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Depletion forces in athermally sheared mixtures of frictionless disks and rods in two dimensions
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We carry out numerical simulations to study the behavior of an athermal mixture of frictionless circular disks

and elongated rods in two dimensions, under three different types of global linear deformation at a finite strain
rate: (i) simple shearing, (ii) pure shearing, and (iii) isotropic compression. We find that the fluctuations induced
by such deformations lead to depletion forces that cause rods to group in parallel oriented clusters for the cases
of simple and pure shear, but not for isotropic compression. For simple shearing, we find that as the fraction of

rods increases, this clustering increases, leading to an increase in the average rate of rotation of the rods, and a

decrease in the magnitude of their nematic ordering.
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I. INTRODUCTION

Entropic excluded volume forces are known to play a
key role in systems of elongated, aspherical particles. For
hard rods in thermal equilibrium, Onsager [1] explained the
isotropic to nematic phase transition by such effects. As the
particle packing increases, aligned particles have a smaller
excluded volume. While this reduces the rotational entropy,
it causes an even greater increase in the translational entropy,
causing the system to transition to an orientationally ordered
phase. A similar effect, known as the depletion force, was
proposed by Oosawa and Asakura [2] to describe the effective
attraction between large particles in a colloid of smaller parti-
cles [3]. Depletion forces are observed not only in thermally
equilibrated systems, but also in athermal but vibrated dry
granular systems, in particular mixtures of spheres and rods
[4,5]. Depletion forces are usually argued to be the basis for
the “Brazil nut effect” [6-8] in which, upon shaking, large
particles rise to the top of a size-polydisperse mixture of
athermal hard particles.

Here we ask whether depletion forces can arise in strictly
athermal granular systems undergoing a uniform linear de-
formation. When local fluctuations in the granular system
arise solely from such global linear deformations, with no
additional vibrations or mechanical agitation, can these fluctu-
ations still drive the entropic effects that give rise to depletion
forces?

Some of our previous work gives reason for doubt. For
size-bidisperse but shape-monodisperse systems of either only
circular disks or only elongated rods, where the ratio of big
to small particle lengths is a modest 1.4, we have found
the following. Isotropic compression of athermal rods, un-
like thermally equilibrated rods, gives no nematic ordering as
the packing increases [9]. Bidisperse circular disks [10] and
bidisperse rods [11] show no size segregation in steady-state
simple shear; indeed, shearing tends to mix different particle
sizes when starting from initial configurations that are more
ordered. However, here we will give evidence that depletion
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forces do arise when mixtures of elongated rods and circular
disks in a suspending host medium are subjected to uniform,
steady-state, simple, or pure shearing.

II. MODEL

Here we consider a two-dimensional (2D) athermal
system of N total particles, of which a fraction f are
size-monodisperse rods, while the remaining 1 — f are size-
bidisperse circular disks. We take equal numbers of big and
small disks with diameter ratio D,/Ds; = 1.4. For rods we
use elongated 2D spherocylinders, composed of a rectangle
of axis length L caped by semicircular endcaps of diameter
Dy, as shown in Fig. 1. The asphericity of the spherocylin-
ders is « = L/D,, = 4, giving a tip-to-tip length of L + D), =
5Dy. We use N = 2048 and consider systems with N;oq = 1,
64, 128, 256, and 512 rods, corresponding to fractions f =
0.00049, 0.031 25, 0.0625, 0.125, and 0.25. A more geomet-
ric measure of the density of the rods is the ratio of the packing
fraction of the rods ¢;.q to the total packing fraction ¢ of all
particles. With the packing fraction of the rods,

¢r0d = Nrod Arod/-Atot ’ ( 1 )

where A, is the area of a rod and A, is the total area of the
system, and the packing fraction of the disks,

bid
Gaisk = (N = Not) 5 (057 + 0.7)D}/ Aw, 2)
the total packing fraction is
® = Prod + Puisk 3)
and so
¢rod 1
= ~. 4)
1-f\ (0.747D?
¢ 1+ (F) ()

Our cases for the above fractions f then correspond to
@roa/® = 0.00392, 0.206, 0.350, 0.536, and 0.729.
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FIG. 1. Spherocylinder of axis length L, width Dy, and aspheric-
ity « = L/D,, centered at position r; and oriented at angle 6;.

The forces on our particles are twofold: elastic contact
forces when particles come into contact with each other, and
dissipative drag forces with respect to a suspending medium.
For the elastic contact interaction between particles, we use
a one-sided harmonic potential as detailed in Ref. [12]. A
spherocylinder i that is in contact with a spherocylinder j feels
a force

R} = (ke/di)(1 = 7ij /diji. ®)

Here r;; is the shortest distance between the axes of the two
spherocylinders, d;; = (D; 4+ D;)/2 is the average of the two
spherocylinder widths, and f;; is the unit vector pointing
normally inward to spherocylinder i at the point of contact
with spherocylinder j. Two particles are in contact whenever
rij < d;j. The stiffness of the repulsion is k.. For contacts
between a spherocylinder and a disk, or between two disks,
we simply use the same Eq. (5), where the disk is regarded as
a spherocylinder with axis length L = 0.

