
Vol.:(0123456789)1 3

arktos (2020) 6:93–105 
https://doi.org/10.1007/s41063-020-00078-9

ORIGINAL ARTICLE

Zircon geochronology and geochemistry of the Ward Hunt pluton, 
Pearya terrane, Canadian High Arctic: Insights into its age, origin, 
and circum‑Arctic Timanide connections

Shawn J. Malone1 · William C. McClelland2

Received: 8 April 2020 / Accepted: 31 July 2020 / Published online: 10 August 2020 
© Springer Nature Switzerland AG 2020

Abstract
The northern margin of the Neoproterozoic Timanide Orogen is truncated by Paleozoic deformation of the Caledonian 
Orogen. Evidence for dispersion of terranes affected by the Timanide Orogen is documented through contemporaneous 
tectonothermal activity, and by detrital zircon in sedimentary rock from across the Arctic Ocean margins. However, directly 
tying these terranes to the Caledonide realm is hindered by the paucity of appropriate events in proximal terranes. The Ward 
Hunt Pluton, a previously undated syenite–monzodiorite intrusion located on Ward Hunt Island, northern Pearya terrane, 
yields a crystallization age of 542 ± 2 Ma. Trace-element data from the igneous zircon suggest that the pluton intruded older 
metasedimentary rocks of the terrane as part of a volcanic arc system, indicated by juvenile Hf isotopic signatures and trace-
element data. The data support links between the Pearya terrane and other Neoproterozoic–Cambrian arc systems, such as 
those proposed in Arctic Alaska-Chukota and the Alexander terrane.
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Introduction

The Neoproterozoic Timanide Orogen is an important 
marker for tracing the evolution of circum-Arctic terranes 
with ties to Baltica. The orogen is best expressed along the 
northeastern margin of Baltica, extending from the south-
ern half of the Ural Mountains to Novaya Zemlya (Russia) 
and the Varanger Peninsula of Norway, where it is trun-
cated by Caledonian deformation [1]. Tectonic activity in 
the Timanides resulted from subduction directed underneath 
Baltica, leading to magmatism, metamorphism, and wide-
spread deformation related to the development of a con-
tinental arc [2] or the accretion of a continental fragment 
(e.g., Arctida; [3, 4]). The main pulse of tectonothermal 

activity occurred between 610 and 560 Ma [5, 6]; however, 
Roberts and Olovyanishnikov [7] suggest that this activity 
occurred diachronously along strike, with the northwestern 
and southeastern parts of the belt characterized by some-
what younger activity. The northern margin of the Timanide 
Orogen is particularly interesting due to evidence of activity 
that extends into Svalbard. Torrelian metamorphism at c. 
640 Ma is recorded by monazite growth, 40Ar/39Ar cool-
ing ages of mica and hornblende, and metamorphic fabric 
development at several localities in Svalbard’s Southwest-
ern terrane [8–11]. The terrane is bounded by large-scale 
strike–slip faults that Mazur et al. [12] propose separated 
the Southwestern terrane and a portion of the Pearya terrane 
on the Canadian Arctic Margin, from the truncated Tima-
nian margin of Baltica. Other distant terranes show evidence 
of a Timanide Orogen connection, such as Arctic Alaska-
Chukotka (e.g., [13–15]) and the Alexander terrane of the 
Cordillera (e.g., [16, 17]). Many tectonic models exist to 
explain these connections; however, evidence from terranes 
proximal to the Caledonian margin is sparse. This study pre-
sents data from the previously undated Ward Hunt Pluton, 
located on Ward Hunt Island in the northernmost exposures 
of the Pearya terrane (Fig. 1). We suggest that this pluton 
represents a direct link between the Pearya terrane and the 
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Timanide Orogen, helping to fill in the missing link between 
Svalbard and the more distant terranes to the west.

