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Abstract

In recent years, due to the emergence of deep learning,
face recognition has achieved exceptional success. How-
ever, many of these deep face recognition models perform
relatively poorly in handling profile faces compared to
frontal faces. The major reason for this poor performance
is that it is inherently difficult to learn large pose invariant
deep representations that are useful for profile face recog-
nition. In this paper, we hypothesize that the profile face do-
main possesses a gradual connection with the frontal face
domain in the deep feature space. We look to exploit this
connection by projecting the profile faces and frontal faces
into a common latent space and perform verification or re-
trieval in the latent domain. We leverage a coupled genera-
tive adversarial network (cpGAN) structure to find the hid-
den relationship between the profile and frontal images in
a latent common embedding subspace. Specifically, the cp-
GAN framework consists of two GAN-based sub-networks,
one dedicated to the frontal domain and the other dedi-
cated to the profile domain. Each sub-network tends to find
a projection that maximizes the pair-wise correlation be-
tween two feature domains in a common embedding feature
subspace. The efficacy of our approach compared with the
state-of-the-art is demonstrated using the CFP, CMU Multi-
PIE, IJB-A, and 1JB-C datasets.

1. Introduction

Due to the emergence of deep learning, face recogni-
tion has achieved exceptional success in recent years [3].
However, many of these deep face recognition models
perform relatively poorly in handling profile faces com-
pared to frontal faces [36]. In other words, face recog-
nition in the wild, or unconstrained face recognition, is a
challenging problem. Pose, expression, and lighting vari-
ations are considered to be major obstacles in attaining
high unconstrained face recognition performance. Some
methods [3,27] attempt to address pose-variation issue by
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Figure 1: Frontal and Profile Images from Celebrity in
Frontal Profile (CFP) Dataset.

learning pose-invariant features, while some other meth-
ods [7,31,47,53,55] try to normalize images (along with
identity-preservation) to a single frontal pose before recog-
nition. However, there are three major difficulties related to
face frontalization or normalization in unconstrained envi-
ronment:

e Complicated face-variations besides pose: In compar-
ison to a controlled environment, there are more com-
plex face variations, e.g., lighting, head pose, expres-
sion, in real-world scenarios. It is difficult to directly
warp the input face to a normalized view [31].

e Unpaired data: Undoubtedly, obtaining a strictly nor-
malized face is expensive and time-consuming, but
getting an effective pair of target normalized face (i.e.,
frontal-facing, neutral expression) and an input face is
difficult due to highly imbalanced datasets [31].

e Presence of artifacts: Synthesized ‘frontal’ faces con-
tain artifacts caused by occlusions and non-rigid ex-
pressions.

In this paper, we hypothesize that the profile face do-
main possesses a gradual connection with the frontal face
domain in a latent deep feature subspace. We aim to exploit
this connection by projecting the profile faces and frontal
faces into a common latent subspace and perform verifica-
tion or retrieval in this latent domain. We propose an em-
bedding model for profile to frontal face verification based
on a deep coupled learning framework which uses a gen-
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erative adversarial network (GAN) to find the hidden rela-
tionship between the profile face features and frontal face
features in a latent common embedding subspace.

Our work is conceptually related to the embedding cate-
gory of super-resolution [19,24,37,56] in that our approach
also performs verification of profile and frontal face in the
latent space but not in the image space. From our experi-
ments, we observe that transforming profile and frontal face
features to a latent embedding subspace could yield higher
performance than image-level face frontalization, which is
susceptible to the negative influence of artifacts as a result
of image synthesis. To our best knowledge, this study is the
first attempt to perform profile-to-frontal face verification in
the latent embedding subspace using generative modeling.

This paper makes the following contributions:

e A novel profile to frontal face recognition model using
coupled GAN framework with multiple loss functions
is developed.

e Comprehensive experiments using different datasets
and a comparison of the proposed method with the
state-of-the-art methods have been performed, indicat-
ing the efficacy of the proposed GAN framework.

e The proposed framework can potentially be used to im-
prove the performance of traditional face recognition
methods by integrating it as a preprocessing procedure
for face-frontalization schema.

