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Abstract

We show by counterexample that policy-gradient algorithms have no guarantees of even local

convergence to Nash equilibria in continuous action and state space multi-agent settings. To do so,

we analyze gradient-play in N–player general-sum linear quadratic games, a classic game setting

which is recently emerging as a benchmark in the field of multi-agent learning. In such games

the state and action spaces are continuous and global Nash equilibria can be found be solving

coupled Ricatti equations. Further, gradient-play in LQ games is equivalent to multi-agent policy-

gradient. We first show that these games are surprisingly not convex games. Despite this, we are

still able to show that the only critical points of the gradient dynamics are global Nash equilibria.

We then give sufficient conditions under which policy-gradient will avoid the Nash equilibria, and

generate a large number of general-sum linear quadratic games that satisfy these conditions. In such

games we empirically observe the players converging to limit cycles for which the time average

does not coincide with a Nash equilibrium. The existence of such games indicates that one of the

most popular approaches to solving reinforcement learning problems in the classic reinforcement

learning setting has no local guarantee of convergence in multi-agent settings. Further, the ease

with which we can generate these counterexamples suggests that such situations are not mere edge

cases and are in fact quite common.

1. Introduction

Interest in multi-agent reinforcement learning has seen a recent surge of late, and policy-gradient

algorithms are championed due to their potential scalability. Indeed, recent impressive successes of

multi-agent reinforcement learning have made use of policy optimization algorithms such as multi-

agent actor-critic (Lowe et al., 2017; Srinivasan et al., 2018; Jaderberg et al., 2019), multi-agent

proximal policy optimization (Bansal et al., 2018), and even simple multi-agent policy-gradients
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(Lanctot et al., 2017) in problems where the various agents have high-dimensional continuous state

and action spaces like StarCraft II (Vinyals et al., 2019).

Despite these successes, a theoretical understanding of these algorithms in multi-agent settings

is still lacking. Missing perhaps, is a tractable yet sufficiently complex setting in which to study

these algorithms. Recently, there has been much interest in analyzing the convergence and sample

complexity of policy-gradient algorithms in the classic linear quadratic regulator (LQR) problem

from optimal control (Kalman, 1960). The LQR problem is a particularly apt setting to study the

properties of reinforcement learning algorithms due to the existence of an optimal policy which is a

linear function of the state and which can be found by solving a Ricatti equation. Indeed, the relative

simplicity of the problem has allowed for new insights into the behavior of reinforcement learning

algorithms in continuous action and state spaces (Dean et al., 2017; Fazel et al., 2018; Malik et al.,

2019).

An extension of the LQR problem to the setting with multiple agents, known as a linear quadratic

(LQ) game, has also been well studied in the literature on dynamic games and optimal control (Basar

and Olsder, 1998). As the name suggests, an LQ game is a setting in which multiple agents attempt

to optimally control a shared linear dynamical system subject to quadratic costs. Since the play-

ers have their own costs, the notion of ‘optimality’ in such games is a Nash equilibrium properties

of which have been well analyzed in the literature Engwerda (1998); Possieri and Sassano (2015);

Basar (1976); Lukes and Russell (1971).

Like LQR for the classical single-agent setting, LQ games are an appealing setting in which to

analyze the behavior of multi-agent reinforcement learning algorithms in continuous action and state

spaces since they admit global Nash equilibria in the space of linear feedback policies. Moreover,

these equilibria can be found by solving a coupled set of Ricatti equations. As such, LQ games are

a natural benchmark problem on which to test policy-gradient algorithms in multi-agent settings.

Furthermore, policy gradient methods open up the possibility to new scalable approaches to finding

solutions to control problems even with constraints. In the single-agent setting, it was recently

shown that policy-gradient has global convergence guarantees for the LQR problem (Fazel et al.,

2018). These results have recently been extended to projected policy-gradient algorithms in zero-

sum LQ games (Zhang et al., 2019).

Contributions. We present a negative result, showing that policy-gradient in general-sum LQ

games does not enjoy even local convergence guarantees, unlike in LQR and zero-sum LQ games.