Geologic setting

The Pearya terrane is an exotic terrane (e.g., [18–24]) 
located on the present day northern margin of the Franklin-
ian basin, northernmost Ellesmere Island (Fig. 1). Trettin 
[19] originally proposed a Caledonian origin for the Pearya 
terrane and suggested correlation with terranes in Svalbard. 
The timing of accretion of the Pearya terrane against the 
Franklinian margin of the Canadian Arctic is still uncer-
tain; however, it is presumed to have occurred between the 
late Silurian and middle Devonian (e.g., [24] and references 
therein). Data supporting this interpretation include: the 
appearance of Pearya-sourced clasts in conglomerates in 
deep-water basinal rocks of the Silurian Danish River For-
mation [25]; detrital zircon provenance shifts from a recy-
cled Caledonian orogenic source to a Laurentian cratonic 

source by the early Carboniferous [24, 26]; metamorphism 
in the terrane basement observed between c. 395 and 372 Ma 
[27]; and the emplacement of the Cape Woods post-tectonic 
pluton at 390 Ma [28]. The terrane was likely emplaced as a 
series of fault-bound slices, along a series of sinistral strike-
slip faults that splay into arcuate thrusts at the southwest end 
of the terrane [29, 30].

The Pearya terrane is divided into five tectonostrati-
graphic units labeled Successions I through V (Fig. 2a); [21]. 
Succession I is comprised of abundant, variably deformed 
orthogneiss, with minor amphibolite and metasedimentary 
units. These yield dominantly earliest Neoproterozoic ages 
[23, 28, 31, 32]. Succession II includes a series of variably 
metamorphosed Proterozoic siliciclastic and carbonate units, 
overlain by a Cambrian–Ordovician sequence of clastic, 
carbonate, and volcanic units. Trettin et al. [28] reported a 
zircon U–Pb age of 503 + 8/− 2 Ma from a sheared meta-
rhyolite near the top of Succession II. Other age control for 
Succession II comes from presumed Cryogenian diamictite 
units, and from fragments of Early Cambrian hexacintnellid 

Fig. 1   The Arctic Ocean 
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sponge spicules [21]. Succession III of the Pearya terrane 
records Early-to-Middle Ordovician volcanic arc igneous 
activity and associated arc-margin sedimentation. Two key 
elements are preserved: The Maskell Inlet Complex, consist-
ing of an intensely deformed and variably metamorphosed 
volcaniclastic sedimentary sequence hundreds of meters 
thick, and the Thores suite of ultramafic to granitoid rocks, 
presumed to represent a sub-arc igneous complex [21, 32]. 
A U–Pb zircon age from Trettin et al. [32] of 481 + 7/− 6 Ma 
for the M’Clintock West body places a lower bound on arc 
accretion during the terrane-scale M’Clintock orogeny [29]. 
This terrane-scale orogen is responsible for the high angle 
unconformity that separates Succession II and III from the 
overlying middle Ordovician to Silurian sedimentary rocks 
deposited on the Pearya terrane [29]. Succession IV and V 
are post-M’Clintock orogeny sedimentary units deposited in 
a variety of settings, ranging from deep marine basinal clas-
tics to shallow marine carbonate environments [21]. These 
units preserve a record of variable deformation, but little-to-
no evidence of metamorphism. Silurian sedimentary rocks 
of the Danish River Formation in the Clements Markham 
Fold Belt indicate proximity of the Pearya terrane to the 

Laurentian margin and subsequent Late Silurian to Early 
Carboniferous accretion-related deformation of the Elles-
merian Orogen [34–38].

Ward Hunt Island is located near the mouth of Disraeli 
Fiord off the coast of northern Ellesmere Island, Nunavut, 
Canada (Fig. 1). The island is underlain by three main bedrock 
units: metamorphic rocks [Ps], the Ward Hunt Pluton [Sy], 
and Carboniferous-to-Permian units of the Nansen Formation 
(Fig. 2b). The metamorphic unit includes schist and phyllite 
that are composed of biotite, muscovite, chlorite, albitic pla-
gioclase feldspar, and quartz and locally preserve cataclastic 
textures [39]. The unit is correlated with Succession II on the 
basis of lithological similarities [21]. The Ward Hunt Pluton 
is dominated by syenite containing microcline, perthite, and 
quartz but includes monzodiorite consisting of albite, chlo-
rite, epidote, and hornblende and additional mafic phases com-
monly altered to green biotite and oxides [39]. Geochemical 
analysis of the monzodiorite phase reveals a metaluminous 
chemistry with tectonic discrimination plots placing the Ward 
Hunt Pluton in the Volcanic Arc Granite field in Rb versus 
Nb + Y and Rb versus Ta + Yb space [21]. Trettin [21] sug-
gests that the degree of alteration to these rocks makes this 
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Fig. 2   a Simplified geologic map of northern Ellesmere Island, 
adapted from Trettin [21] and Mayr [89]. Included is a selection of 
U–Pb radiometric ages from Paleozoic intrusions and detrital zir-
con (DZ) components in the Pearya terrane from Trettin et  al. [28, 