2. Related Work

Face recognition using Deep Learning: Before the ad-
vent of deep learning, traditional methods for face recogni-
tion (FR) used one or more layer representations, such as
the histogram of the feature codes, filtering responses, or
distribution of the dictionary atoms [50]. FR research was
concentrated more toward separately improving preprocess-
ing, local descriptors, and feature transformation; however,
overall improvement in FR accuracy was very slow. This
all changed with the advent of deep learning, and now deep
learning is the prominent technique used for FR.

Recently various deep learning models such as [8, 43]
are used as baseline model for FR. Simultaneously, various
loss functions have been explored and used in FR. These
loss functions can be categorized as the Euclidean-distance-
based loss, angular/cosine-margin-based loss, and softmax
loss and its variations. The contrastive loss and the triplet
loss are the commonly used Euclidean-distance-based loss
functions [34,40—42]. For avoiding misclassification of dif-
ficult samples [45,46], the learned face features need to be
well separated. Angular/cosine-margin based loss [2,10,25]
are commonly used to make the learned features more sep-
arable with a larger angular/cosine distance. Finally, in the
category of softmax loss and its variants for FR [14,26,49],

the softmax loss is modified to improve the FR performance
as in [26], where the cosine distance among data features is
optimized along with normalization of features and weights.

Profile-Frontal Face Recognition: Face recognition
with pose variation in an unconstrained environment is a
very challenging problem. Existing methods focus on the
pose variation problem by training separate models for
learning pose-invariant features [3,27], elaborate dense 3D
facial landmark detection and warping [44], and synthe-
sizing a frontal, neutral expression face from a single im-
age [7,31,47,53,55]. For instance, Cao et al. [3] exploit
the inherent mapping between profile and frontal faces, and
transform a deep profile face representation to a canonical
pose by adaptively adding residuals. FF-GAN [55] solves
the problem of large-pose face frontalization in the wild
by incorporating a 3D face model into a GAN. Consider-
ing photorealistic and identity preserving frontal view syn-
thesis, a domain adaptation strategy for pose invariant face
recognition is discussed in [58]. Tran et al. [47] propose a
GAN framework to rotate the face and disentangle the iden-
tity representation by using the pose code. In [31], a face
normalization model (FNM) uses a generative adversarial
network (GAN) network with 3 distinct losses for generat-
ing canonical-view and expression-free frontal images.

3. Generative Adversarial Network

GAN was first introduced by Goodfellow et al. [12] and
has drawn great attention from the deep learning research
community due to its remarkable performance on genera-
tive tasks. The GAN framework is based on two competing
networks — a generator network G and a discriminator net-
work D. The generator G(z;,) is a differentiable function
which maps the noise variable z from training noise distri-
bution p,(z) to a data space with distribution pg,:, using
the network parameters 6,. On the other hand, the discrim-
inator D(.;64) is also a differentiable function, which dis-
criminates between the real data y and the generated fake
data G(z) using a binary classification model. Specifically,
the min-max two-player game between the generator and
the discriminator provides a simple and powerful way to
estimate target distribution and generate novel image sam-
ples [31]. The loss function L(D, G) for GAN is given as:

L(D,G) = Ey pyy,.(y)log D(y)]
+ E.p_(»)[log(1 — D(G(2)))].

The objective (two player minimax game) for GAN is as:

ey

mén max L(D,G) = mén mDaX[Ey,\,pdam(y) [log D(y)]

+ Enp.(z)[log(1 = D(G(2)))]]-
2

Another variant of GAN is the Conditional GAN, which
was introduced by Mirza and Osindero [29]. In conditional
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GAN, both the generator and discriminator are conditioned
on an additional variable z. This additional variable could
be any kind of auxiliary information such as discrete labels
[29], and text [32]. The loss function for the conditional
GAN is given as:

LC(D7 G) = E’yNPdam(y) [IOg D(y|$)]

t B.opollog - DG )

Hereafter, we will denote the objective for the conditional
GAN as F.qgan (D, G,y, z), which is given by:

FCGAN (D7 G, Y, 1.) = mén mDaX[EyNPdam(y) [log D(y|$)]

+ Ezwp. (o llog(1 = D(G(2]2)))]]-
“4)

4. Proposed Method

Here, we describe our method for profile to frontal face
recognition. In contrast to the face normalization methods,
we do not perform pose normalization (i.e., frontalization)
on each profile image before matching. Instead, we seek
to project the profile and frontal face images to a common
latent low-dimensional embedding subspace using genera-
tive modeling. Inspired by the success of GANs [12], we
explore adversarial networks to project profile and frontal
images to a common subspace for recognition.