We model energy dissipation as a viscous drag between the
particles and a suspending background host medium [12,13].
If ¥; is the center-of-mass velocity of particle i, and 6; its an-
gular velocity about the center of mass, then the local particle
velocity at position r on particle 7 is

vi(r) =1 4+ 60,2 x (r —r;). (6)

As a simplified model, we take the drag force to act ev-
erywhere over the area of the particle, with a force density
proportional to the difference between the local velocity of the
particle and the local velocity of the host medium, Vi (1),

fl.dis(l‘) = —kg[vi(r) — Vhost(r)]. ™)

Integrating over the area of the particle then gives the total
dissipative force on particle i,

Fi® = / d*r (). (8)

We are inteyested in the case of linear deformations, for which
Vhost () = I' - 1, where T is a constant strain rate tensor. In this
case, integrating over ér; = r — r;, one gets simply

F?is = —de[[i’i - Vhost(ri)]v (9)

where A; is the area of particle i.

The elastic and dissipative forces give rise to elastic and
dissipative torques on the particles. The elastic torque on
particle i due to contact with particle j is

rf]l =s;; X Ff]l, (10)

where s;; is the moment arm from the center of mass of i to
the point of contact with j. Since Ffj‘ is always normal to the

surface, for circular disks s;; and Ff} are always parallel and
so the elastic torque always vanishes. For the spherocylinders,
however, s;; and Ffjl are generally not parallel and so there can
be a finite rfjl

The dissipative torque is given by integrating the force
density moment over the area of the particle,

s = /dzr(r —1;) x f5(r). (11)
1

We will be interested in three different types of linear defor-

mation at constant strain rate y: (i) simple shear with flow in

the X direction; (ii) pure shear, with compression along § and

expansion along X, both at the same rate; and (iii) isotropic

compression. For these cases, the host velocity is

@ Vhost(r) = )%, (12)
(i) Vhost(r) = y[xX — y§1/2, 13)
(iil)  Vhost(r) = —yr. (14)

Using these in Egs. (7) and (11) then gives for the dissipative
torque on particle i,

i =k ALLO; + 7 £(6)]2, (15)
where [12,13]
G f(O)=1[1—(AIL/I})cos20]/2, (16)
(i)  f(0) = (AL/I)[sin20]/2, (17)
(i) f(@@)=0. (18)

Here [; is the sum of the two eigenvalues of the normalized
moment of inertia tensor of particle i, while A/; is the absolute
value of their difference; in computing /; and Al;, we assume
a uniform mass density distributed over the area of the particle
and normalize by the total mass of the particle [12].

Finally, we assume overdamped equations of motion for
both the translational and rotational degrees of freedom. With
the total elastic force and torque on particle i given by

=)E A =3 (19)
J J

where the sum is over all particles j in contact with particle i,

we have
Fois 4 Fd =0, o 4=, (20)

which gives for the translational and rotational equations of
motion,

F
T = Vhost (T7) + m, (21)
R el
b, = —y f(6; i 2
yf( )+de[Ii (22)

Note that for the circular disks we have tiel =0and AL, =
0. Under simple shearing the disks will rotate with a constant
angular velocity 6; = —y /2. Under pure shearing or isotropic
compression, the disks do not rotate, and 6; = 0.

In contrast, under simple shearing the rods will in gen-
eral rotate clockwise with a nonuniform angular velocity that
varies according to the function f(6) and the elastic torques
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¢! due to collisions. Under pure shear the rods relax to ori-
entations on average aligned with the minimal stress direction
%, while under isotropic compression the rotation of rods is
governed purely by the elastic torques tf!. Further details of
the rotational motion of rods in our model can be found in
Refs. [9,13].

For our simulations we take as the unit of length D =
1, the unit of energy k. =1, and the unit of time f) =
D*kyAs/k, = 1, where A; is the area of a small disk. For
simplicity we choose the viscous drag k,; to vary with par-
ticle size so that k;A; = 1 is the same for all particles. We
integrate using the Heun method with step size At /fy = 0.02.
See [9,12-14] for further details. We start our simulations
from an initial configuration in which particles are placed at
random positions and rods have random orientations, however
care is taken so that no two rods have axes that intersect, as
that would correspond to the unphysical situation of one rod
penetrating through another.

III. RESULTS: SIMPLE SHEAR

A. Depletion forces

We first present our results for the case (i) of simple shear-
ing, which is the main focus of this work. We shear at the fixed
rate y = 107, using Lees-Edwards boundary conditions to
impose the shear strain [15]. In Fig. 2 we show snapshots of
typical configurations in the sheared steady state of a system
with N;oq = 64 rods. Figure 2(a) shows a configuration at
the packing ¢ = 0.60, well below the jamming transition;
Fig. 2(b) shows a denser configuration at ¢ = 0.85, close
to jamming. In both cases one sees several pairs, and larger
clusters, of rods in side-to-side contact, suggesting the action
of depletion forces. We also see examples where two parallel
rods are separated by a single row of disks, as was previ-
ously observed in experiments on vibrated mixtures of rods
and spheres [5]. Animations of these configurations, which

FIG. 2. Snapshots of configurations in the sheared steady-state
of N,,a = 64 spherocylinders in a sea of 1984 size bidisperse disks
at packing (a) ¢ =0.60 and (b) ¢ = 0.85. Reddish (light gray)
hues are used for spherocylinders, while bluish (dark gray) hues
are for circular disks; in each case, the different hues are used to
help distinguish the individual particles, but they have no further
significance. Systems are sheared at the rate ¥ = 10>, Animations
of these configurations are available in the Supplemental Material
[14].

show their evolution upon shearing from the initial random
configuration, are included in our Supplemental Material [14].
As seen in these animations, the clusters of rods in side-to-side
contact are not static; they form, then separate under shearing,
then new clusters are formed.