31, 33] and Estrada et al. [32], as well as the sample location of the 
Ward Hunt Pluton collected in 2008. b Geology of Ward Hunt Island, 
adapted from [21, 89]
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interpretation suspect and correlates the pluton with Succes-
sion I. However, the cross-cutting relationship with metamor-
phic rocks presumed to be correlative with Succession II sug-
gests that the Ward Hunt Pluton is younger than Succession I.

Methods

Sample 08149 was processed at the University of Iowa mineral 
separation facility, starting with crushing and pulverization 
using a BICO badger jaw crusher and disk mill. The result-
ant material was then washed across a Gemeni GT60 water 
table to concentrate the dense mineral fraction. Zircon in this 
fraction was purified by magnetic susceptibility methods and 
heavy liquid separation in methylene iodide. Individual zircon 
grains were examined in alcohol and imaged in reflected light, 
and then picked and mounted in a 2.54 cm epoxy round mount. 
The mount was polished and cathodoluminescence (CL) 
imaged at the USGS-Stanford University Ion Probe Labora-
tory. Zircon U–Pb and trace-element analyses were conducted 
simultaneously by SIMS (secondary ion mass spectrometry) 
using the SHRIMP-RG (sensitive high-resolution ion micro-
probe–reverse geometry) instrument at the USGS-Stanford 
University Ion Probe Laboratory following methods outlined 
in Barth and Wooden [40]. Spot sizes were approximately 
25 μm in diameter. Fractionation corrections were calibrated 
by replicate analysis of the zircon standard R33 [421 Ma]; [41, 
42]. The U and trace-element concentrations were calibrated 
with MAD-559 [43]. Data reduction utilized the SQUID-2 
add-in to Microsoft Excel [44], with U–Pb ages and concordia 
plots were generated using Isoplot ver. 3.0, an add-in to Micro-
soft Excel by Ludwig, [45]. Reported values for Eu* and Ce* 
are calculated as geometric means using the abundances of 
the adjacent elements (e.g., Eu* = Eunormalized/[[Smnormalized × 
Gdnormalized]/2]). The U–Pb data are presented in Table 1, and 
trace-element data are presented in Table 2. Lu–Hf isotopic 
analysis of zircon utilized different grains from the zircon frac-
tion. The new grains were mounted in a 2.54 cm epoxy round 
mount, polished, and CL imaged at the Arizona LaserChron 
Center. U–Pb analysis identified age domains in the grains, 
and domains within error of the SHRIMP U–Pb crystallization 
age were selected for LA-ICPMS (laser ablation-inductively 
coupled plasma-mass spectrometry) Lu–Hf analysis following 
the protocols outlined in Gehrels et al. [46, 47] and Cecil et al. 
[48]. Lu–Hf data are presented in Table 3.

Results

Sample description

Sample 08-149 was collected from the syenite phase of the 
syenite–monzodiorite plutonic complex (Fig. 3a). The syen-
ite is dominated in hand sample by pink potassium feldspar Ta
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and an altered greenish-black mafic phase (Fig. 3b). Thin 
section analysis (Fig. 4a) revealed that the feldspar is vari-
ably altered, with some grains cloudy due to sericite. The 
mafic phase, interpreted as an amphibole group mineral, is 
also altered to biotite, chlorite, and opaque phases (Fig. 4b).