In particular, we show that, if each player randomly initializes their policy and then uses a policy-

gradient algorithm, there exists an LQ game in which the players would almost surely avoid a Nash

equilibrium. Further, our numerical experiments indicate that LQ games in which this occurs may

be quite common. We also observe empirically that when players fail to converge to the Nash

equilibrium they do converge to stable limit cycles. These cycles do not seem to have any readily

apparent relationship to the Nash equilibria of the game.

We note that non-convergence to Nash equilibria is not in itself a new phenomenon (see e.g.

Mazumdar et al. (2019); Daskalakis et al. (2017); Cesa-Bianchi and Lugosi (2006)) and that the

existence of cycles in the dynamics of learning dynamics in games has also been repeatedly ob-

served in various contexts Mazumdar et al. (2018); Mertikopoulos et al. (2018); Papadimitriou and

Piliouras. However, we believe that such phenomena have not yet been shown to occur in the

dynamics of multi-agent reinforcement learning algorithms in continuous action and state spaces.

Since such algorithms have had such striking successes in recent years, we believe a theoretical
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understanding of their behaviors can lay the groundwork for the development of more efficient and

theoretically sound multi-agent learning algorithms.

Organization. Section 2 introduces N -player general-sum LQ games and presents previous re-

sults on the existence of the Nash equilibrium in such games. In Section 3, we show that these

games are not convex games and that all the stationary points of the joint policy-gradient dynam-

ics are Nash equilibria. Following this, we give sufficient conditions under which policy-gradient

almost surely avoids a Nash equilibrium in Section 4. Given these theoretical results, in Section 5

we present empirical results demonstrating that a large number of 2-player LQ games satisfy these

sufficient conditions. Numerical experiments showing the existence of limit cycles in the gradient

dynamics of general-sum LQ games are also presented. The paper is concluded with a discussion

in Section 6.

2. Preliminaries

We consider N -player LQ games subject to a discrete-time dynamical system defined by

z(t+ 1) = Az(t) +
∑N

i=1
Biui(t) z(0) = z0 ∼ Do, (1)

where z(t) ∈ R
m is the state at time t, Do is the initial state distribution, and ui(t) ∈ R

di is the

control input of player i ∈ 1, . . . , N . For LQ games, it is known that under reasonable assumptions,

linear feedback policies for each player that constitute a Nash equilibrium exist and are unique if

a set of coupled Ricatti equations admit a unique solution (Basar and Olsder, 1998). Thus, we

consider that each player i searches for a linear feedback policy of the form ui(t) = −Kiz(t) that

minimizes their loss, where Ki ∈ R
di×m. We use the notation d =

∑N
i=1

di for the combined

dimension of the players’ parameterized policies.

As the name of the game implies, the players’ loss functions are quadratic functions given by

fi(u1, . . . , uN ) = Ez0∼Do

[
∑

∞

t=0
z(t)TQiz(t) + ui(t)

TRiui(t)
]

,

where Qi and Ri are the cost matrices for the state and input, respectively.

Assumption 1 For each player i ∈ {1, . . . , N}, the state and control cost matrices satisfy Qi ≻ 0
and Ri ≻ 0.

We note that the players are coupled through the dynamics since z(t) is constrained to obey

the update equation given in (1). We focus on a setting in which all players randomly initialize

their strategy and then perform gradient descent simultaneously on their own cost functions with

respect to their individual control inputs. That is, the players use policy-gradient algorithms of the

following form:

Ki,n+1 = Ki,n − γiDifi(K1,n, . . . ,KN,n) (2)

where Difi(·, ·) denotes the derivatives of fi with respect to the i–th argument, and {γi}
N
i=1 are the

step-sizes of the players. We note that there is a slight abuse of notation here in the expression of

Difi as functions of the parameters Ki as opposed to the control inputs ui. To ensure there is no

confusion between t and n, we also point out that n indexes the policy-gradient algorithm iterations

while t indexes the time of the dynamical system.
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To simplify notation, define

ΣK = Ez0∼Do

[
∑

∞

t=0
z(t)z(t)T

]

,

where we use the subscript notation to denote the dependence on the collection of controllers K =
(K1, . . . ,KN ). Define also the initial state covariance matrix

Σ0 = Ez0∼D0
[z0z

T
0 ].

