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Critical scaling of compression-driven jamming of athermal frictionless spheres in suspension
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We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspen-
sion, in two and three dimensions. Compressing the system isotropically at a fixed rate ϵ̇, we investigate the
critical behavior at the jamming transition. The finite compression rate introduces a control timescale, which
allows one to probe the critical timescale associated with jamming. As was found previously for steady-state
shear-driven jamming, we find for compression-driven jamming that pressure obeys a critical scaling relation as
a function of packing fraction φ and compression rate ϵ̇, and that the bulk viscosity p/ϵ̇ diverges upon jamming.
A scaling analysis determines the critical exponents associated with the compression-driven jamming transition.
Our results suggest that stress-isotropic, compression-driven jamming may be in the same universality class as
stress-anisotropic, shear-driven jamming.
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Athermal granular and related soft matter materials, such
as non-Brownian suspensions, emulsions, and foams, all un-
dergo a phase transition from a liquidlike state to a rigid
disordered state as the packing fraction φ of the granular
particles increases. This is the jamming transition [1,2]. Here
we focus on the behavior of frictionless particles, where jam-
ming is like a continuous phase transition with respect to
the behavior of the stress. Early studies of jamming focused
on what we will call stress-isotropic jamming: mechanically
stable jammed configurations are generated by isotropically
compressing the system, or by energy quenching random ini-
tial configurations at fixed φ [2–6]. At low φ, particles avoid
each other and the pressure p vanishes. At a critical φJ , a
system-spanning rigid cluster forms and the pressure becomes
finite, while the shear stress σ remains zero. Later studies
investigated shear-driven jamming [7–16], where the system
is uniformly sheared at a fixed strain rate γ̇ . For systems
with a Newtonian rheology, such as particles in suspension,
the system flows at low φ and small γ̇ with a shear stress
σ ∝ γ̇ . Thus, for γ̇ → 0, the viscosity η = σ/γ̇ remains fi-
nite. However, above a critical φJ , the system develops a
nonzero yield stress σ0(φ) = limγ̇→0 σ > 0 leading to a di-
verging viscosity. Because of this finite σ , we will refer to
this as stress-anisotropic jamming. Given the different sym-
metry of anisotropic shear-driven jamming versus isotropic
compression-driven jamming, it is natural to wonder if they
belong to the same critical universality class, i.e., if the critical
exponents describing singular behaviors are the same for any
given dimensionality of the system. For equilibrium critical
points, different symmetries often imply different universality
classes [17].

In this work, we consider this question by investigating the
dynamical behavior of the unjammed state below φJ in order
to probe the diverging timescale associated with jamming.
In particular, we numerically compute the bulk viscos-
ity ζ = p/ϵ̇ of frictionless, overdamped, soft-core particles,

isotropically compressed at finite compression rates ϵ̇. Al-
though isotropic compression causes the packing φ to steadily
increase, and thus it does not produce a steady-state ensemble
as does simple shearing, we nevertheless can compute ζ by
averaging results over several different independent compres-
sion runs. Below jamming we find that ζ has a well-defined
limit as ϵ̇ → 0, which diverges as φ → φJ . We demonstrate
that a simple critical scaling ansatz, found previously to apply
for shear-driven jamming [8,9], also applies to compression-
driven jamming, thus uniting these two different thrusts of
jamming research and providing a framework in which to
numerically address the question of a common universality
class. Our scaling analysis strongly suggests that the critical
exponents of compression-driven jamming in two dimensions
(2D) are the same as previously found for shear-driven jam-
ming; the situation in three dimensions (3D) remains less
clear.

Prior Works. Numerical works in 3D [18,19] have ar-
gued for a common universality for athermal isotropic and
anisotropic jamming by looking at static “shear-jammed”
configurations of soft-core spheres, obtained by applying a
static shear strain to unjammed isotropic configurations, and
increasing the shear strain until jamming occurs. The same
scalings of pressure and contact number were obtained as
were previously found in isotropic jamming [2]. Similar con-
clusions for thermalized hard-core spheres have been found
in infinite-dimensional mean-field calculations [20] and in 3D
simulations [19]. These works are concerned with the struc-
tural properties of static, mechanically stable configurations at
or above jamming, and they do not probe the dynamics asso-
ciated with a diverging timescale as one approaches jamming
from below.

However, a connection between structural and dynamic
properties was proposed in [21,22] using a marginal-stability
analysis. If ηp = p/γ̇ is the pressure analog of shear viscos-
ity in a shear-driven steady state, then [21,22] argued that
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the exponent β, which characterizes the divergence of ηp as
jamming is approached from below, is determined by the
exponent θ that describes the distribution of small contact
forces between particles in configurations exactly at jamming.
In other works [23,24], this viscosity ηp was found to scale
proportional to the decay time τ for a sheared configuration
to relax to zero energy after the driving strain is turned off.
Recently, a direct calculation [25] of τ from the dynamical
matrix of jammed configurations was found to give the same
relationship between τ and θ as in [21,22].

If these marginal-stability arguments are correct (see [26]
for further discussion), and if the exponent θ has the same
value in stress-isotropic jammed configurations as in stress-
anisotropic jammed configurations, it could imply a common
universality for dynamic behavior. Such a common value for
θ was found for thermalized hard spheres at jamming in
[19,20]. However, it remains unclear whether the properties of
the thermally equilibrated, mechanically stable, shear-jammed
states of [19,20] are necessarily the same as in the athermal,
nonequilibrium, steady state of shear-driven jamming.

