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Abstract

Cross-spectral iris recognition is emerging as a promis-

ing biometric approach to authenticating the identity of in-

dividuals. However, matching iris images acquired at dif-

ferent spectral bands shows significant performance degra-

dation when compared to single-band near-infrared (NIR)

matching due to the spectral gap between iris images ob-

tained in the NIR and visual-light (VIS) spectra. Al-

though researchers have recently focused on deep-learning-

based approaches to recover invariant representative fea-

tures for more accurate recognition performance, the ex-

isting methods cannot achieve the expected accuracy re-

quired for commercial applications. Hence, in this paper,

we propose a conditional coupled generative adversarial

network (CpGAN) architecture for cross-spectral iris recog-

nition by projecting the VIS and NIR iris images into a low-

dimensional embedding domain to explore the hidden re-

lationship between them. The conditional CpGAN frame-

work consists of a pair of GAN-based networks, one re-

sponsible for retrieving images in the visible domain and

other responsible for retrieving images in the NIR domain.

Both networks try to map the data into a common em-

bedding subspace to ensure maximum pair-wise similar-

ity between the feature vectors from the two iris modalities

of the same subject. To prove the usefulness of our pro-

posed approach, extensive experimental results obtained on

the PolyU dataset are compared to existing state-of-the-art

cross-spectral recognition methods.

1. Introduction

Iris recognition has received considerable attention in

personal identification [4,9] due to highly distinctive spatial

texture patterns in iris. It is considered as one of the most re-

liable and secure identity verification methods in biometrics

[5, 12]. The human iris pattern is observed to have unique

and different textures due to the process of chaotic morpho-

genesis that causes its formation in early childhood, exhibit-
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Figure 1. VIS and NIR iris images from the PolyU bi-spectral iris

database.

ing variation even among identical twins. Therefore, iris

recognition has been extensively used in ID authentication

tasks. Many applications require both probe and gallery iris

images to be captured in the same optical spectrum, under

either near-infrared (NIR) or visual light (VIS), for homo-

geneous iris recognition. Recently, high-resolution visible

surveillance cameras that can capture useable opportunistic

iris images have enabled biometric systems that could po-

tentially compare these visible iris images to a NIR gallery

using cross-spectral matching. Cross-spectral iris matching

is defined as the ability of matching iris images acquired

in different spectral bands (e.g., VIS at 400-750 nm wave-

length and NIR at 750-1400 nm wavelength) [2].

Therefore, to facilitate effective iris matching, cross-

spectral iris recognition systems have recently been devel-

oped [3, 14, 16, 18]. However, existing methods still suffer

from significant performance degradation [23]. The spec-

tral difference is believed to be the major reason, which

yields poor recognition performance. As shown in Fig.1,

the visual differences between the VIS and NIR iris images

make it obvious that the choice of illumination spectrum

plays a vital role in emphasizing imaged iris patterns. For

instance, iris textures are clearly visible in the VIS spec-

trum and complex patterns are even highlighted under the

VIS illumination. However, the recognition performance is

highly affected by reflection that occlude the iris pattern in

certain regions. On the other hand, although almost all of

the prominent iris texture patterns are missing in the NIR
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images, the iris recognition in the NIR images is more ef-

ficient compared to iris recognition in VIS images due to

less reflections. Therefore, matching iris images in cross-

spectral domain has become a challenging task, which re-

quires to be explored to achieve a high accuracy in cross-

spectral iris matching.

Previous research shows that the most essential inner

properties of an image can be mapped to a reduced low-

dimensional latent subspace. A Latent subspace is a com-

pressed representation of the image space, which contains

the most relevant and useful features of the raw data. In this

paper, we hypothesize that iris images in the VIS domain

are connected to the iris images in the NIR domain in a low-

dimensional latent embedded feature subspace. Our goal is

to explore this hidden correlation by projecting VIS iris im-

ages and NIR iris images into a common latent embedding

subspace. Moreover, we posit that, if we perform verifica-

tion in the latent domain, matching results would be more

accurate due to the shared common features in that domain.

Therefore, we propose a deep coupled learning framework

for cross-spectral iris matching, which utilizes a conditional

coupled generative adversarial network (CpGAN) to learn a

common embedded feature vector via exploring the corre-

lation between the NIR and VIS iris images in a reduced

dimensional latent embedding feature subspace. The key

benefits from our proposed iris recognition approach can be

summarized as the following:

• A novel framework for cross-spectral iris matching us-

ing coupled generative adversarial network has been

proposed.

