
Vertex Reordering for Real-World Graphs and
Applications: An Empirical Evaluation

Reet Barik‡, Marco Minutoli†, Mahantesh Halappanavar†‡, Nathan R. Tallent†, Ananth Kalyanaraman‡†
†Pacific Northwest National Laboratory, Richland, WA, USA;

Email: {marco.minutoli, hala, nathan.tallent}@pnnl.gov
‡Washington State University, Pullman, WA, USA;

Email: {reet.barik, ananth}@wsu.edu

Abstract—Vertex reordering is a way to improve locality in
graph computations. Given an input (or “natural”) order, re-
ordering aims to compute an alternate permutation of the vertices
that is aimed at maximizing a locality-based objective. Given
decades of research on this topic, there are tens of graph reorder-
ing schemes, and there are also several linear arrangement “gap”
measures for treatment as objectives. However, a comprehensive
empirical analysis of the efficacy of the ordering schemes against
the different gap measures, and against real-world applications is
currently lacking. In this study, we present an extensive empirical
evaluation of up to 11 ordering schemes, taken from different
classes of approaches, on a set of 34 real-world graphs emerging
from different application domains. Our study is presented in
two parts: a) a thorough comparative evaluation of the different
ordering schemes on their effectiveness to optimize different
linear arrangement gap measures, relevant to preserving locality;
and b) extensive evaluation of the impact of the ordering
schemes on two real-world, parallel graph applications, namely,
community detection and influence maximization. Our studies
show a significant divergence among the ordering schemes (up
to 40× between the best and the poor) in their effectiveness
to reduce the gap measures; and a wide ranging impact of
the ordering schemes on various aspects including application
runtime (up to 4×), memory and cache use, load balancing, and
parallel work and efficiency. The comparative study also helps
in revealing the nuances of a parallel environment (compared
to serial) on the ordering schemes and their role in optimizing
applications.

I. INTRODUCTION

A graph G(V,E) is a pair of a set of vertices V represent-

ing unique entities and a set of edges representing pairwise

relationship between vertices. Since this simple abstraction

can capture complex relationships between entities, graph-

theoretic modeling and analysis has pervaded numerous areas

of science and technology enabling efficient solutions of

complex problems. Execution of graph algorithms on modern

computer architectures with deep memory hierarchies results

in loss of performance due to an inherent lack of spatial

and temporal locality of memory accesses—e.g., consider a

random walk on a graph. Consequently, several efforts have

been explored to accelerate graph applications. One such

technique is vertex reordering. Reordering can be defined as

the permutation of the original vertex ordering such that some

desirable locality-based property can be achieved.
Several techniques for vertex reordering have been proposed

in literature (§III). While some of the techniques were de-

veloped for different purposes such as reducing fill in sparse

Fig. 1: Profile of relative performance: Relative performances of
different vertex ordering schemes, as measured using the average
linear arrangement gaps produced by each ordering scheme. The Y-
axis represents the fraction of input problems with a total of 25 inputs.
The X-axis represents the factor by which a given scheme fares
relative to the best performing scheme over that fraction of inputs.
For example: Gorder (blue) produces an average linear arrangement
gap that is 5× worse than the best performing scheme, on 50% of the
inputs. The closer a curve is aligned to the Y-axis (like Grappolo),
the better its relative performance.

linear algebra, or distributing work among parallel processors,

recent work [1, 2, 37] has focused on improving memory

performance for graph algorithms. Given the broad scope of

available techniques and the objectives that they optimize for

(detailed in §III), there is a lack of systematic study comparing

them with each other, and their utility to improve performance

of prototypical graph algorithms.

Contributions: In this paper, we present an extensive em-

pirical evaluation of up to 11 ordering schemes, taken from

different classes of approaches (§III), on a diverse set of 34

real-world graphs from different application domains. Our

study is presented in two parts:

First, we present a comparative evaluation of the ordering

schemes on their effectiveness to optimize various linear

arrangement gap measures (§II-A), which are key indicators

of locality preservation. Our results show that there is no
one scheme that consistently outperforms others in all the

metrics; instead, different schemes are better at optimizing

different metrics (e.g., RCM [9] is best for graph bandwidth,

whereas partitioning-based schemes perform best for average

gap profiles). Figure 1, showing a sample of these results,

highlights the wide range of factor differences observed, of

up to 40× between the best vs. poorest performing scheme.

240

2020 IEEE International Symposium on Workload Characterization (IISWC)

978-1-7281-7645-1/20/$31.00 ©2020 IEEE
DOI 10.1109/IISWC50251.2020.00031

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

Secondly, we present a detailed report of testing various or-

dering schemes on two real-world graph application use-cases,

namely, community detection [13] and influence maximization

[24]. Our study covers a multitude of performance aspects

including impact of ordering on application runtime, quality,

memory and cache use, load balancing, and parallel work and

efficiency. The key findings are that the choice of ordering

schemes does in fact matter, with the divide between the best

vs. poorest performing schemes as large as 4× in runtime

per iteration, and 2.6× in memory latency. Our study also

show that this divide among schemes is more pronounced in a

parallel (multithreaded) application than with a corresponding

single threaded execution.
Our study represents one of the first to systematically

characterize the ordering schemes by their effectiveness to

optimize various (established) gap measures relevant to lo-

cality. Furthermore, to the best of our knowledge, this is

the first work to study the impact of ordering on real-world

graph applications such as community detection and influence

maximization, and using parallel implementations.

II. PRELIMINARIES

Let G = (V,E) denote an input graph, where V is the

set of (n) vertices and E is the set of (m) edges. We use

identifiers in the interval [1, n] to identify the vertices. For ease

of exposition, we assume undirected graphs (unless otherwise

stated). Edges may be weighted and ω(e) denoting the weight

of edge e ∈ E. Let Γ(i) denote the set of neighbors of vertex

i in G—i.e., Γ(i) = {j|(i, j) ∈ E}. The degree of vertex i is

then given by deg(i) = |Γ(i)|.
A vertex ordering Π of V is a 1-1 mapping (bijection or

permutation) of V onto a sequence or linear order. Intuitively,

Π represents a rearrangement of vertices in V , Π : i → [1, n].
The mapping Π(i) is also referred to as the rank of vertex

i in Π. Since the vertices in V are provided in a certain

order at input time, we treat that input ordering to be the

natural ordering of V . In other words, Π = [1, 2, . . . , n] for

the natural order, and any other vertex (re)ordering can simply

be expressed as a permutation of the natural order. Note that

the overall structure of the graph remains unchanged with

reordering.

A. Gap Measures for an Ordering

Here, we define a series of “gap” measures that can be used

to evaluate the effectiveness of any given ordering. Intuitively,

a lower value for these gap measures would correspond to a

shorter separation between vertex ids that are connected by an

edge in the graph. Considering most graph algorithms explore

vertex neighborhoods, a net lower value for these gap measures

is generally preferred out of any ordering Π, as it is a good

indicator of preserving locality. In what follows, we define

our gap measures (see Figure 2 for a simple example). We

note here that similar measures have been developed for at

least five decades in the domain of sparse linear algebra [11].