Experimental support for the critical scaling of shear-
driven flow curves in 3D has been found in both non-
Brownian suspensions [27,28] and emulsions [29–31]. How-
ever, the critical exponents β ≈ 1.7-2 found in these works are
significantly smaller than that given by the above theoretical
prediction, β = 2.83 [26], possibly because the data used in
these experiments span too wide a range of packing φ. We
are unaware of any similar experimental investigations for the
divergence of relaxation times or bulk viscosity in athermal
compression-driven systems.

Recently, numerical simulations have been used to inves-
tigate dynamic behavior below the jamming φJ . As a direct
probe of diverging timescales upon approaching jamming
from below, Ikeda et al. [32] measured the decay time τ as 3D
configurations relax to zero energy according to overdamped
equations of motion. For both stress-isotropic random initial
configurations, and for stress-anisotropic initial configurations
sampled from steady-state shearing, they found τ to collapse
to a common curve, with a common divergence as φ → φJ ,
thus suggesting the same critical universality. However, a
more recent work [33] by several of the same authors of [32]
questions these results. While the predictions of [21,22,25],
relating the divergence of τ to the force exponent θ , appear to
hold for small system sizes, once the number of particles N in
the system is sufficiently large, they found that τ ∼ lnN for
φ < φJ ; thus τ would seem to have no proper thermodynamic
limit. It is therefore important to reexamine this question
numerically, using a method alternative to τ , to probe the
timescale associated with jamming as φ → φJ from below.

To do so, we consider here isotropic compression at a
finite rate ϵ̇ [34] of soft-core, overdamped athermal spheres,
as in a non-Brownian suspension, in both 2D and 3D. The
finite rate ϵ̇ introduces a control time by which one can
probe the timescale associated with jamming. Measuring the
bulk viscosity ζ = p/ϵ̇, we find no finite-size effect, as was
claimed for τ in [33]. Considering soft spheres allows us to
measure not only how ζ diverges below φJ , but also how p
behaves above φJ . We can then compare these results against
previous simulations of the viscosity ηp in the shear-driven
steady-state.

Model. Our model consists of bidisperse, frictionless
soft-core spheres, with equal numbers of big and small
spheres with diameter ratio db/ds = 1.4 [2]. For particles
with center-of-mass positions ri, and ri j = |ri − r j |, two par-
ticles interact with a one-sided harmonic contact potential,
U (ri j ) = 1

2ke(1 − ri j/di j )2, whenever their separation ri j <
di j = (di + dj )/2. The elastic force on i, due to contact with
j, is thus feli j = −dU (ri j )/dri, and the total elastic force on i is
feli =

∑
j f

el
i j , where the sum is over all j in contact with i. Par-

ticles also experience a dissipative drag force fdisi with respect
to a suspending host medium. We take fdisi = −kdVi[vi −
vhost (ri )], whereVi is the volume of particle i, and vi = dri/dt .
For uniform compression we define the local velocity of the
host medium as vhost (r) = −ϵ̇r. This simple model has been
widely used for sheared suspensions [7,8,10,15,21,22,35–40].
Particles obey the equation of motion,mi[dvi/dt] = feli + fdisi ,
where mi is the mass of particle i, which we take proportional
to its volume Vi.

To simulate our model, we use dimensionless units of
length, energy, and time so that ds = 1, ke = 1, and t0 =
(D/2)kdVsd2

s /ke = 1, where D = 2, 3 is the dimensionality
of the system. We define the quality factor Q ≡ τd/τe =√
mske/kdVsds as the ratio of the dissipative time τd =

ms/(kdVs) and the elastic time τe =
√
msd2

s /ke [41]. Note,
t0 = (D/2)τe/Q. We set the mass of the small particles ms
so that Q = 0.01 in 2D and 0.0225 in 3D, which puts our
system in the strongly overdamped limit Q < 1 where p is
independent of Q [41]. We use LAMMPS [42] to integrate
the equations of motion, using a time step of *t/t0 = 0.01.
Our system consists of N particles in a cubic (square) box
of length L. We compress by decreasing the box length at a
fixed strain rate, dL/dt = −ϵ̇L, while the particles are acted
on by the compressing host medium via fdisi . This results in an
increasing packing fraction φ = N (Vs +Vb)/(2LD). We take
periodic boundary conditions in all directions. Compressing
our system at rates from ϵ̇ = 10−5 down to 10−8.5, we measure
the pressure p of the elastic forces from the stress tensor
L−D ∑

i< j f
el
i j ⊗ (ri − r j ) as a function of the packing φ. To

check for finite-size effects, we compare systems with N =
16 384 and 32 768 particles, averaging over 10 independent
random initial configurations for each size. Further details of
our compression protocol can be found in our Supplemental
Material [26].

Results. In Fig. 1 we plot our results for pressure p and
bulk viscosity ζ = p/ϵ̇ in both 2D and 3D. No finite-size
effect is observed in our data (see Supplemental Material [26]
for details). Our results are qualitatively similar to results
seen for pressure and shear viscosity in shear-driven jamming
[8,9]. From the trends observed as ϵ̇ decreases, our results
suggest the following limiting behavior as ϵ̇ → 0: below φJ ,
p vanishes while ζ approaches a constant; above φJ , p stays
finite while ζ diverges. As φ → φJ from above, p vanishes
continuously; as φ → φJ from below, ζ diverges continu-
ously, demonstrating the existence of a diverging timescale in
compression-driven jamming. This is our first key result.

