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Abstract

In recent years, due to the emergence of deep learning,

face recognition has achieved exceptional success. How-

ever, many of these deep face recognition models perform

relatively poorly in handling profile faces compared to

frontal faces. The major reason for this poor performance

is that it is inherently difficult to learn large pose invariant

deep representations that are useful for profile face recog-

nition. In this paper, we hypothesize that the profile face do-

main possesses a gradual connection with the frontal face

domain in the deep feature space. We look to exploit this

connection by projecting the profile faces and frontal faces

into a common latent space and perform verification or re-

trieval in the latent domain. We leverage a coupled genera-

tive adversarial network (cpGAN) structure to find the hid-

den relationship between the profile and frontal images in

a latent common embedding subspace. Specifically, the cp-

GAN framework consists of two GAN-based sub-networks,

one dedicated to the frontal domain and the other dedi-

cated to the profile domain. Each sub-network tends to find

a projection that maximizes the pair-wise correlation be-

tween two feature domains in a common embedding feature

subspace. The efficacy of our approach compared with the

state-of-the-art is demonstrated using the CFP, CMU Multi-

PIE, IJB-A, and IJB-C datasets.

1. Introduction

Due to the emergence of deep learning, face recogni-

tion has achieved exceptional success in recent years [3].

However, many of these deep face recognition models

perform relatively poorly in handling profile faces com-

pared to frontal faces [36]. In other words, face recog-

nition in the wild, or unconstrained face recognition, is a

challenging problem. Pose, expression, and lighting vari-

ations are considered to be major obstacles in attaining

high unconstrained face recognition performance. Some

methods [3, 27] attempt to address pose-variation issue by
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Figure 1: Frontal and Profile Images from Celebrity in

Frontal Profile (CFP) Dataset.

learning pose-invariant features, while some other meth-

ods [7, 31, 47, 53, 55] try to normalize images (along with

identity-preservation) to a single frontal pose before recog-

nition. However, there are three major difficulties related to

face frontalization or normalization in unconstrained envi-

ronment:

• Complicated face-variations besides pose: In compar-

ison to a controlled environment, there are more com-

plex face variations, e.g., lighting, head pose, expres-

sion, in real-world scenarios. It is difficult to directly

warp the input face to a normalized view [31].

• Unpaired data: Undoubtedly, obtaining a strictly nor-

malized face is expensive and time-consuming, but

getting an effective pair of target normalized face (i.e.,

frontal-facing, neutral expression) and an input face is

difficult due to highly imbalanced datasets [31].

• Presence of artifacts: Synthesized ‘frontal’ faces con-

tain artifacts caused by occlusions and non-rigid ex-

pressions.

In this paper, we hypothesize that the profile face do-

main possesses a gradual connection with the frontal face

domain in a latent deep feature subspace. We aim to exploit

this connection by projecting the profile faces and frontal

faces into a common latent subspace and perform verifica-

tion or retrieval in this latent domain. We propose an em-

bedding model for profile to frontal face verification based

on a deep coupled learning framework which uses a gen-

Authorized licensed use limited to: West Virginia University. Downloaded on April 22,2021 at 00:17:33 UTC from IEEE Xplore.  Restrictions apply. 



erative adversarial network (GAN) to find the hidden rela-

tionship between the profile face features and frontal face

features in a latent common embedding subspace.

Our work is conceptually related to the embedding cate-

gory of super-resolution [19,24,37,56] in that our approach

also performs verification of profile and frontal face in the

latent space but not in the image space. From our experi-

ments, we observe that transforming profile and frontal face

features to a latent embedding subspace could yield higher

performance than image-level face frontalization, which is

susceptible to the negative influence of artifacts as a result

of image synthesis. To our best knowledge, this study is the

first attempt to perform profile-to-frontal face verification in

the latent embedding subspace using generative modeling.

This paper makes the following contributions:

• A novel profile to frontal face recognition model using

coupled GAN framework with multiple loss functions

is developed.

• Comprehensive experiments using different datasets

and a comparison of the proposed method with the

state-of-the-art methods have been performed, indicat-

ing the efficacy of the proposed GAN framework.

• The proposed framework can potentially be used to im-

prove the performance of traditional face recognition

methods by integrating it as a preprocessing procedure

for face-frontalization schema.