SIMS results: U–Pb and trace elements

Fifteen individual zircon grains separated from sample 
08-149 were analyzed at the USGS-Stanford University 
Ion Probe Laboratory. Zircon from sample 08-149 con-
sists of blocky, brown, turbid grains and fragments that 
range in size from 100 to 300 μm in length (Fig. 5a). CL 
images reveal that mottled zones, sometimes rich in inclu-
sions, dominate most of the grains; however, some grains 
contained domains of oscillatory growth zonation inter-
preted to be of igneous origin (Fig. 5b). Trace-element 
patterns (Fig. 6) between the grains was variable, with 

some showing elevated light REE and others showing 
depressed heavy REE characteristics. Values for Yb/Gd 
range from 3.1 to 10.2, reflecting a flatter heavy REE seg-
ment of the pattern. Negative Eu anomalies are indicated 
by Eu/Eu* values of 0.40–0.90, and positive Ce anomalies 
are indicated by values of 2.1 to 144.1. U and Th concen-
trations varied with U ranging from 253 to 777 ppm and 
Th from 87 to 570 ppm. Th/U ratios ranged from 0.13 to 
1.22. The zircon grains yielded a range of common Pb 
corrected 206Pb/238U ages from 417 to 545 Ma. Several of 
the young zircon show elevated light REE values indicat-
ing open system behavior [49]. Other young grains show 
normal REE patterns, but plot along a Pb-loss trajectory 
on a Tera-Wasserburg concordia diagram (Fig. 7a). The 
six oldest grains yield a weighed mean 206Pb/238U age 
of 542 ± 2 [MSWD = 2] and a concordia age of 542 ± 2 
[MSWD = 2.9] which is interpreted as the emplacement 
age for the Ward Hunt Pluton (Fig. 7b).

Table 2   SIMS trace-element 
data (in ppm) for the Ward Hunt 
Pluton zircon grains

Spot ID La Ce Nd Sm Eu Gd Dy Er Yb Hf Y Th U

08149-15.1 16.62 80.4 23.2 11.3 14.8 44 114.6 124.6 88.4 8331 995 250 638
08149-2.1 1.56 16.1 3.9 3.1 3.7 15 51.3 78.2 64.4 7959 567 167 645
08149-5.1 3.44 22.8 4.8 4.5 5.5 24 98.1 142.4 140.1 9172 969 205 247
08149-4.1 0.07 6.2 0.2 0.5 0.4 6 30.3 54.3 45.4 8925 357 88 660
08149-+654/13.1 2.90 23.9 5.6 2.9 3.5 13 55.3 89.6 71.8 8982 608 186 753
08149-8.1 0.46 68.3 3.8 9.9 6.0 109 437.0 489.9 308.7 10,860 4020 419 443
08,149–1.1 0.01 10.2 0.1 0.6 0.3 9 55.9 95.6 76.6 8167 721 217 426
08149-12.1 2.01 13.3 3.2 2.4 2.2 8 30.8 54.0 47.1 8336 373 117 529
08149-11.1 0.20 37.7 1.7 3.1 3.2 36 183.0 269.1 218.6 8418 1991 692 870
08149-6.1 0.02 40.8 1.8 5.7 2.7 72 295.6 353.9 226.8 9878 2829 419 396
08149-3.1 0.06 31.1 0.7 2.2 1.1 32 166.5 253.1 171.6 7909 1946 507 642
08149-10.1 0.03 24.3 0.5 1.5 0.9 22 118.6 162.4 115.3 10,330 1228 391 619
08149-14.1 0.09 7.8 0.1 0.3 0.3 5 36.2 67.7 55.3 9859 460 137 688
08149-7.1 1.52 59.2 5.4 10.0 6.3 100 415.4 488.2 309.5 10,614 3920 580 461
08149-9.1 0.02 14.4 0.5 1.6 0.9 20 95.7 131.2 79.1 8417 985 141 374

Table 3   LA-ICPMS Lu/Hf data for the Ward Hunt Pluton zircon grains

U/Pb age (T) assigned based on the concordia age from SIMS analyses

LA–ICPMS Spot ID (176Yb + 176Lu)/176Hf 
(%)

176Hf/177Hf  ± (1σ) 176Lu/177Hf 176Hf/177Hf(T) εHf (0) εHf (0) ± (1σ) εHf(T) U/Pb age 
(T—Ma)