Direct computation verifies that for player i, Difi is given by:

Difi(K1, . . . ,KN ) = 2(RiKi −BT
i PiĀ)ΣK , (3)

where Ā = A−
∑N

i=1
BiKi, is the closed–loop dynamics given all players’ control inputs and, for

given (K1, . . . ,KN ), the matrix Pi is the unique positive definite solution to the Bellman equation:

Pi = ĀTPiĀ+KT
i RiKi +Qi, i ∈ {1, . . . , N}. (4)

Given that the players may have different control objectives and do not engage in coordination

or cooperation, the best they can hope to achieve is a Nash equilibrium.

Definition 1 A feedback Nash equilibrium is a collection of policies (K∗
1 , . . . ,K

∗
N ) such that:

fi(K
∗
1 , . . . ,K

∗
i , . . . ,K

∗
N ) ≤ fi(K

∗
1 , . . . ,Ki, . . . ,K

∗
N ), ∀ Ki ∈ R

di×m.

for each i ∈ {1, . . . , N}.

Under suitable assumptions on the cost matrices, the Nash equilibrium of an LQ game is known to

exist in the space of linear policies Basar and Olsder (1998); Li and Gajic (1995). However, this

Nash equilibrium may not be unique. To the best of our knowledge, there are no general set of con-

ditions under which the Nash equilibrium is unique in general-sum LQ games outside of the scalar

dynamics setting Engwerda (1998). There are, however, algebraic geometry methods to compute

all Nash equilibria in LQ games Possieri and Sassano (2015). We make use of a simpler algorithm

to find Nash equilibria which solves coupled Ricatti equations using the method of Lyapunov it-

erations. The method is outlined in Li and Gajic (1995) for continuous time LQ games, and an

analogous procedure can be followed for discrete time. Convergence of this method requires the

following assumption.

Assumption 2 For at least one player i ∈ {1, . . . , N}, (A,Bi) is stabilizable.

Assumption 2 is a necessary condition for the players to be able to stabilize the system. Indeed,

the player’s costs are finite only if the closed loop system Ā is asymptotically stable, meaning that

|Re(λ)| < 1 for all λ ∈ spec(Ā), where Re(λ) denotes the real part of λ and spec(M) is the

spectrum of a matrix M .
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3. Analyzing the Optimization Landscape of LQ Games

Having introduced the class of games we consider we now analyze the optimization landscape in

general-sum LQ games. Letting x = (K1, . . . ,KN ), the object of interest is the map ω : Rmd →
R
md defined as follows:

ω(x) =







D1f1(K1, . . . ,KN )
...

DNfN (K1, . . . ,KN )






.

Note that Difi = ∂fi/∂Ki has been converted to an mdi dimensional vector and each Ki has also

been vectorized. This is a slight abuse of notation and throughout we treat the Ki’s as both vectors

and matrices; in general, the shape should be clear from context, and otherwise we make comments

where necessary to clarify.

Before analyzing the stationary points of policy-gradient in LQ games, we show that the class of

LQ games we consider are not convex games. This holds despite the linearity of the dynamics and

the positive definiteness of the cost matrices. This fact makes the analysis of such games non-trivial

since the lack of strong structural guarantees on the players’ costs allows for non-trivial limiting

behaviors like cycles, non-Nash equilibria, and chaos in the joint gradient dynamics. Mazumdar

et al. (2018).

Proposition 2 There exists a N -player LQ game satisfying assumptions 1 and 2 that is not a convex

game.

Proof The proof of Proposition 2 follows directly from the non-convexity of the set of stabilizing

policies for the single-agent LQR problem which was shown in Fazel et al. (2018). Holding every

other players’ actions fixed, a player i is faced with a simple LQR problem. Since this problem is

non-convex, LQ games are not convex games.

In the absence of strong structural guarantees on the players’ costs, simultaneous gradient-play

in general-sum games can converge to strategies that are not Nash equilibria (Mazumdar et al.,

2018). The following theorem shows that, despite the fact that LQ games are not convex for each

player, such non-Nash equilibria cannot exist in the gradient dynamics of general-sum LQ games.