2. Related Work

Face recognition using Deep Learning: Before the ad-

vent of deep learning, traditional methods for face recogni-

tion (FR) used one or more layer representations, such as

the histogram of the feature codes, filtering responses, or

distribution of the dictionary atoms [50]. FR research was

concentrated more toward separately improving preprocess-

ing, local descriptors, and feature transformation; however,

overall improvement in FR accuracy was very slow. This

all changed with the advent of deep learning, and now deep

learning is the prominent technique used for FR.

Recently various deep learning models such as [8, 43]

are used as baseline model for FR. Simultaneously, various

loss functions have been explored and used in FR. These

loss functions can be categorized as the Euclidean-distance-

based loss, angular/cosine-margin-based loss, and softmax

loss and its variations. The contrastive loss and the triplet

loss are the commonly used Euclidean-distance-based loss

functions [34,40–42]. For avoiding misclassification of dif-

ficult samples [45, 46], the learned face features need to be

well separated. Angular/cosine-margin based loss [2,10,25]

are commonly used to make the learned features more sep-

arable with a larger angular/cosine distance. Finally, in the

category of softmax loss and its variants for FR [14,26,49],

the softmax loss is modified to improve the FR performance

as in [26], where the cosine distance among data features is

optimized along with normalization of features and weights.

Profile-Frontal Face Recognition: Face recognition

with pose variation in an unconstrained environment is a

very challenging problem. Existing methods focus on the

pose variation problem by training separate models for

learning pose-invariant features [3, 27], elaborate dense 3D

facial landmark detection and warping [44], and synthe-

sizing a frontal, neutral expression face from a single im-

age [7, 31, 47, 53, 55]. For instance, Cao et al. [3] exploit

the inherent mapping between profile and frontal faces, and

transform a deep profile face representation to a canonical

pose by adaptively adding residuals. FF-GAN [55] solves

the problem of large-pose face frontalization in the wild

by incorporating a 3D face model into a GAN. Consider-

ing photorealistic and identity preserving frontal view syn-

thesis, a domain adaptation strategy for pose invariant face

recognition is discussed in [58]. Tran et al. [47] propose a

GAN framework to rotate the face and disentangle the iden-

tity representation by using the pose code. In [31], a face

normalization model (FNM) uses a generative adversarial

network (GAN) network with 3 distinct losses for generat-

ing canonical-view and expression-free frontal images.

3. Generative Adversarial Network

GAN was first introduced by Goodfellow et al. [12] and

has drawn great attention from the deep learning research

community due to its remarkable performance on genera-

tive tasks. The GAN framework is based on two competing

networks — a generator network G and a discriminator net-

work D. The generator G(z; θg) is a differentiable function

which maps the noise variable z from training noise distri-

bution pz(z) to a data space with distribution pdata using

the network parameters θg . On the other hand, the discrim-

inator D(.; θd) is also a differentiable function, which dis-

criminates between the real data y and the generated fake

data G(z) using a binary classification model. Specifically,

the min-max two-player game between the generator and

the discriminator provides a simple and powerful way to

estimate target distribution and generate novel image sam-

ples [31]. The loss function L(D,G) for GAN is given as:

L(D,G) = Ey∼Pdata(y)[logD(y)]

+ Ez∼Pz(z)[log(1−D(G(z)))].
(1)

The objective (two player minimax game) for GAN is as:

min
G

max
D

L(D,G) = min
G

max
D

[Ey∼Pdata(y)[logD(y)]

+ Ez∼Pz(z)[log(1−D(G(z)))]].

(2)

Another variant of GAN is the Conditional GAN, which

was introduced by Mirza and Osindero [29]. In conditional

Authorized licensed use limited to: West Virginia University. Downloaded on April 22,2021 at 00:17:33 UTC from IEEE Xplore.  Restrictions apply. 





Lcont(z1(x
i
PR), z2(x

j
FR), Y ) =

(1− Y )
1

2
(Dz)

2 + (Y )
1

2
(max(0,m−Dz))

2,

(5)

where xi
PR and x

j
FR denote the input profile and frontal

face image, respectively. The variable Y is a binary label,

which is equal to 0 if xi
PR and x

j
FR belong to the same class

(i.e., genuine pair), and equal to 1 if xi
PR and x

j
FR belong

to the different class (i.e., impostor pair). z1(.) and z2(.) de-

note only the encoding functions of the U-Net auto-encoder

to transform xi
PR and x

j
FR, respectively into a common la-

tent embedding subspace. The value m is the contrastive

margin and is used to “tighten” the constraint. Dz denotes

the Euclidean distance between the outputs of the functions

z1(x
i
PR) and z2(x

j
FR).