Therefore, we have built on relevant definitions while trying

to adapt them to graph algorithms.

2

5

3

7

1

6

4

3
2

45

2

4

3

5

3

2
1

2

3

4

5

6

7

1
1

13

2

3

3

3
2

1

Fig. 2: An example graph with two different orderings (natural on the
left, and reordered on the right) and their respective gap measures.
The ordering Π = [5, 1, 3, 7, 2, 6, 4], where vertex 1 is mapped to
vertex 5, 2 to 1, and so on. The gap measures for the natural order

are: ξ̂= 3.3, β= 5, and β̂= 4.43; and for the reordered graph are: ξ̂=

1.7, β= 3, and and β̂= 2.86.

Given an ordering Π of V , we define the linear arrangement
gap (or simply gap) between any two vertices i and j con-

nected by an edge, to be the absolute difference between their

ranks in Π. We denote it with ξ. Specifically, ξΠ(i, j) denotes

the gap in Π between vertices i and j, for some (i, j) ∈ E:

ξΠ(i, j) = |Π(i)−Π(j)|
The set of gaps of all the edges is collectively called as the

gap profile (or simply profile) of G as induced by an ordering

Π. We define the average gap profile (or the average linear
arrangement gap) as:

ξ̂(G,Π) =
1

|E|
∑

(i,j)∈E

ξΠ(i, j)

.
The vertex bandwidth for any vertex i ∈ V , denoted by

βi(G,Π), is defined as the maximum gap between i and any

of its neighbors, in Π:

βi(G,Π) = max{ξΠ(i, j)|∀j ∈ Γ(i)}
Similarly, we define the graph bandwidth (or the maximum

linear arrangement gap) as the maximum vertex bandwidth:

β(G,Π) = max{ξΠ(i, j)|∀(i, j) ∈ E}
We define the average graph bandwidth as:

β̂(G,Π) =
1

|V |
∑
v∈V

βv(G,Π)

We note that both the bandwidth (β) and the average gap

profile (ξ̂) of an ordering are useful indicators of performance

and are used as metrics for optimization by different algo-

rithms. For example, the Reverse Cuthill-McKee algorithm

attempts to minimize the graph bandwidth, and in contrast,

partitioning based methods minimize ξ̂ (§III).

III. VERTEX REORDERING SCHEMES

Vertex reordering has found frequent use among graph algo-

rithm designers as a way to optimize application performance.

Given an initial ordering at input (i.e., the “natural” order-

ing), the reordering step generates a revised permutation and

subsequently all computations happen on the reordered graph

data structure. Different reordering schemes use different

objectives or measures to achieve their goal. In Section II-A,

we presented several gap measures that can serve as objectives.

241

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

In what follows, we present a quick review of the different

reordering strategies that have been used in practice. We first

discuss the class of gap-based approaches. Subsequently, we

discuss other classes of approaches that use different variants

as objectives. Figure 3 shows a schematic organization of

these different ordering schemes based on their underlying

approaches.

A. Gap-based Schemes
The Minimum Linear Arrangement (MinLA) problem

[33] formulates the problem as one of identifying a reordered

permutation which minimizes the (average) linear arrangement

gap. The MinLA problem is NP-Hard with its corresponding

decision version being NP-Complete [14] and there have

been multiple heuristics and/or approximation algorithms us-

ing techniques like simulated annealing [26, 34]. However,

even these heuristics do not have efficient implementations in

practice and are considered expensive in practice. There also

exists a log variant of the MinLA problem [7, 35], referred

to as MinLogA. This variant is motivated toward achieving

graph compression [5], and is more relevant in the context of

graph storage.

Vertex
Reordering
Schemes

Gap-based Degree- and
hub-based Window-based Partition-based Fill-Reducing-

based

MinLA

MinLogA

Degree
Sort

Hub Sort

Hub
Clustering

SlashBurn

Gorder Rabbit-
Order

Grappolo*

Grappolo-
RCM*

METIS*

Reverse
Cuthill-
McKee

Nested
Dissection

Multiple
Min Deg

Approx
Min Deg

Fig. 3: A categorization of different vertex reordering methods
based on key algorithmic ideas. The two Grappolo-based ordering
schemes and the METIS-based ordering scheme were generated as
part of this paper (by repurposing the original Grappolo and METIS
tools, respectively, for ordering), in order to enable a comparative
evaluation.

B. Degree- and Hub-based Schemes
Various reordering schemes use the degree information, as

it is relatively easy to group/sort vertices by degrees. The

simplest approach, Degree Sort, is to simply reorder by

sorting the vertices by degree (either in non-decreasing or

non-increasing order). Degree Sort is easy to implement, and

light-weight in reordering cost. However, the scheme is not

designed to optimize any of the gap measures.
Hub Sort [38] is a variant of Degree Sort, which sorts

the vertices by non-increasing degree and then maintains a

contiguous ordering of those “high” vertices (or hubs) defined

based on a minimum degree cutoff. The remaining vertices

maintain their relative natural order. Intuitively, this scheme

is intended to improve better spatial locality among the hub

nodes (which are expected to be more frequently accessed

during computation).
Hub Clustering [2] is a lighter-weight variant of hub sort,

which simply ensures that the hub vertices are labeled in

a contiguous manner, without necessarily maintaining their

relative sorted order. Such lightweight techniques have shown

to be effective in reducing cache misses for operations such as

PageRank [32] and Single Source Shortest Paths [8], provided

the input graph is amenable to Degree Sort reordering (satisfies

certain characteristics like ‘Packing Factor’).
SlashBurn [21] is a heavyweight scheme which uses a hub-

based approach to identify communities. In doing so, it finds

an ordering of nodes such that the corresponding adjacency

matrix is close to the block-diagonal form.

C. Window-based Schemes
Gorder is the current state-of-the-art in terms of minimizing

cache misses is Gorder [37]. It slides a window of a certain

length w over the provided input/natural order, and tries to

maximize a score called Gscore within each window. This

score is defined on every pair of vertices (i, j) that originates

within a window as follows: S(i, j) = Ss(i, j) + Sn(i, j),
where Ss(i, j) is the number of the times i and j share

a common neighbor, and Sn(i, j) is the number of edges

between i and j. This optimization problem is shown to be NP-

hard [37], and the authors present an efficient approximation

algorithm that runs in time proportional to the sum of square

of degrees of the vertices.

D. Partitioning-based Schemes
Graph partitioners can be used as way to generate an

ordering. A given vertex set V can be partitioned into to

p partitions, V = V1 ∪ V2 . . . Vp, with several overarching

goals such as increasing the connectivity within the partitions,

minimizing the connectivity across partitions, and balancing

the number of vertices (and edges) across partitions. If vertices

within a partition are densely connected, then reordering the

vertices based on partitions can be expected to minimize the

average gap of the reordered graph. In order to explore the

utility of this approach, we employ graph partitioning that at-

tempts to minimize the number of edges across partitions while

assigning a roughly equal number of vertices for each partition.

