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Abstract

In cells, cytoskeletal filament networks are responsible for cell movement, growth, and
division. Filaments in the cytoskeleton are driven and organized by crosslinking molecular
motors. In reconstituted cytoskeletal systems, motor activity is responsible for far-from-
equilibrium phenomena such as active stress, self-organized flow, and spontaneous nematic
defect generation. How microscopic interactions between motors and filaments lead to
larger-scale dynamics remains incompletely understood. To build from motor-filament in-
teractions to predict bulk behavior of cytoskeletal systems, more computationally efficient
techniques for modeling motor-filament interactions are needed. Here we derive a coarse-
graining hierarchy of explicit and continuum models for crosslinking motors that bind to
and walk on filament pairs. We compare the steady-state motor distribution and motor-
induced filament motion for the different models and analyze their computational cost. All
three models agree well in the limit of fast motor binding kinetics. Evolving a truncated
moment expansion of motor density speeds the computation by 103-10% compared to the
explicit or continuous-density simulations, suggesting an approach for more efficient simu-
lation of large networks. These tools facilitate further study of motor-filament networks on

micrometer to millimeter length scales.

1 Introduction

The cytoskeleton generates force and reorganizes to perform important cellular processes [1],
including cell motility [2, 3], cytokinesis [4], and chromosome segregation in mitosis [5]. The
cytoskeleton is made of polymer filaments, molecular motors, and associated proteins. The
two best-studied cytoskeletal filaments are actin and microtubules [1]. It remains incompletely
understood how diverse cytoskeletal structures dynamically assemble and generate force of pN

tonN [1,2].
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Force generation and reorganization in the cytoskeleton depend on the activity of crosslink-
ing motor proteins that align and slide pairs of filaments (Figure 1). Reorganization of actin
networks by myosin motors is important for muscle contraction [6-8], cell crawling and shape
change [9-11], and cytokinesis [4, 12]. Microtubule sliding by crosslinking kinesin and dynein
motors contributes to mitotic spindle assembly [5, 13—16], chromosome segregation [17-20],
cytoplasmic stirring in Drosophila oocytes [21], and beating of cilia and flagella [22-24].

Filament-motor interactions produce diverse cellular structures and dynamics, but link-
ing molecular properties of motors to larger-scale assembly behavior remains challenging.
Crosslinking motors vary in binding affinity, speed, processivity, and force-velocity relation.
These same ingredients can be reconstituted and show dynamic self-organization into asters or
contractile bundles [25-27], active liquid crystals [28-31], or other structures [32-34]. Even
in reconstituted systems, our ability to predict and control dynamics and self-organization is
limited.

Improved theory and simulation of cytoskeletal assemblies with crosslinking motors would
allow better prediction of both cellular and reconstituted systems. Currently few mesoscale
modeling methods for filament-motor systems are available between explicit particle simula-
tions and continuum hydrodynamic theory. Explicit motor simulations have several existing
software tools, including Cytosim [35], MEDYAN [36], and AFINES [37], and others [38].
Explicit motor simulations are straightforward to extend to include, for example, a new force-
velocity relation or motor cooperativity. However, the cost of explicit particle simulations scales
linearly or quadratically with the number of particles (depending on the type of interactions),
making simulation of large systems challenging. Continuum models of coarse-grained fields
can be computationally tractable and predict macroscopic behavior [39-46]. Current contin-
uum models invoke symmetry considerations to determine the structure of the model without

reference to an underlying microscopic mechanisms [39, 47-49], or simplify a microscopic
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model by making assumptions about the physics of motor [43,50-57]. Furthermore, previous
continuum theories have coarse-grained the filament distribution, with simplifying assumptions
about the motor distribution. This presents an opportunity to better understand how the distribu-
tion of motors evolves and affects filament motion. Further development of mesoscale modeling
techniques focusing on crosslinking motors could help bridge the gap between detailed explicit
particle models and continuum theories.

To develop mesoscale modeling tools, we focus on the fundamental unit of a crosslinked
filament network: two filaments with crosslinking motors that translate and rotate the filaments.
We study three different model representations in a coarse-graining hierarchy and compare com-
putational cost and accuracy. For explicit motors, we extend previous work that uses Brownian
dynamics and kinetic Monte Carlo simulation to handle filament motion and binding kinet-
ics [43,56,58-62]. At the first level of coarse-graining, we average over discrete bound motors
to compute the continuum mean-field motor density (MFMD) between filaments, and evolve
this density according to a first-order Fokker-Planck equation [58]. This requires computing
the solution to a single partial differential equation (PDE) for each filament pair, rather than
separately tracking each individual motor. The MFMD determines the force and torque on each
filament needed to evolve its position and orientation. At the second level of coarse-graining,
we expand the MFMD in moments to derive a system of ordinary differential equations (ODEs)
for the time evolution of the moments. While the moment expansion does not close, an approx-
imate treatment of filament motion can be modeled by low-order moments. To compare these
three model implementations, we consider test cases of parallel, antiparallel, and perpendicu-
lar filaments. Under the same initial conditions, the three model implementations give similar
results on average. Remarkably, the reduced moment expansion achieves a computational cost
that is 10~10° lower than the other models, suggesting a route to computationally tractable

large-scale simulations.
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Figure 1: Experimental systems of cytoskeletal filaments with crosslinking motors and overview of the model. A-
C Fluoresence microscopy images of cytoskeletal networks. A Mitotic spindle showing microtubules (green), chro-
mosomes (blue), and spindle-pole component TPX2 (red) [63]. B Reconstituted active gel of microtubules (white)
driven by crosslinking kinesin motor clusters with local flow field shown (yellow arrows) [28]. Scale bar: 80 pm.
C Reconstituted active network of actin (magenta) and myosin-II (green) [64]. Scale bar: 50 pum. D Schematic
of filament-motor network with green filaments and red motors. E Schematic of filament pair (green) crosslinked
by a motor (red) with model variables position of filament i’s center r;, orientation vector of filament ¢ 4;, vector
between filament centers r; ; = r; — r;, vector between motor heads h; ;, motor tether extension |h; ;|, and motor
speed on filament ¢ while attached to filament j.

1,5

2 We consider a pair of rigid, inextensible filaments that move and reorient under the force and
s torque applied by crosslinking motors. Filaments move in three dimensions, experience viscous
4 drag, and are constrained to prevent overlaps. Motors bind to and unbind from the filaments
s consistent with detailed balance in binding. Crosslinking motors walk with a force-dependent
s velocity toward filament plus ends and unbind when they reach the ends. We investigate models
7 at three levels: an explicit motor model where motors are represented with a discrete density, a

s continuum mean-field motor density (MFMD) model, and a moment expansion model.
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2.1 Filaments

We model filament motion using Brownian dynamics, balancing the force applied by motors
against viscous drag and constraint forces. Because the force that induces Brownian motion is
typically smaller than that due to motors, we neglect Brownian noise [65].

Filaments translate according to the force-balance equation

i; = M; (Z F) , (1

where r; is the center of filament ¢ with mobility matrix M, acted on by forces F, ;. The

mobility matrix for a perfectly rigid rod in a viscous medium is

M; = ()5 = i) @t + 700) )

where I is the identity matrix and ~y; and 7, ; are the parallel and perpendicular drag coef-
ficients with respect to the filament orientation u;. Cytoskeletal filaments with length L, and
diameter Dy typically have a large aspect ratio L;/Dg > 1, so we approximate the drag coef-
ficients using slender body theory [66].