Indeed, we show that a point x is a critical point of the policy gradient dynamics in a N -player

LQ game if and only if it is a Nash equilibrium. We note that critical points of gradient-play are

strategies x = (K1, . . . ,KN ) such that ω(x) = 0. Such points are of particular importance since a

necessary condition for a point x to be a Nash equilibrium is that it is a critical point.

Theorem 3 Consider the set of stabilizing policies x∗ = (K∗
1 , . . . ,K

∗
N ) such that ΣK∗ > 0.

Difi(K
∗
1 , . . . ,K

∗
N ) = 0 for each i ∈ {1, . . . , N}, if and only if x∗ is a Nash equilibrium.

Proof We prove the forward direction and show that if Difi(x
∗) = 0 for each i ∈ {1, . . . , N}, then

x∗ is a Nash equilibrium. We show this by contradiction. Suppose the claim does not hold so that

ΣK∗ > 0 and Difi(K
∗
1 , . . . ,K

∗
N ) = 0 for each i ∈ {1, . . . , N}, yet (K∗

1 , . . . ,K
∗
N ) is not a Nash

equilibrium. That is, without loss of generality, there exists a K̄1 such that

f1(K̄1,K
∗
2 , . . . ,K

∗
N ) < f1(K

∗
1 , . . . ,K

∗
N ).

5
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Now, fixing (K∗
2 , . . . ,K

∗
N ), player 1 can be seen as facing an LQR problem. Indeed, letting

(K∗
2 , . . . ,K

∗
N ) be fixed, player 1 aims to find a ‘best response’ in the space of linear feedback

policies of the form u1(t) = Kz(t) with K ∈ R
di×m that minimizes f1(·,K

∗
2 , . . . ,K

∗
N ) subject to

the dynamics defined by

z(t+ 1) =
(

A−
∑N

i=2
BiKi

)

z(t) +B1u1(t).

Note that this system is necessarily stabilizable since Ā is stable. Hence, the discrete algebraic

Riccati equation for player 1’s LQR problem has a positive definite solution P such that R1 +
BT

1 PB1 > 0 since R1 > 0 by assumption. Since ΣK∗ > 0 and D1f1(K
∗
1 , . . . ,K

∗
N ) = 0, applying

Corollary 4 of Fazel et al. (2018), we have that K∗
1 must be optimal for player 1’s LQR problem so

that

f1(K
∗
1 , . . . ,K

∗
N ) ≤ f1(K,K∗

2 , . . . ,K
∗
N ), ∀ K ∈ R

d1×m.

In particular, the above inequality holds for K̄1, which leads to a contradiction.

To prove the reverse direction, we note that a necessary condition for a point x to be a Nash

equilibrium for each player, is that Difi(x
∗) = 0 for each i ∈ {1, . . . , N} Ratliff et al. (2013).

Theorem 3 shows that, just as in the single-player LQR setting and zero-sum LQ games, the

critical points of gradient-play in N–player general-sum LQ games are all Nash equilibria. We

note that the condition ΣK > 0 can be satisfied by choosing an initial state distribution Do with a

full-rank covariance matrix.

A simple consequence of Theorem 3 is that when the coupled Ricatti equations characterizing

the Nash equilibria of the game have a unique positive definite solution and Assumptions 1 and 2

hold, the gradient dynamics admit a unique critical point.

Corollary 4 Under Assumption 1 and 2, if the coupled Ricatti equations admit a unique solution

and Σ0 ≻ 0, then the map ω has a unique critical point.

Given that the critical points of the gradient dynamics in LQ games are Nash equilibria, the aim

is to show, via constructing counter-examples, that games in which the gradient dynamics avoid the

Nash equilibria do in fact exist. A sufficient condition for this would be to find a game in which

gradient-play diverges from neighborhoods of Nash equilibria.

It is demonstrated in Mazumdar et al. (2018) that there may be Nash equilibria that are not

even locally attracting under the gradient dynamics in N–player general-sum games in which the

players’ costs are sufficiently smooth (i.e., at least twice continuously differentiable). In games that

admit such Nash equilibria, the agents could initialize arbitrarily close to the Nash equilibrium, si-

multaneously perform individual gradient descent with arbitrarily small step sizes, and still diverge.