08-149-1 19.846646 0.282571 0.000085 0.000671 0.282564 − 7.6 3.0 4.3 542
08-149-11 8.433587 0.282563 0.000083 0.000294 0.282560 − 7.9 2.9 4.1 542
0-–149-12 18.870782 0.282708 0.000064 0.000656 0.282702 − 2.7 2.3 9.2 542
08-149-13 8.348406 0.282620 0.000066 0.000297 0.282617 − 5.8 2.3 6.2 542
08-149-14 23.214854 0.282580 0.000061 0.000755 0.282572 − 7.3 2.2 4.6 542
08-149-17 18.469918 0.282620 0.000078 0.000636 0.282614 − 5.8 2.8 6.1 542
08-149-6 12.064425 0.282735 0.000071 0.000447 0.282730 − 1.8 2.5 10.2 542
08-149-8 18.945968 0.282413 0.000090 0.000812 0.282404 − 13.2 3.2 − 1.4 542
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LA‑ICPMS results: Lu–Hf isotope geochemistry

Additional zircon grains were mounted, CL imaged, and 
analyzed by LA-ICPMS for U–Pb and Lu–Hf isotopic 
data at the Arizona LaserChron Center. Six zircon, yield-
ing 206Pb/238U ages from c. 535 to c. 547 Ma, were cho-
sen for Lu–Hf isotopic analysis. 176Hf/177Hf values ranged 
from 0.282563 to 0.282708, yielding ɛHf[t] values of + 4.1 
to + 9.2. All analyses define an average ɛHf[t] value of + 5.7 
for the Ward Hunt Pluton.

Discussion

Age and tectonic setting of the Ward Hunt Pluton

Zircon U–Pb analysis yields an age of 542 ± 2 Ma for the 
Ward Hunt Pluton, consistent with the observed field rela-
tionships outlined by Trettin [21]. This age reveals a pre-
viously poorly constrained magmatic event in the Pearya 
terrane. Succession I orthogneiss units yield early Neopro-
terozoic ages and are interpreted to represent a continental 

arc system [23]. There are little geochemical data available 
for the sheared rhyolite in Succession II that yielded a zir-
con U–Pb age of c. 503 Ma [28] to establish the its tec-
tonic affinity. The majority of Paleozoic intrusions from the 
Pearya terrane define Ordovician–early Silurian and mid-
dle–late Devonian magmatism (Fig. 2); [31, 32] and refer-
ences therein], reflecting the well-documented links between 
Pearya and the Caledonian and Ellesmerian orogenies.

The tectonic setting of the Ward Hunt Pluton is uncertain; 
however, zircon trace element and Lu–Hf geochemistry help 
to illuminate the processes affecting its evolution and narrow 
the origin of the primary magma. The range of observed 
Th/U values is generally indicative of juvenile magma input 
rather than solely crustal melts (e.g., [50]). In addition, the 
low Th/U suggests that the host syenite is not A-type grani-
toid [51]. Yb/Gd values are a proxy for magma evolution by 
fractional crystallization, where middle REE are typically 
removed by accessory phases such as apatite and titanite 
[40]. Th/U vs. Yb/Gd (Fig. 8a) displays a fractionation 
trend, but over a limited time of zircon growth suggestive 

Fig. 3   Sample photographs. a Field photograph of the pluton on 
Ward Hunt Island, showing the sample outcrop. The scale bar is 
approximately 1 m in length. b Close-up view of the sample collected 
for this study. The scale bar is approximately 1 cm

Fig. 4   Representative photomicrographs of the sample. a Plane polar-
ized light. b Cross-polarized light. Scale bar is approximately 1 mm
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of limited inheritance from long-lived magmatic system. Ce/
Sm and Eu/Eu* can track magma oxidation conditions [49]. 
When plotted against Yb/Gd (Fig. 8b, c), the Ce/Sm and Eu/
Eu* variations indicate that fractional crystallization played 
less of a role in the magma evolution than varying oxidation 
conditions. This may be due to the minor input of anatectic 
fluid into the original magma. This is further suggested by 