Dz =
∥

∥

∥
z1(x

i
PR)− z2(x

j
FR)

∥

∥

∥

2
. (6)

Therefore, if Y = 0 (i.e., genuine pair), then the contrastive

loss function (Lcont) is given as:

Lcont(z1(x
i
PR), z2(x

j
FR), Y ) =

1

2

∥

∥

∥
z1(x

i
PR)− z2(x

j
FR)

∥

∥

∥

2

2
,

(7)

and if Y = 1 (i.e., impostor pair), then contrastive loss

function (Lcont) is :
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Thus, the total loss for coupling the profile generator and

the frontal generator is denoted by Lcpl and is given as:

Lcpl =
1

N2

N
∑

i=1

N
∑

j=1

Lcont(z1(x
i
PR), z2(x

j
FR), Y ), (9)

where N is the number of training samples. The contrastive

loss in the above equation can also be replaced by some

other distance-based metric, such as the Euclidean distance.

However, the main aim of using the contrastive loss is to

be able to use the class labels implicitly and find the dis-

criminative embedding subspace, which may not be the

case with some other metric such as the Euclidean distance.

This discriminative embedding subspace would be useful

for matching of the profile images with the frontal images.

4.2. Generative Adversarial Loss

Let the generators (profile generator and frontal gener-

ator) that reconstruct the corresponding profile and frontal

image from the input profile and frontal image, be denoted

as GPR and GFR, respectively. The patch-based discrim-

inators used for the profile and frontal GANs are denoted

as DPR and DFR. For the proposed method, we have used

the conditional GAN, where the generator networks GPR

and GFR are conditioned on input profile and frontal face

images, respectively. We have used the conditional GAN

loss function [29] to train the generators and the correspond-

ing discriminators in order to ensure that the discriminators

cannot distinguish the images reconstructed by the genera-

tors from the corresponding ground truth images. Let LPR

and LFR denote the conditional GAN loss functions for the

profile and the frontal GANs, respectively, where LPR and

LFR are given as:

LPR = FcGAN (DPR, GPR, y
i
PR, x

i
PR), (10)

LFR = FcGAN (DFR, GFR, y
j
FR, x

j
FR), (11)

where function FcGAN is the conditional GAN objective

defined in (4). The term xi
PR denotes the profile image used

as a condition for the profile GAN, and yiPR denotes the real

profile image. Note that the real profile image yiPR and the

network condition given by xi
PR are the same. Similarly,

x
j
FR denotes the frontal image used as a condition for the

frontal GAN and y
j
FR denotes the real frontal image. Again,

the real frontal image y
j
FR and the network condition given

by x
j
FR are the same. The total loss for the coupled condi-

tional GAN is given by:

LGAN = LPR + LFR. (12)

4.3. L2 Reconstruction Loss

We also consider the L2 reconstruction loss for both the

profile GAN and frontal GAN. The L2 reconstruction loss

measures the reconstruction error in terms of the Euclidean

distance between the reconstructed image and the corre-

sponding real image. Let L2PR
denote the reconstruction

loss for the profile GAN and is defined as:

L2PR
=

∥

∥GPR(z|x
i
PR)− yiPR

∥

∥

2

2
, (13)

where yiPR is the ground truth profile image, GPR(z|x
i
PR)

is the output of the profile generator.

Similarly, Let L2FR
denote the reconstruction loss for

the frontal GAN:

L2FR
=

∥

∥

∥
GFR(z|x

j
FR)− y

j
FR

∥

∥

∥

2

2
, (14)

where y
j
FR is the ground truth frontal image, GFR(z|x

j
FR)

is the output of the frontal generator.

The total L2 reconstruction loss function is given by:

L2 =
1

N2

N
∑

i=1

N
∑

j=1

(L2PR
+ L2FR

). (15)
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4.4. Perceptual Loss

In addition to the GAN loss and the reconstruction loss

which are used to guide the generators, we have also used

perceptual loss, which was introduced in [20] for style

transfer and super-resolution. The perceptual loss function

is used to compare high level differences, like content and

style discrepancies, between images. The perceptual loss

function involves comparing two images based on high-

level representations from a pretrained CNN, such as VGG-

16 [39]. The perceptual loss function is a good alternative to

solely using L1 or L2 reconstruction error, as it gives better

and sharper high quality reconstruction images [20].