• Comprehensive experiments using a benchmark PolyU

Bi-Spectral dataset with comparable results against the

baseline methods ascertain the validity of the proposed

CpGAN framework.

• The proposed framework investigates the potential ca-

pabilities of GAN based network to improve the per-

formance of traditional cross-spectral iris recognition

methods.

2. Literature Review

In recent years, cross-spectral iris matching has gained

significant interest in the biometric research community for

security, national ID programs, and also for personal iden-

tity verification purposes [3, 14, 16, 18]. The accuracy of

an iris recognition system most importantly depends on the

feature extraction approaches. Hence, a robust feature ex-

traction method used for representing iris texture patterns

is essential in cross-spectral iris matching. Oktiana et al.

[15] provides a description of several feature representa-

tion methods based on the VIS and NIR imaging systems.

Among them, LBP and BSIF are the best feature descrip-

tors, which have been found [15] to accurately extract the

texture patterns of the iris for cross-spectral matching.

In [22] the authors proposed a feature descriptor, which

applies a 2D Gabor filter bank to compute the iris pattern

at multiple scales and orientation. The iris images captured

in the VIS spectrum often suffer from noise due to illumi-

nation occlusions and position shifting. Therefore, they uti-

lized the difference of variance (DoV) features to divide the

iris template into sub-blocks, as the DoV features are in-

variant to noise. However, this method could not achieve

the high accuracy required for practical applications (high

EER of 31.08%) because it is unable to relate the informa-

tion comprised in the NIR and VIS images.

In the work of Abdullah et al. [1], the matching accuracy

has increased with a 24.28% decrease in EER. They em-

ployed a 1D log-Gabor-filter with three different descrip-

tors, namely the Gabor difference of Gaussian (G-DoG),

Gabor binarized statistical image features (G-BSIF), and

Gabor multiscale weberface (G-MSW), and achieved much

lower EER of 6.8%. It is also considered as the most accu-

rate performance of cross-spectral iris recognition method,

according to the report in [20].

With the advent of convolutional neural networks

(CNN), cross-spectral iris recognition research efforts have

concentrated more towards feature learning through convo-

lutional layers [23]. In [23] the authors observed that CNN-

based features carry sparse information and offer a compact

representation for the iris template, which is significantly

reduced in size. Moreover, this approach incorporates su-

pervised discrete hashing on the learned features to achieve

excellent results compared to other CNN-based iris recog-

nition methods. Their proposed method resulted in an EER

of 5.39%.

3. Generative Adversarial Network

Recently, GANs have achieved considerable attention

from the deep learning research community due to their sig-

nificant contributions in image generation tasks. The ba-

sic GAN framework consists of two modules – a generator

module, G, and a discriminator module, D. The objective of

the generator, G, is to learn a mapping, G : z → y, so that it

can produce synthesized samples from a noise variable, z,

with a prior noise distribution, pz(z), which is difficult for

the discriminator, D, to distinguish from the real data dis-

tribution, pdata, over y. The generator, G(z; θg) is a differ-

entiable function which is trained with parameters θg when

mapping the noise variable, z, to the actual data space, y.

Simultaneously, the discriminator, D, is trained as a binary

classifier with parameters θd such that it can distinguish the

real samples, y, from the fake ones, G(z). Both the gen-

erator and discriminator networks compete with each other

in a two-player minimax game. We calculate the following
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loss function, L(D,G), for the GAN:

L(D,G) = Ey∼Pdata(y)[logD(y)]

+ Ez∼Pz(z)[log(1−D(G(z)))].
(1)

The objective function of GAN defines the term “two

player minimax game” by optimizing the loss function,

L(D,G), as follows:

min
G

max
D

L(D,G) = min
G

max
D

[Ey∼Pdata(y)[logD(y)]

+ Ez∼Pz(z)[log(1−D(G(z)))]].

(2)

One of the variants of GAN is introduced in [13] as the

conditional GAN (cGAN) which expands the scope of syn-

thesized image generation by setting a condition for both

the generative and discriminative networks. The cGAN ap-

plies an auxiliary variable, x, as a condition which could

be any kind of useful information such as texts [19], im-

ages [8] or discrete labels [13]. The loss function for the

cGAN, Lc(D,G), can be represented as follows:

Lc(D,G) = Ey∼Pdata(y)[logD(y|x)]

+ Ez∼Pz(z)[log(1−D(G(z|x)))].
(3)

Similar to (2), the objective function of the cGAN is min-

imized in a two-player minimax manner, which is denoted

as LcGAN (D,G, y, x) and defined by:

LcGAN (D,G, y, x) = min
G

max
D

[Ey∼Pdata(y)[logD(y|x)]

+ Ez∼Pz(z)[log(1−D(G(z|x)))]].