The framework of proposed profile to frontal coupled
generative adversarial network (PF-cpGAN; shown in Fig.
2) consists of two modules, where each module contains a
GAN architecture made of a generator and a discriminator.
The generators that we have used in both modules are U-net
auto-encoders that are coupled together using a contrastive
loss function. In addition to adversarial, and contrastive
loss, we propose to guide the generators using a perceptual
loss [20] based on the VGG 16 architecture, as well as an
L reconstruction error. The perceptual loss helps in sharp
and realistic reconstruction of the images.

4.1. Profile to Frontal Coupled GAN

The main objective of PF-cpGAN is the recognition of
profile face images with respect to a gallery of frontal face
images, which have not been seen during the training. The
matching of the profile and the frontal face images is per-
formed in a common embedding subspace. PF-cpGAN con-
sists of two modules: a profile GAN module and a frontal
GAN module, both consisting of a GAN (generator + dis-
criminator), and a perceptual network based on VGG-16.

For the generators, we use a U-Net [33] auto-encoder ar-
chitecture. The primary reason for using U-Net is that the
encoder-decoder structure tends to extract global features
and generates images by leveraging this overall informa-
tion, which is very useful for global shape transformation
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Figure 2: Block diagram of PF-cpGAN.

tasks such as profile to frontal image conversion. More-
over, for many image translation problems, there is a sig-
nificant amount of low-level information that needs to be
shared between the input and output, and it is desirable to
pass this information directly across all the layers including
the bottleneck. Therefore, using skip-connections, as in U-
net, provides a means for the encoder-decoder structure to
circumvent the bottleneck and pass the information over to
other layers.

For discriminators, we have used patch-based discrimi-
nators [18], which are trained iteratively along with the re-
spective generators. L; loss performs very well when try-
ing to preserve the low frequency details but fails to pre-
serve the high-frequency details. However, using a patch-
based discriminator that penalizes structure at the scale of
the patches, ensures the preservation of high-frequency de-
tails, which are usually lost when only L; loss is used.

The final objective of PF-cpGAN is to find the hidden re-
lationship between the profile face features and frontal face
features in a latent common embedding subspace. To find
this common subspace between the two domains, we couple
the two generators via a contrastive loss function, Ly;.

This loss function (L.t ) is a distance-based loss func-
tion, which tries to ensure that semantically similar exam-
ples (genuine pairs i.e., a profile image of a subject with its
corresponding frontal image) are embedded closely in the
common embedding subspace, and, simultaneously, seman-
tic dissimilar examples (impostor pairs i.e., a profile image
of a subject and a frontal image of a different subject) are
pushed away from each other in the common embedding
subspace. The contrastive loss function is defined as:
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Lcont<zl (l'szR), 22 (x%R), Y) =
(1- Y)E(DZ)Q + (Y)%(max(o,m —D.))?,

2
o)

where x4, and xfp r denote the input profile and frontal
face image, respectively. The variable Y is a binary label,
which is equal to 0 if % ;, and 27, ; belong to the same class
(i.e., genuine pair), and equal to 1 if 2% and x} r belong
to the different class (i.e., impostor pair). z1(.) and z5(.) de-
note only the encoding functions of the U-Net auto-encoder
to transform z% , and 2%, R» respectively into a common la-
tent embedding subspace. The value m is the contrastive
margin and is used to “tighten” the constraint. D, denotes
the Euclidean distance between the outputs of the functions
z1(2'p ) and 2o (x%p).