To characterize the behavior of our system more quantita-
tively, we first compute the stress tensor p and the resulting
pressure, p = [pyc + pyy]1/2; the corresponding shear stress is
Oxy = —Pxy. The stress tensor p is comprised of two pieces,
one due to the elastic forces and one due to the dissipative
forces [12]. The elastic part is

N

1

pl=—r—> % = YsieFL 23
XY= J

where s;; is the moment arm from the center of mass of
particle i to the point of contact with particle j, and the sum is
over all particles j in contact with i. The dissipative part is

N

YoEh b= / d’r (r — 1) @ £ (r),

i=1

dis 1
L.L,

(24)

where f35(r) is the dissipative force density of Eq. (7) and the
integral is over the area of the particle. Further details may be
found in Refs. [12,13]. For most of our parameters, except at
fairly low ¢, we find that the dissipative contribution p%i* is
negligible compared to the elastic contribution p°!.

In Fig. 3(a) we plot the pressure p versus the net shear
strain y = yt, as the system is sheared at a packing ¢ = 0.60,
well below jamming. We show results for systems with N;oq =
64, 128, 256, and 512 rods. Because we start in a random
initial configuration with many unphysically large particle
overlaps, p is initially large. As we begin to shear, the system
quickly relaxes these overlaps to small values, pushing the
particles away from each other. The configurations obtained
just after this initial quench are ones in which particles are
evenly distributed throughout the system, so as to avoid large
overlaps, but otherwise without any spatial correlations. As
the system is further sheared, the pressure continues to relax,
but now more slowly. Over a strain of y &~ 10 the particles
evolve into configurations representative of the sheared steady
state, after which the pressure stays constant, aside from small
fluctuations.

In Fig. 3(b) we show the pressure p at the larger pack-
ing ¢ = 0.85. The behavior is qualitatively the same as in
Fig. 3(a), except now one sees a much larger value of p,
as well as a large variation in the final steady-state values
of p as the number (and so the density) of rods N, varies.
This is because of the proximity of the larger ¢ = 0.85 to the
systems’ jamming transition. A system of only size-bidisperse
disks has ¢50) = 0.8433 [16], while a system of only size-
monodisperse spherocylinders of @ = 4 has ¢}4) ~ 0.92[11].
Our mixtures of disks and rods therefore have jamming transi-
tions ¢, that vary between these two limits, with ¢; increasing
as N,oq increases. Since p diverges as 6¢ = ¢, — ¢ vanishes,
the mixtures at ¢ = 0.85 with smaller N,.q are closer to their
system ¢; than are the mixtures with larger N;oq4, and so they
have a larger p. The variation of ¢, with N;,g is much less
significant for the pressure at packings well below ¢,, hence
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FIG. 3. For systems of N,,qg = 64-512 spherocylindrical rods in
a sea of size-bidisperse circular disks with N = 2048 total parti-
cles, sheared at the strain rate y = 107> from initial configurations
in which particles are placed at random and rods are placed with
random orientations: (a) pressure p, (c) fraction of contacts on a
spherocylinder that are side-to-side with another spherocylinder,
Zsde/Zrod, and (e) magnitude of the nematic order parameter S, vs
net strain y = yt, for packing ¢ = 0.60. Similarly, (b) pressure p,
(d) fraction Zgge/Zoa, and (f) S, vs y, for ¢ = 0.85. Aside from
the first two points, each data point represents an average of the
instantaneous values over a strain window Ay = 1, so as to reduce
fluctuations. The horizontal dashed lines represent the average values
in the steady state, obtained by averaging over the last half of the run
from y = 50 to 100. The vertical dashed lines at y = 10 indicate
roughly the strain over which the system relaxes to the steady state.
In (b) the value of N,,q increases as the curves go from top to bottom;
in (¢) and (d) N,y increases as the curves go from bottom to top.

a comparatively much smaller variation in the steady-state
values of p is seen Fig. 3(a).

As a measure of the parallel clustering of rods, we de-
fine the ratio Zge/Ziod, Where Zyq is the average number
of contacts a rod has with any other particle, and Zgq. is
the average number of side-to-side contacts that a given rod
has with other rods. A side-to-side contact is when two rods
make contact along their respective flat sides [9]. In Figs. 3(c)
and 3(d) we plot, for ¢ = 0.60 and 0.85, respectively, the
corresponding value of Zgge /Z:oq vVersus y. Not surprisingly,
we see that Zgqe/Z:oq increases as Nyog increases; the higher
the density of rods, the greater the probability for there
to be side-to-side contacts between them. More interesting,

however, is the dependence of Zgge/Zioq On the shear strain
y for fixed Nyoq. As y increases, Zgge /Zroa first takes a sharp
drop, from the value of the random initial configuration to a
small value characteristic of the configuration in which the
initial large overlaps have relaxed, particles are more evenly
spread throughout the system, but no correlations have yet
been introduced by the shearing. Then, as the shearing contin-
ues, Zsde /Zrod increases significantly, saturating to a constant
value in the steady state after a strain of roughly y =~ 10, the
same strain needed to relax the pressure to steady state. The
strong correlation between the behavior of p and Zgige /Zi0q 18
simple to understand. The clustering of rods with side-to-side
contacts allows a more efficient packing of the system and
thus a decrease in the system pressure. Thus shearing acts to
introduce a clustering among the rods, signaling the presence
of depletion forces.