(4)

4. Proposed Method

Our proposed method is inspired to further advance

cross-spectral iris matching systems utilizing the capabili-

ties of the GAN based approaches. Therefore, we do not

generate a synthesized NIR image of its VIS counterpart

before matching. Instead, we specifically focus on project-

ing both the NIR and VIS iris images to a common latent

low-dimensional embedding subspace using a generative

network. We explore this low-dimensional latent feature

subspace for matching iris images in cross-spectral domain

with the help of an adversarial network due to its great suc-

cess in finding optimal solution for synthetic image genera-

tion.

4.1. Deep Adversarial Coupled Framework

Our proposed conditional CpGAN for iris matching

in cross-spectral domain consists of two conditonal GAN

(cGAN) modules as shown in Fig. 2. One of them is ded-

icated to reconstructing the VIS iris images and hence, we

refer to as the VIS cGAN module. Similarly, the other mod-

ule is dedicated to synthesizing the NIR iris images, which

is referred to as the NIR cGAN module. In this work, we

use a U-Net architecture for the generator to achieve the

low-dimensional embedded subspace for cross-spectral iris

matching via a contrastive loss along with the standard ad-

versarial loss. In addition to the adversarial loss and con-

trastive loss [6], the perceptual loss [10] and L2 reconstruc-

tion loss are also used to guide the generators towards the

optimal solutions. Perceptual loss is measured via a pre-

trained VGG 16 network, which helps in sharp and realistic

reconstruction of the images.

Our prime goal is to match a VIS iris probe against a

gallery of NIR iris images, which have not been seen by the

network during the training. To perform this matching in the

cross-spectral domain, a discriminative model is required

to produce a domain invariant representation. Therefore,

we focus on learning iris feature representations in a com-

mon embedding subspace by incorporating a U-Net auto-

encoder architecture that uses class-specific contrastive loss

to match the iris patterns in the latent domain.

As previously mentioned, we use a U-Net auto-encoder

architecture in our generator for its structural ability of ex-

tracting features in the latent embedding subspace. More

specifically, the contracting path of the “U shaped” struc-

ture of the U-Net captures contextual information, which

is passed directly across all the layers, including the bottle-

neck. Also, the high-dimensional features of the contracting

path of the U-Net, combined with the corresponding upsam-

pled features of the symmetric expanding, path provides a

means to share the useful information throughout the net-

work. Moreover, during domain transformation, a signif-

icant amount of low-level information needs to be shared

between input and output, which can be accomplished by

leveraging a U-Net-like architecture.

We have followed the architecture of patch-based dis-

criminators [8] to design the discriminators of our proposed

model. The discriminators are trained simultaneously along

with the respective generators. It is worthwhile to mention

that the L1 loss performs very well when applied to preserve

the low-frequency details but fails to preserve the high-

frequency information, whereas patch-based discriminator

ensures the preservation of high-frequency details since it

penalizes the structure at the scale of the patches.

Although the VIS and NIR iris images are in different

domains, they gradually build a connection in the common

embedding feature subspace. The features are domain in-

variant in the embedded subspace, which provides it cred-

ibility to discriminate images based on identity. Our final

objective is to find a set of domain invariant features in a

common embedding subspace by coupling the two genera-

tors via a contrastive loss function, Lcont [6].

The contrastive loss function, Lcont, is defined as a

distance-based loss metric, which is computed over a set of

pairs in the common embedding subspace such that images
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have used a conditional GAN for our proposed method, we

condition both the generator networks, GV IS and GNIR,

on input VIS and NIR iris images, respectively. In addition,

we have trained the generators and the corresponding dis-

criminators with the conditional GAN loss function [13] to

ensure the reconstruction of real-looking natural image such

that the discriminators cannot distinguish the generated im-

ages from the real ones. Let LV IS and LNIR denote the

conditional GAN loss functions for the VIS and NIR GANs,

respectively, where LV IS and LNIR are given as:

LV IS = LcGAN (DV IS , GV IS , y
i
V IS , x

i
V IS), (10)

