2020 IEEE International Symposium on Workload Characterization (IISWC)

Vertex Reordering for Real-World Graphs and
Applications: An Empirical Evaluation

Reet Barik}, Marco Minutoli’, Mahantesh Halappanavarfi, Nathan R. Tallent’, Ananth Kalyanaramanﬂ
TPacific Northwest National Laboratory, Richland, WA, USA;
Email: {marco.minutoli, hala, nathan.tallent} @pnnl.gov
1Washington State University, Pullman, WA, USA;
Email: {reet.barik, ananth}@wsu.edu

Abstract—Vertex reordering is a way to improve locality in
graph computations. Given an input (or “natural”’) order, re-

ordering aims to compute an alternate permutation of the vertices g i {J_j

that is aimed at maximizing a locality-based objective. Given 8 5% §° Hj

decades of research on this topic, there are tens of graph reorder- Iy § 3

ing schemes, and there are also several linear arrangement “gap” 5 500 | o —°— Gorder

measures for treatment as objectives. However, a comprehensive 5 § { e Slra‘:;o'o

empirical analysis of the efficacy of the ordering schemes against S Ji%: e Rca; L
L 25%

the different gap measures, and against real-world applications is
currently lacking. In this study, we present an extensive empirical
evaluation of up to 11 ordering schemes, taken from different
classes of approaches, on a set of 34 real-world graphs emerging
from different application domains. Our study is presented in
two parts: a) a thorough comparative evaluation of the different
ordering schemes on their effectiveness to optimize different
linear arrangement gap measures, relevant to preserving locality;
and b) extensive evaluation of the impact of the ordering
schemes on two real-world, parallel graph applications, namely,
community detection and influence maximization. Our studies
show a significant divergence among the ordering schemes (up
to 40x between the best and the poor) in their effectiveness
to reduce the gap measures; and a wide ranging impact of
the ordering schemes on various aspects including application
runtime (up to 4x), memory and cache use, load balancing, and
parallel work and efficiency. The comparative study also helps
in revealing the nuances of a parallel environment (compared
to serial) on the ordering schemes and their role in optimizing
applications.

I. INTRODUCTION

A graph G(V, E) is a pair of a set of vertices V represent-
ing unique entities and a set of edges representing pairwise
relationship between vertices. Since this simple abstraction
can capture complex relationships between entities, graph-
theoretic modeling and analysis has pervaded numerous areas
of science and technology enabling efficient solutions of
complex problems. Execution of graph algorithms on modern
computer architectures with deep memory hierarchies results
in loss of performance due to an inherent lack of spatial
and temporal locality of memory accesses—e.g., consider a
random walk on a graph. Consequently, several efforts have
been explored to accelerate graph applications. One such
technique is vertex reordering. Reordering can be defined as
the permutation of the original vertex ordering such that some
desirable locality-based property can be achieved.

Several techniques for vertex reordering have been proposed
in literature (§IIT). While some of the techniques were de-
veloped for different purposes such as reducing fill in sparse

100%

&g

=t 3

g a
b e
P

Pie,
3

o0

o
0% 10 15 20 25 30

Performance relative to the best algorithm

35 40

Fig. 1: Profile of relative performance: Relative performances of
different vertex ordering schemes, as measured using the average
linear arrangement gaps produced by each ordering scheme. The Y-
axis represents the fraction of input problems with a total of 25 inputs.
The X-axis represents the factor by which a given scheme fares
relative to the best performing scheme over that fraction of inputs.
For example: Gorder (blue) produces an average linear arrangement
gap that is 5x worse than the best performing scheme, on 50% of the
inputs. The closer a curve is aligned to the Y-axis (like Grappolo),
the better its relative performance.

linear algebra, or distributing work among parallel processors,
recent work [1, 2, 37] has focused on improving memory
performance for graph algorithms. Given the broad scope of
available techniques and the objectives that they optimize for
(detailed in §IIT), there is a lack of systematic study comparing
them with each other, and their utility to improve performance
of prototypical graph algorithms.

Contributions: In this paper, we present an extensive em-
pirical evaluation of up to 11 ordering schemes, taken from
different classes of approaches (§III), on a diverse set of 34
real-world graphs from different application domains. Our
study is presented in two parts:

First, we present a comparative evaluation of the ordering
schemes on their effectiveness to optimize various linear
arrangement gap measures (§II-A), which are key indicators
of locality preservation. Our results show that there is no
one scheme that consistently outperforms others in all the
metrics; instead, different schemes are better at optimizing
different metrics (e.g., RCM [9] is best for graph bandwidth,
whereas partitioning-based schemes perform best for average
gap profiles). Figure 1, showing a sample of these results,
highlights the wide range of factor differences observed, of
up to 40x between the best vs. poorest performing scheme.

978-1-7281-7645-1/20/$31.00 ©2020 IEEE 240

DOI 10.1109/1ISWC50251.2020.00031

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

Secondly, we present a detailed report of testing various or-
dering schemes on two real-world graph application use-cases,
namely, community detection [13] and influence maximization
[24]. Our study covers a multitude of performance aspects
including impact of ordering on application runtime, quality,
memory and cache use, load balancing, and parallel work and
efficiency. The key findings are that the choice of ordering
schemes does in fact matter, with the divide between the best
vs. poorest performing schemes as large as 4x in runtime
per iteration, and 2.6x in memory latency. Our study also
show that this divide among schemes is more pronounced in a
parallel (multithreaded) application than with a corresponding
single threaded execution.

Our study represents one of the first to systematically
characterize the ordering schemes by their effectiveness to
optimize various (established) gap measures relevant to lo-
cality. Furthermore, to the best of our knowledge, this is
the first work to study the impact of ordering on real-world
graph applications such as community detection and influence
maximization, and using parallel implementations.

II. PRELIMINARIES

Let G = (V,E) denote an input graph, where V is the
set of (n) vertices and E is the set of (m) edges. We use
identifiers in the interval [1, n] to identify the vertices. For ease
of exposition, we assume undirected graphs (unless otherwise
stated). Edges may be weighted and w(e) denoting the weight
of edge e € E. Let I'(i) denote the set of neighbors of vertex
i in G—i.e., I'(i) = {j|(¢,7) € E'}. The degree of vertex i is
then given by deg(z) = |T'(7)|.

A vertex ordering 11 of V is a 1-1 mapping (bijection or
permutation) of V' onto a sequence or linear order. Intuitively,
II represents a rearrangement of vertices in V, I1 : i — [1,n).
The mapping I1() is also referred to as the rank of vertex
¢ in II. Since the vertices in V' are provided in a certain
order at input time, we treat that input ordering to be the
natural ordering of V. In other words, II = [1,2,...,n] for
the natural order, and any other vertex (re)ordering can simply
be expressed as a permutation of the natural order. Note that
the overall structure of the graph remains unchanged with
reordering.

