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Abstract

Deep generative models are a set of promising methods,
that are able to model complex data and generate new
samples.  In principle, they learn to map a random
latent code sampled from a prior distribution into a high
dimensional data space, such as image space. However,
these models have limited utilities as the user has minimal
control over what the network produces. Despite the
success of some recent work in learning an interpretable
latent code, the field still lacks a coherent framework
to learn a fully interpretable latent code, without amny
random part for sample diversity. Consequently, it is
generally hard, if not impossible, for a non-expert user
to produce a desired image by tuning the random and
interpretable parts of the latent code. In this paper, we
introduce the Preference-Based Image Generation (PbIG),
a new method to retrieve the corresponding latent code
of the user’s mental image. We propose to adopt
preference-based reinforcement learning, which learns from
a user’s judgment of the generated images by a pre-
trained generative model.  Since the proposed method
is completely decoupled from the training stage of the
underlying generative models, it can easily be adopted by
any method, such as GANs and VAEs. We evaluate the
effectiveness of PblG framework using a set of experiments
on baseline datasets using a pretraind StackGAN++.

1. Introduction

Building generative models, that are able to produce
new samples of high-dimensional data distributions,
is a fundamental problem in many computer vision
applications, such as face generation [I7], image-to-
image translation [14, 19], image editing [5, 18], domain
adaptation [47], and image in-painting [4!]. Currently, the
most prominent approaches are the Generative Adversarial
Networks (GAN) [12], Variational Autoencoders (VAE)
[21], and Auto-Regressive Generative Models [28]. These
models capture the joint distribution between the data and a
set of hidden variables, called latent codes, which represent
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different variations of the training data. The trained models
then generate new samples, given random latent codes,
which are sampled from their prior distributions. However,
in an unconditional setting, these models lack an inference
mechanism to find the corresponding latent representation
of a mental image (a desired image which user has in mind).
Consequently, prior works conditioned these models on
additional information to direct the data generation process.
The conditioning could be on another image for image-to-
image translation, part of an image for in-painting, some
desired data attributes [39], or even class labels [24].

Even though the generative models with their conditional
settings sidestep the common problem of random sampling
to some extent, they still need a random code to
generate diverse samples. To learn meaningful latent
representations, MMD-VAE was proposed in [45] which
maximizes the mutual information between the input and
the latent code. InfoGAN [2], an information-theoretic
extension of GAN, allows learning representation which
is partially interpretable. Graph-based methods have been
also proposed in [33, 32] for semi-supervised learning.
The resulting code then consists of a meaningful part
corresponding to specific semantic attributes of the data,
and a random part which injects diversity among the
generated samples. In contrast, two concurrent independent
works [8, 6] proposed a full inference of the random
code. They have demonstrated that these codes can learn
semantic attributes of the data. Several other papers
have also investigated supervised representation learning by
conditioning the discriminator on certain desired attributes
[22, 26]. Transferring attributes between images has also
been studied in the literature [5, 13]. Despite all the effort,
it remains unclear how non-expert users can exploit the
power of generative models to produce their mental images.
Moreover, some attributes of the data cannot be encoded
explicitly into a user-sensible code. [46] is the colsest work
in the literature in which the user is able to genrate or edit
an image using a set of computer paiting tools. However,
generating the exact mental image is quite hard with this
technique. However, this method could be an early step to
initialize the latent code or be combined with our method as
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a condition.

To overcome these limitations, we propose a universal
framework that enables users to produce arbitrary images
in a sequential fashion. At each step, the users are
required to compare a pair of generated images by a
pre-trained generative model and select their preferences.
The proposed framework then learns the corresponding
latent representation of users’ mental images. In essence,
this framework fits within the Preference Learning (PL)
paradigm [10]. Roughly speaking, preference learning is
about modeling the preference using a set of instances,
which are associated with an order relation. In recent
past, extensive research has been conducted to address
this problem proposing different techniques to learn from
human judgments [1, 11, 36, 38, 30]. After the success
of Reinforcement Learning (RL) in many applications [16],
they are extended to a new paradigm, namely Preference-
based Reinforcement Learning (PbRL), which enables RL
algorithms to learn from preferences rather than absolute
reward values [37]. Typically, they first learn a preference
function using a set of training examples, and subsequently,
a policy is learned to make actions which minimize the
number of mis-ranked pairs. A series of experiments are
conducted in [3, 23], involving actual human feedback, to
play video games or perform robotics tasks. In [43], a new
technique, called dueling bandit, is proposed which uses
preferences in an interactive, but non-sequential setting.
One notable difference is that they deal with a sequence of
actions in a relatively low dimensional space, while we need
to learn a single high dimensional action.