Finally, we consider the orientational ordering of the rods.
It is well known that elongated particles in an athermal
shear flow show nematic orientational ordering [13,17-26]. To
quantify the orientational ordering, we measure the magnitude
S, and orientation 8, of the nematic order parameter. In two
dimensions, the magnitude S, and orientation 6,, of the m-fold
orientational order parameter can be written as [27]

2 2
1 1
S, = ﬁZcosti + ﬁZsiani . (25

1 1
tan mo,, = ~ Z sin mo; v Z cosmb; |.  (26)

For the instantaneous values of S, and 6,, in a given configu-
ration, the above sums are over all the N’ noncircular particles
in that configuration. For the ensemble average of S,, and 6,,,
the terms [- - - ] in the above should be taken as averages over
all configurations in the ensemble. Here we are interested in
the nematic orientational order, m = 2.

In Figs. 3(e) and 3(f) we plot, for ¢ = 0.60 and 0.85,
respectively, the magnitude of nematic ordering S, versus y.
We see that, similar to the behavior of p, S, rises rapidly from
the value S, = 0 of the random initial state, starts to plateau,
but only reaches its steady-state value after the strain y =~ 10.
One might think that the clustering of rods, as measured by
the increased values of Zgge /Z:o4, 1 Simply a consequence of
the orientational ordering of the rods as the system is sheared.

Comparing Figs. 3(c) and 3(d) with Figs. 3(e) and 3(f),
one might tend to think that it is the orientational ordering
of the rods in the shear flow that is the mechanism leading
to the increase in side-to-side contacts between the rods, as
the system is strained. As the rods align orientations, it seems
reasonable to think that side-to-side contacts become more
frequent; hence the increase in Zgge/Zioq as we go from the
initial disordered configuration with randomly oriented rods
(and so S> = 0) to the steady-state configurations with aligned
rods (and so S, & 1). To show that this is not so, we have also
considered shearing from initial configurations constructed as
follows: rods are placed uniformly throughout the system with
orientations 6; sampling the distribution P(#) found in the
sheared steady state; disks are placed at random. Thus, in such
initial configurations, the nematic ordering S, is the same as
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FIG. 4. For sheared systems from initial configurations in which
rods are placed uniformly with orientations sampled from the distri-
bution P () found in steady state, and disks are placed randomly:
(a) fraction of contacts on a spherocylinder that are side-to-side with
another spherocylinder, Zgq. /Z:0q, and (c¢) magnitude of the nematic
order parameter S,, vs net strain y = ypt, for packing ¢ = 0.60.
Similarly, (b) fraction Zge /Z04, and (d) S, vs y, for ¢ = 0.85. Aside
from the first two points, each data point represents an average of the
instantaneous values over a strain window Ay = 1, so as to reduce
fluctuations. The horizontal dashed lines represent the average values
in the steady state. Results are shown for N,,¢ = 64-512 spherocylin-
drical rods in a system with N = 2048 total particles, sheared at the
strain rate ¥ = 107°. In (a) and (b) the value of N, increases as the
curves go from bottom to top.

found in steady state, but there are few side-to-side contacts
between rods.

In Fig. 4 we show the resulting behavior of Zgq4. /Z;oq and
S as the system is strained from such an initial configuration.
We show results at the packings ¢ = 0.60 and 0.85. We see
in Figs. 4(c) and 4(d) that S, remains relatively constant as
the system is sheared. In Figs. 4(a) and 4(b), however, we
see that Zqe /Z:0q behaves similarly to what is seen in Fig. 3.
As the system is strained, we find that Zgg./Zoq rises from
a small value, after the quenching of overlaps in the initial
configuration, to the larger value characteristic of the same
steady state found in Fig. 3. Thus an increase in the number
of side-to-side rod contacts is found even when the rods start
from an orientationally ordered, but spatially uniform, initial
configuration. Orientation ordering is therefore not the mech-
anism for the increase in side-to-side contacts.

As another means of understanding the mechanism for the
formation of side-to-side contacts of rods, we consider the
behavior of our system as a function of the packing fraction
of only the rods, ¢y, of Eq. (1), rather than the total packing
fraction of rods and disk, ¢ of Eq. (3). We consider here
the average number of side-to-side contacts Zgq. that a given
rod has with other rods, after the system has been strained
sufficiently to reach the steady state. Considering a system at
a fixed total packing ¢, varying the number of rods N;oq in that

1'0 T T T T T
08 E+¢:¢r0d —~—$=0.70 Pdisk = O — Prod
©r—$=040 ——¢=0.80 1
[-5-$=0.50 ——¢=0.85
éo'ﬁ [——$=0.60 1
N 04[ ]
02 | %E ]
000 .. Toe— ‘

03, 04 05 06 07
rod

FIG. 5. Average number of side-to-side contacts Zgq. that a given
rod has with other rods in simple sheared steady state at y = 1073,
vs packing fraction of rods ¢..q, for systems of different fixed total
packing ¢. Also shown is a system of only rods, ¢,a = ¢. As the
curves go from bottom to top, ¢ increases as indicated. We see that
at fixed ¢roq, Zsige Increases as ¢ increases, and hence as the density
of disks, ¢gisx = ¢ — Proq increases.