The torque-balance equation is

i = — (Z T) < i 3)

Y6,i "

where T, ; are the torques acting on filament ¢ and ~, ; is the rotational drag coefficient about
the center of filament 7.

The force and torque exerted by crosslinking motors depend on where motors are attached,
the motor tether extension, and the relative position and orientation of filaments. Given the

crosslinking motor distribution along the filaments 1); ;(s;, s;), where s; is the bound motor

6
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head position on filament ¢, the total crosslinking force and torque exerted by filament ¢z on

filament j are

FZ’J' = /L /L fi7]’(8i,Sj)’gbi,j(si,Sj)dSide, (4)

Ti,j = / / Sj?lj X fi,j(si; sj)wi,j(si, Sj)dside. (5)
L; Lj

where f; ;(s;, s;) is the force exerted on filament j by the crosslinking motor attached at s; and
s; (Figure 1E). For brevity, we use subscripts on variables such as f; ; to indicate that these
are functions of the relative position and orientation of filaments ¢ and j. Our three model
implementations all models use equations (4) and (5) to compute the force and torque that
evolve filament position and orientation but differ in how the computation of ); ;.

We constrain the motion of filaments to prevent overlap, which avoids numerical instabilities
introduced by a hard potential between filaments. To implement the constraint, we construct a
vector Uy that is perpendicular to both infinite carrier lines defined by #; and 1, and parallel to
the vector of closest approach between these lines. The vector ,,;, is used to define two normal

planes that confine the filaments, leading to the modified force and torque

FiJ = Fi,j - (Fi,j : amin)amin (6)

i (Ti,j'amin>ﬁmin~ (7)

Note that for filaments lying in the same confining plane and |4; - 4;| < 1, Ui, = O and
our constraints break down. However, if only the first condition is satisfied, i.e., (anti)parallel
filaments, ’f‘m = 0 and f‘i,j is parallel to i, and ;. After computing the force and torque, we

numerically integrate equations (1) and (3) to update filament position and orientation.
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2.2 Motors

In our model motors bind and unbind, crosslink between two filaments, exert force and torque
when crosslinking, and walk with a force-dependent velocity. Typically motor proteins diffuse
in solution until they are near a filament, then stochastically bind to that filament. Once one
head binds, the other head can bind to a second filament, forming a crosslink, or the motor
can unbind. Crosslinking motors can unbind to a state with one head bound, or can unbind
completely from both filaments. We consider an infinite reservoir of unbound motor proteins.
The diffusion of motors in solution is fast relative to the motion of filaments, so we assume
the motor reservoir has uniform, constant concentration. We neglect steric interactions between
motors. This approximation holds for filaments sparsely populated with motors and motors that
do not cluster on filaments or in solution.

Motors crosslinking filaments have a potential energy U, ;(s;, s;) (Figure 1). The energy
depends on the motor head separation vector h; ;(s;, s;) = r; + s;u; — (r; + s;4;) that gives the

motor tether extension

h@j(Si, Sj) = T’?J + S? + S,L2 + 2['1'7]' . (Sjﬁj — SZQALZ) — 2Si8j(ﬁi . ﬁj), (8)

where r; j = r; — r; and 77, = r;; - r; ; (Figure 1E).

The bound motor heads walk with a speed v; ; that depends on the force component on
the motor head parallel to the walking direction, i, - f;; [67]. This projected force is used to
determine the motor speed via the force-velocity relation, as discussed below. This model is
based on processive microtubule motors such as kinesin and dynein, but a similar model has

been used for myosin minifilaments [37].
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Figure 2: Comparison of motor representations in three hierarchical models with schematics on the left and 2D
motor distributions on the right. A Explicit motor model with two-step binding kinetics. Unbound motors (light red
circle) bind one head (red circle) to filaments and then crosslink (two red circles connected by red line). B Mean-
field motor density model with motor distribution (translucent red bars). Average motor distribution moments
uf]l with respect to powers of bound crosslink positions s; and s;. Moments are related to bound motor number
N; ; (pentagon color), mean motor head position P; (pentagon position), and standard deviation o; (black lines).
(right) 2D plot of reconstructed motor density using bivariate Gaussian approximation. For clarity, only moments
derived from left-most crosslinking density distribution in (B) are used to reconstruct 2D motor distribution in (C.
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3 Explicit motor model

In the explicit motor model individual bound motors are modeled, allowing fluctuations in
bound motor number and binding kinetics that recover the correct equilibrium distribution of

crosslinking proteins in the limit of no motor walking (Figure 2A) [43, 56, 59-62].

3.1 Binding Kkinetics and stepping

A motor diffuses in solution until one of its heads bind to a filament; we model this by an
infinite reservoir of unbound motors with a uniform and constant concentration ¢,. Filaments
have a linear binding site density ¢, and the binding site has an association constant /, (units

of uM™1). First motor head binding has rate
kon,S = KacoeLtotko,Su (9)

where L,y = Y. L; is the total length of filaments and k, g is the bare (force-independent)
unbinding rate for singly bound heads. All binding locations have equal binding probability.
Singly bound motors unbind at rate kg s = ko s.

A motor with one head bound crosslink to another filament, which may stretch or compress
its tether. This makes crosslinking kinetics force dependent; our models satisty detailed balance
in binding, so we recover the thermal equilibrium Boltzmann distribution in the limit of passive
crosslinkers. Motor motion shifts the crosslinking distribution away from equilibrium. Motor
unbinding rate can depend on the force applied to bound heads [68—73]. Previous work shows
how this force dependence can be included while maintaining detailed balance in binding [62,
74,75]. For simplicity, here we include the force dependence in the binding rate only and

discuss possible implications below. With one head bound to filament ¢ at position s;, the free

10
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motor head binds to filament j at position s; with a probability proportional to a Boltzmann

factor of binding energy

Ps_.c o< exp(—pU; ;) (10)

with 8 = (kgT)~! (Figure 3A). Here S — C' denotes the motor’s transition from a single
head bound (5) to crosslinking (C'). The total binding rate is computed by integration over all

binding positions on filament j

Kxk, -
konc = €E—C/ e*ﬁUz,Jde’ (11)
Voinda  J1

J

where £, ¢ is the bare (force-independent) unbinding rate for a crosslinking motor, K, is the
crosslinking association constant. The unbound motor head explores a volume V},;,q4 centered
about the bound head, computed as the integral of the unbound head’s position weighted by the

Boltzmann factor

Rcut,C’
Vibind = /e_ﬂUmdr?’ = 47r/ e PUiir2dr. (12)
0

Beyond the cutoff radius R, ¢ the integrand becomes small, enabling the use of a lookup
table (Appendix B). The probability distribution of binding position depends on the Boltzmann
factor. We recover the proper binding distribution through inverse transformation sampling of
equation (11) (Appendix B.2).