The class of N–player LQ games we consider does not, however, satisfy the smoothness as-

sumptions necessary to simply invoke the results in Mazumdar et al. (2018). Indeed, the cost

functions are non-smooth and, in fact, are infinite whenever the players have strategies that do

not stabilize the dynamics. Further, the set of stabilizing policies for a dynamical system is not

even convex (Fazel et al., 2018). Despite these challenges, in the sequel we show that the negative

convergence results in Mazumdar et al. (2018) extend to the general-sum LQ setting. In particular,

we show that even with arbitrarily small step sizes, players using policy-gradient in LQ games may

still diverge from neighborhoods of a Nash equilibrium.

6
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4. Sufficient Conditions for Policy-Gradient to Avoids Nash

We now give sufficient conditions under which gradient-play has no guarantees of even local, much

less global, convergence to a Nash equilibrium. Towards this end, we first show that ω is sufficiently

smooth on the set of stabilizing policies.

Let Smd ⊂ R
md be the subset of stabilizing md–dimensional matrices.

Proposition 5 Consider an N–player LQ game. The vector-valued map ω associated with the

game is twice continuously differentiable on Smd—i.e., ω ∈ C2(Smd,Smd).

Using our notation, Lemma 6.5 in Zhang et al. (2019) shows for two-player zero-sum LQ games

that (P1, P2), and ΣK are continuously differentiable with respect to K1 and K2 when A−B1K1−
B2K2 is stable. This, in turn, implies that ω(K1,K2) is continuously differentiable with respect

to K1 and K2 when the closed loop system A − B1K1 − B2K2 is stable. The result follows by a

straightforward application of the implicit function theorem (Abraham et al., 1988). We utilize the

same proof technique here in extending the result to N–player general-sum LQ games and, in fact,

the proof implies that ω has even stronger regularity properties. Since the proof follows the same

techniques as in Zhang et al. (2019), we defer it to Appendix A.

Given that ω is continuously differentiable over the set of stabilizing joint policies (K1, . . . ,KN ),
the following result gives sufficient conditions such that the set of initial conditions in a neighbor-

hood of the Nash equilibrium from which gradient-play converges to the Nash equilibrium is of

measure zero. This implies that the players will almost surely avoid the Nash equilibrium even if

they randomly initialize in a uniformly small ball around it.

Let the Jacobian of the vector field ω be denoted by Dω. Given a critical point x∗, let λj be

the eigenvalues of Dω(x∗), for j ∈ {1, . . . ,md}, where d =
∑n

i=1
di. Recall that the state z(t) is

dimension m.

Theorem 6 Suppose that Σ0 > 0. Consider any N–player LQ game satisfying Assumptions 1

and 2 that admits a Nash equilibrium that is a saddle point of the policy-gradient dynamics—i.e.,

LQ games for which the Jacobian of ω evaluated at the Nash equilibrium x∗ = (K∗
1 , . . . ,K

∗
N ) has

eigenvalues λj such that Re(λj) < 0 for j ∈ {1, . . . , ℓ} and Re(λj) > 0 for j ∈ {ℓ+1, . . . ,md} for

some ℓ such that 0 < ℓ < md. Then there exists a neighborhood U of x∗ such that policy-gradient

converges on a set of measure zero.

Proof The proof is made up of three parts: (i) we show the existence of an open-convex neigh-

borhood U of x∗ on which ω is locally Lipschitz with constant L; (ii) we show that the map

g(x) = x − Γω(x) is a diffeomorphism on U ; and, (iii) we invoke the stable manifold theorem

to show that the set of initializations in U on which policy-gradient converges is measure zero.

(i) ω is locally Lipschitz. Proposition 5 shows that ω is continuously differentiable on the set of

stabilizing policies Smd. Given Assumptions 1 and 2, the Nash equilibrium exists and x∗ ∈ Smd.

Thus, there must exist an open convex neighborhood U of x∗ such that ||Dω||2 < L for some

L > 0.

(ii) g is a diffeomorphism. By the preceding argument, ω is locally Lipschitz on U with Lipschitz

constant L. Consider the policy-gradient algorithm with γi < 1/L for each i ∈ {1, . . . , N}. Let

Γ = diag(Γ1, . . . ,ΓN ) where Γi = diag((γi)
mdi
j=1

)—that is, Γi is an mdi × mdi diagonal matrix

with γi repeated on the diagonal mdi times. Now, we claim the mapping g : R
md → R

md :

7
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x 7→ x − Γω(x) is a diffeomorphism on U . If we can show that g is invertible on U and a local

diffeomorphism, then the claim follows. Let us first prove that g is invertible.