system is equivalent to varying ¢.q. In this way, in Fig. 5 we
plot Zggqe versus ¢ for systems of different total packing ¢.
For comparison we also show Zq. for a system of only rods,
i.e., orod = @, at comparable rod packing densities. Sitting at a
fixed value of ¢,.q as the total ¢ increases, the different curves
in Fig. 5 represent systems in which the packing ¢g;s of disks
is increasing. We see clearly that as the packing fraction of
disks increases at fixed ¢;0q, the number Zgq. of side-to-side
contacts between rods increases. Thus it is the presence of
the disks that facilitates the side-to-side contacts between the
rods, supporting our claim that depletion forces lead to an
effective attraction between the rods.

B. Rheology

It is now interesting to examine the effect that adding rods
to a packing of disks has on the rheology of the system.
In Figs. 6(a) and 6(b) we plot the steady-state pressure p
and shear viscosity n = o,,/y versus packing ¢ for a fixed
strain rate = 107>, We show results for N,oq = 1, 64, 128,
256, and 512. For comparison, we also show results for a
system composed entirely of N = 2048 spherocylinders; in
this case, we take a size-bidisperse distribution to avoid spatial
ordering. As ¢ increases, the dependence on N,,q noticeably
increases. This is due to the dependence of the jamming ¢;
of the mixture on the density of rods, as discussed earlier
in connection with Fig. 3(b); we expect that ¢; must vary
from ¢50) = 0.8433 at a vanishingly low density of rods, to
¢}4) ~ 0.92 as the system becomes mostly rods. Thus, at a
fixed large packing ¢ > ¢>(0) , we see that the shear viscosity n
decreases as more rods are added to the system. In Fig. 6(c) we
show the macroscopic friction i = o, /p versus ¢. In contrast
to n, for fixed ¢ 2 ¢}O> we find that u generally increases
as N;oq increases. In experiments, one often creates packings
under the condition of constant pressure rather than constant
volume. In Fig. 6(d) we therefore show the shear viscosity n
versus N,oq at three different fixed values of pressure p that put
the system close to jamming [see the horizontal dotted lines in
Fig. 6(a)]. In each case, n decreases slightly as N,oq increases.
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FIG. 6. For N, = 1, 64, 128, 256, 512, and 2048 spherocylin-
drical rods in a system with N = 2048 total particles: steady-state
values of (a) pressure p, (b) shear viscosity n =o,,/y, and
(c) macroscopic friction i = o, /p vs packing ¢; (d) n vs N,oq at the
three different values of constant pressure p indicated by the horizon-
tal dotted lines in (a). For the case N,,q = 2048, where all particles
are rods, we use a size-bidisperse distribution of rods. The vertical
dashed lines indicate the jamming transition of size-bidisperse disks,

;0) = 0.8433. Error bars are smaller than the symbol size. In (a) and
(b), for ¢ > ¢(0), the value of N,y increases as the curves go from
top to bottom.

Note, for the situation in which both p and y are held constant,
n = ox,/y and u = oy,/p are proportional.

Finally we examine the rotational motion and orientational
ordering of the rods in the simple shear flow. As discussed
in Sec. II, rods will experience torques from the elastic and
dissipative forces that act on them, and the dissipative torque
in particular will depend on the orientation of the rod, as given
by Eq. (15). Thus rods will rotate nonuniformly, and exhibit a
finite nematic orientational ordering [13,17-26]. So it is inter-
esting to see how such behavior is modified when the rods are
immersed in a background sea of disks. In Figs. 7(a) and 7(b)
we plot the steady-state average angular velocity scaled by the
strain rate —(6;)/y and the steady-state magnitude S, of the
ensemble-averaged nematic order parameter versus the total
packing fraction ¢ for the different values of N;og = 1-512. In
computing these quantities, we average only over the Nyoq =
fN rods, since the circular disks experience no collisional
elastic torques and thus they rotate uniformly and do not order.
For comparison, we show the same quantities for a system of
only N = 2048 size-bidisperse, @ = 4, spherocylinders.

We see in Figs. 7(a) and 7(b) that the behavior of the
mixture of rods and disks is qualitatively similar to that of only
rods [13]. The angular velocity —(6;)/y is nonmonotonic,
decreasing to a minimum and then increasing as ¢ increases.
The magnitude of the nematic order parameter S5 is similarly
nonmonotonic, increasing to a maximum and then decreasing
as ¢ increases. For the entire range of ¢ we see that as Nyoq

Nrod -
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N=2048

——64 —512 %
128 —2048 | (b) ]

0.4 0.5 0.6 1) 0.7 0.8 0.9

— = N
S »n O

0, (degrees)

S W

0.05 W 1
0.00 ‘ ‘ ‘ L (d)
0.4 0.5 0.6

¢ 0.7 0.8 0.9

FIG. 7. (a) Average angular velocity —(éi) /v, (b) magnitude
of the nematic order parameter S,, (c) orientation of the nematic
order parameter 6,, and (d) contact ratio Zgq./Zoa VS packing ¢,
for mixtures of size-bidisperse circular disks and size-monodisperse
elongated rods (i.e., spherocylinders of o =4). The system has
N = 2048 total particles, and N,oq = 1, 64, 128, 256, 512 rods. For
comparison, results are also shown for a system of only N = 2048
size-bidisperse spherocylinders. The strain rate is y = 107>, The ver-
tical dashed lines indicate the jamming transition of size-bidisperse
disks, q)}o) = 0.8433. In (a) and (d) the value of N,y increases as the
curves go from bottom to top; while in (b), and for ¢ > gb}o) in (c),
N;oq increases as the curves go from top to bottom.