(6)

Therefore, if Y = 0 (i.e., genuine pair), then the contrastive
loss function (Lone) is given as:

D. = |a1(abr) = 22(@hn) -

i j 1 i j 2

Leont(21(@ ), 2(@h), V) = 5 ||21(@hr) = 22|

@)

and if Y = 1 (i.e., impostor pair), then contrastive loss
function (Leope) is :

Lcont(zl(xi?R);Z2(‘r;‘R)7Y) =
1 . . 2
imax (0, m — HZI (TpR) — 22@%3)“2)'
3)

Thus, the total loss for coupling the profile generator and
the frontal generator is denoted by L., and is given as:

N N
1 ) )
chl = ﬁ Z Z Lcont (21 (1’333), 22 (:E%‘R% Y)) (9)

i=1j=1

where N is the number of training samples. The contrastive
loss in the above equation can also be replaced by some
other distance-based metric, such as the Euclidean distance.
However, the main aim of using the contrastive loss is to
be able to use the class labels implicitly and find the dis-
criminative embedding subspace, which may not be the
case with some other metric such as the Euclidean distance.
This discriminative embedding subspace would be useful
for matching of the profile images with the frontal images.

4.2. Generative Adversarial Loss

Let the generators (profile generator and frontal gener-
ator) that reconstruct the corresponding profile and frontal

image from the input profile and frontal image, be denoted
as Gpp and G g, respectively. The patch-based discrim-
inators used for the profile and frontal GANs are denoted
as Dpr and Dppg. For the proposed method, we have used
the conditional GAN, where the generator networks Gppr
and G'ppr are conditioned on input profile and frontal face
images, respectively. We have used the conditional GAN
loss function [29] to train the generators and the correspond-
ing discriminators in order to ensure that the discriminators
cannot distinguish the images reconstructed by the genera-
tors from the corresponding ground truth images. Let Lpg
and L g denote the conditional GAN loss functions for the
profile and the frontal GANSs, respectively, where Lpg and
L g are given as:

10)
Y

where function F,.gan is the conditional GAN objective
defined in (4). The term x% ;, denotes the profile image used
as a condition for the profile GAN, and y};  denotes the real
profile image. Note that the real profile image %, and the
network condition given by %, are the same. Similarly,
T r denotes the frontal image used as a condition for the

Lpr = Fegan(Dpr,GPR,YpR, TPR):

_ J J
Lrr = Fegan(Drr, GFR, Yp g, TpR)s

frontal GAN and y},  denotes the real frontal image. Again,
the real frontal image y% , and the network condition given
by x% , are the same. The total loss for the coupled condi-
tional GAN is given by:

Lgan = Lpr+ LFg. (12)

4.3. L, Reconstruction Loss

We also consider the Lo reconstruction loss for both the
profile GAN and frontal GAN. The L4 reconstruction loss
measures the reconstruction error in terms of the Euclidean
distance between the reconstructed image and the corre-
sponding real image. Let Ly, denote the reconstruction
loss for the profile GAN and is defined as:

Lopn = | Gra(zlepr) — vbrl (13)

where y4 5, is the ground truth profile image, Gpr(z|zh )
is the output of the profile generator.

Similarly, Let Lo, , denote the reconstruction loss for
the frontal GAN:

. . 2
Lowy = |GenCGlahn) ~ vha|,. 14

where y%  is the ground truth frontal image, G R(,z|;13‘j;7 Rr)
is the output of the frontal generator.
The total Lo reconstruction loss function is given by:

1 N N
Ly = N2 ZZ(LQPR + LQFR)'

i=1 j=1

15)
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4.4. Perceptual Loss

In addition to the GAN loss and the reconstruction loss
which are used to guide the generators, we have also used
perceptual loss, which was introduced in [20] for style
transfer and super-resolution. The perceptual loss function
is used to compare high level differences, like content and
style discrepancies, between images. The perceptual loss
function involves comparing two images based on high-
level representations from a pretrained CNN, such as VGG-
16 [39]. The perceptual loss function is a good alternative to
solely using L or Lo reconstruction error, as it gives better
and sharper high quality reconstruction images [20].