The number of partitions is an input parameter. Since graph

partitioning is NP-Hard, several heuristics exist, including a

multi-level approach where a given graph is coarsened using

approximate weighted matching [18], followed by spectral

methods to partition, and iterative refinements [25] employed

during the un-coarsening phases.
In this paper, we use the popular tool METIS [22] for graph

partitioning to generate a vertex ordering. We experiment with

varying numbers of partitions, on a wide range of inputs,

and observe that the best performance in terms of average

gap reduction is achieved for a partition size of 32 (results

presented in §V).
Community detection (or graph clustering) tools offer an

alternative to achieving a partitioning of the vertex set [13].

Here, the output communities are such that the vertices within

a cluster are more tightly-knit with intra-cluster edges, than

to the rest of the graph. The key difference between graph

partitioning and community detection is that the latter does

not require the number of communities as a parameter, and

242

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

the communities can be of varied sizes—as dictated by the

input graph’s modular organization [31]. Thus, by ordering the

vertices based on these communities, we can expect to reduce

the average gap of a reordered graph. Although community

detection through modularity optimization is NP-hard [6],

several fast heuristics exist.
Rabbit-Order [1] aims to achieve high locality by mapping

hierarchical community structures in the input graph to the

hierarchical structure of CPU caches by vertex reordering.

Communities are first detected using a modularity optimization

heuristic prior to generation of the vertex order.
In order to enable scaling to parallel platforms, in this

paper, we propose an alternative ordering scheme that uses

the multithreaded Grappolo community detection tool [28].

Grappolo also uses modularity to detect its communities,

and is a parallelization of the widely used serial Louvain

method [4]. The algorithm performs multiple passes (“iter-

ations”) on the original graph before compacting it to coarser

levels (“phases”).
For this paper, we implemented two schemes to generate a

Grappolo-induced ordering. In the first scheme, identified as

“Grappolo” in our results, the vertices are reordered based on

the communities, such that all vertices within a community

are contiguously labeled, while the relative ordering of the

communities is itself arbitrary.
In the second scheme, which we refer to as the Grappolo-

RCM scheme, we first build a coarsened graph, where each

community becomes a vertex and edges represent inter-cluster

edges, and then we perform a Reverse Cuthill-McKee (RCM)

algorithm (see §III-E) on the coarsened graph. The vertices

are then reordered such that all vertices that belong to each

community are contiguously labeled (similar to Grappolo),

while the communities are themselves ordered based on the

RCM order. The intuition is to take advantage of the multi-

level hierarchical information exposed by Grappolo to achieve

a relative ordering among communities.

E. Fill-Reducing Schemes
In the context of sparse matrix factorization, fill-reducing

orderings can be loosely defined as matrix orderings that

minimize the number of nonzeros (fill) in the factorized

matrix after reordering [11]. Given the importance of this pre-

processing step, a number of techniques have been developed

for fill-reducing orderings, as well as their variants that attempt

to minimize the number of floating-point operations or maxi-

mize concurrency in parallel execution. Earlier methods were

based on selecting the vertices based on their degrees during

factorization (or symbolic factorization) of a sparse matrix.

Multiple minimum degree (MMD) and approximate minimum

degree (AMD) are two such examples [17].
A graph-theoretic interpretation of matrix reordering meth-

ods can be employed for vertex reordering. Two particular

schemes that we include in our work from this space, are the

Reverse Cuthill-McKee (RCM) and nested dissection (ND).
The RCM algorithm [9] begins with a vertex of the smallest

degree, v, and renumbering it to 1. The algorithm proceeds by

finding all the unvisited neighbors of v and then renumbering

them in the non-decreasing order of their degrees1. The

search continues until all the vertices have been visited and

renumbered based on the order in which they are discovered

and their degree. The search resumes with another unvisited

vertex of the smallest current degree if there are multiple

connected components. Finally, the vertex ordering is reversed.

Consequently, the RCM algorithm can be viewed as one that

does an interleaved breadth-first search (BFS) and depth-first

search (DFS) traversal of the graph. The traversal itself can be

executed in O(|E|) time, with the additional cost of sorting the

vertices based on their degree. While the algorithm is sensitive

to the initial choice of vertices, the reverse ordering of vertices

was provided to provide a better fill-reducing order [9, 16].
The Nested Dissection (ND) ordering is a divide-and-

conquer approach for factorization by recursively finding ver-

tex separators of small sizes and partitioning the matrices into

two sets [15]. We use the nested dissection implementation

of Karypis and Kumar [23] in our work. Although ND is

not suited for vertex ordering, we include it our suite as a

representative of methods developed for reducing fill.

F. Runtime Cost of Reordering

The different ordering schemes discussed in this section

can incur different runtime costs to perform the reordering.

However, since the different methods are implemented by

different developers using different programming languages,

we only present wall clock time for a subset of the schemes

that were implemented in C/C++ programming language.

These schemes (compared in Figure 4) cover most of the

categories in Figure 3.
We present the results in Figure 4, as a performance profile

for the smaller dataset of 9 larger inputs (listed in Table I).

Since the profile captures relative performance to the best

performing algorithm for a given input, the closer a given

curve is to the Y-axis, better is the performance. For instance,

in this Figure 1, we observe that Grappolo and METIS (with

32 partitions) are more expensive than Degree Sort and RCM

methods presented in the figure (with the factor slowdown

plotted along X-axis, compared to the best performing tool(s));

the methods show comparable performance across the entire

spectrum of inputs tested.

IV. EXPERIMENTAL SETUP

Input Data: We perform an extensive empirical evaluation

on a total of 34 input graphs, listed in Table I with relevant

statistics. This set consists of two sets: i) a set of 25 smaller

inputs, used to assess the different qualitative metrics for

ordering, described in §VI-A; and ii) a set of 9 larger real-

world inputs representing different application domains and

used in our application-based evaluation. The inputs were

collected from two sources, the Koblenz Network Collection

(KONECT) provided by the Institute of Web Science and

Technologies at the University of Koblenz–Landau [27], and

1Note that the Children Depth-First Search method proposed by Banerjee
et al. [3] represents a relaxation where the renumbering of unvisited neighbors
follows an arbitrary order at every level.

243

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Performance profile of compute time for four representative
ordering techniques: RCM, Degree Sort, Grappolo and METIS. The
Y-axis represents the fraction of problems with a total of 9 larger
inputs detailed in Table I. The X-axis represents the factor by which
a given scheme is slower relative to the fastest performing scheme
over that fraction of inputs.

the 10th DIMACS Implementation Challenge dataset down-

loaded through the SuiteSparse Matrix Collection [10].
We summarize the key statistics of the inputs in Table I.