A. Gap Measures for an Ordering

Here, we define a series of “gap” measures that can be used
to evaluate the effectiveness of any given ordering. Intuitively,
a lower value for these gap measures would correspond to a
shorter separation between vertex ids that are connected by an
edge in the graph. Considering most graph algorithms explore
vertex neighborhoods, a net lower value for these gap measures
is generally preferred out of any ordering II, as it is a good
indicator of preserving locality. In what follows, we define
our gap measures (see Figure 2 for a simple example). We
note here that similar measures have been developed for at
least five decades in the domain of sparse linear algebra [11].
Therefore, we have built on relevant definitions while trying
to adapt them to graph algorithms.

241

Fig. 2: An example graph with two different orderings (natural on the
left, and reordered on the right) and their respective gap measures.
The ordering IT = [5,1,3,7,2,6,4], where vertex 1 is mapped to
vertex 5,2to 1, and so_on. The gap measures for the natural ordgr
are: £€= 3.3, =5, and b= 4.43; and for the reordered graph are: =
1.7, B= 3, and and B= 2.86.

Given an ordering 1I of V', we define the linear arrangement
gap (or simply gap) between any two vertices ¢ and j con-
nected by an edge, to be the absolute difference between their
ranks in II. We denote it with £. Specifically, £r1(7, j) denotes
the gap in II between vertices ¢ and j, for some (i,j) € E:

€n(i,) = (1) — 11(5)]

The set of gaps of all the edges is collectively called as the
gap profile (or simply profile) of G as induced by an ordering
II. We define the average gap profile (or the average linear
arrangement gap) as:

€= 3 enlid)

(i,J)EE

The vertex bandwidth for any vertex i+ € V, denoted by
Bi(G,11), is defined as the maximum gap between i and any
of its neighbors, in II:

Bi(G, 1) = max{&n(i, j)|Vj € I'(i)}

Similarly, we define the graph bandwidth (or the maximum
linear arrangement gap) as the maximum vertex bandwidth:

B(Gv H) = maX{‘gH(Za .]) ‘V(Z, .]) € E}
We define the average graph bandwidth as:

1
- m Z ﬁv (G7 H)
veV

We note that both the bandwidth (5) and the average gap
profile (£) of an ordering are useful indicators of performance
and are used as metrics for optimization by different algo-
rithms. For example, the Reverse Cuthill-McKee algorithm
attempts to minimize the graph bandwidth, and in contrast,
partitioning based methods minimize £ (§III).

B(G,1I)

III. VERTEX REORDERING SCHEMES

Vertex reordering has found frequent use among graph algo-
rithm designers as a way to optimize application performance.
Given an initial ordering at input (i.e., the “natural” order-
ing), the reordering step generates a revised permutation and
subsequently all computations happen on the reordered graph
data structure. Different reordering schemes use different
objectives or measures to achieve their goal. In Section II-A,
we presented several gap measures that can serve as objectives.

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

In what follows, we present a quick review of the different
reordering strategies that have been used in practice. We first
discuss the class of gap-based approaches. Subsequently, we
discuss other classes of approaches that use different variants
as objectives. Figure 3 shows a schematic organization of
these different ordering schemes based on their underlying
approaches.

A. Gap-based Schemes

The Minimum Linear Arrangement (MinLA) problem
[33] formulates the problem as one of identifying a reordered
permutation which minimizes the (average) linear arrangement
gap. The MinLA problem is NP-Hard with its corresponding
decision version being NP-Complete [14] and there have
been multiple heuristics and/or approximation algorithms us-
ing techniques like simulated annealing [26, 34]. However,
even these heuristics do not have efficient implementations in
practice and are considered expensive in practice. There also
exists a log variant of the MinLA problem [7, 35], referred
to as MinLogA. This variant is motivated toward achieving
graph compression [5], and is more relevant in the context of
graph storage.

Vertex

Reordering
Schemes

i ¥

(Window-based){ (Parlilion-based)(

Degree- and
hub-based

Degree
Sort

Hub Sort |

Gap-based

based
Reverse
Cuthill-
McKee
Nested
Dissection

Rabbit-
Order

MinLogA | Grappolo*

Hub
Clustering

SlashBurn

Multiple
Min Deg

Approx
Min Deg

Fig. 3: A categorization of different vertex reordering methods
based on key algorithmic ideas. The two Grappolo-based ordering
schemes and the METIS-based ordering scheme were generated as
part of this paper (by repurposing the original Grappolo and METIS
tools, respectively, for ordering), in order to enable a comparative
evaluation.

Grappolo-
RCM*

B. Degree- and Hub-based Schemes

Various reordering schemes use the degree information, as
it is relatively easy to group/sort vertices by degrees. The
simplest approach, Degree Sort, is to simply reorder by
sorting the vertices by degree (either in non-decreasing or
non-increasing order). Degree Sort is easy to implement, and
light-weight in reordering cost. However, the scheme is not
designed to optimize any of the gap measures.

Hub Sort [38] is a variant of Degree Sort, which sorts
the vertices by non-increasing degree and then maintains a
contiguous ordering of those “high” vertices (or hubs) defined
based on a minimum degree cutoff. The remaining vertices
maintain their relative natural order. Intuitively, this scheme
is intended to improve better spatial locality among the hub
nodes (which are expected to be more frequently accessed
during computation).

Hub Clustering [2] is a lighter-weight variant of hub sort,
which simply ensures that the hub vertices are labeled in

242

a contiguous manner, without necessarily maintaining their
relative sorted order. Such lightweight techniques have shown
to be effective in reducing cache misses for operations such as
PageRank [32] and Single Source Shortest Paths [8], provided
the input graph is amenable to Degree Sort reordering (satisfies
certain characteristics like ‘Packing Factor’).

SlashBurn [21] is a heavyweight scheme which uses a hub-
based approach to identify communities. In doing so, it finds
an ordering of nodes such that the corresponding adjacency
matrix is close to the block-diagonal form.

C. Window-based Schemes

Gorder is the current state-of-the-art in terms of minimizing
cache misses is Gorder [37]. It slides a window of a certain
length w over the provided input/natural order, and tries to
maximize a score called Gscore within each window. This
score is defined on every pair of vertices (7, j) that originates
within a window as follows: S(4,5) = Ss(4,7) + Sn(%,7),
where S;(i,7) is the number of the times ¢ and j share
a common neighbor, and S, (4,7) is the number of edges
between ¢ and j. This optimization problem is shown to be NP-
hard [37], and the authors present an efficient approximation
algorithm that runs in time proportional to the sum of square
of degrees of the vertices.

D. Partitioning-based Schemes

Graph partitioners can be used as way to generate an
ordering. A given vertex set V' can be partitioned into to
p partitions, V' = V3 U V,...V,, with several overarching
goals such as increasing the connectivity within the partitions,
minimizing the connectivity across partitions, and balancing
the number of vertices (and edges) across partitions. If vertices
within a partition are densely connected, then reordering the
vertices based on partitions can be expected to minimize the
average gap of the reordered graph. In order to explore the
utility of this approach, we employ graph partitioning that at-
tempts to minimize the number of edges across partitions while
assigning a roughly equal number of vertices for each partition.
The number of partitions is an input parameter. Since graph
partitioning is NP-Hard, several heuristics exist, including a
multi-level approach where a given graph is coarsened using
approximate weighted matching [18], followed by spectral
methods to partition, and iterative refinements [25] employed
during the un-coarsening phases.