the trend observed on the Th ppm vs U/Ce plot (Fig. 8d). 
While the Ward Hunt Pluton zircon analyses plot in the mag-
matic field, the negative trend defined by the data points may 
indicate that a small input of anatectic fluid did affect the 
magma (and perhaps oxidation conditions) during crystalli-
zation. Hf concentrations serve as another proxy for magma 
evolution. Hf concentration plotted against U/Yb provides 
another means to discriminate magma fractionation from 
source enrichments [52]. The Ward Hunt Pluton suite reveals 
a trend dominated by the source region, again downplaying 
the role of magma evolution in the chemical characteristics 
of the zircon (Fig. 8e). Grimes et al. [52] include a tectonic 
discrimination plot based on Gd/Yb variations against U/Yb. 
Zircon from the Ward Hunt Pluton plots outside of most cat-
egories; however, this may reflect the influence of garnet at 
depth in a continental arc setting (Fig. 8f). The ɛHf[t] values 
of + 4.1 to + 9.2 suggest that the original source was rela-
tively juvenile, with only limited crustal input (Fig. 9). When 
taken in sum, these data suggest that the Ward Hunt Pluton 
formed in a volcanic arc setting at c. 542 Ma, providing a 
link between the Pearya terrane, the larger Timanide Orogen, 
and Circum-Arctic terranes with Timanian affinities.

The Ward Hunt Pluton and Circum‑Arctic Timanide 
connections

The influence of the Timanide Orogen extends from the clas-
sic sections on the northeastern margin of Baltica to the Arc-
tic Alaska-Chukotka terrane and other Cordilleran terranes 
that originated at peri-Baltican subduction zones [53–56]. 
The detrital zircon signature from the Timanide Orogen is 
dominated by ages ranging from 650 to 525 Ma, and has 
been well documented from the Timan Range, northern 

Fig. 5   Zircon images. a Reflected light image of zircon grains sepa-
rated from sample 08149. b Cathodoluminescence (CL) images of 
selected zircon. Many grains showed mottled domains believed to 
represent metamict zones, as well as areas of primary igneous oscilla-
tory zoning. Spot sizes, indicated by open white circles, are approxi-
mately 25 μm in diameter
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Taimyr, Novaya Zemlya, Severnya Zemlya, and the New 
Siberian Islands Archipelago (Fig. 1); [5, 57–61]. The c. 
542 Ma age from the Ward Hunt Pluton is older than previ-
ously documented tectonothermal events in the Pearya ter-
rane; however, probable volcanic arc activity in Succession 
III at this time and other lines of evidence supports a link 
between the Timanides and portions of the Pearya terrane 
[32]. Evidence for pre-Carboniferous sinistral strike–slip 
displacement documented in the Pearya terrane and Sval-
bard (e.g., [12, 30, 62, 63]) is consistent with the models of 
large-scale terrane translation through the Arctic (e.g., [53]) 
as well as Caledonian escape models for the Pearya terrane 
[64]. These models provide a regional-scale mechanism to 
juxtapose the Ward Hunt Pluton and its wall rocks with other 

units of the Pearya terrane prior to or during its accretion 
along the northern margin of Laurentia and separate it from 
other Timanide terranes displaced to the Cordilleran margin.

Detrital zircon U–Pb age data from Proterozoic Succes-
sion II units of the Pearya terrane yield a small population of 
ages consistent with a Timanide source area [22, 32]. While 
generally older than the Ward Hunt Pluton, the detrital zir-
con age data from Succession II and III of the Pearya terrane 
independently support a link to the Timanides. Group C of 
Malone et al. [22], sampled from Succession II diamictites, 
yielded prominent detrital zircon U–Pb age peaks from 990 
to 1895 Ma. A subset of much younger ages ranged between 
635 and 710 Ma, leading Malone et al. [22] to suggest a 
distal Timanide source region. Estrada et al. [32] sampled 
a mica schist from Succession II (sample C11-72) from the 
eastern margin of Ayles Fiord. This sample yielded a young-
est population [n = 4] of detrital zircon yielding a concordia 
age of 572 Ma. In addition, two samples from volcaniclas-
tic sedimentary rocks collected from Succession III yield 
a weighed mean age [n = 28] of c. 573 Ma [32]. Although 
abundant detrital zircon from Novaya Zemlya and Taimyr 
ranging from 610–530 Ma [58] provides a sediment pathway 
to the Timanide orogen, the specific link between Pearya 
strata and the Timanide Orogen is not well understood.