To confirm the above behavior, we posit that pressure obeys
a critical scaling equation of the same form found in shear-
driven jamming [7–10,38],

p = ϵ̇q f (δφ/ϵ̇1/zν ), δφ ≡ φ − φJ , (1)
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FIG. 1. (a) Pressure p and (b) bulk viscosity ζ = p/ϵ̇ vs packing
φ, for different compression rates ϵ̇ in two dimensions, and (c) p
and (d) ζ in three dimensions. The vertical dashed lines locate the
jamming φJ . Results for N = 16 384 particles are shown as open
symbols, while results for N = 32 768 are solid symbols. No depen-
dence on N is observed. Error bars are roughly the size of the data
symbols.

where f (x) is an unknown scaling function. Since we observe
that ζ = p/ϵ̇ approaches a finite limit as ϵ̇ → 0 below φJ ,
Eq. (1) implies that f (x → −∞) ∼ |x|−(1−q)zν , so that for
φ < φJ ,

lim
ϵ̇→0

ζ ∼ |φ − φJ |−β, β = (1 − q)zν. (2)

Above φJ , we observe that p approaches a finite limit as ϵ̇ →
0, so Eq. (1) implies that f (x → +∞) ∼ xqzν , so that for φ <
φJ ,

lim
ϵ̇→0

p ∼ (φ − φJ )y, y = qzν. (3)

Note, the exponent β is expected to be independent of the
specific form of the elastic contact potential since it describes
behavior in the ϵ̇ → 0 hard-core limit [10]; the exponent y,
however, is sensitive to the power-law of the contact potential
[2,10]. A review of scaling in the context of shear-driven
jamming may be found in [9].

Since we find no size dependence in our data, we average
the results from our N = 16 384 and 32 768 systems together,
so as to improve our statistics. Expanding the log of the scal-
ing function as a fifth-order polynomial, ln f (x) =

∑5
n=0 cnx

n,
we fit our data to Eq. (1), regarding φJ , q, 1/zν, and the cn as
free fitting parameters.

The scaling form (1) holds only asymptotically close to
the critical point, i.e., φ → φJ , ϵ̇ → 0. To test that our fits
are stable and self-consistent, we fit to Eq. (1) using different
windows of data, with φ ∈ [φmin,φmax] and ϵ̇ ! ϵ̇max, to see
how our fitted parameters vary as we shrink the data window
closer to the critical point. Since our polynomial expansion for

FIG. 2. Critical scaling parameters (a) φJ , (b) β, (c) y, and (d) the
χ 2/nf of the fits, vs the upper limit of compression rate ϵ̇max used
in the fit, for three different ranges of φ ∈ [φmin,φmax]. Each panel
shows results for both 2D and 3D systems. We use the jackknife
method to compute the estimated errors and bias-corrected averages
of the fit parameters. The data symbols in all panels follow the legend
shown in (a); open symbols and dotted lines are for 2D, solid symbols
and solid lines are for 3D. Note in (a) that the scale for φJ in 2D is
on the left, while the scale for φJ in 3D is on the right.

the scaling function f (x) should be good only for small x, we
also restrict the data used in the fit to satisfy |x| ! 1.

In Fig. 2 we show the results from such fits, comparing
2D and 3D systems. In Fig. 2(a) we show the jamming φJ ,
in Fig. 2(b) the exponent β, in Fig. 2(c) the exponent y, and
in Fig. 2(d) the χ2/n f of the fit, where n f is the number of
degrees of freedom of the fit. All quantities are plotted versus
ϵ̇max for three different ranges of [φmin,φmax]. We use the
jackknife method to estimate errors (one standard deviation
statistical error) and bias-corrected averages of these parame-
ters. We see that the fitted parameters remain constant, within
the estimated errors, as ϵ̇max decreases and we vary the range
of φ. This suggests that our fits are stable and self-consistent,
with no need to include corrections-to-scaling in the analysis,
such as has been found to be necessary for simple shearing
[8,9]. The χ2/n f decrease as we narrow the window closer to
the critical point; for our narrowest window in φ the χ2/n f
remain roughly constant at the two smallest ϵ̇max, another in-
dication of the good quality of our fits. It is difficult, however,
to assess the significance of the numerical value of χ2/n f ;
unlike for shearing, where each data point (φ, γ̇ ) represents
an average over a steady-state shearing ensemble that is inde-
pendent of its starting configuration [6], for compression the
configuration at a given (φ, ϵ̇) is in general strongly corre-
lated with the configuration at the previous compression step
(φ − *φ, ϵ̇), and so the estimated errors on the data points are
similarly correlated.

Figure 2 shows that the exponents β and y are different
comparing 2D with 3D, in agreement with recent results for
simple shearing [23]. Thus jamming criticality in 2D seems
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FIG. 3. Scaling collapses showing p/ϵ̇ vs (φ − φJ )/ϵ̇1/zν for
(a) our 2D system and (b) our 3D system. The values of φJ , q, and
1/zν used in making these plots come from our fits for ϵ̇max = 10−6.5

and the narrowest range of [φmin,φmax]. The points within this data
window, which are used to make the fit, are shown as solid symbols;
the points that are not used in the fit are shown as open symbols.
We see a good collapse even for data that lie well outside the data
window used in the fit. The vertical solid line locates the jamming
δφ = 0; the vertical dashed lines denote the additional constraint
|x| ! 1 for data used in the fit.

to be different from that in 3D. This is our second key re-
sult. Taking the fit for the narrowest range [φmin,φmax] and
ϵ̇max = 10−6.5 as representative, we use those parameters to
make a scaling collapse of our data in Fig. 3, plotting p/ϵ̇q

versus (φ − φJ )/ϵ̇1/zν . We see an excellent data collapse,
which extends well outside the data window that was use to
determine the fit parameters. However, when δφ/ϵ̇1/zν ! −2,
we see that the data depart from a common scaling curve at
the larger values of ϵ̇. We believe this is due to the effect
of corrections-to-scaling that become more significant as ϵ̇
increases and one goes further from the critical point.