In this paper, we use the popular tool METIS [22] for graph
partitioning to generate a vertex ordering. We experiment with
varying numbers of partitions, on a wide range of inputs,
and observe that the best performance in terms of average
gap reduction is achieved for a partition size of 32 (results
presented in §V).

Community detection (or graph clustering) tools offer an
alternative to achieving a partitioning of the vertex set [13].
Here, the output communities are such that the vertices within
a cluster are more tightly-knit with intra-cluster edges, than
to the rest of the graph. The key difference between graph
partitioning and community detection is that the latter does
not require the number of communities as a parameter, and

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

the communities can be of varied sizes—as dictated by the
input graph’s modular organization [31]. Thus, by ordering the
vertices based on these communities, we can expect to reduce
the average gap of a reordered graph. Although community
detection through modularity optimization is NP-hard [6],
several fast heuristics exist.

Rabbit-Order [1] aims to achieve high locality by mapping
hierarchical community structures in the input graph to the
hierarchical structure of CPU caches by vertex reordering.
Communities are first detected using a modularity optimization
heuristic prior to generation of the vertex order.

In order to enable scaling to parallel platforms, in this
paper, we propose an alternative ordering scheme that uses
the multithreaded Grappolo community detection tool [28].
Grappolo also uses modularity to detect its communities,
and is a parallelization of the widely used serial Louvain
method [4]. The algorithm performs multiple passes (“iter-
ations”) on the original graph before compacting it to coarser
levels (“phases”).

For this paper, we implemented two schemes to generate a
Grappolo-induced ordering. In the first scheme, identified as
“Grappolo” in our results, the vertices are reordered based on
the communities, such that all vertices within a community
are contiguously labeled, while the relative ordering of the
communities is itself arbitrary.

In the second scheme, which we refer to as the Grappolo-
RCM scheme, we first build a coarsened graph, where each
community becomes a vertex and edges represent inter-cluster
edges, and then we perform a Reverse Cuthill-McKee (RCM)
algorithm (see §III-E) on the coarsened graph. The vertices
are then reordered such that all vertices that belong to each
community are contiguously labeled (similar to Grappolo),
while the communities are themselves ordered based on the
RCM order. The intuition is to take advantage of the multi-
level hierarchical information exposed by Grappolo to achieve
a relative ordering among communities.

E. Fill-Reducing Schemes

In the context of sparse matrix factorization, fill-reducing
orderings can be loosely defined as matrix orderings that
minimize the number of nonzeros (fill) in the factorized
matrix after reordering [11]. Given the importance of this pre-
processing step, a number of techniques have been developed
for fill-reducing orderings, as well as their variants that attempt
to minimize the number of floating-point operations or maxi-
mize concurrency in parallel execution. Earlier methods were
based on selecting the vertices based on their degrees during
factorization (or symbolic factorization) of a sparse matrix.
Multiple minimum degree (MMD) and approximate minimum
degree (AMD) are two such examples [17].

A graph-theoretic interpretation of matrix reordering meth-
ods can be employed for vertex reordering. Two particular
schemes that we include in our work from this space, are the
Reverse Cuthill-McKee (RCM) and nested dissection (ND).

The RCM algorithm [9] begins with a vertex of the smallest
degree, v, and renumbering it to 1. The algorithm proceeds by
finding all the unvisited neighbors of v and then renumbering

243

them in the non-decreasing order of their degrees'. The
search continues until all the vertices have been visited and
renumbered based on the order in which they are discovered
and their degree. The search resumes with another unvisited
vertex of the smallest current degree if there are multiple
connected components. Finally, the vertex ordering is reversed.
Consequently, the RCM algorithm can be viewed as one that
does an interleaved breadth-first search (BFS) and depth-first
search (DFS) traversal of the graph. The traversal itself can be
executed in O(| F|) time, with the additional cost of sorting the
vertices based on their degree. While the algorithm is sensitive
to the initial choice of vertices, the reverse ordering of vertices
was provided to provide a better fill-reducing order [9, 16].
The Nested Dissection (ND) ordering is a divide-and-
conquer approach for factorization by recursively finding ver-
tex separators of small sizes and partitioning the matrices into
two sets [15]. We use the nested dissection implementation
of Karypis and Kumar [23] in our work. Although ND is
not suited for vertex ordering, we include it our suite as a
representative of methods developed for reducing fill.

F. Runtime Cost of Reordering

The different ordering schemes discussed in this section
can incur different runtime costs to perform the reordering.
However, since the different methods are implemented by
different developers using different programming languages,
we only present wall clock time for a subset of the schemes
that were implemented in C/C++ programming language.
These schemes (compared in Figure 4) cover most of the
categories in Figure 3.

We present the results in Figure 4, as a performance profile
for the smaller dataset of 9 larger inputs (listed in Table I).
Since the profile captures relative performance to the best
performing algorithm for a given input, the closer a given
curve is to the Y-axis, better is the performance. For instance,
in this Figure 1, we observe that Grappolo and METIS (with
32 partitions) are more expensive than Degree Sort and RCM
methods presented in the figure (with the factor slowdown
plotted along X-axis, compared to the best performing tool(s));
the methods show comparable performance across the entire
spectrum of inputs tested.

IV. EXPERIMENTAL SETUP

Input Data: We perform an extensive empirical evaluation
on a total of 34 input graphs, listed in Table I with relevant
statistics. This set consists of two sets: i) a set of 25 smaller
inputs, used to assess the different qualitative metrics for
ordering, described in §VI-A; and ii) a set of 9 larger real-
world inputs representing different application domains and
used in our application-based evaluation. The inputs were
collected from two sources, the Koblenz Network Collection
(KONECT) provided by the Institute of Web Science and
Technologies at the University of Koblenz—Landau [27], and

'Note that the Children Depth-First Search method proposed by Banerjee
et al. [3] represents a relaxation where the renumbering of unvisited neighbors
follows an arbitrary order at every level.

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

100% 3 & 5
! i
Il ’ e *
v 1 i
2 = H
Y 75%] ?"A;
8 b
o° - i I
S 50% ! i o RCM
g TA ?e --#-- Grappolo
E i p— . Degree Sort
E 25% i ?_‘I = METIS
i
0%
0 250 500 750 1000 1250 1500 1750

Time taken relative to the fastest algorithm

Fig. 4: Performance profile of compute time for four representative
ordering techniques: RCM, Degree Sort, Grappolo and METIS. The
Y-axis represents the fraction of problems with a total of 9 larger
inputs detailed in Table I. The X-axis represents the factor by which
a given scheme is slower relative to the fastest performing scheme
over that fraction of inputs.

the 10th DIMACS Implementation Challenge dataset down-
loaded through the SuiteSparse Matrix Collection [10].