While the degree distribution statistics provide insight on

the overall size of the graphs, statistics such as clustering

coefficient and the number of triangles provide insight on the

overall connectivity of a network.
Test Platforms: We conducted all our experiments on a large

shared memory server with eight Intel Xeon Platinum 8276

(Cascade Lake) CPUs and 6 TB DDR4-2933 of memory. Each

CPU has 28 cores (56 threads) and a nominal frequency of

2.20 GHz, and has 12 memory channels (96 channels total),

where each channel is populated (96 DIMMS, each 64 GiB).

Each CPU has per-core L1 cache of 32KB; per-core L2 cache

of 1 MB, and (socket-wide) L3 cache of 38.5 MB.

V. QUALITATIVE ASSESSMENT OF ORDERING SCHEMES

We provide a comparative qualitative assessment of 11 or-

dering schemes. These 11 schemes cover the different classes

shown in Figure 3, and include: Degree Sort, SlashBurn (from

the degree- and hub-based class), Gorder (from the window-

based class), Rabbit-Order, Grappolo, Grappolo-RCM, METIS

(from partition-based), and RCM and ND (from the fill-

reducing class). In addition, we considered the natural scheme

(same as input order) and a “random” scheme (by randomly

shuffling the input order).
For our assessment, we use three metrics (defined in §II-A):

i) graph bandwidth or maximum gap (β); ii) average gap

profile (ξ̂); and iii) average graph bandwidth (β̂). Together

these three metrics capture the gap at a global level. We

present these results in two different forms—performance plots

(Figures 5, 6b, and 6a), and violin plots (Figure 8). Since we

compare 11 schemes across 25 inputs, we use performance

plots that concisely summarize the performance across all the

inputs for different algorithms relative to the best performing

algorithm for a given input. The overall best performing

algorithm will be the closest curve to the Y-axis in the plot.
On the other hand, more detailed insights on the distribution

of gaps are provided in the violin plots [19] for gap statistics

(which subsume bandwidth statistics).

TABLE I: Summary of 25 small and 9 large instances used in

the study. Columns 1 and 2 show the number of vertices and

edges; Column 3 lists the maximum degree (Δ), and Column

4 lists the standard deviation of the vertex degrees.

Input #Vertices #Edges Δ Std Dev
Small Instances for Qualitative Analysis

Chicago Road 1,467 1,298 12 2.539
Euroroad 1,174 1,417 10 1.189
Facebook (NIPS) 2,888 2,981 769 22.888
U. Rovira i Virgili 1,133 5,451 71 9.340
delaunay n11 2,048 6,128 13 1.392
Figeys 2,239 6,452 314 17.013
US power grid 4,941 6,594 19 1.791
delaunay n12 4,096 12,265 14 1.367
Hamster small 1,858 12,534 272 20.731
Hamster full 2,426 16,631 273 19.873
PGP 10,680 24,316 205 8.077
delaunay n13 8,192 24,548 12 1.343
OpenFlights 2,939 30,501 473 43.216
fe 4elt2 11,143 32,819 12 0.890
Twitter lists 23,370 33,101 239 10.143
Google+ 23,628 39,242 2,771 35.285
cs4 22,499 43,859 4 0.302
cti 16,840 48,233 6 0.501
delaunay n14 16,384 49,123 16 1.348
CAIDA 26,475 53,381 2,628 33.374
Vsp 10,498 53,869 229 16.199
wing nodal 10,937 75,489 28 2.862
Cora citation 23,166 91,500 379 11.314
Gnutella 62,586 147,892 95 5.701
arXiv astro-ph 18,771 198,050 504 30.565

Large Instances for Application Performance Analysis
Livemocha 1.04E+05 2.19E+06 2,980 1.10E+02
California Roadnet 1.97E+06 2.77E+06 12 9.95E-01
Hyves 1.40E+06 2.78E+06 31,883 4.53E+01
arXiv hep-ph 2.81E+04 4.60E+06 11,134 5.91E+02
Youtube 3.22E+06 9.38E+06 91,751 1.28E+02
Skitter 1.70E+06 1.11E+07 35,455 1.37E+02
Actor collaborations 3.82E+05 3.31E+07 16,764 4.22E+02
LiveJournal links 5.20E+06 4.87E+07 15,016 5.06E+01
Orkut 3.07E+06 1.17E+08 33,313 1.55E+02

A. Relative Performance using Gap Measures

Based on the results presented in the form of performance

plots, in Figures 5, 6b, and 6a, we make the following

observations about the different schemes:

1) METIS (32 partitions2), Grappolo and Rabbit-Order out-

perform the remaining schemes in minimizing the average

gap profile (ξ̂; Figure 5), with RCM showing competitive

performance as well. In fact, we can observe four distinct

performance tiers of schemes (as shown in the different

color groups). The top performing group is constituted

by METIS-32, Grappolo, and Rabbit-Order; followed

by RCM (shown in black) which generates an average

gap profile that is between roughly 1×–8× more than

the first group for at least 50% of the inputs. The

third group (shown in blue) consisting of a mixture of

schemes from different categories, generates an average

gap profile that is roughly between 5×–25× larger; and

the final group (shown in green) constituting of degree-

/hub-based schemes is roughly between 10×–40× larger.

We can conclude that the partition-based schemes and

2Our choice of 32 partitions is based on our empirical evaluation as shown
in the performance profile for different METIS configurations in Figure 7.

244

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Profile of relative performance of the average gap profile (ξ̂): The Y-axis represents the fraction of problems with a total of 25
inputs. The X-axis represents the factor by which a given scheme fares relative to the best performing scheme over that fraction of inputs.
The closer a curve is aligned to the Y-axis the superior is its performance relative to the other schemes.

(a) Graph bandwidth (β) (b) Average graph bandwidth (β̂)

Fig. 6: Profile of relative performance of graph bandwidth (left) and average graph bandwidth (right). The Y-axis represents the fraction of
problems with a total of 25 inputs. The X-axis represents the factor by which a given scheme fares relative to the best performing scheme
over that fraction of inputs.

Fig. 7: Profile of relative performance of the average gap profile

(ξ̂(G,Π)) for different number of partitions (from 8 to 256; 32 is
the best) in the METIS-based ordering. The Y-axis represents the
fraction of problems with a total of 25 inputs. The X-axis represents
the factor by which an ordering based on a given number of partitions
fares relative to the best performing one over that fraction of input.

RCM are superior to other schemes by this edge gap

statistic. Notably, schemes like Gorder and Slashburn that

implement sophisticated algorithms, do not necessarily

yield better results than the natural and random orderings,

respectively.

2) With respect to the graph bandwidth measure β, RCM

clearly outperforms all other schemes in minimizing the

metric (Figure 6a)—with all other schemes generating

anywhere between roughly 2×–22× larger bandwidth.