As discussed above, the unbinding rate of a single head of a motor crosslinking two filaments

is assumed to be force-independent,

kog.c = ko,c- (13)

Force-dependent unbinding affects the density of motor proteins most when stretched [70];

larger motor stretch occurs when external force is applied against the force generated by mo-

11



>
w

1.50
! 1.0
= —— Non-zero length 1
-~
3 1251 Zero length : Y
= 400] ——- Stallstretch : B
2 5 06
S 075 3
- @ 04
3 0.50 2
o o 0.2 . .
S =" —— Piecewise
2 025 0.01 - ~ =~ Linear
0.00 T T r ' T T - : .
0.0 05 1.0 1.5 2.0 25 -15 10 -05 00 05 10 15
Motor extension (h/h) Parallel force (fy / fuan)
C Y
Z).x Perpendicular
+
Antiparallel Parallel
J+ 7 R + i +
i + | D +
J

Figure 3: Choice for motor tether potential, force-velocity relation, and filament initial configurations. A Plot of
the normalized potential energy in motor tether as a function of motor extension (blue) and equivalent zero-length
tether potential (orange line). Both potentials have identical slope at the distance fstan/kc1 (red dashed line) where
motors stall. B Plot of normalized motor speed as a function of force (blue) and its linear approximation (dashed
orange). C Chosen initial configurations of pairs of 1um filaments. Filament centers are separated by Dg; = 25nm
perpendicular to both filament orientation vectors.
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tors. Therefore sliding filaments slowed only by drag, like those in active nematics, will be less
affected by force-dependent unbinding than stationary filaments or jammed filaments like mi-
crotubules in mitotic spindles. We can include force-dependent unbinding in the explicit motor
and MFMD model but not in the moment expansion model (Section 5). We chose the time step
small enough that individual motors undergo only one transition per time step (Appendix A).

The motor force-velocity relation is

;

Vo, 0<a,- fj,z‘
vy =t £,) = { o, (1 i 1}_f> . —fuan < @£, <0 (14)
0, U; - £ < — fstan,

\

where f.n 1s the motor stall force (Figure 3B).

3.2 Distribution of explicitly modeled motors

The bound motor distribution is

Ni ;(t)
M,g 5275]7 Z 5 5( S5 — 5%@))7 (15)

where 0(s;) is the Dirac delta function and N;; is the total number of motors crosslinking
filaments ¢ and j. Here s,, and s/, are the attached positions of the heads of the nth crosslinking

motor. Motors with one head bound to filament 7 have a distribution

(st Z d(s; — sp(t (16)

13
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where NN; is the number of one-head bound motors on filament . Only motors crosslinking

exert forces between filament pairs, but ; and x; are needed to calculate the evolution of v); ;.

4 Mean-field motor density model

Under typical experimental conditions, there can be tens to thousands of crosslinking motors
between a filament pair. Motor force and torque fluctuations occur because of stochastic motor
binding and unbinding. As the number of motors increases, the standard deviation relative to
the mean decreases as 1/ V/N. For our explicit motor model, antiparallel filaments with an
average of 14 motors bound show a standard deviation in bound motor number of 27% of the
mean. This shows that the fluctuations are quite significant for order 10 motors. The 1/ VN
scaling predicts that for an average of 1000 motors, the standard deviation would be only 3.2%
of the mean. The force and torque scale similarly. Therefore, for large motor number, we may
use the average motor distribution to derive a mean-field motor density (MFMD) to accurately
describe force and torque on filaments by motors. We can then evolve the MFMD instead
of explicit motors (Figure 2B). We previously showed that the average steady-state density
of crosslinking motors between stationary parallel filaments agreed well with a solution to a
multi-dimensional Fokker-Planck equation (FPE) [58]. Here, we expand this approach to model
crosslinking motor density between filaments in three dimensions, allow filament motion, and
study time-dependent behavior of coupled systems of motors and filaments.
For a one-step binding model, the MFMD evolves according to
Mij(si,sjt) _ Ovigthiy)  Ovjthiy)

ot 8si 8Sj + kon koff¢z,]7 ( 7)

with motor velocity v; ;, motor crosslinking rate k,,, and unbinding rate k.g. To satisfy detailed

14
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balance in binding, we use the rates k,, = 2k,ce PUiilsisi) and kg = 2k,, with the effective
concentration ¢ (units nm~2) [58]. The factors of two occur because there are two ways a motor
can crosslink. To numerically solve the hyperbolic equation (17), we use a first-order accurate
upwind difference method (Appendix C).

The mean-field motor density model differs from the explicit model in that motors with one
head bound are not modeled explicitly. To properly compare the different binding models, we

establish a mapping of parameters between these two models (Appendix D), which gives

62KQKE
C—= ——C,p. 18
Vi)ind ( )

Some model parameters are difficult to measure directly. For example, the association constant
Kg may differ from K, if proteins change their molecular conformation when bound. We

discuss an approach to estimate such parameters in Appendix E.

4.1 Steady-state solution for MFMD on antiparallel filaments

If filaments move slowly compared to the timescale of motor rearrangement, then a quasi-
steady state approximation can be used. In the quasi-steady limit, the force and torque on
filaments are computed from the steady-state MFMD [61]. The quasi-steady approximation
is computationally efficient compared to numerical integration of the time-dependent PDE. A
steady-state solution also provides a convenient route to compare our model implementations.

At steady state, equation (17) becomes

8vm ‘ 'a’(ﬂfm
7 s, Vi 0s;

v, 0

Vi 95, s,

+ i

+ kot j = 2kgce U, (19)

Here we choose functional forms of U; ; and v; ; consistent with previous models [36, 37, 58,

15
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kcl

60,61]. Motors have a potential energy U; ; = =5 (hij — hd)2 determined by the tether spring

constant k. and tether length h. (Figure 3A), which implies a motor crosslinking filaments ¢

hcl
hi,j

and j exerts a force on f; ; = —kq (1 — ) h; ; on filament j. The force-velocity relation of
a motor head attached to filament ¢ while the other head is bound to j follows equation (14).
Here, we assume motors that reach filament ends walk off, i.e., no end pausing.

A semi-analytic steady-state solution can be derived for antiparallel filaments when motor
tethers have zero length (h. = 0) because the FPE is symmetric under the transformation i — j.
For zero-tether-length motors to mimic their non-zero-length counterparts, we modify the zero-

length motor’s spring constant so both types of motors stall at the same extension h; ; = Aggai.

This implies & hstan = Kei(Bstan — ha) = fstan With the solution

k’/ kcl fstall
1

— _ MelJstall 20
¢ fstall + kclhcl ( )

where hgian = fstan/ kL. Note this choice changes the binding dynamics, because the potential
energy is now larger for larger motor extension (Figure 3A).

To find the steady-state solution, note thatr; ;-i;,r;;-4; = 0 and u;-U; = —1 for antiparallel

filaments with centers aligned. Therefore, h; ; = \/ Tﬁ it (si+sj)?and ;- £, =4; - £ ; =
—k.\(s; + s;). Since U, j, v; j, and v;; depend exclusively on the sum of s; and s;, we make the

change of variables { = s; + s; in equation (19) to find

+ an,i

8wi,j 8vm~
(vij + i) + ( 9€ o€

2 =9 —BU(&) 21
o€ + ko> Yij = 2koce 21)

There are three regions of solution determined by the force-velocity relation equation (14):

£ <0,0 <& < hgean, and hgan < €. For § <0, v; ; = v;,; = v, and equation (21) becomes

IWij Vi _ € e
; Ty Z 22
ag + lo loe b ( )

16
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where [, = v,/k, is the motor run length. This is solved with an integrating factor, giving

_ € B!,
wz‘,j@) = e%wi,j<—L) + lgeﬁ/lo/ elo™ 2 l(rf,jJr:p?)dx. (23)
0 ~L
Applying the boundary condition ¢; ;(—%£, —£) = ¢, ;(—L) = 0, we remove the last term in

equation (23) and re-write the Gaussian integral as

=€
.. _E T 1 _%g_é Bkéllol‘—l
Pl = 2 (wkglzz 2’ zo> lerf ( Lo/ 28R, )] o

For 0 < & < hgtan, the velocity v, ; = v; = 1 — % Equation (21) becomes

a 1,9 hs a. hs a. —
(hstall . 5) ggd + ( lt n 1) ,QZ}Lj — ZLHCG 5U(§)‘ (25)

Solving with an integrating factor, we find

hstall

hs a - lo hs allC 3 _ hgta ﬁké
Hiall) = ¥5s0) ( E ) - > hstall / (hstan—2) o e 2 0t g
ot + Lo (ot — €)' o

(26)
We match the solution for ¢, ;(0) to equation (23) to enforce continuity. The exponential term
in equation (26) can be approximated by a series expansion or integrated numerically. Here we
use numerical integration.