The Pearya terrane was likely part of a larger continen-
tal landmass or amalgamation of crustal fragments that was 
juxtaposed with the northern Laurentian margin during 
the Ellesmerian orogeny and served as a sediment source 
for the southwestward-propagating Devonian Ellesmerian 
clastic wedge [65]. A distinct population of 500–700 Ma 
detrital zircon with juvenile Hf isotopic signatures [26, 66, 
67] and a shift to more juvenile whole rock Nd isotopic sig-
natures from Devonian siliciclastic units [68] indicate that 
the northern continental source region had Timanian con-
nections. A number of rock units now distributed across the 
circum-Arctic and North American Cordillera [53] also yield 
igneous and detrital zircon ages consistent with a Timanide 
affinity. Comparisons of these units against the Pearya ter-
rane in general, and Ward Hunt Pluton in particular, provide 
insight into the possible nature of the Timanian connections 
prior to the Ellesmerian orogeny.

Midtkap igneous centers, North Greenland

At its eastern end, the Neoproterozoic–early Devonian pas-
sive margin sequence of the Franklinian Basin extends into 
North Greenland (e.g., [69] and references therein). Most 
of the Franklinian Basin was deposited above Archean to 
Paleoproterozoic Laurentian units of the Canadian Shield; 
however, recent evidence from the Midtkap Igneous Cent-
ers in Johannes V. Jensen Land suggests that North Green-
land is in part underlain by Timanide crust. The Midtkap 
Igneous Centers are a group of seven volcanic centers [70, 
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71] characterized by serpentinized mafic rock emplaced as 
volcanic breccias into Cambro-Ordovician turbidites [72]. 
The age of these units is uncertain due to the pervasive ser-
pentinization, although Pedersen and Holm [73] indicated 
that a K–Ar age of c. 380 Ma reflected a minimum age for 
the units. The volcanic centers contain xenoliths of unal-
tered igneous rock which represent the presumed basement 
to the area [74]. Many xenoliths range in composition from 
monzonite to granite and bear geochemical indicators of 
forming in an igneous arc setting [74, 75]. Zircon U–Pb 
ages from the xenoliths range from c 650 Ma to c. 570 Ma 
[74, 75]. 40Ar–39Ar dating of biotite separated from a granite 
xenolith yielded an age of c. 535 Ma, interpreted by Estrada 
et al. [75] as documenting island-arc magmatism into the 
Cambrian. The overlap in these ages suggest that the Ward 
Hunt Pluton may represent part of the waning stages of arc 
magmatism in this area, as well, intruded into units that 
were later emplaced onto the Laurentian margin. Indeed, 
both Rosa et al. [74] and Estrada et al. [75] suggest that 
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the Midtkap Igneous Centers basement and the Ward Hunt 
Pluton are part of the same arc system.

Arctic Alaska–Chukotka

The Seward Peninsula, centrally located in the Arctic 
Alaska–Chukotka terrane, provides a rich source of data 
linking this terrane back to the Timanides. Amato et al. [14, 
15] dated abundant late Neoproterozoic orthogneiss units in 
the Seward Peninsula (Arctic Alaska–Chukotka) as well as a 
gabbro in the York Mountains. Orthogneiss units collected 
from the high-grade metamorphic complex exposed in the 
Kigluaik Mountains ranged in age from c. 700 to c. 562 Ma 
[14, 15]; in addition, orthogneiss units from the Koolen 
gneiss dome area of Chukotka yielded ages from c. 581 to 
c. 562 Ma [15]. These U–Pb ages are consistent with prior 
work by Patrick and McClelland [13], which yielded an age 
of c. 680 Ma for Cape Nome and Dorothy Creek orthogneiss 
units, and the c. 678 Ma Salmon Lake orthogneiss [76]. The 
York Mountains gabbro yielded a younger U–Pb age of c. 
539 Ma [14]. Detrital zircon ages collected from metamor-
phosed Paleozoic sedimentary rocks show abundant detrital 
zircon age populations in the 700–540 Ma range [14, 77].