This can be expected since RCM’s algorithm that orders

based on an interleaved BFS/DFS traversal and its use

of degree, is designed to reduce the overall bandwidth

by concentrating the non-zeroes of the adjacency matrix

along the diagonal. Recall that the bandwidth is the

maximum of all gaps from any vertex to its neighbors.

3) When measuring the average graph bandwidth (β̂)

though, there is no clear winner (Figure 6b) as most

schemes yield comparable results for most inputs. This

lack of divergence could be attributed to the fact that this

average measure is over the number of vertices and there

is typically large skew in the vertex degree distribution

(as confirmed by the large standard deviations in Table I).

B. Characterizing Gap Distributions

Although global metrics provide a good insight on the

quality of an ordering, the distribution of gaps for all the

edges can provide a better insight. We present gap distribution

245

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

100

100.5

101

101.5

102

102.5

103

METIS Grappolo Rabbit.Order RCM Natural Gorder ND Degree.Sort SlashBurn

Li
ne

ar
 A

rra
ng

em
en

t G
ap

s

ξ̂: 12.17 14.04 21.24 99.10 84.45 304.26 202.16 502.44 249.76

β: 648.00 847.00 1,308.00 343.00 1,278.00 1,120.00 1,437.00 1,401.00 1,466.00

β̂: 4.79 8.85 13.46 87.68 55.70 57.03 106.94 443.63 22.32

100

101

102

103

104

METIS Grappolo Rabbit.Order RCM Natural Gorder ND Degree.Sort SlashBurn

Li
ne

ar
 A

rra
ng

em
en

t G
ap

s

ξ̂: 124.03 229.59 217.41 103.33 1,447.11 1,350.39 1,379.34 2,591.26 4,023.82

β: 8,988.00 10,193.00 9,196.00 516.00 10,838.00 11,076.00 10,938.00 11,102.00 11,138.00

β̂: 172.52 325.84 314.99 146.43 1,346.06 2,139.75 1,903.20 3,361.55 2,501.23

100

101

102

103

104

METIS Grappolo Rabbit.Order RCM Natural Gorder ND Degree.Sort SlashBurn

Li
ne

ar
 A

rra
ng

em
en

t G
ap

s

ξ̂: 1,392.10 1,964.45 2,323.13 1,876.73 1,986.26 3,872.86 3,528.15 3,439.97 3,786.74

β: 9,015.00 10,369.00 10,457.00 6,405.00 10,386.00 10,456.00 10,433.00 10,288.00 10,495.00

β̂: 1,942.46 2,684.47 2,751.34 1,960.51 1,846.72 2,359.62 3,974.69 4,839.00 1,328.19

Fig. 8: Violin plots of the gap distribution and gap metrics for different methods (blue is best, and red is worst) for Chicago (top), Fe 4elt2
(middle), and vsp (bottom).

results using violin plots [19] (Figure 8). Violin plots enable

us to present variability in the data, not only for a given re-

ordering, but also across different ordering techniques. Ridges

in the figure show multimodal distribution, and the long tails

characteristic of lognormal distribution show the skewedness

of the gap distribution plotted along the Y-axis. We note that

a normal distribution produces a smooth violin plot. From the

set of 25 inputs, we pick three instances that provide three

different distribution characteristics.

As illustrated in Figure 8 (top) for the input Chicago, we

see striking similarity between the distributions for METIS

(32), Grappolo and Rabbit-Order. The wider ridges on the

lower portions indicate that a larger fraction of the gaps are

small (between one and ten). In contrast, degree sort has a

larger fraction on the higher side (between 100 to 1000).

Unlike Chicago, the gap distribution for vsp, as illustrated

in Figure 8-bottom, does not present enough perceivable

differences between orderings. Consequently, we observe that

for inputs like vsp, the expected performance benefits from

reordering will be minimal. RCM is consistently shorter. We

also present the distribution for Fe_4elt (Figure 8-middle),

where Gorder and Rabbit-Order provide better orderings that

are in stark contrast to the ordering produced by SlashBurn.

We also see a strong correlation of the shapes of the violin

plots with the best/worst performing scheme. For ξ̂, we see

factors of 41×, 39×, 28× difference between the best and

worst scores for Chicago, Fe_4elt and vsp respectively.

Similarly, for β, we see 4×, 22×, 2×, and for β̂ a difference

of 93×, 17×, 4× respectively for the three inputs.

VI. IMPACT ON APPLICATION PERFORMANCE

We demonstrated significant qualitative differences (under

gap measures) between the different ordering schemes in §V.

However, an important question arises if these qualitative

differences lead to predictable improvements in performance

for prototypical graph algorithms. We hypothesize that because

graph algorithms are memory-bound, a graph ordering that im-

proves data locality will improve memory system performance

during graph traversal. If graph traversal costs are a significant

fraction of an algorithm’s execution time, we expect graph

ordering to improve execution performance. We set out to

address this question using two prototypical graph algorithms,

community detection [13] and influence maximization [24].
Note that prior works on graph orderings [2, 12] have

predominantly focused on a standard suite of prototypical

246

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

graph operations such as PageRank, Single Source Shortest

Paths, and Betweenness Centrality computations. Our choice

to focus on community detection and influence maximization

as the targets for application studies in this work, is motivated

by the fact that these applications represent more advanced

and complex graph operations that feature in several large-

scale scientific discovery pipelines. Furthermore, they also

encapsulate two very different types of graph operations. More

specifically, fast community detection tools [4, 28] are a classic

representative of multi-level, iterative graph methods [20]. On

the other hand, the influence maximization implementations

[30, 36] entail running numerous stochastic BFS over the

entire graph to collect samples. In this work, we present the

impact on the performance of community detection (§VI-B)

and influence maximization (§VI-C), placing more emphasis

on the memory access patterns and statistics, while also

including correlations to gap statistics where applicable. The

implementations we use [28, 30] are parallel (multithreaded)

providing an added dimension to the memory performance

analysis (shared L3 and DRAM).

A. Evaluation Metrics
To capture the effects of graph ordering on memory perfor-

mance, use Intel VTune (2021.1.0 beta07) and report the fol-

lowing two metrics: (i) Memory latency: is measured as the

average latency of loads to memory, in cycles. Although the

latency of a load may be overlapped with other instructions, a

longer load latency could decrease efficiency of a pipeline that

can retire six instructions per cycle. (ii) Memory hierarchy
boundedness captures the level of the memory hierarchy that

bounds performance, where:
L1/L2/L3 Bound: shows cycles that CPU cores were stalled

waiting on data from the private L1 cache, private L2 cache,

or shared L3 cache, respectively. (Because L3 is shared, it can

reflect contention from a sibling core.)
DRAM Bound: Cycles that CPU cores were stalled on DRAM

(main memory) because of demand (not prefetched) loads

or stores. When bounded by memory, it is preferable to be

bounded by close memory levels (e.g., L1). That is, a bound

of L1 (vs. DRAM) indicates better data locality, lower memory

latencies, and higher effective memory bandwidth. It is also

important to note that the memory bound metrics are not

a decomposition—two instructions concurrently waiting on

memory during a cycle count as two cycles—so their sum

can be over 100%.