LNIR = LcGAN (DNIR, GNIR, y
j
NIR, x

j
NIR), (11)

where LcGAN is defined as the conditional GAN objective

function in (4). The term, xi
V IS , is used to denote the VIS

iris image, which is defined as a condition for the VIS GAN,

and yiV IS , is denoted as the real VIS iris image. It is worth

mentioning that the real VIS iris image, yiV IS , is same as the

network condition given by xi
V IS . Similarly, x

j
NIR, denotes

the NIR iris image that is used as a condition for the NIR

GAN. Again, like yiV IS , the real NIR iris image, y
j
NIR, is

same as the network condition given by x
j
NIR . The total

objective function for the coupled conditional GAN is given

by:

LGAN = LV IS + LNIR. (12)

5.2. L2 Reconstruction Loss

For both the VIS GAN and NIR GANs, we consider the

L2 reconstruction loss as a classical constraint to ensure bet-

ter results. The L2 reconstruction loss is measured in terms

of the Euclidean distance between the reconstructed iris im-

age and the corresponding real iris image. We denote the

reconstruction loss for the VIS GAN as L2V IS
and define it

as follows:

L2V IS
=

∥

∥GV IS(z|x
i
V IS)− yiV IS

∥

∥

2

2
, (13)

where yiV IS is the ground truth VIS iris image, and

GV IS(z|x
i
V IS), is the output of the VIS generator.

Similarly, lets denote the reconstruction loss for the NIR

GAN as L2NIR
:

L2NIR
=

∥

∥

∥
GNIR(z|x

j
NIR)− y

j
NIR

∥

∥

∥

2

2
, (14)

where y
j
NIR is the ground truth NIR iris image, and

GNIR(z|x
j
NIR), is the output of the NIR generator.

The total L2 reconstruction loss can be given by the fol-

lowing equation:

L2 =
1

N2

N
∑

i=1

N
∑

j=1

(L2V IS
+ L2NIR

). (15)

5.3. Perceptual Loss

Although the GAN loss and the reconstruction loss are

used to guide the generators, they fail to reconstruct percep-

tually pleasing images. Perceptually pleasing means images

with perceptual features defined by the visual determinis-

tic properties of objects. Hence, we have also used per-

ceptual loss introduced in [10] for style transfer and super-

resolution. The perceptual loss function basically measures

high level differences, such as content and style dissimilar-

ity, between images. The perceptual loss is based on high-

level representations from a pre-trained VGG-16 [21] like

CNN. Moreover, it helps the network generate better and

sharper high quality images [10]. As a result, it can be a

good alternative to solely using L1 or L2 reconstruction er-

ror.

In our proposed approach, we have added perceptual loss

to both the VIS and NIR GAN modules using a pre-trained

VGG-16 [21] network. It involves extracting the high-level

features (ReLU3-3 layer) of VGG-16 for both the real input

image and the reconstructed output of the U-Net generator.

The perceptual loss calculates the L1 distance between the

features of real and reconstructed images to guide the gen-

erators GV IS and GNIR. The perceptual loss for the VIS

GAN network is defined as:

LPV IS
=

1

CpWpHp

Cp
∑

c=1

Wp
∑

w=1

Hp
∑

h=1
∥

∥V (GV IS(z|x
i
V IS))

c,w,h − V (yiV IS)
c,w,h

∥

∥

2

2
,

(16)

where V (.) is used to denote a particular layer of the VGG-

16 and Cp, Wp, and Hp denote the layer dimensions.

Likewise the perceptual loss for the NIR GAN network

is:

LPNIR
=

1

CpWpHp

Cp
∑

c=1

Wp
∑

w=1

Hp
∑

h=1
∥

∥

∥
V (GNIR(z|x

j
NIR))

c,w,h − V (yjNIR)
c,w,h

∥

∥

∥

2

2
.

(17)

The total perceptual loss function is given by:

LP =
1

N2

N
∑

i=1

N
∑

j=1

(LPV IS
+ LPNIR

). (18)

5.4. Overall Objective Function

We sum up all the loss functions defined above to calcu-

late the overall objective function for our proposed method:
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Ltot = Lcpl + λ1LGAN + λ2LP + λ3L2, (19)

where Lcpl is the coupling loss, LGAN is the total genera-

tive adversarial loss, LP is the total perceptual loss, and L2

is the total reconstruction error. Variables λ1, λ2, and λ3 are

the hyper-parameters used as a weight factor to numerically

balance the magnitude of the different loss terms.

6. Experiments

In this section, we first describe the datasets and the

training details to show the implementation of our method.