Our framework, which is developed based on PbRL,
jointly trains a reward network, which fits a reward function
to a user’s preferences, and a trainable latent code that
generates the user’s mental image. More directly, the
latent code optimizes the underlying function of the reward
network. Compared to prior work, our key contribution
is proposing a novel framework, called Preference-Based
Image Generation (PbIG), that can find the corresponding
random code of a desired image, for a given generative
model, through a sequence of preference judgments by
the user. We develop a training strategy, and the required
considerations for its success, to retrieve a latent code on
a relatively small number of judgments. It takes between
5-15 minutes in average for a non-expert user to generate
a mental image using PbIG, which is way less than a
couple of hours that they need to edit/generate an image in
many applications such as sketch-to-photo synthesis in law
enforcement or art, interior design (like bedroom/kitchen
datasets), and exterior designs (tower dataset).

To the best of our knowledge, this work is the first
to leverage the power of preference-based learning in
predicting the random codes of generative models to
produce user-desired images. Since PbIG is completely

decoupled from the training stage of the generative models,
it can be adopted by any pre-trained generative models with
no more effort. Note that conditioning on some human-
sensible attributes can also benefit PbIG, by limiting the
latent code search space. In this work, we evaluate the
PbIG framework using multiple baseline datasets. We
employed StackGAN++ [44] to conduct our experiments,
as it can efficiently generate more realistic and diverse
images in different domains compared to other generative
models. However, the whole framework is identical for
any other generative models. Finally, we utilize Model-
Agnostic Meta-Learning (MAML) [9] to reduce the number
of comparison required by the user.

2. Preliminaries

In this section, we provide some rudiments of GANs and
PbRL, necessary to understand the proposed preference-
based image generation framework.

2.1. Generative Adversarial Networks (GANS)

GANSs [12] are a group of generative models which learn
the statistical distribution of the training data, allowing us
to synthesize data samples by mapping a random noise z
to an output image y: G(z) : z — y, where G is the
generator network. GAN in its conditional setting (cGAN)
is proposed in [15] which learns a mapping from an input
2 and a random noise z to the output image y: G(z,z2) :
{z, z} — y, using an autoencoder network. The generator
model G(z,z), is trained to generate an image which is
not distinguishable from real” samples by a discriminator
network, D. Simultaneously, the discriminator is learning,
adversarially, to discriminate between the “fake” generated
images by the generator and the real samples from the train
dataset. The objective function of GAN is given by:

lGAN(G’ D) = Ew,yN;Ddata [1Og D(x7 y)] (1)
+ E“?»ZNPZ [IOg(l - D(x’ G(x’ Z)))L

where G attempts to minimize it and D tries to maximize
it. Since the adversarial loss is not enough to guarantee
that the trained network generates the desired output, one
may add an extra Euclidean distance term to the objective
function to generate images which are near the ground truth.
Consequently, the final objective is defined as follows:

G* = argngnmgleAN(G,D)—|—)\ZL1(G), 2)
where I11(G) =|| vy — G(z,2) ||1 and X is a weighting
factor.

2.2. Preference-Based Reinforcement Learning

In standard reinforcement learning setup, an agent
interacts with an environment E. At each timestep the agent
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receives an observation o € O from the environment, and
takes an action a € A based on a policy, 7 : O — A,
which maps states to a probability distribution over the
actions. Subsequently, the environment assign a scalar
reward 7(0,a) € R to the taken action. The goal in
reinforcement learning is to learn an optimal policy, which
maximizes the discounted sum of rewards through all the
steps. However, in PbRL the environment does not supply
any rewards to the agent. In contrast, the agent’s actions are
evaluated by a human user, and a label is provided to the
agent in terms of preferences between pairs of actions. In
this context, we write 0; > o indicating the observation o
is preferred, by the user, to the observation o0s.

In PbRL, the policy and reward estimators are
implemented as two neural networks which are updated in
the following steps: first, the agent takes an action, a, based
on the policy network 7, i.e., a = m(0). The parameters of
7 are optimized to maximize the sum of estimated rewards
7 = Ng(o,a) where Ng is the reward network; then, a
pair of observations are passed to the user for comparison;
finally, the parameters of the reward network are updated to
estimate a higher reward for the user preferred observation.

2.3. Model-Agnostic Meta-Learning (MAML)

The goal in meta-learning is to train a model which can
rapidly adapt to new tasks with a few training iterations.
The Model-Agnostic Meta-Learning (MAML) [9] is a meta
learning algorithm which learns a data-driven initialization
of the models that accelerate the standard reinforcement
learning on new task drawn from a task distribution p(7).
The meta-training objective of MAML is:

9; =60- an,C.ri (7T9) 3)
0=0-— 6V(9 Z ﬁﬂ(ﬂ—eg)v
Ti~op(T)

where 6 is the parameters of the policy network 7wy which
maps states to a probability distribution over the actions,
and L represent an arbitrary loss function which is selected
based on the application. In effect, the MAML finds model
parameters that with small changes will improve the loss
function of any task drawn from the p(7), when moving
in the direction of that loss [9]. Our framework employs
MAML to initialize the reward network parameters and
accelerate the preference-learning process. Its effectiveness
is explored in Sec 5.3.

