|X)] in Section 3.

In fact, for Eθ [covθ (A,Y |X)] we shall have to settle
for statements that are “in dialogue” with current prac-
tices and literature. To do so, we must return to the setting
of Theorem 1.4 as, in current literature, authors often re-
port a nominal (1 − α) Wald CI ψ̂1 ± zα/2ŝ.e.[ψ̂1], or

more commonly ψ̂cf,1 ± zα/2ŝ.e.[ψ̂cf,1], and then appeal
to Theorem 1.4 to support a claim that the true uncon-
ditional coverage is not less than nominal. Specifically,
Theorem 1.4 implies validity under the null hypothesis
Biasθ (ψ̂1) = o(n−1/2). The authors’ justification for the
claim that Biasθ (ψ̂1) = o(n−1/2) quite generally follows
from making untestable complexity reducing assumptions
(e.g., sparsity or smoothness) about the unknown nui-
sance regression functions appearing in the first-order in-
fluence function. Even given such complexity reducing
assumptions, their appeal to the asymptotic o(n−1/2) is
implicitly justified by the tacit assumption that, at their
sample size of N = 2n = 2ntr, they are nearly in asymp-
topia both in regards to the estimation sample n and in
regards to the ratio Biasθ (ψ̂1)/s.e.θ [ψ̂1] being close to its
asymptotic limit of 0 (implied by their complexity reduc-
ing assumptions.)

However, most authors fail to quantify or operationalize
their claims. In line with the approach of this paper, when-
ever a null hypothesis is defined in terms of an asymptotic
rate of convergence such as o(n−1/2) in the training sam-
ple data, we will (1) ask the authors to specify a positive
number δ = δ(N) possibly depending on the actual sam-
ple size N of their study and (2) then operationalize the
asymptotic null hypothesis Biasθ (ψ̂1) = o(n−1/2) as the
null hypothesis H0(δ). That is, we have the operational-
ized pair

NH0 : Biasθ (ψ̂1) = o
(
n−1/2)

,

H0(δ) : |Biasθ (ψ̂1)|
s.e.θ [ψ̂1]

< δ

by which we mean that if H0(δ) is (not) rejected, we,
by convention, will declare NH0 (not) rejected. The au-
thors’ choice of δ depends on the degree of under cover-
age they are willing to tolerate. For example, if one allows
the coverage of a 90% two-sided Wald CI centered at ψ̂1

to be at least 80.6% (or 55.6%), then the authors choose
δ = 0.75 as TCα=0.1(0.75) = 0.806 (or choose δ = 1.5 as
TCα=0.1(1.5) = 0.556).

Similarly, we have the surrogate operationalized pair

NH0,k : Biasθ,k(ψ̂1) = o
(
n−1/2)

,

H0,k(δ) : |Biasθ,k(ψ̂1)|
s.e.θ [ψ̂1]

< δ.
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Suppose now the authors of a research paper agree that
in reporting ψ̂1 ± zα/2ŝ.e.[ψ̂1] as a (1 − α) Wald CI for
ψ(θ) = Eθ [covθ [Y,A|X]], their implicit or explicit null
hypothesis is that Biasθ (ψ̂1) is o(n−1/2). Further, suppose

the test χ̂
(2)
k (zα†, δ) developed in Section 4.2 rejects the

surrogate H0,k(δ), equivalently NH0,k . However, unlike
for Eθ [varθ [A|X]], rejecting the surrogate H0,k(δ) does
not logically imply rejecting H0(δ), equivalently NH0.

What, if anything, can be done? One approach is
to adopt an additional “faithfulness” assumption under
which rejection of the surrogate NH0,k logically implies
rejection of NH0.

CONDITION FAITHFULNESS. Given a fixed k,

Biasθ (ψ̂1)

Biasθ,k(ψ̂1)
= 1 + TBθ,k(ψ̂1)

Biasθ,k(ψ̂1)

is not o(1).

One might find this assumption rather natural because
it holds unless TBθ,k(ψ̂1) and Biasθ,k(ψ̂1) are of the same
order and their leading constants sum to zero, which
seems highly unlikely to be the case. In finite samples,
we can also operationalize the above asymptotic faithful-
ness condition by choosing some δ′ > 0 and imposing the
following.

CONDITION FAITHFULNESS(δ′). For a given k,
∣∣∣∣

Biasθ (ψ̂1)

Biasθ,k(ψ̂1)

∣∣∣∣ =
∣∣∣∣1 + TBθ,k(ψ̂1)

Biasθ,k(ψ̂1)

∣∣∣∣ ≥ δ′.