For & > hg.y, the velocity and velocity derivatives are zero, so

’
Bkcl

Yij(§) = ce” 2

(i€, (27)

Since the motor velocity is zero at & = hgtay, motors do not walk from £ < hgeapy to € > hgpan-

A non-zero MFMD exists for £ > hgay only if motors bind at these lengths. This appears as an

17



integrable discontinuity at £ = hggay.

5 MFMD moment expansion

A series expansion or reduced representation of a continuous distribution can lower the compu-
tational cost of solving a system’s time evolution [57,76,77]. Here, we use low-order moments
of the MFMD to calculate motor number, mean and standard deviations of motor head distribu-
tion, and filament motion.

The moments of 1); ; are

ijl(t):/ / stgwi,jdsidsj, (28)
L JI,

where k,[ are non-negative integers. The moments are symmetric under exchange of both

k.l Lk

filaments and powers so that i;; = ;. The zeroth moment M?”JQ = N, ; is the total number of

1 1

motors bound to the two filaments, and the first moments uiy’jo, H?,’j are proportional to the mean

motor head position along each filament P; = l#, P; = “"fj‘. The first two second moments
J

(29)

. 1.1 . . ..
The symmetric second moment term 4;’; determines the covariance of motor head position

1,1
_ My

Ni;

Vi; ~ PP, (30)

The positional means, standard deviations, and covariance are used to reconstruct an approxi-

mate MFMD for visualization using a bivariate normal distribution (Figure 2C, Videos 1-6).
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Using the approximation of zero-length tethers as in section (4.1) above, f; ; is a linear
function of s; and s;. In this case, filament motion can be computed from low-order moments

using equations (4) and (5):

Fi,j = _kcl/ / (ri,j + S;juj — siui) @Z)i’jdsidsj
L; JL;

(31)
= —ka (15T + 0y 0y — )
and
Ti,j = _kcl/ / Sjﬁj X (ri,j + S]"LAL]' — Sl'LALZ) wi7jdsidsj
Li 1 (32)

_ N 0,1 1,1
= —kat; x (Ni,j Tij — Hij Uz)

Substituting equations (31) and (32) into equation (1) and (3) show that only moments up to
second order are needed to compute filament motion from crosslinking motors. Thus, motor and
filament evolution can be written as a system of ODEs that depend on the dynamical evolution
of the moments. This dynamical evolution is computed by taking the time derivative of equation

(28) and substituting in the FPE (17)

opt y
e :/L‘/L‘sfsé-%dsidsj. (33)

However, this coupled system of equations for the moment time evolution does not close. Be-
cause the piecewise motor force-velocity relation is not linear, moments depend on higher-
order moments recursively. Also, filament ends introduce boundary terms that prevent closure.
Despite this, in certain limits a truncated moment expansion shows good agreement with the

explicit and MFMD models.
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We first introduce a linear approximation to the force-velocity relation (Figure 3B)

~

7" f K k: ~ ~ -~
Vi j = Vo < = > (1 + (v - U+ G- 4555 — Si)) : (34)
fstall fstall

This approximation is valid for hgy > \/1/kaf, in which case motors do not bind beyond

their stall stretch. We also require that v, > 2k, \/W, ensuring that motors pulled towards
the plus ends with 4, - f; ; > 0 move quickly into a regime — fyan < 4, - f; ; < 0, where the
linear and piecewise force-velocity functions agree.

We substitute the linearized force-velocity function from equation (34) into the MFMD

equation (17) to obtain

0 3.4 o N ~ 0 X
Wiy _ 2koce™Vd 4 (25 — 2ko) iy — (Vo + K (vi - i + Ui - U5 — 5)) iy
8t ’ ’ aSi
oG9
— (UO‘FR(I'j’i 'ﬂj +7:LZ -ﬂjsi —Sj>) ZJ,
83]'

where £ = v,ke/ fstan 18 the rate at which motors reach their stall force. Integrating equation

(35) directly returns the zeroth moment equation

0,0
alu’i,]

5 2k0q” — 2/<:0u” [(—Uo — KTj; - Uj + KS;) BY — ki, - ujBﬂ

J

oL (36)

+ [(—’Uo — ’{ri,j . QALZ + I{Sj) BZO — mli . ﬂ]Bl}aL s

il
where we have defined ¢;; = [, [, s
> i

she PViids;ds; and
J

BJZ(SZ):/ S§¢i7jd8j (37)

J

with qﬁf’jl representing source terms. Here Bé(si) is a moment of the MFMD integrated over s;

that is a function of s;, but in practice le» only appears in the equations evaluated at filament
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1 endpoints, and so captures behavior of the motor density at filament ends. Therefore we refer

2 to the Bl(s;) as boundary terms. To show this, we define the notation [A(s;)]ar, = A(L;/2) —

s A(=Li/2).

The general moment evolution obtained by integrating equation (33) with equation (35) is

oy

Gtﬁj 2k, f]l + k(vy + K1y j - ul),uf] Lty l(v, + Krj; - uj),uf]l !

— (2o + (k+ D) B + ki - 1 (/w’“ R 1)

(33)

N !

+ [(rsfTh = kry - Ayt — v,st) Bl — Kil; - ;88 B +1]8Li
! ! k .1k

+ [(rs5™ = Ky - iyt — vosh) B — kil - 115} B! H}aLj :

4 The boundary terms in square brackets contain moments and Bl an order higher than (‘3,u / ot.
s In Appendix G, we write the analogous time evolution for the B}, and show that it does not
s close. Therefore the moment evolution equations do not close.

7 To close the system of equations, we set the boundary terms to zero. Physically, this means
s we neglect motor unbinding from filament plus ends. If motors pause at plus ends, this approx-
o 1mation will lead to significant error. However, if motor unbinding is relatively rapid (including
10 at filament plus ends), this is a good approximation. To explore the impact of not including
11 these boundary terms, below we quantify the discrepancy between this model and the explicit
12 motor and MFMD models. Neglecting boundary terms truncates the system of equations at
13 second order, because only terms up to second order are needed to calculate force and torque
14 on filaments.