From the fits of Fig. 3 we find the following critical pa-
rameters. In 2D we have φJ = 0.8415± 0.0003, β = 2.63±
0.09, and y = 1.12± 0.04. We can compare these to the
values found in simple shearing, in which case β is the
exponent associated with the divergence of the pressure ana-
log of the shear viscosity, ηp = p/γ̇ . For shearing of the
same model system as considered here, Ref. [8] gives φJ =
0.8435± 0.0002, β = 2.77± 0.20, and y = 1.08± 0.03,
while Ref. [10] gives φJ = 0.8433± 0.0001, β = 2.58±
0.10, and y = 1.09± 0.01. We thus find that the values of
the exponents β and y, found here for compression-driven
jamming, agree completely, within the estimated errors, with
those found for simple shearing. In 2D, compression-driven
and shear-driven jamming appear to be in the same universal-
ity class. This is our third key result.

Note, our φJ for compression-driven jamming is slightly
lower than that found for shear-driven jamming. It is well
known [4–6] that the value of φJ can depend on the jam-
ming protocol, and that the isotropic jamming φJ found from
rapid quenches of random initial configurations is lower than
that found from shear-driven jamming. We can compare our
φJ for compression-driven jamming with previous values for
isotropic rapid quenches. In [43], O’Hern et al. find φJ =
0.842, while in [44], Våberg et al. find 0.841 77± 0.000 01.
Both agree, within the estimated errors, with our compression-
driven value above.

For our 3D system, we find φJ = 0.6464± 0.0005, β =
3.07± 0.15, and y = 1.22± 0.03. Our value of φJ is a bit
lower than the φJ = 0.648 found for the same model with
the rapid quench protocol [43], and the φJ = 0.6481 found
by Chaudhuri et al. [4] for a more complicated isotropic
compression/decompression protocol that starts at a low φinit;
neither of these works give an estimate for the error in their
values. As in 2D, our 3D compression-driven value of φJ
is slightly lower than values found for simple shearing of
the same model, φJ = 0.6474 in [39] and [40], and φJ =
0.6491± 0.0001 in [23].

Concerning the critical exponents in 3D models of
overdamped sheared suspensions, numerical simulations on
hard-core spheres by Lerner et al. [39] find β = 1/0.34 =
2.94, while a later work of the same group, DeGiuli et al. [21],
finds β = 1/0.36 = 2.8. Simulations on soft-core spheres by
Kawaski et al. [40] find β = 1/0.391 = 2.56. None of these
works discuss the exponent y. More recent work by Olsson
[23], using a scaling analysis that includes corrections-to-
scaling, finds β = 3.8± 0.1 and y = 1.16± 0.01. Olsson has
argued that other works find a smaller value of β because
they do not probe close enough to the critical point. Given the
disagreement among these values of β for 3D simple shear-
ing, our value of β ≈ 3.1 for compression-driven jamming
could be consistent with a common universality class. The
situation remains to be clarified. See our Supplemental Ma-
terial [26] for a comparison of β with the marginal-stability
predictions.

Note, the values of y that we find from compression are
in reasonable agreement with the values found from shearing.
That y > 1 for compression in both 2D and 3D is surprising
since it has generally been believed [2,4] that y = 1 for our
harmonic contact interaction.

The above results were obtained by averaging together
independent runs at constant values of the packing φ. In our
Supplemental Material [26] we repeat our scaling analysis, but
averaging our runs at constant values of the average particle
contact number Z . We find no difference in any of the critical
parameters between these two methods of averaging.

To summarize, we have carried out simulations of
compression-driven jamming in a model of frictionless soft-
core spheres in suspension, in two and three dimensions.
Using the compression rate ϵ̇ as a scaling variable, in addition
to the distance to jamming δφ, we find that the pressure, and
hence the bulk viscosity ζ , obey a critical scaling law (1) of
the same form as found previously for shear-driven jamming.
A diverging ζ demonstrates that compression is characterized
by a finite timescale that diverges as φ → φJ from below.
Unlike the claims in [33] for the relaxation time τ , where
lnN finite-size effects were seen for φ ! 0.83 in 2D systems
of size N " 4096, and for φ ! 0.57 in 3D systems of size
N " 1024, we observe no such finite-size effects in the bulk
viscosity ζ for the entire range of φ and ϵ̇ we have used in
our systems with N = 16 384 and 32 768. Our results indicate
that isotropic, compression-driven jamming in 2D and 3D has
different critical exponents. For 2D our results suggest that
stress-isotropic, compression-driven jamming is in the same
universality class as stress-anisotropic, shear-driven jamming.
For 3D the situation is less clear, but our results could also be
consistent with a common universality class.
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COMPRESSION PROTOCOL

To initiate our simulations, we start with configura-
tions of randomly positioned particles at a small packing
fraction �init. To remove the large unphysical particle
overlaps present in such configurations, we relax them
towards a zero energy state, using our equations of mo-
tion without compression (✏̇ = 0). We then continue the
simulations, compressing at a finite rate ✏̇ as described in
the main text. We find that the pressure p, as one ap-
proaches the jamming �J , is independent of the starting
�init, provided �init was taken su�ciently small.

To verify this, we performed test runs in 2D, starting
with di↵erent values of �init = 0.3 � 0.8, with a small
system size of N = 1024 particles compressed at a fixed
rate ✏̇ = 10�7. In Fig. SM-1(a) we plot the resulting pres-
sure p vs packing �. We see that p(�) does depend on the
value of �init at the early stages of compression. However,
as the system compresses and � increases, the curves for
di↵erent �init approach a common limiting curve. Since,
for our critical scaling analysis, we are only interested in
behavior near jamming, for the 2D simulations described
in the main text we chose �init = 0.4. Fig. SM-1(a) shows
that this is small enough to remove all e↵ects of the spe-
cific value of �init on the values of p for � & 0.8. For our
3D system we chose �init = 0.2. Note, in Fig. SM-1(a)
we also show as the open black squares our results for
the N = 32768 system that was used in the main text.
We see that these agree perfectly with the data from the
smaller N = 1024, indicating that the desired value of
�init does not depend on N .