Under Condition Faithfulness(δ′), rejection of H0,k(δ)

implies rejection of H0(δδ
′). If we choose δ′ = 0.15, Con-

dition Faithfulness(δ′) holds unless −1.15 ≤ TBθ,k(ψ̂1)

Biasθ,k(ψ̂1)
≤

−0.85. When we reject H0,k(δ) for some large δ, say
δ = 10, we will reject H0(δδ

′ = 1.5), suggesting that the
true asymptotic coverage of a 90% two-sided Wald CI
should be lower than 55.6%. To some extent, imposing
Condition Faithfulness or Condition Faithfulness(δ′) may
seem inconsistent with the goal of falsifying the validity
of reported Wald CIs without unverifiable assumptions.

Cauchy–Schwarz bias. What else can be done if we are
not willing to impose Condition Faithfulness or Condition
Faithfulness(δ′)?

In what follows, we shall assume that the implicit or ex-
plicit goal in using a machine learning algorithm to learn
the regression functions b(x) and p(x) is to construct
b̂(x) and p̂(x) that (nearly) minimize the conditional
mean square errors Eθ [{b(X) − b̂(X)}2] and Eθ [{p(X) −
p̂(X)}2] over the set of functions computable by the al-
gorithm. In fact, researchers who use the “training sample
squared-error loss cross-validation” algorithm described
in Remark 1.6 are explicitly acknowledging this as their
goal.

It follows that researchers who report a nominal (1−α)

Wald CI ψ̂1 ± zα/2ŝ.e.[ψ̂1] or ψ̂cf,1 ± zα/2ŝ.e.(ψ̂cf,1),

based on a DRML estimator ψ̂1 for ψ(θ) =
Eθ [covθ (A,Y |X)] should naturally appeal to the follow-
ing Cauchy–Schwarz (CS) null hypothesis NH0,CS and its
operationalization H0,CS(δ)

NH0,CS : CSBiasθ (ψ̂1) :=
{
Eθ

[{
b(X) − b̂(X)

}2]

×Eθ

[{
p(X) − p̂(X)

}2]}1/2

(4.1)
= o

(
n−1/2)

,

H0,CS(δ) : CSBiasθ (ψ̂1)

s.e.θ [ψ̂1]
< δ

as the justification of a validity claim that the Wald
CI’s true coverage of ψ(θ) is (within the tolerance
level set by δ) nominal. The CS null hypothesis NH0,CS

is the hypothesis that the Cauchy–Schwarz (CS) bias,
CSBiasθ (ψ̂1), is o(n−1/2). We have the following logi-
cal orderings between the null hypotheses defined above.

LEMMA 4.1.

1. NH0,CS ⇒ NH0, and similarly H0,CS(δ) ⇒ H0(δ);
2. NH0,CS ⇒ NH0,k for all k, and similarly H0,CS(δ) ⇒

H0,k(δ) for all k.

PROOF. The first part simply follows from CS in-
equality. The second part follows from the derivation be-
low:

∣∣Biasθ,k(ψ̂1)
∣∣ =

∣∣Eθ

[
�

[
b(X) − b̂(X)|Z̄k

]

× �
[
p(X) − p̂(X)|Z̄k

]]∣∣

≤ L2,b,kL2,p,k

≤
{
Eθ

[(
b(X) − b̂(X)

)2]}1/2

×
{
Eθ

[(
p(X) − p̂(X)

)2]}1/2

≡ CSBiasθ (ψ̂1),

(4.2)

where the first inequality follows from CS inequality and
the second inequality is a consequence of the fact that a
projection contracts L2(Pθ ) norms. �

However, the converse statements of Lemma 4.1 are
not always true: for example, NH0 may be true (and thus,
by Theorem 1.4 the above the Wald CI centered at ψ̂1 is
valid) even when the CS null hypothesis is false. Suppose
we empirically falsify the justification NH0,CS (H0,CS(δ))
for the null hypothesis of actual interest NH0 (H0(δ)).
Then, although logically NH0 may be true, there seems
to us, neither a substantive nor a philosophical reason to
assume NH0 is true in the absence of NH0,CS. In Bayesian
language, our (subjective) posterior probability that NH0

is true conditional on NH0,CS being false is small; equiv-
alently the rejection of NH0,CS undermines our belief in
NH0. Thus we will make the following.
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CONDITION CS. If the CS null hypothesis NH0,CS

and H0,CS(δ) being true is used as the justification for the
validity of the Wald interval ψ̂1 ±zα/2ŝ.e.(ψ̂1), but in fact
are false, one should refuse to support claims whose va-
lidity rests on the truth of NH0 or H0(δ); in particular, the
claims that the Wald CIs centered at ψ̂1 have true cover-
age greater than or equal to their nominal.