We summarize the key statistics of the inputs in Table I

While the degree distribution statistics provide insight on
the overall size of the graphs, statistics such as clustering
coefficient and the number of triangles provide insight on the
overall connectivity of a network.
Test Platforms: We conducted all our experiments on a large
shared memory server with eight Intel Xeon Platinum 8276
(Cascade Lake) CPUs and 6 TB DDR4-2933 of memory. Each
CPU has 28 cores (56 threads) and a nominal frequency of
2.20 GHz, and has 12 memory channels (96 channels total),
where each channel is populated (96 DIMMS, each 64 GiB).
Each CPU has per-core L1 cache of 32KB; per-core L2 cache
of 1 MB, and (socket-wide) L3 cache of 38.5 MB.

V. QUALITATIVE ASSESSMENT OF ORDERING SCHEMES

We provide a comparative qualitative assessment of 11 or-
dering schemes. These 11 schemes cover the different classes
shown in Figure 3, and include: Degree Sort, SlashBurn (from
the degree- and hub-based class), Gorder (from the window-
based class), Rabbit-Order, Grappolo, Grappolo-RCM, METIS
(from partition-based), and RCM and ND (from the fill-
reducing class). In addition, we considered the natural scheme
(same as input order) and a “random” scheme (by randomly
shuffling the input order).

For our assessment, we use three metrics (defined in §II-A):
i) graph bandwidth or maximum gap (f); ii) average gap
profile (£); and iii) average graph bandwidth (). Together
these three metrics capture the gap at a global level. We
present these results in two different forms—performance plots
(Figures 5, 6b, and 6a), and violin plots (Figure 8). Since we
compare 11 schemes across 25 inputs, we use performance
plots that concisely summarize the performance across all the
inputs for different algorithms relative to the best performing
algorithm for a given input. The overall best performing
algorithm will be the closest curve to the Y-axis in the plot.

On the other hand, more detailed insights on the distribution
of gaps are provided in the violin plots [19] for gap statistics
(which subsume bandwidth statistics).

244

TABLE I: Summary of 25 small and 9 large instances used in
the study. Columns 1 and 2 show the number of vertices and
edges; Column 3 lists the maximum degree (A), and Column
4 lists the standard deviation of the vertex degrees.

Input | #Vertices [#Edges | A [Std Dev
Small Instances for Qualitative Analysis
Chicago Road 1,467 1,298 12 2.539
Euroroad 1,174 1,417 10 1.189
Facebook (NIPS) 2,888 2,981 769 22.888
U. Rovira i Virgili 1,133 5,451 71 9.340
delaunay_nl11 2,048 6,128 13 1.392
Figeys 2,239 6,452 314 17.013
US power grid 4,941 6,594 19 1.791
delaunay_n12 4,096 12,265 14 1.367
Hamster small 1,858 12,534 272 20.731
Hamster full 2,426 16,631 273 19.873
PGP 10,680 24,316 205 8.077
delaunay_n13 8,192 24,548 12 1.343
OpenFlights 2,939 30,501 473 43.216
fe_delt2 11,143 32,819 12 0.890
Twitter lists 23,370 33,101 239 10.143
Google+ 23,628 39,242 2,771 35.285
cs4 22,499 43,859 4 0.302
cti 16,840 48,233 6 0.501
delaunay_n14 16,384 49,123 16 1.348
CAIDA 26,475 53,381 2,628 33.374
Vsp 10,498 53,869 229 16.199
wing_nodal 10,937 75,489 28 2.862
Cora citation 23,166 91,500 379 11.314
Gnutella 62,586 147,892 95 5.701
arXiv astro-ph 18,771 198,050 504 30.565
Large Instances for Application Performance Analysis
Livemocha 1.04E+05 | 2.19E+06 2,980 | 1.10E+02
California Roadnet 1.97E+06 | 2.77E+06 12 9.95E-01
Hyves 1.40E+06 | 2.78E+06 | 31,883 | 4.53E+01
arXiv hep-ph 2.81E+04 | 4.60E+06 | 11,134 | 5.91E+02
Youtube 3.22E+06 | 9.38E+06 | 91,751 | 1.28E+02
Skitter 1.70E+06 | 1.11E+07 | 35,455 | 1.37E+02
Actor collaborations | 3.82E+05 | 3.31E+07 | 16,764 | 4.22E+02
LiveJournal links 5.20E+06 | 4.87E+07 | 15,016 | 5.06E+01
Orkut 3.07E+06 | 1.17E+08 | 33,313 | 1.55E+02

A. Relative Performance using Gap Measures

Based on the results presented in the form of performance
plots, in Figures 5, 6b, and 6a, we make the following
observations about the different schemes:

1) METIS (32 partitions?), Grappolo and Rabbit-Order out-
perform the remaining schemes in minimizing the average
gap profile (¢; Figure 5), with RCM showing competitive
performance as well. In fact, we can observe four distinct
performance tiers of schemes (as shown in the different
color groups). The top performing group is constituted
by METIS-32, Grappolo, and Rabbit-Order; followed
by RCM (shown in black) which generates an average
gap profile that is between roughly 1x-8x more than
the first group for at least 50% of the inputs. The
third group (shown in blue) consisting of a mixture of
schemes from different categories, generates an average
gap profile that is roughly between 5x—25x larger; and
the final group (shown in green) constituting of degree-
/hub-based schemes is roughly between 10x—40x larger.
We can conclude that the partition-based schemes and

20ur choice of 32 partitions is based on our empirical evaluation as shown
in the performance profile for different METIS configurations in Figure 7.

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

100%
9 —=— Natural
9 75% - METIS
S < Degree Sort
3 —+- RCM
"350%7 = Gorder
o --=-- Grappolo
E Random
s 25% —# Grappolo-RCM
—o— Rabbit-Order
--#=- SlashBurn
ND
0% N~ ae

Performance Relativ

Fig. 5: Profile of relative performance of the average gap profile (2):
inputs. The X-axis represents the factor by which a given scheme fares

0 5 10 15 20 25 30 35 40

e to the Best Algorithm

The Y-axis represents the fraction of problems with a total of 25
relative to the best performing scheme over that fraction of inputs.

The closer a curve is aligned to the Y-axis the superior is its performance relative to the other schemes.

100% $ - i ;} Ef

7‘(‘ 4‘ L

F —o— Natural
-

75% fesosipped #- METIS [
B M < Degree Sort
, V —4- RCM
=— Gorder

50% s --2-- Grappolo

Random

—v Grappolo-RCM

25% g

Fraction of datasets
Fraction of datasets

—<— Rabbit-Order [
- SlashBurn
e ND
-
0 5 10 15 20
Performance Relative to the Best Algorithm

0%,

(a) Graph bandwidth (3)

3| o M - I
;T - :
—=— Natural
-==- METIS —t
> Degree Sort
=4+ RCM
—=— Gorder
-=- Grappolo
Random
—#- Grappolo-RCM
—4— Rabbit-Order [
- SlashBurn
ND

100%

75%

50%

25%

0% 100 200 300 400 500

Performance Relative to the Best Algorithm

(b) Average graph bandwidth (23\)

Fig. 6: Profile of relative performance of graph bandwidth (left) and average graph bandwidth (right). The Y-axis represents the fraction of

problems with a total of 25 inputs. The X-axis represents the factor by
over that fraction of inputs.