In our proposed approach, perceptual loss is added to
both the profile and the frontal module using a pre-trained
VGG-16 [39] network. We extract the high-level features
(ReLU3-3 layer) of VGG-16 for both the real input image
and the reconstructed output of the U-Net generator. The
L distance between these features of real and reconstructed
images is used to guide the generators Gpr and Grp . The
perceptual loss for profile network is defined as:

CP WP HP
L Ppr —

CWH CE:Z (16)

1 w=1h=1

||V GPR(Z|$PR))C’w7h V(y%R)c7w,h||

where V (.) denotes a particular layer of the VGG-16, where
the layer dimensions are given by C,,, W, and H,,.
Likewise the perceptual loss for frontal network is:

) c, W, H,
bren =g, ;;f; (17)

HV(GFR(ZL%‘%R))C’“’JL — V(yi_‘R)C,w,hH .

The total perceptual loss function is given by:

1 N N
- WZZ@PPR + Lpyp)- (18)
i=1 j=1

4.5. Overall Objective Function

The overall objective function for learning the network
parameters in the proposed method is given as the sum of
all the loss functions defined above:

Liot = Lepy + MLgan + A2Lp + A3La,  (19)

where L, is the coupling loss, Lg 4N is the total genera-
tive adversarial loss, Lp is the total perceptual loss, and Lo
is the total reconstruction error. Variables A1, A5, and \3 are
the hyper-parameters to weigh the different loss terms.

5. Experiments

We initially describe our training setup and the datasets
that we have used in our experiments. We show the effi-
ciency of our method for the task of frontal to profile face
verification by comparing its performance with state-of the-
art face verification methods across pose-variation. More-
over, we explore the effect of face yaw in our algorithm.
Finally, we conduct an ablation study to investigate the ef-
fect of each term in our total training loss defined in (19).

5.1. Experimental Details

Datasets: The Celebrities in Frontal-Profile (CFP)
dataset [36] is a mixture of constrained (i.e., carefully col-
lected under different pose, illumination and expression
conditions) and unconstrained (i.e., collected images from
the Internet) settings. CFP includes 500 celebrities, av-
eraging ten frontal and four profile face images per each
celebrity. Following the standard 10-fold protocol [36], we
divide the dataset into 10 folds, each of which consists of
350 same and 350 different pairs generated from 50 sub-
jects (i.e., 7 same and 7 different pairs for each subject).

The CMU Multi-PIE database [13] contains 750,000 im-
ages of 337 subjects. Subjects were imaged from 15 view-
ing angles and 19 illumination conditions while exhibiting
a range of facial expressions. It is the largest database for
graded evaluation with respect to pose, illumination, and ex-
pression variations. For fair comparison, the database set-
ting was made consistent with FNM [31], where 250 sub-
jects from Multi-PIE have been used. The training set and
testing split is consistent with FNM.

The TARPA Janus Benchmark A (IJB-A) [22] is a chal-
lenging dataset collected under complete unconstrained
conditions covering full pose variation (yaw angles —90° to
+90°). IJB-A contains 500 subjects with 5,712 images and
20,414 frames extracted from videos. Following the stan-
dard protocol in [22], we evaluate our method on both ver-
ification and identification. The ITARPA Janus Benchmark
B (IJB-B) dataset [S1] builds on the IJB-A by adding more
1345 subjects making it a total of 1845 subjects, and a total
of 21,798 still images and 55,026 frames from 7,011 videos.
The TARPA Janus Benchmark C (IJB-C) dataset [28] builds
on [IB-A, and IJB-B datasets and has a total of 31,334 im-
ages for a total number of 3,531 subjects. We have also
evaluated our method on IJB-A and IJB-C datasets.

Implementation Details: We have implemented the U-
Net with ResNet-18 [15] encoder pre-trained on ImageNet.
We have added an additional fully-connected layer after the
average pooling layer for ResNet-18 for our U-Net encoder.
The U-Net decoder has the same number of layers as the
encoder. The entire framework has been implemented in
Pytorch. For convergence, \; is set to 1, and Ao, and A3
are both set to 0.25. We used a batch size of 128 and an
Adam optimizer [21] with first-order momentum of 0.5, and
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Table 1: Performance comparison on CFP dataset. Mean
Accuracy and equal error rate (EER) with standard devia-
tion over 10 folds.