Clearly, Condition CS will allow meaningful inferences
regarding ψ(θ) = Eθ [covθ (A,Y |X)] only if it is possible
to empirically reject the CS null hypothesis H0,CS(δ). In-
deed, it follows from Lemma 4.1(2), that the rejection of
the surrogate H0,k(δ) implies rejection of H0,CS(δ). In the

next section, we will construct a test χ̂
(2)
k (ζk, δ) that can

empirically reject H0,k(δ), and hence reject H0,CS(δ) (and
also reject H0(δδ

′) under Condition Faithfulness(δ′)).

4.2 An Oracle Test

Based on the statistical properties of ψ̂1 and ÎF22,k

summarized in Theorem 1.4 and Theorem 2.6, for
ψ(θ) := Eθ [covθ (A,Y |X)], we now consider the proper-

ties of the following two-sided test χ̂
(2)
k (ζk, δ) for H0,k(δ)

(2.7):

χ̂
(2)
k (ζk, δ) ≡ χ̂

(2)
k

(
�−1

k ; ζk, δ
)

:= 1
{ |ÎF22,k|

ŝ.e.[ψ̂1]
− ζk

ŝ.e.[ÎF22,k]
ŝ.e.[ψ̂1]

> δ

}(4.3)

for user-specified ζk, δ > 0. We use a two-sided test rather
than a one-sided test because the sign of Biasθ,k(ψ̂1) is
unknown a priori.

The following theorem characterizes the asymptotic

level and power of the oracle two-sided test χ̂
(2)
k (ζk, δ)

for H0,k(δ) (2.7) when ψ(θ) = Eθ [covθ (A,Y |X)].
THEOREM 4.2. For ψ(θ) = Eθ [covθ (A,Y |X)], un-

der Condition W, when k → ∞ but k = o(n), for any

given δ, ζk > 0, suppose that
|Biasθ,k(ψ̂1)|

s.e.θ [ψ̂1]
= γ for some (se-

quence) γ = γ (n) (where γ (n) can diverge with n), then

the rejection probability of χ̂
(2)
k (ζk, δ) converges to

(4.4)

2 − �

(
ζk − lim

n→∞(γ − δ)
s.e.θ [ψ̂1]

s.e.θ [ÎF22,k]

)

− �

(
ζk + lim

n→∞(γ + δ)
s.e.θ [ψ̂1]

s.e.θ [ÎF22,k]

)

as n → ∞. In particular,

(1) under H0,k(δ) : γ ≤ δ, χ̂
(2)
k (ζk, δ) rejects the null

with probability less than or equal to 2(1 − �(ζk)), as

n → ∞;
(2) under the following alternative to H0,k(δ): γ = δ+

c, for any diverging sequence c = c(n) → ∞, χ̂
(2)
k (ζk, δ)

rejects the null with probability converging to 1, as n →
∞.

(2’) If b̂ and p̂ converge to b and p in L2(Pθ ) norm,
under the following alternative to H0,k(δ): γ = δ + c, for

any fixed c > 0 or any diverging sequence c = c(n) → ∞,

χ̂
(2)
k (ζk, δ) has rejection probability converging to 1, as

n → ∞.

REMARK 4.3. In Section S2, we prove equation
(4.4). We now prove that equation (4.4) implies Theo-
rem 4.2(1)–(2) and (2’).

• Regarding (1), under H0,k(δ) : γ ≤ δ,

−(γ − δ)
s.e.θ [ψ̂1]

s.e.θ [ÎF22,k]
≥ 0 and

(γ + δ)
s.e.θ [ψ̂1]

s.e.θ [ÎF22,k]
≥ 0,

which implies that the rejection probability is less than
or equal to 2 − 2�(ζk). Choose ζk = zα†/2, 2(1 −
�(ζk)) = 2α†/2 = α† and conclude that the test is a
valid level α† test of the null.

• Theorem 4.2(2) and (2’) are less sharp than Theo-
rem 3.2(2) when ψ(θ) = Eθ [varθ (A|X)]. Under the al-
ternative to H0,k(δ) with γ = δ + c for some c > 0, it
follows from Theorem 2.6 and equation (4.4) that the

rejection probability of χ̂
(2)
k (ζk, δ), as n → ∞, is no

smaller than

2 − �

(
ζk − c�

(
b,p, b̂, p̂, fX, Z̄k

)

×
{

k

n
+L2,p,k +L2,b,k

}−1)

− �(∞),

where �(b,p, b̂, p̂, fX, Z̄k) is some positive constant
depending on the true regression functions b and p, the
estimated functions b̂, p̂ from the training sample, the
density fX of X and the chosen basis functions Z̄k . To
have power approaching 1 to reject H0,k(δ), we need
one of the following:
– If one of L2,p,k and L2,b,k is O(1), we need c → ∞

to guarantee the rejection probability of χ̂
(2)
k (ζk, δ)

to converge to 1−�(−∞) = 1. Hence we have The-
orem 4.2(2).