In our proposed approach, perceptual loss is added to

both the profile and the frontal module using a pre-trained

VGG-16 [39] network. We extract the high-level features

(ReLU3-3 layer) of VGG-16 for both the real input image

and the reconstructed output of the U-Net generator. The

L1 distance between these features of real and reconstructed

images is used to guide the generators GPR and GFR . The

perceptual loss for profile network is defined as:

LPPR
=

1

CpWpHp

Cp
∑

c=1

Wp
∑

w=1

Hp
∑

h=1
∥

∥V (GPR(z|x
i
PR))

c,w,h − V (yiPR)
c,w,h

∥

∥ ,

(16)

where V (.) denotes a particular layer of the VGG-16, where

the layer dimensions are given by Cp, Wp, and Hp.

Likewise the perceptual loss for frontal network is:

LPFR
=

1

CpWpHp

Cp
∑

c=1

Wp
∑

w=1

Hp
∑

h=1
∥

∥

∥
V (GFR(z|x

j
FR))

c,w,h − V (yjFR)
c,w,h

∥

∥

∥
.

(17)

The total perceptual loss function is given by:

LP =
1

N2

N
∑

i=1

N
∑

j=1

(LPPR
+ LPFR

). (18)

4.5. Overall Objective Function

The overall objective function for learning the network

parameters in the proposed method is given as the sum of

all the loss functions defined above:

Ltot = Lcpl + λ1LGAN + λ2LP + λ3L2, (19)

where Lcpl is the coupling loss, LGAN is the total genera-

tive adversarial loss, LP is the total perceptual loss, and L2

is the total reconstruction error. Variables λ1, λ2, and λ3 are

the hyper-parameters to weigh the different loss terms.

5. Experiments

We initially describe our training setup and the datasets

that we have used in our experiments. We show the effi-

ciency of our method for the task of frontal to profile face

verification by comparing its performance with state-of the-

art face verification methods across pose-variation. More-

over, we explore the effect of face yaw in our algorithm.

Finally, we conduct an ablation study to investigate the ef-

fect of each term in our total training loss defined in (19).

5.1. Experimental Details

Datasets: The Celebrities in Frontal-Profile (CFP)

dataset [36] is a mixture of constrained (i.e., carefully col-

lected under different pose, illumination and expression

conditions) and unconstrained (i.e., collected images from

the Internet) settings. CFP includes 500 celebrities, av-

eraging ten frontal and four profile face images per each

celebrity. Following the standard 10-fold protocol [36], we

divide the dataset into 10 folds, each of which consists of

350 same and 350 different pairs generated from 50 sub-

jects (i.e., 7 same and 7 different pairs for each subject).

The CMU Multi-PIE database [13] contains 750,000 im-

ages of 337 subjects. Subjects were imaged from 15 view-

ing angles and 19 illumination conditions while exhibiting

a range of facial expressions. It is the largest database for

graded evaluation with respect to pose, illumination, and ex-

pression variations. For fair comparison, the database set-

ting was made consistent with FNM [31], where 250 sub-

jects from Multi-PIE have been used. The training set and

testing split is consistent with FNM.

The IARPA Janus Benchmark A (IJB-A) [22] is a chal-

lenging dataset collected under complete unconstrained

conditions covering full pose variation (yaw angles −90◦ to

+90◦). IJB-A contains 500 subjects with 5,712 images and

20,414 frames extracted from videos. Following the stan-

dard protocol in [22], we evaluate our method on both ver-

ification and identification. The IARPA Janus Benchmark

B (IJB-B) dataset [51] builds on the IJB-A by adding more

1345 subjects making it a total of 1845 subjects, and a total

of 21,798 still images and 55,026 frames from 7,011 videos.

The IARPA Janus Benchmark C (IJB-C) dataset [28] builds

on IJB-A, and IJB-B datasets and has a total of 31,334 im-

ages for a total number of 3,531 subjects. We have also

evaluated our method on IJB-A and IJB-C datasets.

Implementation Details: We have implemented the U-

Net with ResNet-18 [15] encoder pre-trained on ImageNet.

We have added an additional fully-connected layer after the

average pooling layer for ResNet-18 for our U-Net encoder.