For the large system sizes N = 16384 and 32768 used
in the main text, starting compression from the above
small �init becomes too time consuming at the slower
compression rates, as one would spend much of the sim-
ulation time in the uninteresting region of low �. To
simulate more e�ciently, we have adopted the following
protocol. For our largest compression rate ✏̇ = 10�5 we
compress from the small �init as described above. For
the next smaller rate, however, we initiate the simula-
tion with a configuration taken from the ✏̇ = 10�5 run
at some larger �0

init > �init. This configuration is then
compressed at the smaller rate ✏̇. Provided �0

init is small
enough to be in the linear rheology regime where p/✏̇ is
independent of ✏̇, we find that the pressure in the initial
configuration taken from the ✏̇ = 10�5 run rapidly drops
to the value appropriate for the smaller rate, and then
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FIG. SM-1. (a) Pressure p vs packing � for a 2D system with
N = 1024 particles, at compression rate ✏̇ = 10�7. The dif-
ferent solid curves represent compression runs starting from
di↵erent �init = 0.3 � 0.8. We see that the value of p(�) be-
comes independent of �init as � increases towards jamming.
The open black squares are results from the N = 32768 sys-
tem used in the main text. We see perfect agreement with
the smaller system size. (b) Pressure p vs packing � for a 2D
system compressed at rates ✏̇ = 10�5�10�8. The solid curves
are for a system with N = 1024 particles, all starting from
random configurations at the common �init = 0.4. The larger
symbols represent data from the N = 16384 system used in
the main text, where compression starts from a larger �0

init

(indicated by the arrows) using a configuration from a run
with a larger ✏̇. We see perfect agreement between the two
data sets. In both panels, results are averaged over 10 inde-
pendent initial configurations. The width of each solid curve
represents the estimated error. Vertical dashed lines locate
the jamming �J .

follows a smooth curve that is independent of the value
of �0

init. We use the same algorithm for each successive
✏̇, initializing the run from the previous larger rate, using
increasing values of �0

init as ✏̇ decreases.
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To validate this protocol, we performed test runs in
2D with N = 1024 particles, compressing with rates ✏̇ =
10�5 � 10�8, all starting from the same �init = 0.4. In
Fig. SM-1(b) we plot (solid lines) the resulting pressure
p vs packing �. On the same plot we indicate with larger
symbols our results from the N = 16384 system used in
the main text, where compression takes place using the
above described protocol. These latter runs are initiated
at larger values of �0

init, varying according to the value
of ✏̇, as indicated by the arrows in the figure. For all ✏̇
we find perfect agreement between these values of p(�)
and those of the smaller system that started from the
common �init.

FINITE SIZE EFFECTS

Since we wish our analysis to be representative of be-
havior in the limit of an infinite sized system, it is im-
portant to demonstrate that our data do not su↵er from
e↵ects due to the finite size of our numerical system. Our
results in Fig. SM-1 clearly show that there are no finite
size e↵ects at small values of �. However we still need to
check that there are no finite size e↵ects near jamming.
Since frictionless jamming is like a continuous phase tran-
sition with respect to the stress, one expects there to be
a correlation length ⇠ that diverges as the critical point
is approached. Once one has ⇠ & L/2, with L the length
of the numerical system, e↵ects of the finite size of the
system will appear. We therefore want to check, for all
our data points (�, ✏̇), that our system is large enough
that they su↵er from no such finite size e↵ects.
Here we have simulated two di↵erent system sizes with

N = 16384 and N = 32768 total particles. We will de-
note the pressure in the first case p16 and in the second
case p32. In Fig. SM-2 we plot the relative di↵erence
in pressure between these two di↵erent sized systems,
�p/p ⌘ 2(p16 � p32)/(p16 + p32), as a function of the
particle packing �, for our three smallest compression
rates ✏̇. In Fig. SM-2(a) we show results for the average
pressure (averaged over our 10 independent compression
runs) for our 2D system; in SM-2(b) we show the cor-
responding results for our 3D system. The error bars
represent one standard deviate of estimated statistical
error. Note, the results for each ✏̇ are displaced verti-
cally an amount 0.5 from the the next smaller ✏̇, so that
one can easily distinguish the di↵erent data sets. One
sees that �p/p fluctuates about zero, and all data points
are within two standard deviations of zero. This indi-
cates that there are no systematic di↵erences between
the two system sizes, and that the finite �p/p is a conse-
quence of statistical fluctuations in our finite sampling.
Not surprisingly, these fluctuations are largest when one
gets close to �J .