Frontal-Profile Frontal-Frontal

Table 2: Performance comparison on IJB-A benchmark.
Results reported are the "average+tstandard deviation” over
the 10 folds specified in the IJB-A protocol. Symbol ’-°
indicates that the metric is not available for that protocol.

Algorithm Accuracy EER Accuracy EER Method Verification Identification
HoG+Sub-SML [36] 77.31(1.61) 22.20(1.18) 8834(1.31) 11.45(1.35) GAR®@ FAR= 001 GAR@ FAR= 000 @ Rank-1 @ Rank-5
LBP+Sub-SML [36] 70.02(2.14) 29.60(2.11) 83.54(2.40) 16.00(1.74) OPENBR [23] 236£09 10414 206£11 37508

FV+Sub-SML [36]  80.63(2.12) 19.28(1.60) 91.30(0.85) 8.85(0.74) GOTS [23] 40.6+14 19.8£0.8 433421 595420
FV+DML [36]  58.47(351) 38.54(1.59) 91.18(1.34) 8.62(1.19) PAM [27] 733418 5524 3.2 TlE16 887409
Deep Features [5]  84.91(1.82) 14.97(1.98) 96.40(0.69)  3.43(0.67) DE_‘E}I‘EL[SS] ;?Z N ‘212 5305 48 2;; i 13 Zi; I
PR-REM [3] 93.252.23) 7.92(098) 98.102.19) 1.10(0.22) FF-GAN [54] 85.2+ 1.0 66.3+3.3 902406 954405
PF-cpGAN 93.78(2.46)  7.21(0.65)  98.83(1.56)  0.93(0.14) FNM [31] 93.4+0.9 83.8 2.6 96.0+0.5 98.6+0.3
PR-REM [3] 944409 868+ 15 946+11 96.8+1.0

PF-cpGAN 95.8 £ 0.82 912413 97.64+1.0 98.8+0.4

learning rate of 0.0004. We have used the ReLU activation
function for the generator and Leaky ReL.U with a slope of
0.3 for the discriminator.

For training, genuine and impostor pairs were required.
The genuine/impostor pairs are created by frontal and pro-
file images of the same/different subject. During the experi-
ments, we ensure that the training set are balanced by using
the same number of genuine and impostor pairs.

5.2. Evaluation on CFP with Frontal-Profile Setting

We first perform evaluation on the Celebrities in Frontal-
Profile (CFP) dataset [36], a challenging dataset created to
examine the problem of frontal to profile face verification
in the wild. We follow the standard 10-fold protocol [36]
in our evaluation. The same protocol is applied on both the
Frontal-Profile and Frontal-Frontal settings. For fair com-
parison and as given in [36], we consider different types of
feature extraction techniques like HoG [9], LBP [1], and
Fisher Vector [38] along with metric learning techniques
like Sub-SML [4], and Diagonal metric learning (DML) as
reported in [38]. We also compare against deep learning
techniques, including Deep Features [5], and PR-REM [3].
The results are summarized in Table 1.

We can observe from Table 1 that our proposed frame-
work, PF-cpGAN, gives much better performance than the
methods that use standard hand-crafted features of HoG,
LBP, or FV, providing minimum of 13% improvement in
accuracy with a 12% decrease in EER for the profile-frontal
setting. PF-cpGAN also improves on the performance of
the Deep Features by approximately 9% with a 7.5% de-
crease in EER for the profile-frontal setting. Finally, PF-
cpGAN performs on-par with the best deep learning method
of PR-REM, and, in-fact, does slightly better than PR-REM
by ~ 0.5% improvement in accuracy with a 0.7% decrease
in EER for the profile-frontal setting. This performance im-
provement clearly shows that usage of a GAN framework
for projecting the profile and frontal images in the latent
embedding subspace and maintaining the sematic similarity
in the latent space is better than some other deep learning
techniques such as Deep Features or PR-REM.

Table 3: Performance comparison on IJB-C benchmark.
Results reported are the ’average+standard deviation’ over
the 10 folds specified in the IJB-C protocol. Symbol ’-’ in-
dicates that the metric is not available for that protocol.