15 We evolve equations (1, 3, 38) using solver_ivpinthe scipy.integrate library [78].
16 This code uses the LSODA integrator, an Adams/BDF integration method that automatically de-
17 tects stiffness, from the Fortran ODEPACK library [79]. The source terms qﬁ ’jl are analytically

1s integrated in one dimension and then numerically integrated using the quad method also from
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Parameter Symbol Value Notes

Total time N; 20 sec Chosen

Explicit motor time step size Atgxplicit  0.0001 sec Chosen for numerical stability

MFMD time step size Atyevp 0.001 sec Chosen for numerical stability

MFMD grid spacing As 1 nm Chosen for numerical stability

Viscosity n 1079 pNsecnm~2  Chosen (viscosity of cytoplasm)

Filament length L 1 pm Chosen

Filament diameter Ds) 25 nm Diameter of microtubules [80]

Explicit motor concentration Co 11 nM Chosen

MFMD effective concentration ¢ 0.0093 nm—2 Calculated (Section D)

Modified tether length hel 0 nm Chosen (Section 2.2)

Effective tether

spring constant ko 0.037 pN nm ! Calculated (Section 2.2), spring
constant [81], tether length [82]

Filament binding site density € 0.25nm™! Estimated, one site every four
nanometers

Inverse temperature b= kE%T 0.2433 pN~! nm~! Room temperature

Motor speed Vo 50 nm sec™! [83]

Motor stall force fstall 2 pN [84]

Association constant

(unbound<>one head bound) K, 0.005 nM 1 [85]

Association constant

(one head bound<>crosslinking) K 2.56 Calculated (Section D), [86]

Multi-step bare off rate

(unbound<>one head bound) ko,s 0.77 sec™! [85]

Multi-step bare off rate

(one head bound<>crosslinking) ko, ¢ 0.77 sec™! Chosen to match &, g

One-step bare off rate ko 0.77 sec™! Chosen to match ko g

Table 1: Model parameters for MTs and kinesin-5 for explicit motor distribution and MFMD calculations.

scipy.integrate (Appendix F).

6 Results

To test the degree of agreement between explicit motor and mean-field models, we first selected
parameters based on microtubules and kinesin-5 motor proteins because they are relatively well-
studied cytoskeletal proteins [81, 82, 84, 85] (Table 1). We studied three characteristic sets of
initial filament pair position and orientation: antiparallel, parallel, and perpendicular (Figure 3,

Video 1-3), and compared both stationary and moving filaments. We choose an initial con-
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dition with no motors bound to filaments, in order to observe the effects of time evolution of
the motor density. For stationary filaments, we found good agreement for all three models.
For moving filaments, we found qualitative agreement but fluctuations in motor dynamics and
different end boundary conditions contributed to quantitative differences in filament motion.
We measured the computational cost for stationary antiparallel filaments and found that the

moment-expansion model can give a dramatic improvement in performance.

6.1 Stationary filament pairs

When filaments are held stationary, motor density reaches or fluctuates around a steady-state
solution (Figure 4). To compare with the mean-field models, we averaged 48 realizations of
each explicit motor simulation; the results agreed within error with the mean-field models (Fig-
ure 4B-D). This agreement between models demonstrates that the mean-field models capture
the average behavior of our explicit model.

Beyond the steady state, we characterize the evolution of motor number, force, and torque
(Figure 4E-M). In all configurations, the crosslinking motor number in the explicit motor model
lags that of the MFMD and moment expansion models (Figure 4E-G). The crosslinking rate in
the two-step binding algorithm depends on the density of motors with one head bound, resulting
in a slower approach to steady state.

For antiparallel filaments, force generation increases with crosslinking motor number (Fig-
ure 4H, Video 1) because motors walk in opposite directions, causing the motor tether to stretch
and generate force. If free to move, these antiparallel filaments would slide. No average sliding
would occur for parallel filaments, and the small number of crosslinking proteins for perpen-
dicular filaments results in small relative force (Figure 41, J). The average explicit motor motor
torque in the Z-direction shows significant fluctuations about the mean (Figure 4K-M). Because

motor torque increases for motors farther from the filament centers, the torque fluctuations in-
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Figure 4: Comparison of model results for three different stationary filament configurations. A Schematic of
the three different filament configurations and legend for following plots. B Plot of total crosslink motor numbers
at steady state. C Plot of steady-state motor force components from filament ¢ on filament j. D Bar graph of
steady-state torque in the Z-direction from filament ¢ on filament j. Explicit motor model error bars in (B-D)
indicate the Standard Error of the Mean (SEM) of the last 30 seconds of 40 second long simulations (n=48).
E-G Bound motor number versus time. Purple and blue solid lines are the average of 48 individual explicit
motor simulations (translucent lines) for one head bound and crosslinking motors. H-J Motor force in the z-
direction (solid lines) and y-direction (dotted lines). Individual explicit motor runs are represented as blue for
both directions. K-M Motor torque in the Z-direction from filament ¢ on j. Full explicit motor model range not
shown to better see average. N-P Steady-state motor probability density as a function of motor extension for
semi-analytic (black), explicit motor, and MFMD models. Motor minimum extension is set by the separation of
filaments at closest point of approach, 25 nm.
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crease with filament length.

We compared the steady-state distribution of motor extension for both explicit motor and
MFMD models (Figure 4N-P). (Note that the moment expansion loses this information in
coarse-graining.) The distribution of motors crosslinking antiparallel filaments has two peaks
(Figure 4N). The larger peak represents the most probable binding distance Ay, and the second
peak corresponds to motors near their stall extension A = \/m . The shape of the dis-
tribution results from motor kinetics, walking, and stalling. Motors on parallel filaments show
a peak at Ay (Figure 40, Video 2), but no second peak because the motor heads walk in the
same direction with similar speed. For motors crosslinking perpendicular filaments, the exten-
sion distribution is singly peaked and broader than for parallel filaments (Figure 4P, Video 3).
This occurs because the parallel force component on perpendicular filaments increases more
gradually as the motors extend, causing a more gradual decrease in motor speed. This broad
distribution indicates a larger average force per motor for perpendicular filaments compared to

aligned filaments.

6.2 Dynamical evolution of filament pairs

Here we consider the same three filament starting configurations and allow filament motion
(Figure 5, Videos 4-6). The final filament position and orientation are comparable for the ex-
plicit motor and MFMD models, while the moment expansion model overestimates the range
of filament translation and rotation (Figure 5B, C; note that filament rotation only occurs for the
perpendicular initial configuration).

To compare motor activity between models over the whole simulation, we calculated the to-
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Figure 5: Comparison of model results for three different initial filament configurations evolved with constrained
motion. A Schematic of initial and final filament configurations. B Plot of final filament center separations. C Plot
of change in angle between filaments starting in a perpendicular configuration. Data shown is final configuration
after 100 seconds for the explicit motor model and 20 seconds for MFMD and moment expansion model. D
Plot of translational (solid bars) and rotational (hatch bars) work done by motors on filaments during simulation.
explicit motor model error bars in (B-D) indicate the SEM of simulation realizations (n=48). E-G Plots of filament
centers separation as a function of time. H-J Plots of motor number versus time. Purple and blue solid lines are
the average of 48 explicit motor simulations (translucent lines) for one head bound and crosslinking motors. K-M
Plots of motor force in the Z-direction with individual explicit motor runs (translucent blue lines) and average (solid
blue). Full explicit motor model range not shown to better see average.
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tal work done by motors. We numerically integrate both filaments using the trapezoid rule [87],

VVtot = I/Vlin + Wrot = Z / Fi,j ’ drj + Z / Ti,j ’ dej? (39)

i#] i#]

where 0; is the angle the vector 1, rotates through over the simulation. The infinitesimal vector
dl; = éidGi where

A ’&ZXIALI
= —————

(40)

a x|
Total work computed for the mean-field models is within error of the explicit motor model (Fig-
ure 5D). We note that the explicit motor model produces greater total work because fluctuations
in motor binding cause fluctuations in sliding direction which generate larger work. Motors
generate rotational work only for initially perpendicular filaments, due to the constraints. The
magnitude of the rotational work is relatively small because filaments rotate slowly (due to
high rotational drag and low motor torque), and this slower velocity produces less work in the
overdamped limit.