100%

75% —

50%

o)

Fraction of datasets

25%

S ey

fag Bt
S-grsim
7 +
N o
U N
o ©

% 30 15 20 25 30 35 40 45
Performance Relative to that of the best #partitions
Fig. 7: Profile of relative performance of the average gap profile
(&(G,1D)) for different number of partitions (from 8 to 256; 32 is
the best) in the METIS-based ordering. The Y-axis represents the
fraction of problems with a total of 25 inputs. The X-axis represents
the factor by which an ordering based on a given number of partitions
fares relative to the best performing one over that fraction of input.

RCM are superior to other schemes by this edge gap
statistic. Notably, schemes like Gorder and Slashburn that
implement sophisticated algorithms, do not necessarily
yield better results than the natural and random orderings,
respectively.

245

which a given scheme fares relative to the best performing scheme

2) With respect to the graph bandwidth measure 3, RCM
clearly outperforms all other schemes in minimizing the
metric (Figure 6a)—with all other schemes generating
anywhere between roughly 2x-22x larger bandwidth.
This can be expected since RCM’s algorithm that orders
based on an interleaved BFES/DFS traversal and its use
of degree, is designed to reduce the overall bandwidth
by concentrating the non-zeroes of the adjacency matrix
along the diagonal. Recall that the bandwidth is the
maximum of all gaps from any vertex to its neighbors.

3) When measuring the average graph bandwidth (3)
though, there is no clear winner (Figure 6b) as most
schemes yield comparable results for most inputs. This
lack of divergence could be attributed to the fact that this
average measure is over the number of vertices and there
is typically large skew in the vertex degree distribution
(as confirmed by the large standard deviations in Table I).

B. Characterizing Gap Distributions

Although global metrics provide a good insight on the
quality of an ordering, the distribution of gaps for all the
edges can provide a better insight. We present gap distribution

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

£ 10%°
o
3 10%
gmws
g 0
5 10°
£ 100
METIS Grappolo Rabbl! Order Na!ural Gorder Degree Sort SlashEurn
E: 12.17 14.04 21.24 | 99.10 84.45 304.26 202.16 502.44 249.76
[£: | 648.00 | 847.00 | 1,308.00 | 343.00 | 1,278.00 | 1,120.00 | 1,437.00 | 1,401.00 | 1,466.00
B: 4.79 8.85 13.46 | 87.68 55.70 57.03 106.94 443.63 22.32
§m“
[}
£ 10
5
2 10
I
fm‘
g
510 : 1 ; \
METIS Grappolo Habblt Order Natural Gorder Degree.Sort SlashBurn
§A: 124.03 229.59 217.41 | 103.33 1,447.11 1,350.39 1,379.34 | 2,591.26 | 4,023.82
B: | 8,988.00 | 10,193.00 | 9,196.00 | 516.00 | 10,838.00 | 11,076.00 | 10,938.00 | 11,102.00 | 11,138.00
B: 172.52 325.84 314.99 | 146.43 1,346.06 | 2,139.75 1,903.20 | 3,361.55 | 2,501.23
ﬁwo‘
O
T 10
=
ﬂg”mz
I
%10‘
g
510 : . ; \
METIS Grappolo Rabbit.Order Nalural Gorder Degree Sort SlashBurn
§A: 1,392.10 | 1,964.45 | 2,323.13 | 1,876.73 1,986.26 | 3.872.86 | 3,528.15 | 3,439.97 | 3,786.74
B:] 9,015.00 | 10,369.00 | 10,457.00 | 6,405.00 | 10,386.00 | 10,456.00 | 10,433.00 | 10,288.00 | 10.495.00
B | 1,942.46 | 2,684.47 | 2,751.34 | 1,960.51 1,846.72 | 2,359.62 | 3,974.69 | 4,839.00 1,328.19

Fig. 8: Violin plots of the gap distribution and gap metrics for different methods (blue is best, and red is worst) for Chicago (top), Fe_delt2

(middle), and vsp (bottom).

results using violin plots [19] (Figure 8). Violin plots enable
us to present variability in the data, not only for a given re-
ordering, but also across different ordering techniques. Ridges
in the figure show multimodal distribution, and the long tails
characteristic of lognormal distribution show the skewedness
of the gap distribution plotted along the Y-axis. We note that
a normal distribution produces a smooth violin plot. From the
set of 25 inputs, we pick three instances that provide three
different distribution characteristics.

As illustrated in Figure 8 (top) for the input Chicago, we
see striking similarity between the distributions for METIS
(32), Grappolo and Rabbit-Order. The wider ridges on the
lower portions indicate that a larger fraction of the gaps are
small (between one and ten). In contrast, degree sort has a
larger fraction on the higher side (between 100 to 1000).
Unlike Chicago, the gap distribution for vsp, as illustrated
in Figure 8-bottom, does not present enough perceivable
differences between orderings. Consequently, we observe that
for inputs like vsp, the expected performance benefits from
reordering will be minimal. RCM is consistently shorter. We
also present the distribution for Fe_4elt (Figure 8-middle),
where Gorder and Rabbit-Order provide better orderings that

246

are in stark contrast to the ordering produced by SlashBurn.
We also see a strong correlation of the shapes of the violin
plots with the best/worst performing scheme. For £, we see
factors of 41x,39x,28x difference between the best and
worst scores for Chicago, Fe_4elt and vspArespectively.
Similarly, for 3, we see 4x,22x,2x, and for £ a difference
of 93x,17x,4x respectively for the three inputs.

VI. IMPACT ON APPLICATION PERFORMANCE

We demonstrated significant qualitative differences (under
gap measures) between the different ordering schemes in §V.
However, an important question arises if these qualitative
differences lead to predictable improvements in performance
for prototypical graph algorithms. We hypothesize that because
graph algorithms are memory-bound, a graph ordering that im-
proves data locality will improve memory system performance
during graph traversal. If graph traversal costs are a significant
fraction of an algorithm’s execution time, we expect graph
ordering to improve execution performance. We set out to
address this question using two prototypical graph algorithms,
community detection [13] and influence maximization [24].

Note that prior works on graph orderings [2, 12] have
predominantly focused on a standard suite of prototypical

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

graph operations such as PageRank, Single Source Shortest
Paths, and Betweenness Centrality computations. Our choice
to focus on community detection and influence maximization
as the targets for application studies in this work, is motivated
by the fact that these applications represent more advanced
and complex graph operations that feature in several large-
scale scientific discovery pipelines. Furthermore, they also
encapsulate two very different types of graph operations. More
specifically, fast community detection tools [4, 28] are a classic
representative of multi-level, iterative graph methods [20]. On
the other hand, the influence maximization implementations
[30, 36] entail running numerous stochastic BFS over the
entire graph to collect samples. In this work, we present the
impact on the performance of community detection (§VI-B)
and influence maximization (§VI-C), placing more emphasis
on the memory access patterns and statistics, while also
including correlations to gap statistics where applicable. The
implementations we use [28, 30] are parallel (multithreaded)
providing an added dimension to the memory performance
analysis (shared L3 and DRAM).