The U-Net decoder has the same number of layers as the

encoder. The entire framework has been implemented in

Pytorch. For convergence, λ1 is set to 1, and λ2, and λ3

are both set to 0.25. We used a batch size of 128 and an

Adam optimizer [21] with first-order momentum of 0.5, and
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Table 1: Performance comparison on CFP dataset. Mean

Accuracy and equal error rate (EER) with standard devia-

tion over 10 folds.

Frontal-Profile Frontal-Frontal

Algorithm Accuracy EER Accuracy EER

HoG+Sub-SML [36] 77.31(1.61) 22.20(1.18) 88.34(1.31) 11.45(1.35)

LBP+Sub-SML [36] 70.02(2.14) 29.60(2.11) 83.54(2.40) 16.00(1.74)

FV+Sub-SML [36] 80.63(2.12) 19.28(1.60) 91.30(0.85) 8.85(0.74)

FV+DML [36] 58.47(3.51) 38.54(1.59) 91.18(1.34) 8.62(1.19)

Deep Features [5] 84.91(1.82) 14.97(1.98) 96.40(0.69) 3.48(0.67)

PR-REM [3] 93.25(2.23) 7.92(0.98) 98.10(2.19) 1.10(0.22)

PF-cpGAN 93.78(2.46) 7.21(0.65) 98.88(1.56) 0.93(0.14)

learning rate of 0.0004. We have used the ReLU activation

function for the generator and Leaky ReLU with a slope of

0.3 for the discriminator.

For training, genuine and impostor pairs were required.

The genuine/impostor pairs are created by frontal and pro-

file images of the same/different subject. During the experi-

ments, we ensure that the training set are balanced by using

the same number of genuine and impostor pairs.

5.2. Evaluation on CFP with Frontal­Profile Setting

We first perform evaluation on the Celebrities in Frontal-

Profile (CFP) dataset [36], a challenging dataset created to

examine the problem of frontal to profile face verification

in the wild. We follow the standard 10-fold protocol [36]

in our evaluation. The same protocol is applied on both the

Frontal-Profile and Frontal-Frontal settings. For fair com-

parison and as given in [36], we consider different types of

feature extraction techniques like HoG [9], LBP [1], and

Fisher Vector [38] along with metric learning techniques

like Sub-SML [4], and Diagonal metric learning (DML) as

reported in [38]. We also compare against deep learning

techniques, including Deep Features [5], and PR-REM [3].

The results are summarized in Table 1.

We can observe from Table 1 that our proposed frame-

work, PF-cpGAN, gives much better performance than the

methods that use standard hand-crafted features of HoG,

LBP, or FV, providing minimum of 13% improvement in

accuracy with a 12% decrease in EER for the profile-frontal

setting. PF-cpGAN also improves on the performance of

the Deep Features by approximately 9% with a 7.5% de-

crease in EER for the profile-frontal setting. Finally, PF-

cpGAN performs on-par with the best deep learning method

of PR-REM, and, in-fact, does slightly better than PR-REM

by ≈ 0.5% improvement in accuracy with a 0.7% decrease

in EER for the profile-frontal setting. This performance im-

provement clearly shows that usage of a GAN framework

for projecting the profile and frontal images in the latent

embedding subspace and maintaining the sematic similarity

in the latent space is better than some other deep learning

techniques such as Deep Features or PR-REM.

Table 2: Performance comparison on IJB-A benchmark.

Results reported are the ’average±standard deviation’ over

the 10 folds specified in the IJB-A protocol. Symbol ’-’

indicates that the metric is not available for that protocol.

Method
Verification Identification

GAR@ FAR= 0.01 GAR@ FAR= 0.001 @ Rank-1 @ Rank-5

OPENBR [23] 23.6± 0.9 10.4± 1.4 24.6± 1.1 37.5± 0.8
GOTS [23] 40.6± 1.4 19.8± 0.8 43.3± 2.1 59.5± 2.0
PAM [27] 73.3± 1.8 55.2± 3.2 77.1± 1.6 88.7± 0.9
DCNN [6] 78.7± 4.3 - 85.2± 1.8 93.7± 1.0

DR-GAN [48] 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1
FF-GAN [54] 85.2± 1.0 66.3± 3.3 90.2± 0.6 95.4± 0.5

FNM [31] 93.4± 0.9 83.8± 2.6 96.0± 0.5 98.6± 0.3
PR-REM [3] 94.4± 0.9 86.8± 1.5 94.6± 1.1 96.8± 1.0
PF-cpGAN 95.8± 0.82 91.2± 1.3 97.6± 1.0 98.8± 0.4

Table 3: Performance comparison on IJB-C benchmark.