The crosslinking motor number depends on the filament overlap length, which changes as
filaments move (Figure SE-J). The crosslinking motor number in the explicit motor model lags
the mean-field models initially due to differences in binding, but becomes comparable after the
initial transient. As antiparallel filaments slide apart, their overlap decreases so fewer motors
crosslink, while crosslinking motors continue to unbind at a constant rate. However, the overlap
length has little effect on the number of motors with one head bound (Figure SE, H). The dynam-
ics of motor number for parallel stationary and moving filaments are nearly identical because
there is negligible sliding. (Figure SF, I). Moving perpendicular filaments maintain a similar
overlap length to stationary perpendicular filaments, leading to an approximately constant mo-
tor number, until the plus-ends move close together (Figure 5G, J). Then motors continue to

bind but immediately walk off, producing little force or torque.
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The motor force between antiparallel filaments rapidly reaches a force plateau which persists
until the antiparallel overlap length is small enough that motor binding is negligible (Figure 5K).
The nearly constant force implies that motor extension decreases as the number of crosslinking
motors increases to give a constant sliding speed (Figure 5N, Video 4). This steady-state force
is an order of magnitude smaller than the stall force (Table 1). The moment expansion model
shows a slower decrease in force as the overlap approaches zero compared to the MFMD model
(Figure 5H). This is a consequence of our neglect of boundary terms, which physically means
neglecting motor dissociation at filament ends. This unphysical slow force decrease drives
filaments beyond the zero overlap configuration to larger than expected separation (Figure 5B).

Parallel filaments remain with their centers aligned on average because sampling the full
distribution of motor crosslinking extension generates restoring force for any fluctuations away
from full overlap (equations 11, 13). Neither the MFMD nor the moment expansion models
produce a net force, but in the explicit motor model fluctuations in motor number and binding
lead to force and position fluctuations (Figure SF, I, L, Video 5). For perpendicular filaments,
the small number of crosslinking motors results in large force fluctuations in the explicit motor
model (Figure 5J). The mean-field models show a rapid increase to half the maximum force of
the antiparallel configuration followed by a decrease as the filaments align parallel (Figure 5K,
M). The lag caused by the two-step binding model is more apparent here because the explicit
lower motor number means filaments move more slowly into the parallel configuration where

binding is favored (Video 6).

6.3 Computational cost and accuracy

To compare the accuracy and computational cost of our models, we focus on stationary antipar-
allel filaments because we can compare to the semi-analytic solution. Antiparallel filaments

are also the main configuration in which motors generate extensile force, important for mitotic
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spindle assembly and dynamics in active nematics. We vary the time step At and MFMD grid
spacing As and compare the error with the semi-analytic solution. The central-processing unit
(CPU) time measures the computational cost as a function of simulation parameters.

The solution error is the average magnitude of the deviation of the steady-state numerical

solution from ; ; of equations (23), (26), and (27),

Error = / / |0 — V| dsids; =~ Z |0, (mAs;, nAs;) — ¥ j(mAs;, nAs;)| As;As;,

o " (41)
where Ez ; 18 either the average explicit motor distribution (over 48 simulations) or the MFMD
distribution.

The size of the time step At does not change the error of explicit motor or MFMD sim-
ulations (Figure 6A), because the steady-state solution is time independent. The number of
calculations increases linearly with the number of time steps /V;/At, making the CPU time
approximately inversely proportional to At. The MFMD error scales near-linearly with grid
spacing As as expected for a first-order upwind difference method (Figure 6B). The CPU time
scales approximately as As™2, proportional to the number of grid points Ngiq o< As™2.

Explicit motor simulations have a cost that is linear in the motor number, but the cost is
constant for the MFMD and moment expansion models (Figure 6C). Fewer explicit motor sim-
ulations (24 realizations) were needed to achieve sufficient statistics. We also note that at higher
concentration, the mean-field models return results closer to those of the explicit model because
stochastic fluctuations average out. The explicit motor model has a cost linear in filament length
(due to the larger number of bound motors on longer filaments), while for the MFMD model it

is quadratic (Figure 6D). The cost of the moment expansion model is length independent.
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7 Discussion

To improve modeling methods for cytoskeletal filaments crosslinked by motors (Figure 1), we
studied crosslinked filament pairs and compared an explicit motor model to two levels of coarse-
grained mean-field motor models (Figure 2). The explicit motor model uses Brownian dynamics
and kinetic Monte Carlo to describe individual motor binding and unbinding, motion, and force
generation. In the first level of coarse graining, we average over individual motors and solve a
PDE for the mean-field motor density (MFMD). To further coarse grain, we compute a moment
expansion of the MFMD and solve a system of ODEs for the motor moments and filament
motion.

We compared the model implementations for filaments that are initially antiparallel, par-
allel, or perpendicular (Figure 3). When filaments are held stationary, the motor distribution
reaches a steady state with similar average motor distribution, force, and torque for the three
implementations (Figure 4). The explicit motor simulations showed significant fluctuations that
by construction are not present in the mean-field models. Interestingly, we found that a signif-
icant portion of crosslinking motors on antiparallel filaments do not reach their stall force for
our parameter set.

When filaments move, the final filament separation is similar for the explicit motor and
MFMD models, although the moment expansion model overestimates the range of displacement
and reorientation as a result of neglecting boundary terms (Figure 5). The dynamics of bound
motor number, force, and torque were similar for the MFMD and moment expansion models.
Motor fluctuations in the explicit motor model lead to greater overall work done by motors.

To compare computational cost across the model implementations, we studied stationary
filaments and motors at steady state (Figure 6). Both mean-field models have a simulation

time independent of motor concentration, potentially making them faster than explicit models
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for systems with many motors. The moment expansion model’s CPU time is also independent
of filament length, which could make it particularly efficient for systems with long filaments.
Overall, the moment expansion model was 10% — 106 faster than the other models. This method
could therefore be useful for simulating bulk active filament networks.

Future work could address the simplifying assumptions and approximations made in the
moment expansion model. An improved treatment of boundary terms may improve the com-
putation of filament motion. Incorporating additional motor physics into the moment expan-
sion model, such as non-zero length motors, force-dependent detachment, and steric interac-
tions between motors could improve its ability to simulate microscopic motor behavior at the
mesoscale, bridging current explicit motor and continuous active network theories. Implement-
ing the moment expansion model in systems of many filaments is of interest for testing whether

the improvements in computational cost we identify are present in larger systems.
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Appendices

A Determining the time-step for binding

Our kinetic Monte Carlo algorithm assumes that multiple binding/unbinding events do not occur
in the same time step At. As At becomes large relative to the kinetic rates, this approximation
fails. A time step is appropriate if the maximum probability of two events occurring in At
satisfies

max{P(C(At) U B(t')|A(0))} < o (42)

for a tolerance ¢, where A, B, and C' denote motor bound states (including unbound, single head

bound, and crosslinking) at time At > t' > 0. P(C(At)UB(t")|A(0)) = P(C(At)|B(t"))P(B(t')| A(0))

and each individual state change follows a single event Poisson process with P(B(t)|A(0)) =
1 — exp|—Fka_ pt]. The maximum probability for a double event occurs at ¢’ = ¢/ . found by
solving

dP(C(At) U B(#)]A(0))
at’

=0
thnas (43)

kasp (ekB—’C(At_t') — 1) — ke (ekA—*Bt/ — 1) =

While no analytic solution exists, ¢/ can be numerically computed.