– If c is fixed, we need both L2,p,k and L2,b,k to
be o(1) to guarantee the rejection probability of

χ̂
(2)
k (ζk, δ) to converge to 1 − �(−∞) = 1. Note if

b̂ and p̂ converge to b and p in L2(Pθ )-norm, then
both L2,p,k and L2,b,k are o(1). Hence we have The-
orem 4.2(2’).

Theorem 4.2 implies that χ̂
(2)
k (zα†/2, δ) is an asymp-

totically valid level α† two-sided test of the surrogate
null H0,k(δ), and hence by Lemma 4.1(2) it is also an
asymptotically α† level test of H0,CS(δ). Thus when
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χ̂
(2)
k (zα†/2, δ) rejects H0,k(δ), we also reject H0,CS(δ) and

by Condition CS, we conclude that we have no justifica-
tion for assuming the validity of the Wald CI centered at
ψ̂1 (even though H0,k(δ) and H0,CS(δ) being false does
not logically imply that H0(δ) is false and, therefore, does
not logically imply a Wald CI centered at ψ̂1 is invalid).

On the other hand, χ̂
(2)
k (zα†/2, δ) can be a power-

less test for H0,CS(δ) under certain laws Pθ : even when

χ̂
(2)
k (zα†/2, δ) fails to reject H0,k(δ) with (conditional)

probability 1, H0,CS(δ) may still be false.

Furthermore, χ̂
(2)
k (zα†/2, δ) is not an asymptotically

valid level α† test of H0(δ). However, if we assume Con-
dition Faithfulness(δ′), then χ̂

(2)
k (zα†/2, δ) is an asymptot-

ically valid level α† test of H0(δδ
′). But it can be a pow-

erless test of H0(δδ
′): when χ̂

(2)
k (zα†/2, δ) fails to reject

H0,k(δ), H0(δδ
′) may still be false even under Condition

Faithfulness(δ′).
Finally, because |Biasθ (ψ̂1)| need not exceed

|Biasθ,k(ψ̂1)|, the concept of upper confidence bound
is not particularly useful for ψ(θ) = Eθ [covθ (A,Y |X)].

REMARK 4.4. We have shown that it is indeed
possible to empirically reject the CS null hypothesis
H0,CS(δ) by testing H0,k(δ) using the two-sided test

χ̂
(2)
k (ζk, δ). However, it is possible that H0,k(δ) is true

whereas H0,CS(δ) is false, as we only have Biasθ,k(ψ̂1) ≤
CSBiasθ (ψ̂1) but do not have control over the gap be-
tween these two quantities without making further un-
verifiable assumptions on the true regression functions
b and p and their estimators b̂ and p̂. This raises the

question whether we can test H0,CS(δ) : CSBiasθ (ψ̂1)

s.e.θ (ψ̂1)
≤ δ

more directly by instead testing the following surro-

gate null hypothesis H0,CS,k(δ) : CSBiasθ,k(ψ̂1)

s.e.θ (ψ̂1)
≤ δ where

CSBiasθ,k(ψ̂1) = L2,b,kL2,p,k . We show in Section S7
that it is still possible but we require multiple testing to
increase the power to reject H0,CS,k(δ) when it is in fact
false.

5. TESTING THE VALIDITY OF WALD CIs OF ψ̂1 WITH

k > n FOR ψ(θ) = Eθ [varθ (A|X)]

The tests developed in the previous sections restrict
k = o(n). In this section, we instead consider the case
k ≫ n yet k = o(n2). We only consider the parameter
ψ(θ) = Eθ [varθ (A|X)].13 Recall that Biasθ,k(ψ̂1) is non-
decreasing in k (see Lemma 2.3) under Condition B. Fur-
ther, when k > n, the variance of ÎF22,k is always of or-
der k/n2, and thus increases with k and exceeds the order
of varθ (ψ̂1). We exploit this bias-variance trade-off be-
low. Although ψ(θ) = Eθ [covθ (A,Y |X)] does not have a

13The variance of ÎF22,k is of order k/n2 when k ≫ n.

bias nondecreasing in k, results we obtained concerning
ψ(θ) = Eθ [varθ (A|X)] can be extended to the parameter
CSBiasθ (ψ̂1) discussed above and in Section S7, although
we omit the details. We continue to assume that �−1

k is
known.