Results reported are the ’average±standard deviation’ over

the 10 folds specified in the IJB-C protocol. Symbol ’-’ in-

dicates that the metric is not available for that protocol.

Method
Verification Identification

GAR@ FAR= 0.01 GAR@ FAR= 0.001 @ Rank-1 @ Rank-5

GOTS [28] 62.1± 1.1 36.3± 1.2 38.5± 1.6 53.8± 1.8
FaceNet [35] 82.3± 1.18 66.3± 1.3 70.4± 1.2 78.8± 2.3

VGG-CNN [30] 87.2± 1.09 74.3± 0.9 79.6± 1.04 87.8± 1.3
FNM [31] 91.2± 0.8 80.4± 1.8 84.6± 0.6 93.7± 0.9

PR-REM [3] 92.1± 0.8 83.4± 1.5 83.1± 0.4 92.6± 1.1
PF-cpGAN 93.8± 0.67 86.1± 0.7 88.3± 1.2 94.8± 0.6

5.3. Evaluation on IJB­A and IJB­C

Here, we focus on unconstrained face recognition on

IJB-A dataset to quantify the superiority of our PF-cpGAN

for profile to frontal face recognition. Some of the baselines

for comparison on IJB-A are DR-GAN [47], FNM [31],

PR-REM [3],and FF-GAN [55]. We have also compared

them with other methods as listed in [31] and shown in Ta-

ble 2. As shown in Table 2, we perform better than the

state-of-the-art methods for both verification and identifica-

tion. Specifically, for verification, we improve the genuine

accept rate (GAR) by at least 1.4% compared to other meth-

ods. For instance, at the false accept rate (FAR) of 0.01, the

best previously-used method is PR-REM, with an average

GAR of 94.4%. PF-cpGAN improves upon PR-REM and

gives an average GAR of 95.8% at the same FAR. We also

show improvement on identification. Specifically, the rank-

1 recognition rate shows an improvement of around 1.6% in

comparison to the best state-of-the-art method, FNM [31].

We have also plotted receiver operating characteristic

(ROC) curve and compared with the baselines given above.

The ROC curves for the IJB-A dataset are given in Fig.

3(a). As we can clearly see from the curves, the proposed

PF-cpGAN method improves upon other methods and gives

much better performance, even at a FAR of 0.001.

We have also performed the task of verification and iden-

tification using the IJB-C dataset according to the verifica-

tion and the identification protocol given in the dataset. The
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(b) CMU Multi-PIE
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(c) Ablation Study

Figure 3: ROC curve comparison against the baselines for different datasets is shown in (a) and (b). In (c), we show the ROC

curves showing the importance of different loss functions for ablation study.

Figure 4: Reconstruction of frontal images at the output of the frontal U-Net generator with profile images as input to

the profile U-Net generator. Every odd number column represent the input profile image and every even number column

represents the output frontal image. The input images belong to the CMU-MultiPIE dataset.

results are provided in Table 3, showing that PF-cpGAN

improve on the existing state-of-the-art methods for both

verification and identification. For instance, at the false ac-

cept rate (FAR) of 0.01, the best previously-used method

is PR-REM, with an average GAR of 92.1%. PF-cpGAN

improves upon PR-REM and gives an average GAR of

93.8% at the same FAR. We also observe that, for identifi-

cation, specifically, rank-1 recognition, shows an improve-

ment over the previous best state-of-the-art method FNM

[31] by about 1.1%.

5.4. A Further Analysis on Influences of Face Yaw

In addition to complete profile to frontal face recogni-

tion, we also perform a more in-depth analysis on the influ-

ence of face yaw angle on the performance of face recogni-

tion to better understand the effectiveness of the PF-cpGAN

for profile to frontal face recognition. We perform this ex-

periment for the CMU Multi-PIE dataset [13] under setting-

1 for fair comparison with other state-of-the-art methods.

Table 4: Rank-1 recognition rates (%) across poses and il-

luminations under Multi-PIE Setting-1.