B. Impact on Community Detection
We use a state-of-the-art multithreaded tool, Grappolo, for

community detection [28]. Since we also use this tool for

generating one of the orders, we note that benefiting from

such an order is not readily available. In fact, by initiating

the execution from scratch, the algorithm does not benefit in

any perceivable manner of a given order other than expected

benefits through coalesced memory accesses.
Grappolo is compiled with Intel 19.0.5.281-20190815. We

select OpenMP threads to ensure at least 2 million work units

(vertices plus edges) per thread: four smallest graphs use 2

threads; next three 16, and largest two, 32. We distribute

threads across sockets to provide the most L3 cache and

DRAM bandwidth. For instance, with 32 threads, there are

4 threads/socket so that each thread has 3 memory channels

(12 channels/socket).

Figure 9 shows the impact of vertex ordering on Grappolo’s

performance and output quality (modularity [31]) using heat

maps. To best capture each scheme’s effect, we report metrics

for the first phase (or level); subsequent Grappolo phases

analyze a derivative, compressed graphs that may have little

relationship to the input ordering.

The first four heat maps capture runtime performance and

quality. The ‘Phase’ heat map reports average phase runtime.

Each phase conducts multiple iterations until a modularity

gain threshold is met. The ‘Iteration’ heat map shows time

per iteration. Each iteration visits all vertices (in an order

determined by the parallel schedule), and for every vertex,

all neighbors are accessed. Consequently, we hypothesize

a correlation between iteration time and the vertex order.

‘Iteration Count’ heat map shows the number of iterations

required. The ‘Modularity’ heat map shows the final output

modularity (value between [0, 1] and higher the better).

The final two heat maps represent different aspects of

execution performance. ‘Work%’ shows time the CPUs spent

in useful (non-synchronization) work. It measures parallel

efficiency; higher values indicate less load imbalance. As an

irregular (input dependent) algorithm, load balance is always

a concern. Therefore, to focus metrics on graph traversals

(instead of OpenMP synchronization) the final two heat maps

characterize the work efficiency of Grappolo’s hot routine,

which inspects a vertex’s neighboring communities.

The ‘Work/edge’ heat map shows average work, in loads,

per graph edge. This metric captures the fact that while travers-

ing a vertex’s neighbors, auxiliary structures are necessary for

calculating community attributes. In particular, the hot routine

uses a C++ map to store each community’s contribution to

modularity. The number of loads required is data dependent.

Figure 10 shows memory performance using the metrics

defined above. The figure focuses on the five largest graphs

(Table I) because the working sets of the the smaller graphs

may not exercise all memory levels on our test platform. For

each graph, the first column shows average load latency. The

subsequent columns show L1, L2, L3, DRAM Bound.

Key observations: For modularity, no ordering is clearly bet-

ter, though RCM and Natural edge the others. The modularity

spread is usually small, especially as it increases, which is

indicative of the algorithm’s popularity.

For performance metrics, there are some clear patterns.

First, in terms of phase and iteration times, Grappolo usually

outperforms Degree Sort, at times by factors 2×–4× or more.

Further, there is a clear correlation between this time benefit

and work metrics. The Grappolo ordering usually has the

highest parallel efficiency (Work%) and lowest work per edge.

It also typically has the lowest memory latency. However,

comparing the three metrics, Grappolo’s performance is better

explained by parallel efficiency (Work%) than by memory.

247

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Community detection: Impact of graph ordering on performance and modularity. Each metric is represented as a row-based heat
map, where ‘redder’ is better.

Fig. 10: Community detection: Impact of graph ordering on memory metrics (§VI-A) for largest graphs. For each graph, the first column
shows memory latency (cycles) as a column heat map, where ‘redder’ is better; subsequent columns show L1, L2, L3, DRAM Bound as a
chart heat map.

Thus, the Grappolo ordering tends to result in a better load

balance, at least for vertex based parallelism.

Second, RCM is often better than natural and degree. How-

ever, in contrast with the Grappolo ordering, the explanation

is a combination of low iterations (better than Grappolo)

and average parallel efficiency (better than Degree Sort).

Conversely, the Degree Sort ordering frequently requires the

fewest iterations, but each iteration takes the most time.

Third, although memory metrics provide more information

than the traditional cache miss metrics, interpreting them is

involved. Nominally, one expects lower memory latency to

correspond to memory boundedness at lower memory levels,

i.e., low DRAM values and higher values toward the left (in

Figure 10). Further, one might expect lower iteration time to

correlate to lower memory latency. Neither holds in all cases.

For instance, Grappolo tends to be more DRAM bound than

Degree, even though average memory latency is lower. There

is a much clearer correlation with graph ordering than with

latency, but the magnitudes are not always large.

We believe the explanation is that graph traversal costs may
not be the dominant fraction of an algorithm’s execution time.

An algorithm’s use of auxiliary data structures can result in

additional memory access patterns that negate the benefits

of vertex orderings in graph traversals. Larger graphs, as

well as different graph structures, can collectively result in

increased auxiliary work per edge as well as longer access

costs and memory latency. Further, memory hardware itself

is complex: a range of latencies can occur at the same

memory level, so that equivalent boundedness metrics may not

correspond to the same average memory latency. If memory

latency and boundedness metrics are sometimes ambiguous,

the more typical but less informative cache miss metrics can

be misleading. We believe this is why memory performance is

better explained by input graph rather than by graph ordering.

Finally, to contrast parallel behavior with serial, we also

conducted similar experiments with a single thread execution

of Grappolo (results not shown due to space). We observed

that the same trends hold in the relative performance of the

schemes, except that in the serial case, the magnitudes of

difference between the schemes are less pronounced. More

specifically, the factor of increase in the time per iteration from

the best scheme (Grappolo) to the poorest scheme (Degree

Sort) is between 1.3×–2.5×.
Summary: We find that some graph orderings significantly

affect both execution time (up to a factor of 4×) and iteration

count (up to a factor of 10×) of Louvain-based community

detection. As expected, graph ordering can be highly corre-

lated with average memory latency. Interestingly, we also find

that graph ordering can consistently improve load balance.

Finally, the performance of auxiliary data structures can be

more important than graph ordering.

C. Impact on Influence Maximization

Influence Maximization is the problem of selecting a small

population of actors from a social network that maximize the

cascading effect of a diffusion process over the network. The

problem has wide applicability in studying dynamic network

diffusion phenomena (e.g., disease spread).
Our evaluation uses Ripples [30], which is a scalable

parallel implementation for the state-of-the-art IMM method

[36]. The core computational task in Ripples is a Sampling

procedure that generates a large collection of Reverse Reach-

ability information from random vertices in the input graph

by performing simulations of the targeted diffusion process.