decreases, —(9,-) /y decreases, while S, increases; the fewer
the rods, the more slowly they rotate and the more orienta-
tionally ordered they are. For the case of only a single rod,
Nioa = 1, we see that —(9,-) /v = 0 within the estimated errors
and S is close to unity. This indicates that, for the range of ¢

shown, the angular motion of an isolated rod consists only of
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small angular deflections about a fixed direction. An isolated
rod in a sea of sheared disks ceases to rotate, except at very
low packings.

We believe that the dependence of —(0;)/y and S, on the
number of rods N, is closely related to the depletion forces
that cause the rods to form parallel oriented clusters. For a
rod of length £ = (1 + «)D; in a dense packing to rotate, it
is necessary to have a local packing fluctuation on the length
scale ¢, so that sufficient free volume opens up to allow the
rod to rotate. Rods that are in parallel side-to-side contact
have more local free volume than rods in isolation; that is
the origin of the depletion force. The sliding of one rod over
another is a relatively low energy fluctuation that facilitates
packing fluctuations on the length scale £, and so facilitates
rod rotation. In contrast, a rod in isolation from other rods
is surrounded by disks; the motion of any one disk creates a
packing fluctuation on the length scale D, and it would thus
take a correlated motion of several disks to create sufficient
free volume to allow the rod to rotate. Such correlated spatial
motion is rare, and consequently we find that for a system
with only a single isolated rod, the rod ceases to rotate on the
strain scale y & 100 of our simulations. But as the fraction of
rods N;oq/N increases, the clustering of rods as measured by
Zside /Zroa increases (see Fig. 3), and hence the rate of rotation,
—(6;)/v, increases. The increasing rate of rotation then leads
to a decrease in the magnitude of the nematic ordering S, [13].

In Fig. 7(c) we plot the steady-state ensemble-averaged
value of the orientational angle 6, of the nematic order param-
eter. It is interesting that, in the dense region near jamming, as
Nioa decreases the orientation angle 6, increases, indicating
a closer alignment of the rod with the direction of minimal
stress, O_ = 45°. Finally, in Fig. 7(d) we show the steady-
state average value for the rod clustering parameter Zgqe /Z:od
versus ¢ for systems with N,,q = 64, 128, 256, and 512 rods.
We see that Zgge/Zoq, for fixed N4, varies relatively little
over the entire range of ¢.

IV. RESULTS: PURE SHEAR

Here we present our results for the mixture of rods and
disks in the case (ii) of pure shearing, defined by Eq. (13).
The system is compressed in the § direction, while expanded
at the same rate in the X direction, so that the system area
remains constant. As we have shown earlier in Ref. [13], under
pure shearing the orientation of rod-shaped particles relaxes to
the direction of minimal stress 6, = 0; there is no continuous
rotation of particles as occurs under simple shearing.

Unlike simple shearing, where the Lees-Edwards boundary
conditions allow us to shear to arbitrarily large total strains y,
in pure shearing one compresses in one direction (here the §
direction) so the system will shrink to too narrow a height if
one strains to too large y. It is thus not always possible to
shear long enough to reach the steady state with finite system
sizes [13]. We consider here mixtures with N,,q = 128 and
512 rods and N = 2048 total particles. To allow for a larger
total strain, we start with a system of aspect ratio L, /L, = 12,
and shear until we reach L,/L, = 12. This allows us to reach
a maximum total strain of ym., = 21n 12 &~ 4.97. Our results
are for a shear rate y = 107> and are averaged over four
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FIG. 8. For systems of N,oq = 128 and 512 rods of « =4 in a
sea of size-bidisperse circular disks with N = 2048 total particles,
undergoing pure shearing at a strain rate y = 107>: (a) pressure p,
(c) fraction of contacts on a spherocylinder that are side-to-side with
another spherocylinder, Zgq. /Z:0a, and (e) magnitude of the nematic
order parameter S, vs net strain y = yt, for packing ¢ = 0.60.
Similarly, (b) pressure p, (d) fraction Zqe/Z:oqa, and (f) S, vs y for
¢ = 0.85. Each data point, except for the few smallest, represents
an average of the instantaneous values over a strain window of
Ay = 0.2, so as to reduce fluctuations.

independent runs starting from four different random initial
configurations.