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

HPN [11] 29.82 47.57 61.24 72.77 78.26 84.23
c-CNN [52] 47.26 60.7 74.4 89.0 94.1 97.0

TP-GAN [17] 64.0 84.1 92.9 98.6 99.99 99.8
PIM [57] 75.0 91.2 97.7 98.3 99.4 99.8

CAPG-GAN [16] 77.1 87.4 93.7 98.3 99.4 99.99
FNM+VGG-Face [31] 41.1 67.3 83.6 93.6 97.2 99.0
FNM+Light CNN [31] 55.8 81.3 93.7 98.2 99.5 99.9

PF-cpGAN 88.1 94.2 97.6 98.9 99.9 99.9

As shown in Table 4, we achieve comparable performance

with other state-of-the-art methods for different yaw angles.

Under extreme pose, PF-cpGAN achieves significant im-

provements (i.e., approx. 77% to 88% under ±90◦).

For further testing on the Multi-PIE dataset under

setting-1, we have also plotted ROC curves and compared

with other state-of-the-art methods. The ROC curves for
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Figure 5: Reconstruction of profile images at the output of the profile U-Net generator with frontal images as input to the

frontal U-Net generator. Every odd number column represents the input frontal image, and every even number column

represents the output profile image. The input images belong to the CMU-MultiPIE dataset.

Multi-PIE dataset are given in Fig. 3(b). The curves clearly

indicate that the proposed method of PF-cpGAN improves

upon other methods and gives much better performance,

even at FAR of 0.001.

5.5. Reconstruction of frontal and profile images

As noted in Sec. 1, the PF-cpGAN framework can also

be used for reconstruction of frontal images by using profile

images as input and vice versa. The results of reconstructing

frontal images using the profile images as input are given in

Fig. 4, and the results of reconstructing profile images using

the frontal images as input is given in Fig. 5. The recon-

struction procedure for frontal images is given as follows:

The profile image is given as input to the profile U-Net gen-

erator and the feature vector generated at the bottleneck of

the profile generator (i.e., at the output of the encoder of the

profile U-Net generator) is passed through the decoder sec-

tion of the frontal U-Net generator to reconstruct the frontal

image. Similarly the reconstruction procedure for profile

images is given as follows: The frontal image is given as

input to the frontal U-Net generator and the feature vector

generated at the bottleneck of the frontal generator (i.e., at

the output of the encoder of the frontal U-Net generator) is

passed through the decoder section of the profile U-Net gen-

erator to reconstruct the profile image. As we can see from

Fig. 4 and Fig. 5, the PF-cpGAN can preserve the iden-

tity and generate high-fidelity faces from an unconstrained

dataset such as CMU-MultiPIE. These results show the ro-

bustness and effectiveness of PF-cpGAN for multiple use of

profile to frontal matching in the latent common embedding

subspace, as well as in the reconstruction of facial images.

5.6. Ablation Study

The objective function defined in (19) contains multiple

loss functions: coupling loss (Lcpl), perceptual loss (LP ),

L2 reconstruction loss (L2), and GAN loss (LGAN ). It is

important to understand the relative importance of differ-

ent loss functions and the benefit of using them in our pro-

posed method. For this experiment, we use different vari-

ations of PF-cpGAN and perform the evaluation using the

IJB-A dataset. The variations are: 1) PF-cpGAN with only

coupling loss and L2 reconstruction loss (Lcpl + L2); 2)

PF-cpGAN with coupling loss, L2 reconstruction loss, and

GAN loss (Lcpl + L2 + LGAN ); 3) PF-cpGAN with all the

loss functions (Lcpl + L2 + LGAN + LP ).

We use these three variations of our framework and plot

the ROC for profile to frontal face verification using the

features from the common embedding subspace. We can

see from Fig. 3(c) that the generative adversarial loss helps

improve the profile to frontal verification performance, and

adding the perceptual loss (blue curve) results in an addi-

tional performance improvement. The reason for this im-

provement is that using perceptual loss along with the con-

trastive loss leads to a more discriminative embedding sub-

space leading to a better face recognition performance.

6. Conclusion

We proposed a new framework which uses a coupled

GAN for profile to frontal face recognition. The coupled

GAN contains two sub-networks which project the profile

and frontal images into a common embedding subspace,

where the goal of each sub-network is to maximize the pair-

wise correlation between profile and frontal images dur-

ing the process of projection. We thoroughly evaluated our

model on several standard datasets and the results demon-

strate that our model notably outperforms other state-of-the-

art algorithms for profile to frontal face verification. More-

over, the improvement achieved by different losses in our

proposed algorithm has been studied in an ablation study.
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