In its current implementation, Ripples supports two diffusion

processes, the Independent Cascade Model (IC) and the Lin-

ear Threshold Model (LT). Among the two, the IC model

has been shown to be the more computationally challenging

[30, 29], and therefore our evaluation focuses on the IC model.

Simulating the IC model during the Sampling procedure

248

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

2888.73 2899.70 2871.232849.622933.56 2861.08

2967.73 2961.73 2993.602979.352986.88 2960.26

3176.36 3127.90 3172.063182.443119.02 3189.87

66.26 66.30 66.5165.9467.93 66.46

2173.40 2312.60 2105.102191.832265.42 2167.51

2478.04 2492.77 2468.142484.692483.13 2490.01

59.55 60.15 60.7561.5460.68 60.50

419.22 432.34 417.21423.61431.33 404.55

425.88 424.30 429.40427.68422.65 428.49

982.03 937.41 979.99995.00904.03 994.67

4947496.78 4669879.13 4731298.705007586.794472226.13 5034665.48

42.42 43.13 42.5242.3543.24 42.23

4948.79 4972.50 5105.335006.254581.54 4734.37

93.04 90.04 95.7695.1791.82 96.07

3431.27 3375.23 3344.593379.633280.93 3222.31

4935.99 4773.88 4658.114599.354724.20 4792.69

522.22 503.57 521.93524.01507.64 542.14

277.28 279.44 275.44276.28280.96 276.30

E
xecution Tim

e (s)
S

am
pling Throughput (#R

R
 set/s)

Natural Degree Sort RCM Grappolo METIS−32 METIS−64

Orkut

LiveJournal

actor−collaboration

as−skitter

YouTube

cit−HepPh

hyves

roadNet−CA

LiveMocha

Orkut

LiveJournal

actor−collaboration

as−skitter

YouTube

cit−HepPh

hyves

roadNet−CA

LiveMocha

Fig. 11: Impact on performance of reordering schemes on Ripples
under small probability regimen. We report throughput of the Sam-
pling procedure and the Total execution time of the application.

requires tens or hundreds of thousands of probabilistic BFS

traversals. During each BFS, the neighbors j of each visited

vertex i enter the new frontier with probability pi,j limiting

consequently the portions of the graph being explored and the

work available in each BFS. To mitigate the issue and increase

resource utilization, Ripples implements an engine [29] that

uses available CPUs to run many randomized BFS in parallel.

Ripples is compiled with GCC 9.2, and was configured to

run the sampling phase on one OpenMP thread per physical

core, while using 32 threads for seed selection. We dis-

tribute threads across the sockets and we used interleaved

allocation of memory pages to provide the most L3 and

DRAM bandwidth. We found this configuration to be the best

performing on the machine. We tested with lower and higher

edge probability settings. In the interest of space, we present

results for a practically relevant probability setting of 0.25.

Key observations: Figure 11 shows the impact of vertex or-

dering on Ripples’ total execution time and on the throughput

of the Sampling routine. First, we can observe that these two

measures have good correlations (visible as similar coloring

patterns in Figure 11) and confirming the importance of Sam-

pling on the overall performance of the application. Secondly,

in terms of sampling throughput, there is a slight preference

to the natural order in terms of sampling throughput for the

smaller inputs (top half); whereas for the larger inputs (bottom

half), more sophisticated schemes such as Grappolo and RCM

start to deliver better throughput. However, we observed that

these throughput improvements have a marginal impact over

the total execution time.

To assess memory performance, we studied the effects of

ordering on memory related performance counters by profiling

1.60 1.80 1.601.402.202.50

18.10 15.40 17.5017.2015.6015.70

11.50 11.60 11.6011.309.7010.80

48.10 49.70 48.8049.7052.6049.90

85.94 92.13 92.1078.0291.2480.53

L1 (%)

L2 (%)

L3 (%)

DRAM (%)

LL (# cycles)

Natural Degree Sort RCM Grappolo METIS−32 METIS−64

Fig. 12: Memory performance counters for the hotspot function
in Ripples. We report Average Load Latency (LL) and how often
the machine was stalled at all the layers of the memory hierarchy
(L1/L2/L3/DRAM).

Ripples with Intel VTune on the skitter graph, the biggest

input for which the analysis was possible. Figure 12 reports

performance counters for the method generating the reverse

reachability information inside the sampling method that

shows up as the hot-spot for the application on the profiling

data. One might expect that reordering schemes should shift

the runtime profile to be more cache bound rather than memory

bound and a consequent performance improvement. However,

we have observed that the overall improvements on Ripples are

marginal, with no particular reordering scheme standing out.

Degree Sort and Grappolo based orderings show a significant

improvement on the percentage of memory operation bound by

the L1 cache. The expectation would be that of observing cor-

responding good performance on the skitter line in Figure 11.

Interestingly, we observe that Degree Sort and Grappolo are

at the opposite of the execution time and sampling throughput

spectrum.

Summary: We find that vertex ordering schemes have

marginal effects on applications that performs many BFSs in

parallel. We hypothesize this observation to parallel threads

competing for memory bandwidth and cache space. Even

though, these results suggest a modest role for ordering in such

applications, we posit that if the underlying implementation

can be made locality-aware such applications can also benefit

from ordering schemes.

VII. CONCLUSIONS

In this study, we presented a thorough empirical evaluation,

first of its kind, to characterize and quantify the effectiveness

of up to 11 vertex ordering schemes to optimize locality-

relevant measures, and their impact on two important real-

world graph applications. Our work provides detailed insights

into the gap profiles and application memory and runtime foot-

prints generated by the different ordering schemes—effectively

indicating that the choice of ordering schemes do matter, more

so for iterative graph applications than for applications like

influence maximization; and more so in a parallel environment.

Future research directions include: application tuning to

make them more locality/ordering-aware; potential use of

coarsening to explore the benefits of a multiscale and/or

hybrid ordering engines; and large-scale application study in

249

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

heterogeneous parallel platforms (including CPUs and GPUs)

and mixed graph analytics workloads.

ACKNOWLEDGMENT

This research is in parts supported by the Exascale Com-

puting Project (17-SC-20-SC), a collaborative effort of the

U.S. Department of Energy Office of Science and the Na-

tional Nuclear Security Administration, through the ExaGraph

project at the Pacific Northwest National Laboratory (PNNL);

by the U.S. National Science Foundation (NSF) grants CCF

1815467, OAC 1910213, and CCF 1919122 to Washington

State University. PNNL is operated by Battelle Memorial

Institute under Contract DE-AC06-76RL01830.

REFERENCES

[1] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro,

Makoto Onizuka, and Sotetsu Iwamura. Rabbit order:

Just-in-time parallel reordering for fast graph analysis.

In 2016 IEEE International Parallel and Distributed
Processing Symposium, pages 22–31. IEEE, 2016.

[2] Vignesh Balaji and Brandon Lucia. When is graph

reordering an optimization? studying the effect of

lightweight graph reordering across applications and in-

put graphs. In 2018 IEEE International Symposium on
Workload Characterization, pages 203–214. IEEE, 2018.