There are four unique processes that must be considered with a two-step binding process
with unbound (U), single head bound (S), and crosslinking (C) states: U — S — U, U — S —
C,S —-C — S,and C — § — U. The process C' — S — C' has the same probability as
S — C — S, similarly, S — U — S has the same probability as U — S — U. If modeling

filament motion with some force- or energy-dependent unbinding, ks 4 may be large. This

means that in the limit of large unbinding rate the probabilities P(C' — S — C) — P(S — C)
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and P(C - S = U) — P(S—U).

B Lookup table for kinetic Monte Carlo binding

Equation (11) gives the transition probability of a singly bound motor crosslinking as an integral
of a Boltzmann factor. If hy = 0, ko ¢ is functionally similar to an error function. However,
to model non-zero-length tethers, we numerically integrate equation (11). Rather than directly
numerically integrating at each time step, we precompute a lookup table.

The cumulative distribution function (CDF) of equation (11), is a function h; ;. All other
variables in the integral are constant for a given motor species. We reduce the CDF dimen-
sionality by considering the lab position of each bound motor head and an infinite carrier line
defined by the position and orientation of the unbound filament. Binding is then determined by
the minimum distance | between the bound motor head position and the filament ends [s_, s |
on the carrier line.

The carrier line CDF is

CDF(m,s):/ e PUIL g (44)

—00

allowing us to write the crosslinking rate as
konc(ry,St,5-) = koae¢Kg [CDF(ry,sy) — CDF(ry,s_)]. (45)

We notice that e=?Us is symmetric in s, so CDF(r, s)— CDF(r, 0) is anti-symmetric. There-

fore, instead of integrating from negative infinity, we use

CDF'(ry,s) = sgn(s)/ e AU go! (46)
0
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and (45) to find the crosslinking rate.

We find the values of equation (46) by Gauss-Konrad integration. The accuracy desired sets
the maximum values for s and r;. The integrand is always positive for real values of s and
r1, so the CDF asymptotes for large values of either variable. The maximum of the integral is
the point when the Boltzmann factor drops to the accuracy limit . Therefore, the lookup table

domain is

21n(d
5,1y € [0, - ;;il)md]. (47)

Given a specified grid spacing As, Ar, the memory required for the lookup table scales as

(Smax/AS) X (71 max/AT)

x10%
e r;, =0nm
e r; =10nm
e r; =20nm
e r; =30nm
e r; =40nm
¢ r; =50nm
e r; =60nm
® r; =70nm
e r; =80nm
e r; =90 nm

60 80
Distance along filament s (nm)

Figure 7: Visual representation of the lookup table showing CDF values as a function of distance s along the
filament for h¢ = 32 nm, k¢ = .3 pN/nm, 3 = 1./4.11 (pN-nm)~!, and § = 1075,
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B.1 Interpolation of lookup table values

Since the lookup table is not a continuous function, we interpolate values between discrete grid

points. The 2D linear interpolation for input values of r; and s is

CDF(r ., s) z(1+m—r—i) (1+n——) CDan+<——m) (1+n——> CDFyps1.0

Ar As Ar As
(= ) () PFw () () P

(48)

where CDF,,,,, = CDF(mAr, nAs) are the lookup table values at m and n if r; lies within

mAr and (m + 1)Ar and s lies within nAs and (n + 1)As.

B.2 Reverse lookup algorithm

When a motor head binds to a filament, the binding position probability distribution function
(PDF) is defined by the Boltzmann factor. We sample the PDF by using the lookup table. To
transform a uniform random variable X to random variable Y with an arbitrary PDFy, X is

inserted into the inverted CDF of Y

Y = CDFH(X). (49)

Since the lookup table holds the CDF values and given a random number from a uniform dis-
tribution, we apply a combination of search and interpolation to quickly find the corresponding

random number from the PDF. The algorithm is as follows

1. Sample a uniform random number X € [0, CDF,,,,]. Note that the maximum value does

not need to be 1.

2. Given 7, locate index m such that mAr <r; < (m+ 1)Ar
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3. Use m to find the set of indices {n_,n, } such that CDF,,,, < X < CDF,,, 41 and

C])]:_“m—i-l,mr S X S CDFm+1,n++1-

4. Use the CDF values to interpolate the binding locations s_, s corresponding to the per-

pendicular distances 7~ = mAr and r, = (m + 1)Ar. For example,
X — CDF
_=A i Asn_ 50
-~ 2CDF,., . —CDF,,_ 2" 0
X —CDFi1m
s = As ntin. + Asn, (51)

CDFm+1,n++1 - CDFm+1,n+
Note that s_ is not necessarily less than s, .
5. Find s by interpolating the across the lookup table grid with respect to ;.

ry —r_

s~ (sy —5-) Ar +s_ (52)

While this algorithm succeeds in most circumstance, the low slope of the CDF at large values
of s can cause errors. For example, if the lookup table has the form of Figure 7 and a protein
is located at a perpendicular distance of 7, = 35 nm, given a random number of X = 10?, no
value for s_ will be found since CDF (30, syax) < 103. To correct for this, we solve for s using
a binary search algorithm.

The binary search algorithm is as follows

1. Determine if CDF,, ,,. . or CDF,, 41, . 1isless than X. If CDF,,, . < X, sets_ =

Smax- If CDF i1 pn < X, set 54 = Spax.
2. Find other sy using the inverted lookup table and equation (50) or (51).

3. Find the average of s_ and 5.
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1 4. Use the lookup table interpolation algorithm to find the CDF (7, sayg ).

2 5. If CDF(r, savg) > X set the larger of the two si values to S,,,. Otherwise, set the

3 smaller of the two to s,y,.
4 6. Repeat steps 3-5 until | CDF (7, Savg) — X| < & for some desired tolerance 4.

s This process converges at a rate O(1og,(dSmax))-

s C Numerical integration of the MFMD equation

7 We approximate the solution 1); ;(s;, s;, t) by discretizing the solution in time and space

8 Wi (51,55, 1) = YT = oy (mAs, nAs, kKAL) (53)

1,J -

o for ¢ € RM+Dx(M+1)xk where M; is the number of discretized points along filament i.

o Additional boundary points for m,n = 0 are added.

1 We use forward Euler time-stepping so our discrete differential operator for time is

al/)i,j 1 m,n,k m,n,k—1
ot — At (1/’” (g ). (54)

13 To solve the hyperbolic FPE (17), we use a first-order accurate upwind method [88]. The

12 differential operator for s; becomes

awi,j 1 m,n,k m—1,n,k
s, - As(wm wzj )- (55)

s Note this only holds for the indices 0 < m and 0 < n. The matrix representation for equation
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3

5

7

(55) s

Chy C1 Cy CM; %,j

— o -1 1 - : = Mgk (56)

Z?] ’

O wMi—l,n,kJ

Z'Ij

M;n,k
dy -+ dMi—l sz Q/Ji,jl

where ¢, and d,,, are chosen to satisfy the boundary conditions. We choose the notation >""

for this matrix. To differentiate along s;, we use the identity /""" = 1/12;7””“

g , apply >"™" on

the matrix, and then convert back,

T

a 2,7 n,a_ .a,m
TN DT I (57)

aSi

which in index notation is ¢;;*(>")™". For brevity, we use the notation ¢;7*(>")"* =
1/}'7”30 <]a,n
27] :

The discretized Fokker-Planck equation (17) is then

m,n,k
Pt = A (= e () — (o geR) on okee VT - 2kt ) oy

ij ij Yig i Vi isj
(58)

k
where U"™

;7 and v:';"k are the discretized potential and velocity at time kAt. Note that

Uf;"k = Uj’fgm’k, but vfj’"’k #* v;f;m’k.