A. Evaluation Metrics

To capture the effects of graph ordering on memory perfor-
mance, use Intel VTune (2021.1.0 beta07) and report the fol-
lowing two metrics: (i) Memory latency: is measured as the
average latency of loads to memory, in cycles. Although the
latency of a load may be overlapped with other instructions, a
longer load latency could decrease efficiency of a pipeline that
can retire six instructions per cycle. (¢¢) Memory hierarchy
boundedness captures the level of the memory hierarchy that
bounds performance, where:

L1/L2/L3 Bound: shows cycles that CPU cores were stalled
waiting on data from the private L1 cache, private L2 cache,
or shared L3 cache, respectively. (Because L3 is shared, it can
reflect contention from a sibling core.)

DRAM Bound: Cycles that CPU cores were stalled on DRAM
(main memory) because of demand (not prefetched) loads
or stores. When bounded by memory, it is preferable to be
bounded by close memory levels (e.g., L1). That is, a bound
of L1 (vs. DRAM) indicates better data locality, lower memory
latencies, and higher effective memory bandwidth. It is also
important to note that the memory bound metrics are not
a decomposition—two instructions concurrently waiting on
memory during a cycle count as two cycles—so their sum
can be over 100%.

B. Impact on Community Detection

We use a state-of-the-art multithreaded tool, Grappolo, for
community detection [28]. Since we also use this tool for
generating one of the orders, we note that benefiting from
such an order is not readily available. In fact, by initiating
the execution from scratch, the algorithm does not benefit in
any perceivable manner of a given order other than expected
benefits through coalesced memory accesses.

Grappolo is compiled with Intel 19.0.5.281-20190815. We
select OpenMP threads to ensure at least 2 million work units
(vertices plus edges) per thread: four smallest graphs use 2

247

threads; next three 16, and largest two, 32. We distribute
threads across sockets to provide the most L3 cache and
DRAM bandwidth. For instance, with 32 threads, there are
4 threads/socket so that each thread has 3 memory channels
(12 channels/socket).

Figure 9 shows the impact of vertex ordering on Grappolo’s
performance and output quality (modularity [31]) using heat
maps. To best capture each scheme’s effect, we report metrics
for the first phase (or level); subsequent Grappolo phases
analyze a derivative, compressed graphs that may have little
relationship to the input ordering.

The first four heat maps capture runtime performance and
quality. The ‘Phase’ heat map reports average phase runtime.
Each phase conducts multiple iterations until a modularity
gain threshold is met. The ‘Iteration’ heat map shows time
per iteration. Each iteration visits all vertices (in an order
determined by the parallel schedule), and for every vertex,
all neighbors are accessed. Consequently, we hypothesize
a correlation between iteration time and the vertex order.
‘Iteration Count’ heat map shows the number of iterations
required. The ‘Modularity’ heat map shows the final output
modularity (value between [0, 1] and higher the better).

The final two heat maps represent different aspects of
execution performance. ‘Work%’ shows time the CPUs spent
in useful (non-synchronization) work. It measures parallel
efficiency; higher values indicate less load imbalance. As an
irregular (input dependent) algorithm, load balance is always
a concern. Therefore, to focus metrics on graph traversals
(instead of OpenMP synchronization) the final two heat maps
characterize the work efficiency of Grappolo’s hot routine,
which inspects a vertex’s neighboring communities.

The ‘Work/edge’ heat map shows average work, in loads,
per graph edge. This metric captures the fact that while travers-
ing a vertex’s neighbors, auxiliary structures are necessary for
calculating community attributes. In particular, the hot routine
uses a C++ map to store each community’s contribution to
modularity. The number of loads required is data dependent.

Figure 10 shows memory performance using the metrics

defined above. The figure focuses on the five largest graphs
(Table I) because the working sets of the the smaller graphs
may not exercise all memory levels on our test platform. For
each graph, the first column shows average load latency. The
subsequent columns show L1, L2, L3, DRAM Bound.
Key observations: For modularity, no ordering is clearly bet-
ter, though RCM and Natural edge the others. The modularity
spread is usually small, especially as it increases, which is
indicative of the algorithm’s popularity.

For performance metrics, there are some clear patterns.
First, in terms of phase and iteration times, Grappolo usually
outperforms Degree Sort, at times by factors 2x—4x or more.
Further, there is a clear correlation between this time benefit
and work metrics. The Grappolo ordering usually has the
highest parallel efficiency (Work%) and lowest work per edge.
It also typically has the lowest memory latency. However,
comparing the three metrics, Grappolo’s performance is better
explained by parallel efficiency (Work%) than by memory.

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

Phase (s) Iteration (s)

Iteration Count

Modularity (final) Work% (CPU Time) Work/edge (loads)

Graph Grappola RCM Natural Degree RCM Ntrl

Grplo

Degr

Grplo RCM Ntrl Degr

Grplo RCM Ntrl Grplo RCM Ntrl

Degr

Degr Grplo RCM Ntrl Degr

LiveMocha
CA RoadNet
Hyves

arXiv hep-ph
YouTube
Skitter
Actor collab
LiveJournal
Orkut

lower (redder) better

lower (redder) better

79 64

105 ss[l62| o.623

lower (redder) better

0.040
0.992

0.027

0.746

higher (redder) better higher (redder) better lower (redder) better

Fig. 9: Community detection: Impact of graph ordering on performance and modularity. Each metric is represented as a row-based heat

map, where ‘redder’ is better.

YouTube Skitter

Actor collab

LiveJournal Orkut

Lat [L1 L2 L3 DRAM L2 L3 DRAM

Order Lat L1 L2 L3 DRAM Lat l L1 L2 L3 DRAM Lat L3 DRAM
Grappolo |13 16% 26%) 65% 15% 53% 15% 16%
RCM 14% 14% 26% 62% 22% 39% 17% 15%

Natural

19% 78|

16| 14% 13% 18% 60% 28%

Degree 34%

15% 31%
19% 29%

14%
19%

14%
11% 15%
13% 20% 14%

12% | 24% 14%

21%

16%

Fig. 10: Community detection: Impact of graph ordering on memory metrics (§VI-A) for largest graphs. For each graph, the first column
shows memory latency (cycles) as a column heat map, where ‘redder’ is better; subsequent columns show L1, L2, L3, DRAM Bound as a

chart heat map.

Thus, the Grappolo ordering tends to result in a better load
balance, at least for vertex based parallelism.

Second, RCM is often better than natural and degree. How-
ever, in contrast with the Grappolo ordering, the explanation
is a combination of low iterations (better than Grappolo)
and average parallel efficiency (better than Degree Sort).
Conversely, the Degree Sort ordering frequently requires the
fewest iterations, but each iteration takes the most time.

Third, although memory metrics provide more information
than the traditional cache miss metrics, interpreting them is
involved. Nominally, one expects lower memory latency to
correspond to memory boundedness at lower memory levels,
i.e., low DRAM values and higher values toward the left (in
Figure 10). Further, one might expect lower iteration time to
correlate to lower memory latency. Neither holds in all cases.
For instance, Grappolo tends to be more DRAM bound than
Degree, even though average memory latency is lower. There
is a much clearer correlation with graph ordering than with
latency, but the magnitudes are not always large.