If k0 = o(n), then for ψ(θ) = Eθ [varθ (A|X)], we may
always prefer to report a Wald CI centered at ψ̂2,k0

14

than one centered at ψ̂1 for the following reason: we
know Biasθ (ψ̂2,k0) ≤ Biasθ (ψ̂1) and yet the variances

of ψ̂2,k0 and ψ̂1 are close (i.e., of the same order).
This choice naturally raises the question as to whether
ψ̂2,k0 ± zα/2ŝ.e.[ψ̂2,k0] covers ψ(θ) at its nominal level,
which we operationalize as the null hypothesis H0,2,k0(δ) :
Biasθ (ψ̂2,k0 )

s.e.θ (ψ̂2,k0 )
≤ δ.

If H0,2,k0(δ) is rejected, we may choose to report ψ̂2,k

for some k > n to further reduce bias at the the price of
inflating the variance varθ (ψ̂2,k) ≍ k/n2 whose order then
exceeds varθ (ψ̂1) ≍ 1/n. Our goal is to find the values of
k for which we do not have empirical evidence that the
Wald CI centered at ψ̂2,k undercovers. We operationalize
this goal as testing the null hypotheses in the following
set, with bounded cardinality J ,

{
H0,2,k(δ) :

Biasθ (ψ̂2,k)

s.e.θ (ψ̂2,k)
= TBθ,k(ψ̂1)

s.e.θ (ψ̂2,k)
≤ δ, k ∈ KJ

}
,

(5.1)

where

KJ :=
{
k0 < n < k1 < · · · < kJ−1 = o

(
n2)

:
k0 = o(n), kj−1 = o(kj ), j = 1, . . . , J − 1

}
.

Note that the hypotheses in the above set are ordered:
for any k1 < k2 ∈ KJ , H0,2,k1(δ) ⇒
H0,2,k2(δ) because Biasθ (ψ̂2,k1) ≥ Biasθ (ψ̂2,k2) whereas

s.e.θ (ψ̂2,k1) ≪ s.e.θ (ψ̂2,k2). Hence if for each k ∈ KJ we

have a level α
†
k test, the following sequential test protects

the level for each hypothesis H0,2,k(δ). See Rosenbaum
(2008), Proposition 1, for the proof.

DEFINITION 5.1. Given a sequence of desired levels
{0 < α

†
k ≤ 1

2 , k ∈ KJ }. For j = 0, . . . , J − 1, at k = kj :

• If the level α
†
k test of H0,2,k(δ) rejects, set k = kj+1 and

repeat.
• Otherwise, we declare failure to reject H0,2,kj ′ (δ) for all

j ′ ≥ j and stop.

14Without loss of generality, we assume varθ [ÎF22,k0 ] ≍ k0/n2.
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In particular, for any j = 0,1, . . . , J − 2, we define the
following test of H0,2,kj

(δ), given the desired level α
†
kj

,

(5.2)

χ̂2,kj
(z

α
†
kj

, δ) := max
{
χ̂2,kj→k′(z

α
†
kj

/(J−j−1)
, δ),

k′ ∈ K
−j
J := KJ \ {k0, . . . , kj }

}
,

where15

(5.3)

χ̂2,kj→k′(z
α

†
kj

/(J−j−1)
, δ)

:= 1
{
ÎF22,k′ − ÎF22,kj

ŝ.e.(ψ̂2,kj
)

− z
α

†
kj

/(J−j−1)

ŝ.e.[ÎF22,k′]
ŝ.e.(ψ̂2,kj

)
> δ

}
.

χ̂2,kj
(zα†, δ) implicitly tests J − j − 1 surrogate hy-

potheses16 associated with the actual null hypothesis
of interest H0,2,kj

(δ). We choose the cutoff zα†/(J−j−1)

in χ̂2,kj→k′(zα†/(J−j−1), δ) to protect the level of
χ̂2,kj

(zα†, δ) by adjusting for multiple testing.