In cases where the flux of the motors % is known at the boundaries, we construct >
to satisfy the requirements. When filaments are in solution, there is zero flux from the minus
ends, so all ¢,, = 0. In our simulations, motors walk of filament ends with out pausing, so
dpy;,—1 = —1 and dp;, = 1 with all other d,,, = 0. Although not modeled in this paper, some

biological motors end pause at filament plus ends. To model this, d;;,—1 = —1 and every other
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. D Conversion of binding parameters from an explicit to mean-
5 field motor density model

s To relate binding parameters of the one-step and multi-step binding models, we use that at
s steady state, the motor distribution 1); ; should be equivalent for both models. Since we only
s compare binding kinetics, we simplify the Fokker-Planck equation to keep only the binding

7 terms: in equation (17), we set v; ; = v;; = 0,

oY,
8 815] 2koce PUii — 2kot; ;. (59)

s The steady-state solution is

10 i = ce Vi, (60)

11 which is a Boltzmann factor multiplied by an effective concentration.

The multi-step binding model can be written

a%’,j(sz', Sj)

BT = EK]IEICO’C(Xz‘ + Xj)e_ﬁUi’j - 2k0,C¢z}ja (61)
OXi(si
L;
axgtsj) = ol a€ko s — ko sX;j + / (koctig — eKpkooxge "77) dsi,  (63)
L;

where y; is the mean-field density of motors with one head bound to filament 7 (cf. Equation 16).
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We define K[, = Kg/Viing and solve for the steady state, giving

lA
eKy, U, i,

Vij = 5 (Xz +x;5)e”

eKpko o /
Xi =
2ko,S L,

J

Kk, |
Xj = ‘B0 / (xi — x5)e PVids; | + eKyc,.
2k0,S L;

The equations for x; and ; have the forms

O — Xz‘)e_ﬁUi’dej> + eKqco,

_c /b V() = X(s)) K (s, 8)dt + D,

Y(t) = C /d (X(s) = Y (1)) K(s,8)ds + D,

C

where ¢ € [a,b] and s € [c, d]. Distributing the integrals, we can rewrite

X(s)=C /bY(t)K(s t)dt — CX(s)F(s) + D,

/X K(s,t)ds — CY(t)G(t) + D,

where F'(s f K (s,t)dt and G(t f K (s,t)ds. Solving for X (s) and Y (¢) gives

X(s) =17 gF(s) T gF(s) / Y(0)K (s, t)dt,

D C d
YO =1Tcem T itcem / X(s)K (s, t)ds,
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(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)



After plugging equation (71) into (72) we find

D CD 4 K(st) ) K(s,t)K(s,t)
YO =1reentireen | Trorm®tC / / ST CFeN 0 + G
(73)

This can be rearranged into the form
b
Y(t) = A(t) + / Y (t")B(t,t")dt’, (74)

which implies that Y (¢) and X (s) each satisfy a Fredholm equation of the second kind. Both A
and B are continuous given K (s,t) = e~ #Uii(st) g0 the Fredholm equations of the second kind
have unique solutions. By inspection, the solution to equations (67) and (68) is X (s) = Y (t) =

D. When we substitute this solution in equations (65) and (66), we find x; = x; = €K,c, and
Vi; = K Kpe,e PV, (75)

Setting equation (60) equal to (75) gives

€2KQKE
Co.
‘/bind

CcC =

(76)

E Calculating binding parameters from experiments

The experimental parameters for motor binding are not always independently measured. If
all but one binding parameters are known, then the unknown parameter can be found from
equation (18) and the ratio of the number of motors with one head bound and number of motors
crosslinking.

As an example, suppose we wish to find K. The number of motors with one head bound
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is Ng = c,K,eL, where L is the filament length. In vitro experiments [86] can measure the
crosslinking motors number N;. Integrating equation (75), we the model prediction for the

number of crosslinking motors is

Ne = o K Ky / / e PViidsds;. (77)
L, JL;

For fully parallel or antiparallel filaments of the same length with adjacent centers, the total
number of motors in equation (77) is proportional to L. If L > +/2/ k., the Gaussian integral
~ L\/27/p kdefﬁkclri , where 7 is the center-to-center separation between filaments. The ratio

of the number of crosslinking motors relative to the number motors with one head bound is
p:—:EKE —e J—, (78)

allowing us to estimate K/, = 2,/ 8ka ghkar?
€ 2m

F Gaussian integrals in the moment expansion

The source terms in the moment expansion require a double integral over two filaments. To
lower the numerical integration’s computational cost, we find an analytic solution for either the
semi-integrated term Q' (s;) or the fully-integrated term qﬁ’jl.

The integrated source terms are

2 N N S
ki —(z) K Si = 2sitiy - Ui — (v - U5 + U - ;)
L;

a2
Se — Tai s — b Tess \ 2
K i i
stexp |- | 22 J J J ds;ds;
J J )
L. (6%

J

(79)
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A

where a =, /52—, We define the quantity A = —r;; - i — 4,

becomes

<Sj+A

Qé(sz) = /L sé-e

J

2
@ ) de.

- 1;8; so that the integral over s;

(80)

This integral has an analytic form in terms of error functions, which can be rapidly computed.

Forl = 0,1, 2,3, we find

N0(c.) — ay/m s;+ A
Qj(SZ) = 9 [erf ( 5 ):| . 1)
Qo) = |ae =) s avmar (214) &)

OL;
Qj(s:) = % [204(14 - Sj)ff*(Sj:A) + (24% + o) /merf <5j + A)} 83)
@ oL,
&) = _T& {QO‘(AQ — Asj + 57 + a2 (57) 4 (242 4 302) AT eri (Sj Z A)}
oL

G Moment expansion boundary terms

J

(84)

To generally define boundary conditions, instead of integrating over both s; and s;, we inte-

grate over just one variable. This makes the boundary condition a function of a single filament

attatchment position. For example, the boundary terms for the first filament are

. - . o
B;(si) = / (2/{006_5UW + (25 — 2ko) i — (Vo + K(Tij - U + U - WS — 8;)) (;ij
L]' K2 (85)
—(vo+li(r~i-ﬁ~+1li-ﬂ»si—s~))% stds;.
J» J J J asj 777

44



These boundary terms are evaluated at —L;/2 and L;/2. We derive a recursion relation by

integrating equation (85) over s; and using the definition in equation (37)

Bl (s;) = 2koc@Q’ (s3) + 1 (vo + K(ry,; - Ty + @ - Uy8;)) Bt — (2ke + k(1 — 1)) B!
41

OB! OB

aSi

~

— Hﬁi "LL]'

(86)

— (Vo + K(rij; - Uiy — si))
— [Sé (’Uo + K (rj,i . ’&j + ’lALZ . ’&jsi — Sj)) ¢i,j (Si, Sj)]aLj .

Solving this equation requires finding the time evolution of the boundary term spatial deriva-

tives, which solve

aBl' (S’L> an ~ ~ -1
(;Si = 2]{700 aS: + u; - Ulej
OB oOB!
+ l (’Uo + "{(rj,i : ’&j + IALZ : ﬁjsi)) a—] — (Qko + H(l — 2)) ) J
92B! ; 92 Bt K ®7)
— (Uo + H(ri,j,j . ﬂi,j — S,)) ag%j + m)i . ﬂja—s%

-+ corner terms.

This shows that the boundary terms do not close. However, if the higher-order terms or their
coefficients are small compared to the moments ufj, we may take a zeroth-order approximation.

We consider this approximation in Section 6.
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