To further illustrate that the observed �p/p is due to
statistical fluctuations and is not any systematic e↵ect,
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FIG. SM-2. Relative di↵erence of pressure p16 of a sys-
tem with N = 16384 particles compared to the pressure p32
of a system with N = 32768 particles. We plot �p/p ⌘
2(p16 � p32)/(p16 + p32) vs �, showing results for our three
smallest compression rates ✏̇. Data for di↵erent ✏̇ are displaced
vertically so as to easily distinguish the di↵erent data sets; all
are fluctuating about zero. (a) and (b) show the di↵erence
in the pressure averaged over all 10 independent compression
runs for 2D and 3D systems; (c) and (d) show the di↵erence in
pressure for six di↵erent pairs of individual samples from the
two system sizes. The legend “#16 – #32” indicates which
sample from the smaller system is compared with which sam-
ple from the larger system. The vertical dashed lines indicate
the location of the jamming �J .

in Figs. SM-2(c) and SM-2(d) we plot �p/p for our 2D
and 3D systems, but now computing the pressure di↵er-
ence between individual samples of the two system sizes,
rather than the average over all samples. We show results
for six di↵erent pairs of samples. The data for each ✏̇ is
displaced vertically an amount 1.0 from the next smaller
✏̇, so that one can easily distinguish the di↵erent data
sets. Now we see that the sign of the fluctuation of �p/p
about zero varies randomly from one configuration pair
to another. Moreover, comparing the magnitude of the
fluctuation of �p/p for the individual samples compared
to the average over all samples, the latter is smaller by
roughly the factor 1/

p
Ns (with Ns = 10 the number of

samples) that one would expect from statistical averag-
ing. We thus conclude that any di↵erence we see com-
paring p16 to p32 is a statistical e↵ect of finite sampling,
rather than a systematic finite size e↵ect.
We also note that we see no finite size e↵ect in p, and

hence in ⇣ = p/✏̇, even for the lower values of � . 0.83 in
2D, or � . 0.57 in 3D, where [1] reports finding a logN
dependence of the decay time ⌧ to relax to an unjammed
state for systems of our size. This is further illustrated
in Fig. SM-1(b), where we compared our results for p in
2D for systems with N = 1024 and N = 16384 at lower
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�, and similarly see no finite size e↵ects. Thus, whatever
is the dependence of ⌧ on N , there does not seem to be
any corresponding e↵ect for ⇣.

EXPONENTS FROM THE
MARGINAL-STABILITY ANALYSIS

A key result of the infinite-dimensional mean-field the-
ory of the jamming transition for thermalized hard-core
spheres [2, 3] is that, exactly at �J , the distribution of the
magnitudes of the inter-particle contact forces fij scales
algebraically as fij ! 0, P(fij) ⇠ f✓

ij , and that the ex-
ponent has the value ✓ = 0.423. Numerical simulations
of thermalized and athermal spheres in finite dimensions
d = 2, 3, 4 found values of ✓ consistent with this predic-
tion, provided one excludes contacts that are involved in
only localized excitations of the system [4, 5]. It has been
argued [6–10] that the upper critical dimension for jam-
ming may be d = 2, and so mean-field critical exponents
would apply in all dimensions d > 2.

Using a marginal-stability analysis, the divergence of
the pressure analog of shear viscosity ⌘p = p/�̇ (�̇ is
the shear strain rate) in the driven steady-state of a uni-
formly sheared system has been argued [11, 12] to be gov-
erned by this exponent ✓. In [13] it was shown how ⌘p
is inversely proportional to the isolated smallest eigen-
value �1 of the dynamical matrix of the configuration
exactly at jamming. More recently [14] used a similar
analysis to directly compute �1, and found the same re-
lation to ✓. In [15] it was then numerically found that
the relaxation time, for both an initially random and an
initial sheared configuration to decay to an unjammed
zero-energy configuration below �J , followed the relation
⌧ ⇠ 1/�1. These works thus imply ⌘p ⇠ ⌧ ⇠ 1/�1. The
divergence of these quantities, as jamming is approached
from below, can be stated in terms of the average con-
tact number per particle Z, ⌘p ⇠ ⌧ ⇠ �Z��0

. Here
�Z = Ziso � Z, where Ziso = 2d is the isostatic value
that occurs at jamming, and Z is to be computed in the
hard-core (�̇ ! 0) limit after removing rattler particles.
Rattlers are particles which have unconstrained motion in
at least one degree of freedom. In the marginal-stability
calculations of [11, 12, 14], the exponent �0 is related to
✓ by �0 = (4 + 2✓)/(1 + ✓). Using ✓ = 0.423 one has
�0 = 3.41.

We choose to investigate critical behavior in terms of
the packing fraction � rather than Z, because � is a di-
rectly controlled parameter, and because there is ambi-
guity how to define a rattler for soft-core particles driven
out of equilibrium at finite strain rates ✏̇, such as we con-
sider here (see more in the following section). One needs
to compute the hard-core, rattler free, value of Z in order
to apply the result Z = Ziso at jamming, and so define
�Z. Viewing � as the control parameter, quantities di-
verge in the hard-core limit as ⌘p ⇠ ⌧ ⇠ |��|�� , and in

[11] a prediction is given that � = (8+4✓)/(3+✓) = 2.83.
These two results then imply the relation �Z ⇠ |��|�/�0

with �/�0 = (2 + 2✓)/(3 + ✓) = 0.83, for � ! �J from
below.
The hard-core limit is often defined in terms of an infi-

nite potential for particle overlaps. However, for � < �J ,
where energy relaxed configurations of even soft-core par-
ticles have no overlaps, the hard-core limit can also be
taken as the quasi-static limit for driven systems (�̇ ! 0
for shearing, ✏̇ ! 0 for compressing), or the long-time
limit of energy relaxing processes. Simulations that have
explicitly explored this hard-core limit have reported the
following results. Measuring ⌘p for sheared hard-core
particles, Lerner et al. [13] found in 2D �0 = 2.63 and
� = 2.17, for N = 4096 particles; in 3D they found
�0 = 2.94 and � = 2.63, for N = 2000. Similar simula-
tions by DeGiuli et al. [11] found �0 = 3.33 and � = 2.78
forN = 1000 in 3D. Olsson measured the long time relax-
ation ⌧ of N = 65538 soft-core particles, relaxed to a zero
energy configuration, using initial configurations sampled
from steady-state shearing at a finite shear strain rate �̇;
in 2D he found �0 = 2.69 and � = 2.71 [16], while in 3D
he found �0 = 3.7 and (from analysis of ⌘p rather than ⌧)
� = 3.8 [17]. Most recently, Ikeda and Hukushima [18]
computed a quantity analogous to the bulk viscosity un-
der quasi-static isotropic compression; using a finite-size
scaling analysis for systems with N  4096 they claimed
� = 1.9 in 2D and 2.5 in 3D.
Ikeda et al. [15] measured the long time relaxation