We believe the explanation is that graph traversal costs may
not be the dominant fraction of an algorithm’s execution time.
An algorithm’s use of auxiliary data structures can result in
additional memory access patterns that negate the benefits
of vertex orderings in graph traversals. Larger graphs, as
well as different graph structures, can collectively result in
increased auxiliary work per edge as well as longer access
costs and memory latency. Further, memory hardware itself
is complex: a range of latencies can occur at the same
memory level, so that equivalent boundedness metrics may not
correspond to the same average memory latency. If memory
latency and boundedness metrics are sometimes ambiguous,
the more typical but less informative cache miss metrics can
be misleading. We believe this is why memory performance is
better explained by input graph rather than by graph ordering.

Finally, to contrast parallel behavior with serial, we also

248

conducted similar experiments with a single thread execution
of Grappolo (results not shown due to space). We observed
that the same trends hold in the relative performance of the
schemes, except that in the serial case, the magnitudes of
difference between the schemes are less pronounced. More
specifically, the factor of increase in the time per iteration from
the best scheme (Grappolo) to the poorest scheme (Degree
Sort) is between 1.3x-2.5x%.

Summary: We find that some graph orderings significantly
affect both execution time (up to a factor of 4x) and iteration
count (up to a factor of 10x) of Louvain-based community
detection. As expected, graph ordering can be highly corre-
lated with average memory latency. Interestingly, we also find
that graph ordering can consistently improve load balance.
Finally, the performance of auxiliary data structures can be
more important than graph ordering.

C. Impact on Influence Maximization

Influence Maximization is the problem of selecting a small
population of actors from a social network that maximize the
cascading effect of a diffusion process over the network. The
problem has wide applicability in studying dynamic network
diffusion phenomena (e.g., disease spread).

Our evaluation uses Ripples [30], which is a scalable
parallel implementation for the state-of-the-art IMM method
[36]. The core computational task in Ripples is a Sampling
procedure that generates a large collection of Reverse Reach-
ability information from random vertices in the input graph
by performing simulations of the targeted diffusion process.
In its current implementation, Ripples supports two diffusion
processes, the Independent Cascade Model (IC) and the Lin-
ear Threshold Model (LT). Among the two, the IC model
has been shown to be the more computationally challenging
[30, 29], and therefore our evaluation focuses on the IC model.
Simulating the IC model during the Sampling procedure

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

LiveMocha
roadNet-CA
2478.04

hyves

2483.13

2979.35
2484.69

423.61

cit-HepPh 60.15

60.68 60.75

YouTube 2888.73 2899.70 2871.23

as-skitter 419.22

417.21

(s) awi) uonnoex3

actor-collaboration 425.88

427.68

2173.40

LiveJournal

226542 2167.51 2191.83

Orkut 3172.06

LiveMocha

4948.79 4972.50 4734.37

roadNet-CA 4669879.13 4731298.70

hyves

3375.23 3280.93 3379.63 3344.59

cit-HepPh 4773.88 4724.20 4792.69

YouTube 937.41

as-skitter 522.22 524.01 521.93

277.28

actor-collaboration

(spes Yy#) Indybnoay Buidwes

LiveJournal 93.04

Orkut 42.52

Natural RCM METIS-32 METI‘S*64

Degree Sort

Grappolo

Fig. 11: Impact on performance of reordering schemes on Ripples
under small probability regimen. We report throughput of the Sam-
pling procedure and the Total execution time of the application.

requires tens or hundreds of thousands of probabilistic BFS
traversals. During each BFS, the neighbors j of each visited
vertex 4 enter the new frontier with probability p; ; limiting
consequently the portions of the graph being explored and the
work available in each BFS. To mitigate the issue and increase
resource utilization, Ripples implements an engine [29] that
uses available CPUs to run many randomized BFS in parallel.

Ripples is compiled with GCC 9.2, and was configured to
run the sampling phase on one OpenMP thread per physical
core, while using 32 threads for seed selection. We dis-
tribute threads across the sockets and we used interleaved
allocation of memory pages to provide the most L3 and
DRAM bandwidth. We found this configuration to be the best
performing on the machine. We tested with lower and higher
edge probability settings. In the interest of space, we present
results for a practically relevant probability setting of 0.25.
Key observations: Figure 11 shows the impact of vertex or-
dering on Ripples’ total execution time and on the throughput
of the Sampling routine. First, we can observe that these two
measures have good correlations (visible as similar coloring
patterns in Figure 11) and confirming the importance of Sam-
pling on the overall performance of the application. Secondly,
in terms of sampling throughput, there is a slight preference
to the natural order in terms of sampling throughput for the
smaller inputs (top half); whereas for the larger inputs (bottom
half), more sophisticated schemes such as Grappolo and RCM
start to deliver better throughput. However, we observed that
these throughput improvements have a marginal impact over
the total execution time.

To assess memory performance, we studied the effects of
ordering on memory related performance counters by profiling

249

LL (# cycles) 4

DRAM (%) 1 49.90 49.70

L3 (%) 10.80

L2 (%)1

L1 (%)

2.20

Natural RCM METIS-32 METIS-64

Degre‘e Sort Gra;;polo

Fig. 12: Memory performance counters for the hotspot function
in Ripples. We report Average Load Latency (LL) and how often
the machine was stalled at all the layers of the memory hierarchy
(L1/L2/L3/DRAM).

Ripples with Intel VTune on the skitter graph, the biggest
input for which the analysis was possible. Figure 12 reports
performance counters for the method generating the reverse
reachability information inside the sampling method that
shows up as the hot-spot for the application on the profiling
data. One might expect that reordering schemes should shift
the runtime profile to be more cache bound rather than memory
bound and a consequent performance improvement. However,
we have observed that the overall improvements on Ripples are
marginal, with no particular reordering scheme standing out.
Degree Sort and Grappolo based orderings show a significant
improvement on the percentage of memory operation bound by
the L1 cache. The expectation would be that of observing cor-
responding good performance on the skitter line in Figure 11.
Interestingly, we observe that Degree Sort and Grappolo are
at the opposite of the execution time and sampling throughput
spectrum.

Summary: We find that vertex ordering schemes have
marginal effects on applications that performs many BFSs in
parallel. We hypothesize this observation to parallel threads
competing for memory bandwidth and cache space. Even
though, these results suggest a modest role for ordering in such
applications, we posit that if the underlying implementation
can be made locality-aware such applications can also benefit
from ordering schemes.

VII. CONCLUSIONS

In this study, we presented a thorough empirical evaluation,
first of its kind, to characterize and quantify the effectiveness
of up to 11 vertex ordering schemes to optimize locality-
relevant measures, and their impact on two important real-
world graph applications. Our work provides detailed insights
into the gap profiles and application memory and runtime foot-
prints generated by the different ordering schemes—effectively
indicating that the choice of ordering schemes do matter, more
so for iterative graph applications than for applications like
influence maximization; and more so in a parallel environment.

Future research directions include: application tuning to
make them more locality/ordering-aware; potential use of
coarsening to explore the benefits of a multiscale and/or
hybrid ordering engines; and large-scale application study in

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

heterogeneous parallel platforms (including CPUs and GPUs)
and mixed graph analytics workloads.