To show the efficiency of our method for the task of iris

recognition in cross domain, we compare its performance

with other existing cross-spectral iris recognition methods.

6.1. Experimental Details

Datasets: We conduct the experiments using the PolyU

Bi-spectral database. The PolyU Bi-Spectral database

[14, 23] (see Figure 1) contains iris images of 209 subjects

obtained simultaneously in both the VIS and NIR wave-

lengths. The data for each subject consists of 15 different

instances of right-eye images and left-eye images for both

VIS and NIR spectrum. Therefore, the total number of im-

ages in this dataset is 12,540 with a resolution of 640× 480
pixels. For the experiment, we split the dataset into train-

ing and testing sets. We choose the images of the last 168

of the identities as the training set and all the images of the

remaining identities as the testing set.

Implementation Details: We have implemented our Cp-

GAN architecture using the U-Net architecture as the gener-

ator module. We follow the typical CNN architecture for the

implementation of both encoder and decoder sections of the

U-Net model. The encoder section is designed by applying

two 3 × 3 convolutions, each followed by a rectified linear

unit (ReLU). For downsampling, it uses 2× 2 max pooling

operation with stride 2. We double the number of feature

channels at each downsampling step. Similarly, each step

in the decoder section upscales the feature map by applying

a 2 × 2 transpose convolution convolution (“deconvolution

that is similar to upconvolution”) and halves the number of

feature channels. After upsampling the dimension of the

feature map, each feature map is concatenated with the cor-

responding feature map from the encoder, followed by two

3× 3 convolutions with a ReLU activation function.

The proposed framework has been implemented in Py-

torch. We trained the network with a batch size of 16 and a

learning rate of 0.0002. We used the Adam optimizer [11]

with a first-order momentum of 0.5, and a second-order mo-

mentum of 0.999. We have used the Leaky ReLU as the ac-

tivation function with a slope of 0.35 for the discriminator.

For the network convergence, we set 1 for λ1, and 0.3 for

both λ2, and λ3.

For training, genuine/impostor pairs are created from the

VIS and NIR iris images of the same/different subjects.

During the experiments, we ensure that the training set is

balanced by using the same number of genuine and impos-

tor pairs.

7. Evaluation on PolyU Bi-Spectral Database

We have evaluated our proposed method on the PolyU

Bi-Spectral benchmark iris dataset. The PolyU Bi-Spectral

iris dataset contains co-registered eye images in VIS as well

as NIR spectrum. We conduct several experiments to show

the efficacy of our proposed scheme. In all experiments,

each probe image of the test set is matched against a gallery

of images which are in a different domain (e.g., VIS or

NIR). As a consequence, we obtain genuine and imposter

scores, which guide calculation of the essential recognition

performance parameters, such as genuine acceptance rate

(GAR), false acceptance rate (FAR), and equal error rate

(EER). In addition, we plot receiver operating characteris-

tics (ROC) curves to analyze the GAR with respect to FAR.

We have studied the following cases for cross-spectral iris

matching:

(a) Matching High Resolution VIS iris images against a

gallery of High Resolution NIR iris images

In this experiment, we train our network with the un-

rolled high resolution (64 × 512) VIS and NIR iris im-

ages such that the VIS and NIR generators are trained to

obtain domain invariant features in a common embedding

subspace.

Our purpose is to use the trained network for match-

ing high resolution (HR) VIS iris images against a gallery

of high resolution (HR) NIR iris images, which were un-

seen by the network during the training. We evaluate

the performance of this network on the PolyU Bi-Spectral

dataset. To show the comparative performances, we con-

sider other state-of-the-art deep learning approaches (Wang

et al. [23, 24], and Oktiana et al. [16]), which apply differ-

ent types of feature extraction techniques. In addition, we

have plotted ROC curves comparing our proposed approach

with the baseline algorithms already mentioned above. The

results are summarized in Table I.

From Fig. 3 and Table I, we observe that our proposed

CpGAN framework performs much better than the other

baseline (Wang et al. [23,24] and Oktiana et al. [16]) match-

ing algorithms. In this setting, our method achieves 1.67%

more identification accuracy with 4.37% decrease in EER

compared to the most recent cross-spectral iris recognition

method [23]. Additionally, it outperforms the method de-

scribed in [16, 24] by a significant decrease of 0.67% and

16.01% in EER, respectively. This significant improvement

clearly indicates that the usage of a CpGAN framework for

projecting the VIS and NIR iris images into the latent em-
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