⌧ , as well as explicitly computed the eigenvalue �1 of
the energy relaxed configurations, for N = 3000 particles
in 3D. For both initial random isotropic configurations
and configurations sampled from shearing at a finite �̇,
they found that all their data for �1 vs �Z collapsed to
a common curve with a �0 = 3.2. Nishikawa et al. [1],
however, repeated the calculation of ⌧ for both isotropic
and sheared initial configurations, but for much bigger
system sizes up to N = 262144. For N = 4096 they
found �0 = 2.8 in 2D and �0 = 3.3 in 3D, similar to some
of the previous results. However as N increased they
found the surprising result that, for all � < �J , ⌧ grows
⇠ logN once N is su�ciently large. As one gets closer
to �J , one needs a larger N to see this e↵ect. However
they reported no such logN e↵ect for ⌘p of a sheared
system. As discussed in the previous sections, we see no
such finite size e↵ect in our measurement of pressure p,
and hence the bulk viscosity ⇣ = p/✏̇, of our compressed
system.
These simulations raise several questions concerning

the application of the marginal-stability predictions to
numerical results. Nishikawa et al. [1] question whether
the long time relaxation ⌧ is a well defined quantity, and
they conclude that “the shear viscosity is finite in the
thermodynamic limit, and that it decouples from the re-
laxation time at large N .” Thus viscosity may be more
appropriate to consider than ⌧ . The other simulations,
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using smaller systems which do not see such finite size ef-
fects, nevertheless still report a spread of values for � and
�0. It is hard to assess the accuracy of these results as
the authors (except for Olsson) generally give few details
about the fits that lead to the cited values. As Olsson
has noted [17], the fitted values of � and �0 tend to in-
crease as one restricts the data used in the fitting to be
closer to jamming. Olsson’s analysis, with bigger system
sizes than most others, also gives evidence for � = �0,
in contrast to the prediction of [11] that �/�0 = 0.83.
The conclusion �Z / |��|, implied by � = �0, was pre-
viously reported in simulations by Heussinger and Barat
[19]. If correct, the result � = �0 would raise questions
concerning the prediction of � = 2.83 in [11], or whether
� = �0 reflects a more general breakdown of these theo-
ries in 2D and 3D. These issues thus point to the need for
further, careful, numerical simulations of shear and bulk
viscosity; our current work is done with this motivation.

AVERAGING AT CONSTANT CONTACT
NUMBER Z

In the main text of this paper we have averaged our
independent samples together at constant values of the
system packing �. One may wonder if this is the best
thing to do for the following considerations. For a sim-
ple sheared system, when the system is sheared for a
su�ciently long time, the average over the ensemble of
sheared steady-state configurations becomes independent
of the initial starting configuration [20]. Statistical fluc-
tuations in the data at a given (�, �̇) are thus, in princi-
ple, independent of the fluctuations in the data at other
(�, �̇).
For compression, however, the configuration at a given

step (�, ✏̇) is strongly correlated with the configuration
at the previous step (� � ��, ✏̇). It was found that the
jamming point �Ji, where a configuration first develops
a finite pressure p, can depend on the particular initial
configuration i from which the compression started [21,
22]. For a system with a finite number of particles N ,
there will thus be a spread ��J in these �Ji. This spread
��J ! 0 as N ! 1 [21, 23].
It is not clear if this behavior should a↵ect the criti-

cal scaling analysis carried out in the main text of this
work. We are interested in the �J that characterizes the
ensemble of compression runs, rather than any individual
run. We have found that the average h�Jii is independent
of the initial configurations, if these are taken randomly
at su�ciently small �init. However the width ��J will
be one source of fluctuation in the measured pressure, if
averaging over configurations at constant �. Because of
this, several works [21, 22] have analyzed critical prop-
erties by averaging configurations at constant values of
(�� �Ji), rather than constant �.
Alternatively, one could average configurations at con-
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FIG. SM-3. Relative di↵erence of pressure p16 of a sys-
tem with N = 16384 particles compared to the pressure p32
of a system with N = 32768 particles. We plot �p/p ⌘
2(p16 � p32)/(p16 + p32) vs Z, showing results for our three
smallest compression rates ✏̇. Data for di↵erent ✏̇ are displaced
vertically so as to easily distinguish the di↵erent data sets; all
are fluctuating about zero. (a) and (b) show the di↵erence
in the pressure averaged at constant Z over all 10 indepen-
dent compression runs for 2D and 3D systems; (c) and (d)
show the di↵erence in pressure for six di↵erent pairs of indi-
vidual samples from the two system sizes. The legend “#16 –
#32” indicates which sample from the smaller system is com-
pared with which sample from the larger system. The vertical
dashed lines indicate the location of the jamming ZJ .