ACKNOWLEDGMENT

This research is in parts supported by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the

U.S.

Department of Energy Office of Science and the Na-

tional Nuclear Security Administration, through the ExaGraph
project at the Pacific Northwest National Laboratory (PNNL);
by the U.S. National Science Foundation (NSF) grants CCF
1815467, OAC 1910213, and CCF 1919122 to Washington
State University. PNNL is operated by Battelle Memorial
Institute under Contract DE-AC06-76RL01830.

(1]

(2]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

REFERENCES

Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro,
Makoto Onizuka, and Sotetsu Iwamura. Rabbit order:
Just-in-time parallel reordering for fast graph analysis.
In 2016 IEEE International Parallel and Distributed
Processing Symposium, pages 22-31. IEEE, 2016.
Vignesh Balaji and Brandon Lucia. When is graph
reordering an optimization? studying the effect of
lightweight graph reordering across applications and in-
put graphs. In 2018 IEEE International Symposium on
Workload Characterization, pages 203-214. 1EEE, 2018.
Jay Banerjee, Won Kim, S-J Kim, and Jorge F. Garza.
Clustering a dag for cad databases. IEEE Transactions
on Software Engineering, 14(11):1684—1699, 1988.
Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, oct 2008.
Paolo Boldi and Sebastiano Vigna. The webgraph frame-
work i: compression techniques. In Proceedings of the
13th international conference on World Wide Web, pages
595-602, 2004.

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert
Gorke, Martin Hoefer, Zoran Nikoloski, and Dorothea
Wagner. On modularity clustering. IEEE transactions on
knowledge and data engineering, 20(2):172-188, 2007.
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael
Mitzenmacher, Alessandro Panconesi, and Prabhakar
Raghavan. On compressing social networks. In Proceed-
ings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 219—
228, 2009.

Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2009.

E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
24th National Conference, ACM ’69, page 157-172,
New York, NY, USA, 1969. Association for Computing
Machinery.

Timothy A Davis and Yifan Hu. The university of
florida sparse matrix collection. ACM Transactions on
Mathematical Software, 38(1):1-25, 2011.

250

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

Timothy A. Davis, Sivasankaran Rajamanickam, and
Wissam M. Sid-Lakhdar. A survey of direct methods
for sparse linear systems. Acta Numerica, 25:383-566,
2016.

Priyank Faldu, Jeff Diamond, and Boris Grot. A closer
look at lightweight graph reordering. In 2019 IEEE
International Symposium on Workload Characterization,
pages 1-13. IEEE, 2019.

Santo Fortunato. = Community detection in graphs.
Physics reports, 486(3-5):75-174, 2010.

Michael R Garey, David S Johnson, and Larry Stock-
meyer. Some simplified np-complete problems. In
Proceedings of the sixth annual ACM symposium on
Theory of computing, pages 47-63, 1974.

Alan George. Nested dissection of a regular finite
element mesh. SIAM Journal on Numerical Analysis,
10(2):345-363, 1973.

Alan George and Joseph W. Liu. Computer Solution of
Large Sparse Positive Definite. Prentice Hall Professional
Technical Reference, 1981.

Alan George and Joseph W.H. Liu. The evolution of
the minimum degree ordering algorithm. SIAM Review,
31(1):1-19, 1989.

Mahantesh Halappanavar, John Feo, Oreste Villa, An-
tonino Tumeo, and Alex Pothen. Approximate weighted
matching on emerging manycore and multithreaded ar-
chitectures. The International Journal of High Perfor-
mance Computing Applications, 26(4):413—-430, 2012.
Jerry L. Hintze and Ray D. Nelson. Violin Plots:
A Box Plot-Density Trace Synergism. The American
Statistician, 52(2):181-184, 1998.

Ananth Kalyanaraman and Partha Pratim Pande. A
brief survey of algorithms, architectures, and challenges
toward extreme-scale graph analytics. In 2019 Design,
Automation & Test in Europe Conference & Exhibition,
pages 1307-1312. IEEE, 2019.

U Kang and Christos Faloutsos. Beyond’caveman com-
munities’: Hubs and spokes for graph compression and
mining. In 2011 IEEE 11th International Conference on
Data Mining, pages 300-309. IEEE, 2011.

George Karypis and Vipin Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing, 20(1):359-392, 1998.
George Karypis and Vipin Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput., 20(1):359-392, December 1998.

David Kempe, Jon Kleinberg, and Eva Tardos. Maxi-
mizing the spread of influence through a social network.
In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 137-146, 2003.

Brian W Kernighan and Shen Lin. An efficient heuristic
procedure for partitioning graphs. The Bell system
technical journal, 49(2):291-307, 1970.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vec-
chi. Optimization by simulated annealing. Science,

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

220(4598):671-680, 1983.

[27] Jérdome Kunegis. Konect: the koblenz network collection.
In Proceedings of the 22nd International Conference on
World Wide Web, pages 1343-1350, 2013.

[28] Hao Lu, Mahantesh Halappanavar, and Ananth Kalya-
naraman. Parallel heuristics for scalable community
detection. Parallel Computing, 47:19-37, 2015.

[29] Marco Minutoli, Maurizio Drocco, Mahantesh Halap-
panavar, Antonino Tumeo, and Ananth Kalyanaraman.
cuRipples: Influence maximization on multi-GPU sys-
tems. In Proceedings of the 34th ACM International
Conference on Supercomputing, pages 1-11, 2020.

[30] Marco Minutoli, Mahantesh Halappanavar, Ananth
Kalyanaraman, Arun Sathanur, Ryan Mcclure, and Ja-
son McDermott. Fast and scalable implementations
of influence maximization algorithms. In 2019 IEEE
International Conference on Cluster Computing, pages
1-12. IEEE, 2019.

[31] Mark EJ Newman. Modularity and community structure
in networks. Proceedings of the national academy of
sciences, 103(23):8577-8582, 2006.

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing order
to the web. Technical report, Stanford InfoLab, 1999.

[33] Jordi Petit. Experiments on the minimum linear arrange-
ment problem. Journal of Experimental Algorithmics, 8,
2003.

[34] Ilya Safro, Dorit Ron, and Achi Brandt. Multilevel
algorithms for linear ordering problems. Journal of
Experimental Algorithmics, 13:1-4, 2009.

[35] Ilya Safro and Boris Temkin. Multiscale approach for
the network compression-friendly ordering. Journal of
Discrete Algorithms, 9(2):190-202, 2011.

[36] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influ-
ence Maximization in Near-Linear Time: A Martingale
Approach. In Proc. 2015 ACM SIGMOD International
Conference on Management of Data, pages 1539-1554.
ACM, 2015.

[37] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin.
Speedup graph processing by graph ordering. In Pro-
ceedings of the 2016 International Conference on Man-
agement of Data, pages 1813-1828, 2016.

[38] Yunming Zhang, Vladimir Kiriansky, Charith Mendis,
Matei Zaharia, and Saman Amarasinghe. Optimizing
cache performance for graph analytics. arXiv preprint
arXiv:1608.01362, 2016.

251

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