REMARK 5.2. We use Figure 2 to visually illus-
trate the sequential test given in Definition 5.1 using
χ̂2,kj

(zα†, δ). We use the same level α† for each kj in
this example. Figure 2 displays one hypothetical dataset
drawn from Pθ . Reading from the top (j ′ = 0) to the bot-
tom panel (j ′ = 2):

1. The y-values of the points are
ψ̂2,kj

ŝ.e.[ψ̂2,k
j ′ ]

− δ
2 for

j = j ′ + 1, . . . , J − 1. As shown in the plot, any given
point moves closer to 0 from top (j ′ = 0) to bottom
(j ′ = 2) because ŝ.e.(ψ̂2,k0) ≪ ŝ.e.(ψ̂2,k1) ≪ ŝ.e.(ψ̂2,k2)

when k0 ≪ k1 ≪ k2.
2. The length of the error bar associated with kj is

zα†/(J−j ′−1)

ŝ.e.[ÎF22,kj
]

ŝ.e.[ψ̂2,k
j ′ ]

, which decreases as we go from

the top (j ′ = 0) to the bottom (j ′ = 2) panel. This reflects
the fact that ŝ.e.(ψ̂2,k0) ≪ ŝ.e.(ψ̂2,k1) ≪ ŝ.e.(ψ̂2,k2) when
k0 ≪ k1 ≪ k2 while zα†/(J−1) ≍ zα†/(J−2) ≍ zα†/(J−3).

The sequential test for this example proceeds as follows:

• The upper panel of Figure 2 corresponds to be the test
of H0,2,k0(δ). The length of the error bar at each kj is

zα†/(J−1)

ŝ.e.[ÎF22,kj
]

ŝ.e.[ψ̂2,k0 ] . The upper end of each error bar is

ψ̂2,kj

ŝ.e.[ψ̂2,k0 ] − δ
2 + zα†/(J−1)

ŝ.e.[ÎF22,kj
]

ŝ.e.[ψ̂2,k0 ] . If the point at k0

15We can choose ŝ.e.(ψ̂2,k0) = ŝ.e.(ψ̂1) (as we have assumed

s.e.θ (ÎF22,k0 ) ≍ √
k0/n ≪ n−1/2 in footnote 14) and ŝ.e.(ψ̂2,k) =

ŝ.e.(ÎF22,k) for any k ≫ n, where ŝ.e.(ÎF22,k) is given in Theorem 2.6

(as s.e.θ (ÎF2,k) ≍
√

k/n ≫ n−1/2).
16We explain why we test multiple surrogate hypotheses instead of

single hypothesis in Remark S8.3.

(blue colored) lies outside at least one of the error bars
to its right, we reject H0,2,k0(δ). This corresponds to the
test χ̂2,k0(zα†, δ) (see equation (5.2)). We choose the
cutoff zα†/(J−1) to adjust for the J − 1 multiple com-
parisons. As shown in the plot, we reject H0,2,k0(δ) be-
cause the blue point at k0 is outside the error bar at kJ−2

(purple).
• As H0,2,k0(δ) is rejected, we next test H0,2,k1(δ), as

shown in the middle panel of Figure 2. To test
H0,2,k1(δ), we follow the above procedure. In the mid-
dle panel, the upper end of the error bars for a given

kj equals
ψ̂2,kj

ŝ.e.[ψ̂2,k1 ] − δ
2 + zα†/(J−2)

ŝ.e.[ÎF22,kj
]

ŝ.e.[ψ̂2,k1 ] , j =

2, . . . , J − 1. When
ψ̂2,k1

ŝ.e.[ψ̂2,k1 ] − δ
2 (the leftmost green

point) lies outside at least one of the error bars to its
right, we reject H0,2,k1(δ). This corresponds to the test
χ̂2,k1(zα†, δ) (see equation (5.2)). We reject H0,2,k1(δ)

because the green point
ψ̂2,k1

ŝ.e.[ψ̂2,k1 ] − δ
2 at k1 is outside

the error bar at kJ−2 (purple).
• We continue to test H0,2,k2(δ), as shown in the lower

panel of Figure 2. The upper end of the error bar for a

given kj equals
ψ̂2,kj

ŝ.e.[ψ̂2,k2 ] − δ
2 + zα†/(J−3)

ŝ.e.[ÎF22,kj
]

ŝ.e.[ψ̂2,k2 ] for

j = 3, . . . , J − 1. We fail to reject H0,2,k2(δ) because
ψ̂2,k2

ŝ.e.(ψ̂2,k2 )
− δ

2 (the leftmost black point) is covered by

all the error bars to its right.
• We thus terminate the sequential test and declare failure

to reject H0,2,k(δ) for all k ≥ k2.

The result below shows that the sequential test given
in Definition 5.1 using χ̂2,kj

(z
α

†
kj

, δ) protects the desired

level for each null hypothesis H0,2,kj
(δ) in the set given in

equation (5.1). It follows from Proposition 5.5 below.