stant values of the average number of contacts per parti-
cle Z [11, 13, 16]. Even though di↵erent configurations of
finite size systems may jam at di↵erent �Ji, they all jam
at the same isostatic contact number Ziso = 2d, provided
one has removed rattler particles [21] in the computation
of Z. Here d is the spatial dimensionality of the system.
Thus averaging at constant Z removes the e↵ect of the
variations in �Ji. Because the identification of rattlers
is most easily accomplished for mechanically stable con-
figurations above jamming, and our configurations are
dynamically generated, and so not in mechanical equilib-
rium, and also include configurations below �J , we will
not attempt to remove rattlers but rather we will com-
pute the contact number Z averaged over all particles.
Thus our ZJ at jamming will be slightly smaller than
Ziso. Nevertheless we can expect that averaging at con-
stant Z will still compensate for the variations in �Ji, as
there should on average be a fixed fraction of rattlers at
jamming. In this section we therefore repeat our analysis
of the critical behavior of compression-driven jamming,
but averaging our independent compression runs together
at constant values of Z. In the end we will find no di↵er-
ences in any of the critical parameters from those found
in the main text, where we averaged at constant �.
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FIG. SM-4. Relative statistical errors in measured quantities
for 2D and 3D systems, comparing averaging at constant �
with averaging at constant Z. (a) Relative errors �p/p and
�Z/Z vs � for our 2D system, when averaging at constant
�. (b) Relative errors �p/p and ��/� vs the average h�i for
our 2D system, when averaging at constant Z. Results are
shown for our di↵erent compression rates ✏̇. (c) and (d) show
the corresponding results for our 3D system. Vertical dashed
lines locate the jamming �J .

First we investigate whether there are any finite size
e↵ects in our data, as we did for constant � averaging,
comparing systems of size N = 16384 and N = 32768.
Computing �p/p, now averaging at constant Z, we show
our results in Fig. SM-3. We again see no systematic
finite size e↵ects; the observed �p/p is consistent with
the statistical e↵ect of finite sampling. Comparing with
Fig. SM-2 it appears that these statistical fluctuations
are somewhat smaller when averaging at constant Z as
compared to averaging at constant �, particularly near
jamming. Since we find no evidence for any systematic
finite size e↵ect, in the analysis below we combine our
results from the two system sizes so as to have 20 inde-
pendent samples.

Next we consider the relative statistical errors in the
measured quantities, comparing averaging at constant �
with averaging at constant Z. Since our compression runs
are independent of one another, the estimated statistical
error in pressure �p is related to the standard deviation �p

of the distribution of pressures by �p = �p/
p
Ns, where

Ns = 20 is the number of samples. In Fig. SM-4(a) we
show the relative errors �p/p and �Z/Z vs the packing
� in our 2D system, for the case where we average our
configurations together at constant �. We show results
for our di↵erent compression rates ✏̇. In Fig. SM-4(b)
we similarly show �p/p and ��/� when we average at
constant Z. To make for an easier comparison, we plot
these vs the average packing h�i rather than the fixed Z.
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FIG. SM-5. Critical scaling parameters (a) �J , (b) �, (c) y,
and (d) the �2/nf of the fits, vs the upper limit of compres-
sion rate ✏̇max used in the fit, for three di↵erent ranges of
� 2 [�min,�max]. Each panel shows results for both 2D and
3D systems. We use the jackknife method to compute the
estimated errors and bias-corrected averages of the fit param-
eters. The data symbols in all panels follow the legend shown
in (a); open symbols and dotted lines are for 2D, solid sym-
bols and solid lines are for 3D. The results shown here come
from fits to our data when we have averaged our independent
compression runs at constant values of the average contact
number per particle Z. Note in (a) that the scale for �J in
2D is on the left, while the scale for �J in 3D is on the right.

In Fig. SM-4(c) and SM-4(d) we show the same quantities
for our 3D system.
Not surprisingly, we see that the errors are largest near

jamming. The errors �p/p show a stronger variation with
✏̇, becoming larger as ✏̇ decreases, than do the errors
�Z/Z or ��/�, which are an order of magnitude or more
smaller. Comparing averaging at constant � to averaging
at constant Z, we see that the errors in the latter case
are slightly smaller near �J , as might be expected from
the discussion that introduced this section. Note, how-
ever, that as we go either below or above �J , the errors
when we average at constant Z become slightly larger
than when we average at constant �.
The reduced fluctuations between system sizes near �J

seen in Fig. SM-3, and the reduced errors near �J seen in
Fig. SM-4, when we average at constant Z as compared
to constant �, suggest that averaging at constant Z might
give improved results for our scaling analysis. However
we find that this is not the case. Using our values of
p and �, averaged over the di↵erent compression runs
at constant Z, we fit to the scaling equation (1) of the
main text using the same methods as described there. In
Fig. SM-5 we show our results.
In Fig. SM-5(a) we show the jamming �J , in SM-5(b)

the exponent �, in SM-5(c) the exponent y, and in SM-
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5(d) the �2/nf of the fit, where nf is the number of de-
grees of freedom of the fit. For all quantities we plot our
results vs ✏̇max for three di↵erent ranges of [�min,�max].
Comparing these to Fig. 2 of the main text, no appre-
ciable di↵erence is seen. The fits are stable and self-
consistent as we vary the window of data used in the
fit. Using ✏̇ max = 10�6.5 and the narrowest range of
[�min,�max], we find the following results. In 2D we have,
�J = 0.8415±0.0004, � = 2.62±0.12, and y = 1.13±0.05.
In 3D we have, �J = 0.6464 ± 0.0005, � = 3.08 ± 0.16
and y = 1.22± 0.04. These are exactly the same values,
within the estimated errors, as we found in the main text
when averaging at constant �. Moreover, the estimated
errors found here are roughly the same, and in some cases
a bit bigger, than we found in the main text. We con-
clude that, for our system sizes, there is no advantage
in averaging at constant Z as compared to the simpler
averaging at constant �.
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