In Figs. 8(a) and 8(b) we plot the pressure p versus the
net shear strain y = ypt at the packings ¢ = 0.60, well below
jamming, and at ¢ = 0.85, slightly above jamming. Except for
the few smallest y points, the data points here (and similarly
for the other panels of Fig. 8) represent an average of the
instantaneous values over a strain window of Ay = 0.2. Since
we can only shear to the relatively small y,.x & 5, we see that
our systems have not quite reached the steady state; the pres-
sure p continues to change gradually, rather than plateauing to
a constant, at the largest ymax. In Figs. 8(c) and 8(d) we plot
the rod clustering parameter Zgqe /Zoq versus y for ¢ = 0.60
and 0.85, respectively. Although we have not quite reached
the steady state, as the system is strained we see that Zgge /Zrod
clearly increases from the small value obtained immediately
after the quench from the random initial configuration, thus
indicating the presence of depletion forces. As for the simple
shearing shown in Fig. 3, we see that Zgq. /Zoq increases as
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FIG. 9. For systems of N spherocylindrical rods of o« =4 in
a sea of size-bidisperse circular disks with N = 2048 total parti-
cles, undergoing pure shearing at a strain rate y = 107>: fraction
of contacts on a spherocylinder that are side-to-side with another
spherocylinder, Zgq4./Z;0q, VS Det strain y = ypt, at several different
packings ¢ = 0.60-0.85, for (a) N,oq = 128 and (b) N,a = 512.
Each data point, except for the few smallest, represents an average
of the instantaneous values over a strain window of Ay = 0.2, so as
to reduce fluctuations.

Nioq increases, though for the smaller ¢ = 0.60 the values of
Zside /Zroa seem smaller than those found for simple shearing.
In Figs. 8(e) and 8(f) we plot the magnitude of the nematic
order parameter S, versus y for ¢ = 0.60 and 0.85, respec-
tively. As for the simple shearing in Fig. 3, we see that the
pure shearing orients the rod, causing S> to grow and saturate
as the system approaches the steady state.

In Figs. 9(a) and 9(b) we plot the clustering parameter
Zside /Zroa Versus y for Nyog = 128 and 512, respectively. Here
we show results for a range of different packings ¢. Com-
paring the large y values of Zgg./Zoa seen here with the
steady-state values found in simple shear, shown in Fig. 7(d),
it seems that Zg4. /Zoq varies more with the packing ¢ in pure
shear as compared to simple shear.

Finally, although we have not quite reached the steady
state, the plots of S, in Figs. 8(e) and 8(f) suggest that S, at
the largest y is not far from its steady-state value. For a rough
estimate of that steady-state value, we therefore compute as
follows. We first compute the ensemble average of S, for each
individual run, averaging only over configurations in the strain
window 4 < y < 5, at the end of the run. We then average
the resulting values of S, over the four different independent
runs (for Noq = 1 we use eight independent runs), and we
estimate the statistical error from the variance of those values.
The resulting S, is plotted versus ¢ in Fig. 10. We show
results for Ny, = 1, 128, and 512. As was found for simple
shear in Fig. 7(b), we find that S, decreases as N;oq increases.
We thus conclude that depletion forces are present in a pure
sheared system, though at some packings they may be smaller
than we have found in simple shearing. Animations of pure
shearing with different N,,q are available as Supplemental
Material [14].

V. RESULTS: ISOTROPIC COMPRESSION

Finally we consider the behavior of the mixture of rods
and disks in the case (iii) of isotropic compression, defined by
Eq. (14). Our results here are for a compression rate of y =
10~% and represent an average over eight independent runs
starting from different random initial configurations. At each

1.00 = ‘ : :

. 4\&
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| 0.85 Nrod
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0.80 [ ——128 ]
—=-512
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FIG. 10. For systems of N,o,q = 1, 128, and 512 spherocylindrical
rods of « =4 in a sea of size-bidisperse circular disks with N =
2048 total particles, undergoing pure shearing at a strain rate y =
10~°: magnitude of the nematic order parameter S, averaged over
the range 4 < y < 5 at the end of the run, approximating the value
in the steady state, vs packing ¢. As the value of N, increases, the
curves go from top to bottom.

compression step of strain increment Ay = y At, the packing
fraction increases by A¢/¢ = 2Ay. We will therefore plot
our results versus ¢ rather than y. We start our compression
runs from a random initial configuration at the dilute packing
Ginit = 0.25.

In Fig. 11(a) we plot the pressure p versus ¢ for systems
with the different values of N,.4. The vertical dashed lines
indicate the compression-driven jamming packings of systems
of only bidisperse circular disks, (/)}O) = 0.8417 [28], and only

bidisperse o = 4 spherocylinders [9], ¢54) ~ (.866. Note that
these values of ¢; for compression-driven jamming are lower
than those for simple shear-driven jamming; this is particu-
larly so for the case of spherocylinders, due to the nematic
ordering that occurs for spherocylinders under shear [13] but
not under compression [9]. We see that, unlike the behavior of
p in simple shear, as shown in Fig. 6(a), there is relatively
little dependence of p on N,q. The small dependence that
exists shows p to increase as N;oq increases below ¢(O), but
p to decrease as N;oq increases above ¢}0).

The weak dependence of p on N;og we believe is due to the
absence of orientational ordering of the compressed rods, as
we have shown previously to be the case for a system of only
size-bidisperse rods [9]. It is the ordering of the rods under
shear that allows the system to pack more efficiently and to re-
lax the pressure; this process is absent in compression. We ar-
gue for the absence of orientational ordering of the rods as fol-
lows. If the rods had completely random orientations, a finite
number of rods would still possess some small finite nematic
ordering as a statistical fluctuation. However, we would ex-
pect the magnitude of that nematic ordering to scale with the
number of rods as S ~ 1/4/N;od, and so vanish in the infinite
system limit. In Fig. 11(b) we therefore plot v/N;,qS> versus ¢
for systems with N;oq = 64, 128, 256, and 512 rods. Error bars
are determined from the variance of values found in the eight
independent compression runs. We see that \/N;oqS> is, within
the estimated errors, independent of N,,q. We thus conclude
that the rods show no nematic ordering under compression.