Consider x 6= y and suppose g(y) = g(x) so that y − x = γ · (ω(y) − ω(x)). Since ‖ω(y) −
ω(x)‖2 ≤ L‖y−x‖2 on U , ‖x−y‖2 ≤ L‖Γ‖2‖y−x‖2 < ‖y−x‖2 since ‖Γ‖2 = maxi |γi| < 1/L.

Now, observe that Dg = I − ΓDω(x). If Dg is invertible, then the implicit function theo-

rem (Abraham et al., 1988) implies that g is a local diffeomorphism. Hence, it suffices to show that

ΓDω(x) does not have an eigenvalue equal to one. Indeed, letting ρ(A) be the spectral radius of a

matrix A, we know in general that ρ(A) ≤ ‖A‖ for any square matrix A and induced operator norm

‖ · ‖ so that ρ(ΓDω(x)) ≤ ‖ΓDω(x)‖2 ≤ ‖Γ‖2 supx∈U ‖Dω(x)‖2 < maxi |γi|L < 1. Of course,

the spectral radius is the maximum absolute value of the eigenvalues, so that the above implies that

all eigenvalues of ΓDω(x)) have absolute value less than one.

Since g is injective by the preceding argument, its inverse is well-defined and since g is a local

diffeomorphism on U , it follows that g−1 is smooth on U . Thus, g is a diffeomorphism.

(iii) Local convergence occurs on a set of measure zero. Let B be the open ball derived from

Theorem 9 in Appendix B.

Starting from x0 ∈ U , if gradient-based learning converges to a strict saddle point, then there

exists an n0 such that gn(x0) ∈ B for all n ≥ n0. Applying Theorem 9 (Appendix B), we get

that gn(x0) ∈ W cs
loc ∩ B. Now, using the fact that g is invertible, we can iteratively construct the

sequence of sets defined by W1(x
∗) = g−1(W cs

loc∩B)∩U and Wk+1(x
∗) = g−1(Wk(x

∗)∩B)∩U .

Then we have that x0 ∈ Wn(x
∗) for all n ≥ n0. The set U0 = ∪∞

k=1
Wk(x

∗) contains all the initial

points in U such that gradient-based learning converges to a strict saddle.

Since x∗ is a strict saddle, I − ΓDω(x∗) has an eigenvalue greater than one. This implies that

the co-dimension of the unstable manifold is strictly less than md so that dim(W cs
loc) < md. Hence,

W cs
loc ∩B has Lebesgue measure zero in R

md. Using again that g is a diffeomorphism, g−1 ∈ C1 so

that it is locally Lipschitz and locally Lipschitz maps are null-set preserving. Hence, Wk(x
∗) has

measure zero for all k by induction so that U0 is a measure-zero set since it is a countable union of

measure-zero sets.

Theorem 6 gives sufficient conditions under which, with random initializations of Ki, policy-

gradient methods would almost surely avoid the critical point. Let each players’ initial strategy

Ki,0 be sampled from a distribution pi,0 for i ∈ {1, ..., N} , and let p0 be the resulting the joint

distribution of (K1,0, . . . ,KN,0).

Corollary 7 Suppose Do is chosen such that Σ0 ≻ 0, and consider an N–player LQ game sat-

isfying Assumptions 1 and 2 in which there is a Nash equilibrium which is a saddle point of the

policy-gradient dynamics. If each player i ∈ {1, . . . , N} performs policy-gradient with a random

initial strategy Ki,0 ∼ pi,0 such that the support of p0 is U , they will almost surely avoid the Nash

equilibrium.

Corollary 7 shows that even if the players randomly initialize in a neighborhood of a Nash

equilibrium that is a saddle point of the joint gradient dynamics they will almost surely avoid it.

The proof follows trivially from the fact that the set of initializations that converge to the Nash

equilibrium is of measure zero in U .