PROPOSITION 5.3. Under Condition W, for every

kj ∈ KJ , χ̂2,kj
(z

α
†
kj

, δ) is an asymptotic level α
†
kj

test of

the null hypothesis H0,2,kj
(δ). Consequently, the sequen-

tial test defined in Definition 5.1 using χ̂2,kj
(z

α
†
kj

, δ) is an

asymptotically level α
†
kj

test for every individual null hy-

pothesis H0,2,kj
(δ) in KJ .

REMARK 5.4. We have assumed that J is bounded
for technical reasons: we need the joint conditional
asymptotic normality of ÎF22,k for k ∈ J , which is not
guaranteed if J → ∞ as n → ∞. It is possible to re-
lax the boundedness assumption on J using exponential
inequalities for U-statistics rather than normality to set
critical values. But to do so requires that we estimate the
constants in the exponential inequalities, which is left for
future work.
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FIG. 2. An illustration of the sequential test. Depicted is a hypothetical data (one realization from the true data generating law Pθ in which the

sequential test rejects both H0,2,k0 (δ) and H0,2,k1 (δ) but fails to reject H0,2,k2 (δ). The error bars and points are defined in Remark 5.2.
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The following result, which is a consequence of Propo-
sition S8.2, summarizes the asymptotic power of the test
χ̂2,kj

(z
α

†
kj

, δ) when the null hypothesis H0,2,kj
(δ) is false,

for any given kj ∈ KJ .

PROPOSITION 5.5. Under Condition W, for a given

j = 0, . . . , J − 1, let k = kj . Given any δ > 0, sup-

pose that
Biasθ (ψ̂2,k)

s.e.θ (ψ̂2,k)
= γ for some (sequence) γ ≡ γ (n)

and
Biasθ,k′ (ψ̂2,k)

s.e.θ (ψ̂2,k)
= γk′ for some (sequence) γk′ ≡ γk′(n),17

χ̂2,k(zα
†
k
, δ) rejects H0,2,k(δ) with probability that lies in

the following interval:

(5.4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

max

{
1 − �

(
zα†/(J−j−1)

− lim
n→∞(γk′ − δ)

s.e.θ (ψ̂2,k)

s.e.θ [ÎF22,k′]

)
, k′ ∈ K

−j
J

}
,

min

{ ∑

k′∈K−j
J

1 − �

(
zα†/(J−j−1)

− lim
n→∞(γk′ − δ)

s.e.θ (ψ̂2,k)

s.e.θ [ÎF22,k′]

)
,1

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

as n → ∞. In particular, under the following alternative

to H0,2,k(δ): if there exists k′ ∈ K
−j
J such that γk′ = δ + c

with c ≫
√

k′
max{k,n} , then the test χ̂2,k(zα

†
k
, δ) rejects the

null with probability approaching 1, as n → ∞.

REMARK 5.6. Proposition 5.5 follows from Proposi-
tion S8.2 (analogous to Theorem 3.2) and the definition
of χ̂2,k(zα

†
k
, δ) in equation (5.2).

In Proposition S8.2, we prove that for k = kj ,
χ̂2,k→k′(zα†/(J−j−1), δ) rejects the null hypothesis

H0,2,k→k′(δ) :
Biasθ (ψ̂2,kj

)−Biasθ (ψ̂2,k′ )

s.e.θ (ψ̂2,kj
)

≤ δ with probability

1 − �

(
zα†/(J−j−1) − lim

n→∞(γk′ − δ)
s.e.θ (ψ̂2,k)

s.e.θ [ÎF22,k′]

)
.

Here,

Biasθ (ψ̂2,kj
) − Biasθ (ψ̂2,k′) = Eθ [ÎF22,k′ − ÎF22,kj

] ≥ 0.

H0,2,kj→k′(δ) is the surrogate null hypothesis associ-
ated with H0,2,kj

(δ) in the following sense (see also
Lemma S8.1): H0,2,kj

(δ) ⇒ H0,2,kj→k′(δ) for all k′ ∈
K

−j
J , therefore, if one of H0,2,kj→k′(δ) is false, H0,2,kj

(δ)

is false.
Under H0,2,kj→k′(δ), χ̂2,k→k′(zα†/(J−j−1), δ) rejects

H0,2,k→k′(δ) no more than α†/(J − j − 1). Under

the following alternative γk′ − δ ≫
√

k′
max{kj ,n} ,18

17γ ≥ γk′ for any k′ ∈K
−j
J

18The need for a diverging alternative is a consequence of the vari-

ance of the statistic
ÎF22,k′

ŝ.e.(ψ̂2,kj
)

being of order k′/max{kj , n}.

χ̂2,kj→k′(zα†/(J−j−1), δ) rejects H0,2,kj→k′(δ) with prob-
ability approaching 1.