Finally, we consider the rod clustering parameter Zgge /Zrod,
which is plotted versus ¢ in Fig. 11(c). For Nyq < 256 we
see that Zq. /Z:0q barely changes as the system is compressed
and ¢ increases. For N;,q = 512, however, we see a steady
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FIG. 11. For systems of N,o,q = 64, 128, 256, and 512 sphero-
cylindrical rods of &« = 4 in a sea of size-bidisperse circular disks
with N = 2048 total particles, sheared at a strain rate of y = 107%:
(a) pressure p, (b) magnitude of the nematic order parameter S,
scaled by +/Nq, and (c) rod clustering parameter Zgqe /Zroq VS pack-
ing ¢. In (a) the vertical dashed lines indicate the jamming packings
of systems of only bidisperse circular disks, (I)}O) = 0.8417, and only
bidisperse o = 4 spherocylinders, ¢§4) ~ 0.866. In (c) solid black
circles represent values obtained from relaxing a random configu-
ration with Ny,q = 512 at each ¢ without compression. For clarity,
in each panel symbols are shown only on a subset of data points.
In (a) error bars are typically smaller than the data point symbol;
in (b) and (c) representative error bars are shown on a subset of the
data points. (d) Snapshot of a configuration of N, = 256 rods at
the densest packing ¢ = 0.92. In (c) the value of N,y increases as
the curves go from bottom to top.

increase in Zgqe /Zroa With increasing ¢, although the values
of Zgde/Zioa found remain small compared to those found
in shearing. To determine if this increase in Zgge/Zioq iS
due to the development of depletion forces as the system is
compressed, or whether it is just an effect of the increasing
density of particles, we do the following. At each value of ¢ =
0.5,0.6,...,0.90 we create a random initial configuration
with N;oq = 512 rods in the same manner that we do for sim-
ple shearing. We then relax the energy of that configuration by
simulating the equations of motion Egs. (21) and (22), only
setting vpost = O so there is no compression. This relaxation
reduces the unphysically large particle overlaps of the initial
random configuration, spreading the particles more evenly
throughout the system, but without inducing any correlations
that might be created by compression. The values of Zggq /Z;0q
so obtained are shown as the solid black circles in Fig. 11(c).
We see that these values roughly approximate (indeed they
are slightly larger than) the values obtained by compression
of the initial dilute configuration. We thus conclude that the
increasing Zgge /Zrod found for Nyoq = 512 is simply an effect
of the increasing density of particles. Indeed, the values of
Zside /Zroa found here for compression are comparable to the
values found in Fig. 3 for simple shearing if one looks just

after the rapid quench of the large overlaps in the initial
random state, but before the increase in Zgqe/Zoq that re-
sults from the shearing. We conclude that no depletion forces
develop from athermal isotropic compression of mixtures of
rods and disks. Finally, in Fig. 11(d) we show a snapshot of a
configuration of N;,q = 256 rods, compressed above jamming
to the packing ¢ = 0.92. Visual inspection is consistent with
our result that there is no nematic ordering of the rods, and
little tendency for them to group into parallel clusters. Ani-
mations of compressions with different N;oq are available in
the Supplemental Material [14].

VI. DISCUSSION

We have presented results for the behavior of athermal
mixtures of frictionless circular disks and moderately elon-
gated rods in two dimensions, undergoing three different types
of linear elastic deformations at a fixed small strain rate: (i)
simple shearing, (ii) pure shearing, and (iii) isotropic com-
pression. We have looked for evidence for depletion forces
acting between the rods, as measured by the number of side-
to-side contacts between rods that develop as the system
approaches steady state. We find that such depletion forces
do appear under both simple and pure shearing, but not under
isotropic compression.

For simple shearing we have explicitly shown that the side-
to-side contacts are not simply a manifestation of the nematic
ordering that the rods undergo when sheared, but rather they
depend directly on the presence of the disks in which the rods
are immersed. As the density of disks increases at fixed rod
packing ¢4, the number of side-to-side contacts between the
rods increases (see Fig. 5). For simple shearing we have also
shown the following. For systems held at constant pressure,
the viscosity of the mixture decreases slightly as the fraction
of rods increases [see Fig. 6(d)]. As the fraction of rods de-
creases, the average angular velocity of the rods decreases,
while the magnitude of the nematic ordering increases (see
Fig. 7). A single isolated rod in a sea of disks ceases to rotate
at all, except at very low packings.

In a recent experimental work [29], it was observed that
the addition of elongated rod-shaped particles to a quasi-2D
granular system of glass beads increased the rate of discharge
of the beads in hopper flow. As the number of rods initially
increased, the rate of discharge increased. It was argued that
the mechanism for this increasing discharge rate is the rotation
of the rods near the surface layer that causes a secondary flow
of the glass beads and a significant increase in the thickness of
the flowing layer. While our simulations are spatially uniform
and have no surface layer, our observation that increasing the
fraction of rods increases the clustering of rods, which then
results in a decrease in the shear viscosity at constant pressure
[see Fig. 6(d)] as well as an increase in the average rate of rod
rotation, may play some role in this effect.
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