8
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In the next section, we generate a large number of LQ games that satisfy the conditions of Corol-

lary 7. Taken together, these theoretical and numerical results imply that policy-gradient algorithms

have no guarantees of local, and consequently global, convergence in general-sum LQ games.

Remark 8 Theorem 6 gives us sufficient conditions under which policy-gradient in general-sum LQ

games does not even have local convergence guarantees, much less global convergence guarantees.

We remark that this is very different from the single-player LQR setting, where policy-gradient will

converge from any initialization in a neighborhood of the optimal solution (Fazel et al., 2018). In

zero-sum LQ games, the structure of the game also precludes any Nash equilibrium from satisfying

the conditions of Theorem 6 (Mazumdar et al., 2018), meaning that local convergence is always

guaranteed. In Zhang et al. (2019), the guarantee of local convergence is strengthened to that of

global convergence for a class of projected policy-gradient algorithms in zero-sum LQ games.

5. Generating Counterexamples

Since it is difficult to find a simple closed form for the Jacobian of ω due to the fact that the matrices

Pi implicitly depend on all the Ki, we perform random search to find instances of LQ games in

which the Nash equilibrium is a strict saddle point of the gradient dynamics. For each LQ game

we generate, we use the method of Lyapunov iterations to find a global Nash equilibrium of the

LQ game and numerically approximate the Jacobian to machine precision. We then check whether

the Nash equilibrium is a strict saddle. Surprisingly, such a simple search procedure finds a large

number of LQ games in which policy-gradient avoids Nash equilibria.

For simplicity, we focus on two-player LQ games where z ∈ R
2 and d1 = d2 = 1. Thus, each

player i = 1, 2 has two parameters to learn, which we denote Ki,j , j = 1, 2.

In the remainder of this section, we detail our experimental setup and then present our findings.

5.1 Experimental setup

To search for examples of LQ games in which policy-gradient avoids Nash equilibria, we fix B1,

Q1, and R1 and parametrize B2, Q2, and R2 by b, q, and r, respectively. For various values of

the parameters b, q, and r, we uniformly sample 1000 different dynamics matrices A ∈ R
2×2 such

that A,B1, Q1 satisfies Assumption 2. Then, for each of the 1000 different LQ games we find

the optimal feedback matrices (K∗
1 ,K

∗
2 ) using the method of Lyapunov iterations (i.e., a discrete

time variant of the algorithm outlined in Li and Gajic (1995)), and then numerically approximate

Dω(K∗
1 ,K

∗
2 ) using auto-differentiation1 tools and check its eigenvalues.

The exact values of the matrices are defined as follows:

A ∈ R
2×2 : ai,j ∼ Uniform(0, 1) i, j = 1, 2,

B1 =

[

1
1

]

, B2 =

[

b
1

]

, Q1 =

[

0.01 0
0 1

]

, Q2 =

[

1 0
0 q

]

, R1 = 0.01, R2 = r.

5.2 Numerical results

Using the setup outlined in the previous section we randomly generated LQ games to search for

counterexamples. We first present results that show that these counterexamples may be quite com-

1. We use auto-differentiation due to the fact that finding an analytical expression for Dω is unduly arduous even in low

dimensions due to the dependence of Pi and ΣK1,K2
on (K1,K2), both of which are implicitly defined.

9









POLICY-GRADIENT ALGORITHMS IN LINEAR QUADRATIC GAMES

We remark that we only analyzed the deterministic policy-gradient setting, though the findings

extend to settings in which players construct unbiased estimates of their gradients (Sutton and Barto,

2017) and even actor-critic methods (Srinivasan et al., 2018). Indeed all of these algorithms will

suffer the same problems since they all seek to track the same limiting continuous-time dynamical

system (Mazumdar et al., 2018).