Method Verification Identification
GAR@ FAR= 0.01 GAR@ FAR=0.001 @ Rank-1 @ Rank-5
GOTS [28] 62.1+1.1 36.3+£1.2 385+1.6 53.8+1.8
FaceNet [35] 82.3+1.18 66.3+1.3 704+12 788+23
VGG-CNN [30] 87.2 4+ 1.09 74.3+£0.9 79.6+1.04 87.8+1.3
FNM [31] 91.2+0.8 80.4+1.8 84.6+0.6 93.7+£0.9
PR-REM [3] 92.14+0.8 834415 83.1+04 926+1.1
PF-cpGAN 93.8 £0.67 86.1£0.7 88.34+12 948+0.6

5.3. Evaluation on IJB-A and 1JB-C

Here, we focus on unconstrained face recognition on
IJB-A dataset to quantify the superiority of our PF-cpGAN
for profile to frontal face recognition. Some of the baselines
for comparison on IJB-A are DR-GAN [47], FNM [31],
PR-REM [3],and FF-GAN [55]. We have also compared
them with other methods as listed in [31] and shown in Ta-
ble 2. As shown in Table 2, we perform better than the
state-of-the-art methods for both verification and identifica-
tion. Specifically, for verification, we improve the genuine
accept rate (GAR) by at least 1.4% compared to other meth-
ods. For instance, at the false accept rate (FAR) of 0.01, the
best previously-used method is PR-REM, with an average
GAR of 94.4%. PF-cpGAN improves upon PR-REM and
gives an average GAR of 95.8% at the same FAR. We also
show improvement on identification. Specifically, the rank-
1 recognition rate shows an improvement of around 1.6% in
comparison to the best state-of-the-art method, FNM [31].

We have also plotted receiver operating characteristic
(ROC) curve and compared with the baselines given above.
The ROC curves for the IJB-A dataset are given in Fig.
3(a). As we can clearly see from the curves, the proposed
PF-cpGAN method improves upon other methods and gives
much better performance, even at a FAR of 0.001.

We have also performed the task of verification and iden-
tification using the IJB-C dataset according to the verifica-
tion and the identification protocol given in the dataset. The
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Figure 3: ROC curve comparison against the baselines for different datasets is shown in (a) and (b). In (c), we show the ROC
curves showing the importance of different loss functions for ablation study.
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Figure 4: Reconstruction of frontal images at the output of the frontal U-Net generator with profile images as input to
the profile U-Net generator. Every odd number column represent the input profile image and every even number column
represents the output frontal image. The input images belong to the CMU-MultiPIE dataset.

results are provided in Table 3, showing that PF-cpGAN
improve on the existing state-of-the-art methods for both
verification and identification. For instance, at the false ac-
cept rate (FAR) of 0.01, the best previously-used method
is PR-REM, with an average GAR of 92.1%. PF-cpGAN
improves upon PR-REM and gives an average GAR of
93.8% at the same FAR. We also observe that, for identifi-
cation, specifically, rank-1 recognition, shows an improve-
ment over the previous best state-of-the-art method FNM
[31] by about 1.1%.

5.4. A Further Analysis on Influences of Face Yaw

In addition to complete profile to frontal face recogni-
tion, we also perform a more in-depth analysis on the influ-
ence of face yaw angle on the performance of face recogni-
tion to better understand the effectiveness of the PF-cpGAN
for profile to frontal face recognition. We perform this ex-
periment for the CMU Multi-PIE dataset [13] under setting-
1 for fair comparison with other state-of-the-art methods.

Table 4: Rank-1 recognition rates (%) across poses and il-
luminations under Multi-PIE Setting-1.

Method +90°  £75°  +60° +45° +£30° £15°
HPN [11] 29.82 47.57 61.24 T2.77 7826 84.23
c-CNN [52] 4726 60.7 744 89.0 941 97.0
TP-GAN [17] 64.0 841 929 986 99.99 99.8
PIM [57] 75.0 91.2  97.7 983 994  99.8

CAPG-GAN [16] 71 874 937 983 994 99.99
FNM+VGG-Face [31] 41.1 673 836 93.6 972 99.0
FNM+Light CNN [31] 55.8 81.3 93.7 982 995 999

PF-cpGAN 88.1 942 97.6 989 999 999

As shown in Table 4, we achieve comparable performance
with other state-of-the-art methods for different yaw angles.
Under extreme pose, PF-cpGAN achieves significant im-
provements (i.e., approx. 77% to 88% under +90°).