The Doonerak fenster, located in the central Brooks 
Range of Alaska, offers another Alaskan tie to the Pearya 
and Alexander terranes and the Timanides. Arc magmatic 
activity, dated at c. 462 Ma [56], provides a Paleozoic link 
between Ordovician arc magmatism documented in the 
Pearya terrane [28, 31, 32] and the Alexander terrane [78]. 
Detrital zircon from Ordovician sedimentary units of the 
Apoon Formation in the Doonerak arc include prominent 
Ordovician peaks, but also include c. 540–520 Ma ages [56]. 
The authors suggest that these are sourced from outside the 
assemblage, based on their associations with Proterozoic zir-
con that yield ɛHf[t] values consistent with reworked crust. 
Interestingly, the patterns in age spectra and ɛHf[t] values 
permit correlations with data from the Pearya terrane [22, 
24]; (this study).

The submerged Chukchi Borderland preserves a record 
of late Neoproterozoic through Ordovician tectonothermal 
activity. Rock recovered from dredge samples yielded a suite 
of quartzofeldspathic gneiss metamorphosed up to granu-
lite facies [79]. Detailed examination of zircon separated 
from these gneisses revealed complicated metamorphic 
and resorption textures [80]. U–Pb analyses conducted by 
O’Brien et al. [80] revealed prolonged zircon growth from c. 
550 to c. 470 Ma. Three main age relationships are resolved, 
with older (c. 550–535 Ma) age domains occurring as cha-
otically zoned inherited cores, main, sector zoned domains 
yielding ages between c. 530 and 485 Ma, and younger 
overgrowth domains and small, euhedral, oscillatory zoned 
zircon yielding ages of c. 485–420 Ma [80].

The Alexander terrane

The Alexander terrane has long been recognized as having 
ties to Baltica and the Timanide and Caledonide orogens, 
dating back to the late Neoproterozoic to the early Paleo-
zoic (e.g., [16, 17, 54, 56, 81–84]). The basement of the 
southern Alexander terrane, referred to as the Craig subter-
rane and exposed on Prince of Wales Island, is composed of 
metamorphosed arc rocks, including a felsic metavolcanic 
unit near the base dated by Gehrels et al. [16] at c. 595 Ma 
and by Oliver et al. [85] at c. 565 Ma. The metavolcanic 
rocks of the Wales Group are in turn intruded by a c. 554 Ma 
orthogneiss [86]. The Chilkat Range and Admiralty Island, 
at the southern margin of the Saint Elias Mountains, has 
c. 455 Ma felsic plutons with documented c. 547–544 Ma 
xenocrystic zircon interpreted as being derived from the ter-
rane basement in this region [87]. The new age from the 
Ward Hunt Pluton overlaps with magmatic activity recorded 
in the oldest Alexander terrane rocks, providing a further 
data point supporting ties between the Alexander terrane and 
the Caledonides through the Pearya terrane. Malone et al. 
[24] argue for this connection as well, through detrital zircon 
data collected from early Paleozoic sedimentary rocks com-
pared to Paleozoic rock from across the Alexander terrane 
[16, 17, 84, 85, 88].

Conclusions

The Ward Hunt Pluton, intruding metasedimentary rocks 
of the Pearya terrane, records a previously undocumented 
late Neoproterozoic–early Cambrian magmatic event in the 
terrane. Zircon separated from a syenite phase of the pluton 
yielded a crystallization age of 542 ± 2 Ma. Trace-element 
data from c. 542 Ma zircon record limited magmatic differ-
entiation or crustal input. Hf isotope data reveals a juvenile 
signature, supporting a paucity of crustal input into the host 
magma. When taken together, these data suggest that the 
Ward Hunt Pluton formed in a volcanic arc setting in the 
Cambrian, allowing for comparisons between it and other 
Neoproterozoic–Cambrian arc systems. This magmatic event 
provides further evidence for links between the Pearya ter-
rane and Timanide Orogen, as well as with terranes dis-
persed around the Circum-Arctic with a record of Timanian 
magmatism.
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