Our numerical experiments also highlight the existence of limit cycles in the policy-gradient

dynamics. Unlike in classical optimization settings in which oscillations are normally caused by

the choice of step sizes, the cycles we highlight are behaviors that can occur even with arbitrarily

small step sizes. They are a fundamental feature of learning in multi-agent settings and have been

observed in the dynamics of many learning algorithms (Mazumdar et al., 2018; Papadimitriou and

Piliouras; Hommes and Ochea, 2012; Mertikopoulos et al., 2018). We remark, however, that there

is no obvious link between the limit cycles that arise in the gradient dynamics of the LQ games

and the Nash equilibrium of the game. Indeed, unlike with other game dynamics in more simple

games, such as the well-studied replicator dynamics in bilinear games (Mertikopoulos et al., 2018)

or multiplicative weights in rock-paper-scissors (Hommes and Ochea, 2012), the time average of

the players’ strategies does not coincide with the Nash equilibrium. This may be due to the fact that

the Nash equilibrium is a saddle point of the gradient dynamics and not simply marginally stable,

though the issue warrants further investigation.

This paper highlights how algorithms developed for classical optimization or single-agent op-

timal control settings may not behave as expected in multi-agent and competitive environments.

Algorithms and approaches that have provable convergence guarantees and performance in compet-

itive settings, while retaining the scalability and ease of implementation of simple policy-gradient

methods, are therefore a crucial and promising open area of research.

Appendix A. Proofs of Auxiliary Results

Proposition 5 Consider an N–player LQ game. The vector-valued map ω twice continuously dif-

ferentiable on Smd; i.e., ω ∈ C2(Smd,Smd).

Proof Following the proof technique of Zhang et al. (2019), we show the regularity of ω us-

ing the implicit function theorem (Abraham et al., 1988). In particular, we show that ΣK =
Ez0∼Do

[
∑

∞

t=0
z(t)z(t)T

]

and Pi for i ∈ {1, . . . , N} are C1 with respect to each Ki on the space

of stabilizing matrices.

For any stabilizing (K1, . . . ,KN ), ΣK is the unique solution to the following discrete-time

Lyapunov equation:

ĀΣKĀT +Σ0 = ΣK , (6)

where Σ0 = Ez0∼Do
[z(0)z(0)T ] > 0 and Ā = A −

∑N
i=1

BiKi. Both sides of this expression can

be vectorized. Indeed, using the same notation as in Zhang et al. (2019), let vect(·) be the map that

vectorizes its argument and let Ψ : Rm2

× R
d1×m × · · · × R

dN×m → R
m2

be defined by

Ψ(vect(ΣK),K1, . . . ,KN ) =
[

Ā⊗ Ā
]

· vect(ΣK) + vect(Σ0).

Then, (6) can be written as

F (vect(ΣK),K1, . . . ,KN ) = Ψ(vect(ΣK),K1, . . . ,KN )− vect(ΣK)

= 0.

13
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The map F implicitly defines ΣK . Moreover, letting I denote the appropriately sized identity

matrix, we have that
∂F (vect(ΣK),K1, . . . ,KN )

∂vectT (ΣK)
=

[

Ā⊗ Ā
]

− I.

For stabilizing (K1, . . . ,KN ), this matrix is an isomorphism since spec(Ā) is inside the unit circle.

Thus, using the implicit function theorem, we conclude that vect(ΣK) ∈ C1. As noted in Zhang

et al. (2019), the proof for each Pi, i ∈ {1, . . . , N} is completely analogous. Since ΣK and Pi are

C1 and ω is linear in these terms, the result of the proposition follows.

Appendix B. Additional Mathematical Preliminaries and Results

The following theorem is the celebrated center manifold theorem from geometry. We utilize it in

showing avoidance of saddle point equilibria of the dynamics.

Theorem 9 (Stable Manifold Theorem (Shub, 1978, Thm. III.7), Smale (1967)) Let x0 be a fixed

point for the Cr local diffeomorphism φ : U → R
n where U ⊂ R

n is an open neighborhood of x0
in R

n and r ≥ 1. Let Es ⊕ Ec ⊕ Eu be the invariant splitting of Rn into generalized eigenspaces

of Dφ(x0) corresponding to eigenvalues of absolute value less than one, equal to one, and greater

than one. To the Dφ(x0) invariant subspace Es ⊕ Ec there is an associated local φ–invariant Cr

embedded disc W cs
loc called the local stable center manifold of dimension dim(Es⊕Ec) and ball B

around x0 such that φ(W cs
loc) ∩B ⊂ W cs

loc, and if φn(x) ∈ B for all n ≥ 0, then x ∈ W sc
loc.
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