For further testing on the Multi-PIE dataset under
setting-1, we have also plotted ROC curves and compared
with other state-of-the-art methods. The ROC curves for
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Figure 5: Reconstruction of profile images at the output of the profile U-Net generator with frontal images as input to the
frontal U-Net generator. Every odd number column represents the input frontal image, and every even number column
represents the output profile image. The input images belong to the CMU-MultiPIE dataset.

Multi-PIE dataset are given in Fig. 3(b). The curves clearly
indicate that the proposed method of PF-cpGAN improves
upon other methods and gives much better performance,
even at FAR of 0.001.

5.5. Reconstruction of frontal and profile images

As noted in Sec. 1, the PF-cpGAN framework can also
be used for reconstruction of frontal images by using profile
images as input and vice versa. The results of reconstructing
frontal images using the profile images as input are given in
Fig. 4, and the results of reconstructing profile images using
the frontal images as input is given in Fig. 5. The recon-
struction procedure for frontal images is given as follows:
The profile image is given as input to the profile U-Net gen-
erator and the feature vector generated at the bottleneck of
the profile generator (i.e., at the output of the encoder of the
profile U-Net generator) is passed through the decoder sec-
tion of the frontal U-Net generator to reconstruct the frontal
image. Similarly the reconstruction procedure for profile
images is given as follows: The frontal image is given as
input to the frontal U-Net generator and the feature vector
generated at the bottleneck of the frontal generator (i.e., at
the output of the encoder of the frontal U-Net generator) is
passed through the decoder section of the profile U-Net gen-
erator to reconstruct the profile image. As we can see from
Fig. 4 and Fig. 5, the PF-cpGAN can preserve the iden-
tity and generate high-fidelity faces from an unconstrained
dataset such as CMU-MultiPIE. These results show the ro-
bustness and effectiveness of PF-cpGAN for multiple use of
profile to frontal matching in the latent common embedding
subspace, as well as in the reconstruction of facial images.

5.6. Ablation Study

The objective function defined in (19) contains multiple
loss functions: coupling loss (L), perceptual loss (Lp),

Lo reconstruction loss (Ls), and GAN loss (Lgan). It is
important to understand the relative importance of differ-
ent loss functions and the benefit of using them in our pro-
posed method. For this experiment, we use different vari-
ations of PF-cpGAN and perform the evaluation using the
IJB-A dataset. The variations are: 1) PF-cpGAN with only
coupling loss and Lo reconstruction loss (L¢,; + Lo); 2)
PF-cpGAN with coupling loss, Lo reconstruction loss, and
GAN loss (L¢p; + Lo + Lgan); 3) PF-cpGAN with all the
loss functions (L¢p; + L2 + Lgan + Lp).

We use these three variations of our framework and plot
the ROC for profile to frontal face verification using the
features from the common embedding subspace. We can
see from Fig. 3(c) that the generative adversarial loss helps
improve the profile to frontal verification performance, and
adding the perceptual loss (blue curve) results in an addi-
tional performance improvement. The reason for this im-
provement is that using perceptual loss along with the con-
trastive loss leads to a more discriminative embedding sub-
space leading to a better face recognition performance.

6. Conclusion

We proposed a new framework which uses a coupled
GAN for profile to frontal face recognition. The coupled
GAN contains two sub-networks which project the profile
and frontal images into a common embedding subspace,
where the goal of each sub-network is to maximize the pair-
wise correlation between profile and frontal images dur-
ing the process of projection. We thoroughly evaluated our
model on several standard datasets and the results demon-
strate that our model notably outperforms other state-of-the-
art algorithms for profile to frontal face verification. More-
over, the improvement achieved by different losses in our
proposed algorithm has been studied in an ablation study.
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