[3] Jay Banerjee, Won Kim, S-J Kim, and Jorge F. Garza.

Clustering a dag for cad databases. IEEE Transactions
on Software Engineering, 14(11):1684–1699, 1988.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-

biotte, and Etienne Lefebvre. Fast unfolding of commu-

nities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, oct 2008.

[5] Paolo Boldi and Sebastiano Vigna. The webgraph frame-

work i: compression techniques. In Proceedings of the
13th international conference on World Wide Web, pages

595–602, 2004.

[6] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert

Gorke, Martin Hoefer, Zoran Nikoloski, and Dorothea

Wagner. On modularity clustering. IEEE transactions on
knowledge and data engineering, 20(2):172–188, 2007.

[7] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael

Mitzenmacher, Alessandro Panconesi, and Prabhakar

Raghavan. On compressing social networks. In Proceed-
ings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 219–

228, 2009.

[8] Thomas H Cormen, Charles E Leiserson, Ronald L

Rivest, and Clifford Stein. Introduction to algorithms.

MIT press, 2009.

[9] E. Cuthill and J. McKee. Reducing the bandwidth of

sparse symmetric matrices. In Proceedings of the 1969
24th National Conference, ACM ’69, page 157–172,

New York, NY, USA, 1969. Association for Computing

Machinery.

[10] Timothy A Davis and Yifan Hu. The university of

florida sparse matrix collection. ACM Transactions on
Mathematical Software, 38(1):1–25, 2011.

[11] Timothy A. Davis, Sivasankaran Rajamanickam, and

Wissam M. Sid-Lakhdar. A survey of direct methods

for sparse linear systems. Acta Numerica, 25:383–566,

2016.

[12] Priyank Faldu, Jeff Diamond, and Boris Grot. A closer

look at lightweight graph reordering. In 2019 IEEE
International Symposium on Workload Characterization,

pages 1–13. IEEE, 2019.

[13] Santo Fortunato. Community detection in graphs.

Physics reports, 486(3-5):75–174, 2010.

[14] Michael R Garey, David S Johnson, and Larry Stock-

meyer. Some simplified np-complete problems. In

Proceedings of the sixth annual ACM symposium on
Theory of computing, pages 47–63, 1974.

[15] Alan George. Nested dissection of a regular finite

element mesh. SIAM Journal on Numerical Analysis,

10(2):345–363, 1973.

[16] Alan George and Joseph W. Liu. Computer Solution of
Large Sparse Positive Definite. Prentice Hall Professional

Technical Reference, 1981.

[17] Alan George and Joseph W.H. Liu. The evolution of

the minimum degree ordering algorithm. SIAM Review,

31(1):1–19, 1989.

[18] Mahantesh Halappanavar, John Feo, Oreste Villa, An-

tonino Tumeo, and Alex Pothen. Approximate weighted

matching on emerging manycore and multithreaded ar-

chitectures. The International Journal of High Perfor-
mance Computing Applications, 26(4):413–430, 2012.

[19] Jerry L. Hintze and Ray D. Nelson. Violin Plots:

A Box Plot-Density Trace Synergism. The American
Statistician, 52(2):181–184, 1998.

[20] Ananth Kalyanaraman and Partha Pratim Pande. A

brief survey of algorithms, architectures, and challenges

toward extreme-scale graph analytics. In 2019 Design,
Automation & Test in Europe Conference & Exhibition,

pages 1307–1312. IEEE, 2019.

[21] U Kang and Christos Faloutsos. Beyond’caveman com-

munities’: Hubs and spokes for graph compression and

mining. In 2011 IEEE 11th International Conference on
Data Mining, pages 300–309. IEEE, 2011.

[22] George Karypis and Vipin Kumar. A fast and high quality

multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing, 20(1):359–392, 1998.

[23] George Karypis and Vipin Kumar. A fast and high quality

multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput., 20(1):359–392, December 1998.

[24] David Kempe, Jon Kleinberg, and Éva Tardos. Maxi-

mizing the spread of influence through a social network.

In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,

pages 137–146, 2003.

[25] Brian W Kernighan and Shen Lin. An efficient heuristic

procedure for partitioning graphs. The Bell system
technical journal, 49(2):291–307, 1970.

[26] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vec-

chi. Optimization by simulated annealing. Science,

250

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

220(4598):671–680, 1983.

[27] Jérôme Kunegis. Konect: the koblenz network collection.

In Proceedings of the 22nd International Conference on
World Wide Web, pages 1343–1350, 2013.

[28] Hao Lu, Mahantesh Halappanavar, and Ananth Kalya-

naraman. Parallel heuristics for scalable community

detection. Parallel Computing, 47:19–37, 2015.

[29] Marco Minutoli, Maurizio Drocco, Mahantesh Halap-

panavar, Antonino Tumeo, and Ananth Kalyanaraman.

cuRipples: Influence maximization on multi-GPU sys-

tems. In Proceedings of the 34th ACM International
Conference on Supercomputing, pages 1–11, 2020.

[30] Marco Minutoli, Mahantesh Halappanavar, Ananth

Kalyanaraman, Arun Sathanur, Ryan Mcclure, and Ja-

son McDermott. Fast and scalable implementations

of influence maximization algorithms. In 2019 IEEE
International Conference on Cluster Computing, pages

1–12. IEEE, 2019.

[31] Mark EJ Newman. Modularity and community structure

in networks. Proceedings of the national academy of
sciences, 103(23):8577–8582, 2006.

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry

Winograd. The pagerank citation ranking: Bringing order

to the web. Technical report, Stanford InfoLab, 1999.

[33] Jordi Petit. Experiments on the minimum linear arrange-

ment problem. Journal of Experimental Algorithmics, 8,

2003.

[34] Ilya Safro, Dorit Ron, and Achi Brandt. Multilevel

algorithms for linear ordering problems. Journal of
Experimental Algorithmics, 13:1–4, 2009.

[35] Ilya Safro and Boris Temkin. Multiscale approach for

the network compression-friendly ordering. Journal of
Discrete Algorithms, 9(2):190–202, 2011.

[36] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influ-

ence Maximization in Near-Linear Time: A Martingale

Approach. In Proc. 2015 ACM SIGMOD International
Conference on Management of Data, pages 1539–1554.

ACM, 2015.

[37] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin.

Speedup graph processing by graph ordering. In Pro-
ceedings of the 2016 International Conference on Man-
agement of Data, pages 1813–1828, 2016.

[38] Yunming Zhang, Vladimir Kiriansky, Charith Mendis,

Matei Zaharia, and Saman Amarasinghe. Optimizing

cache performance for graph analytics. arXiv preprint
arXiv:1608.01362, 2016.

251

Authorized licensed use limited to: Washington State University. Downloaded on January 12,2021 at 18:06:04 UTC from IEEE Xplore. Restrictions apply.