6. CONCLUDING REMARKS

We conclude by mentioning some open problems:

• We did not consider how to optimally select the basis
functions Z̄k from a dictionary of K > k basis func-
tions. Data driven basis selection in the training sample
has the potential of markedly increased power.

• As mentioned in Section 1 (also see Section S3 in Liu,
Mukherjee and Robins, 2020), for unknown �−1

k , we
lack theoretical guarantees as to the statistical proper-
ties of the estimators/tests that performed the best in
our simulation studies.

Once these open problems are solved, we would sug-
gest that testing the undercoverage of Wald confidence in-
tervals centered at DRML estimators would become rou-
tine.

APPENDIX: ESTIMATORS FOR Biask,θ (ψ̂1) WHEN

�−1
k IS UNKNOWN

In this appendix, we describe the data-adaptive test and
the upper confidence bound used in the simulation studies
of Section 1 when �−1

k is unknown:

χ̂
(1)
k

(
�̂−1

k ; ζk, δ
)

= 1
{
ÎF22,k(�̂

−1
k )

ŝ.e.(ψ̂1)
(A.1)

−ζk

ŝ.e.(ÎF22,k(�̂
−1
k ))

ŝ.e.(ψ̂1)
> δ

}
(see Table 1),

UCB(1)(�̂−1
k ;α,α†)

:= TCα

([
ÎF22,k(�̂

−1
k ) − zα† ŝ.e.[ÎF22,k(�̂

−1
k )]

ŝ.e.[ψ̂1]

])
(A.2)

(see Figure S1).

Both statistics depend on a data-adaptive estimator
ÎF22,k(�̂

−1
k ), which we next define. At a given k,

ÎF22,k(�̂
−1
k ) is equal to either ÎF22,k([�̂shrink

k ]−1) or

ÎF
quasi

22,k ([�̂est
k ]−1), defined as follows:

ÎF22,k

([
�̂shrink

k

]−1)

:= (n − 2)!
n!(A.3)

×
∑

1≤i1 �=i2≤n

[ε̂bZ̄k]⊤i1
[
�̂shrink

k

]−1[Z̄k ε̂p]i2,

ÎF
quasi

22,k

([
�̂est

k

]−1)

:= (n − 2)!
n!(A.4)
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×
∑

1≤i1 �=i2≤n

[ε̂bZ̄k]⊤i1Q
([

�̂est
k

]−1
, Z̄k,i1, Z̄k,i2

)

× [Z̄k ε̂p]i2,
where

Q
([

�̂est
k

]−1
, Z̄k,1, Z̄k,2

)

:=
[
�̂est

k

]−1

+ 1

n

[
�̂est

k

]−1(
Z̄k,1Z̄⊤

k,1 + Z̄k,2Z̄⊤
k,2

)[
�̂est

k

]−1
,

�̂est
k := 1

n

∑

i∈est

Z̄k,i Z̄
⊤
k,i

and �̂shrink
k is the nonlinear shrinkage covariance ma-

trix estimator developed in Ledoit and Wolf (2012),
computed from the training sample. We briefly describe

below how we choose between ÎF
quasi

22,k ([�̂est
k ]−1) and

ÎF22,k([�̂shrink
k ]−1). More details can be found in Sec-

tion S3, Section S6 and Section S9. Their variance es-
timators are described in Remark S5.1 and Remark S5.2
respectively.

• In simulations, for every k, ÎF
quasi

22,k ([�̂est
k ]−1) is always

numerically stable. We know that Biasθ,k(ψ̂1) increases

with k. In contrast, although ÎF
quasi

22,k ([�̂est
k ]−1) initially

increases with k, we observe that after some k∗, it be-
gins to decrease. Our adaptive estimator switches to
ÎF22,k∗([�̂shrink

k∗ ]−1)) at this k∗, if the variance estimator
of ÎF22,k∗([�̂shrink

k ]−1)) does not blow up. Empirically,
ÎF22,k([�̂shrink

k ]−1)) performs well as an estimator of

Biasθ,k(ψ̂1) when its variance estimator does not blow
up.

• In our simulation study, at each k, the empirical

probability of either choosing ÎF
quasi

22,k ([�̂est
k ]−1) or

ÎF22,k([�̂shrink
k ]−1)) is 1. Thus we do not need to take

into account the above data-driven selection step in
estimating the variance of the data-adaptive estimator
ÎF22,k(�̂

−1
k ).

We leave the problem of unknown �−1
k with k > n to

future work, because estimation of �−1
k with k > n re-

quires additional assumptions on the distribution of X

outside those in Condition W that may not hold.
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