3. Preference-Based Image Generation (PbIG)

In our proposed Preference-Based Image Generation
(PbIG) the state of environment does not change as the user
has a fixed mental image at all time, and taking new actions
does not change the desired image. In other words, we can
look at our problem as a continuous multi-armed bandit

(stateless reinforcement learning) [34]. Consequently, the
reward is a sole function of the action (see Figure (1)).
In our formulation, we do not have a policy network. In
contrast, we optimize directly the GAN random code z that
produces user’s mental image. This code is considered as
the action in our RL formulation. Note that for the rest
of this paper, for the sake of consistency with the GAN
formulation, we use z to refer to the actions.

Following the approach in [3], the reward estimator
network, Vg, can be interpreted as a preference-predictor
when we consider # = Ng(z) as a factor which quantifies
the user’s judgments. Then, the probability of preferring an
action depends exponentially on the value of the estimated
reward and can be calculated as follows:

et

Plz1 > 2] = “)

where r; = Ng(z1) and 72 = Ng(z2) are the
corresponding rewards of the two latent codes z; and z9,
respectively.

At each time step, the user is given a pair of images
generated from z; and 25 to indicate (a) which image is
more similar to the desired image, (b) the two images are
equally similar, or (c) none of them is comparable to the
desired image. If one of the images is selected as preferable,
then its corresponding label [ is set to one. Correspondingly,
the label of the unfavored image is set to zero. In the case
of neutral preference, both the labels are set to 0.5. Finally,
when both images are rejected by the user, both labels are
set to zero. In other words, the corresponding label of
each image, or its corresponding latent code, determines the
probability of being preferred by the user.

We can update the parameters of Ny to predict the user’s
preference labels. To this end, we minimize the cross-
entropy loss between the estimated preferred probability
and the actual labels provided by the user:

Lp(i1, i) =— >

(21,22,l1,l2)EB
+ Iy log Plze > 21],

lilog Plz1 > 23]  (5)

where B is the training batch, [; and [ are the
corresponding rewards of the two random codes z; and
zo, respectively. We update the reward and code with
some modifications to the proposed steps in PbRL. Since
our formulation is stateless, we cannot generate a pair of
codes using a policy network to update the parameters
of reward function. In order to sidestep this issue, we
select two codes following a modified e-greedy policy. The
GAN generator then produces two images from the given
codes for user comparison. The parameters of the reward
network are updated based on the user-assigned labels and
their estimated values to minimize the loss function in (5).
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Figure 1: The proposed PbIG framework, is trained in two steps: The reward network update is based on the user’s preference
labels assigned to two random codes z; and z2; The goal of the latent code update is to find the random code z which
maximizes the estimated reward 7. Note that incorporating the generator and discriminator, minimizing the discriminator
loss, is optional in this step, but can avoid the codes with non-satisfactory results.

Subsequently, a latent code, z is send to the reward function.
The latent code then is optimized to maximize the estimated
reward, minimizing the following loss function:

L.=-) Ng(2). (6)

z€B

As a final step, we find the best initialization of our
reward network using the MAML. Note that the MAML
in the original paper [9] is used to find the initialization
of the policy network. However, in our formulation of a
stateless RL, we used the same technique to find the best
initialization for the reward network. It usualy being trained
based on multiple tasks which could come from a single or
multiple datasets. However, in our probelm, since for each
experiment we need to train a new reward network from
scrach, and it can be considered as a new task, we employ
MAML for find the best initial weights for the reward
network using a series of synthetic-feedback experiments.
The meta-training objective of MAML is defined as:

0; =0 —avel,, (N%) (7)
0=0-pv9 > Lr(Np),
Ti~p(T)

where Ly is defined in (5).

4. Implementation

We adopt the "memory replay” to speed up the learning
process by utilization of earlier samples. However, early
experiments showed that the size of memory replay should
be relatively small, or the network stops learning due
to the very old randomly selected samples with limited
information. We also propose to use a weighted memory,
which enables us to adopt a bigger memory size. In this
setup, we assign a distinct weight to each sample in the
memory replay upon its arrival. The assigned weights then

decay after each step, which means the older samples in the
memory replay have less contributions to the loss function.

We train an ensemble of reward networks on randomly
selected pairs from the replay memory. The final estimate
of the reward is calculated by normalizing each of the
estimators and then averaging the results. Also, similar to
[3], we normalize the reward values, estimated by Npg, to
have zero mean and constant standard deviation.

Even though GANSs can learn to map a random code from
a fixed distribution to an image in the training domain, they
still fail to generate satisfactory results for some areas of the
latent space. Preliminary experiments showed that there is
a possibility that the code update stops in any of these areas
of the code space. To overcome this issue, we incorporate
the discriminator loss when updating the code.

Ltotl(o) = L, — Lp(G(2)), (8)

where Lp(G(z)) is the loss of discriminator for the
generated image G(z). We use this general notation, as
different GAN variants employ different losses.

Finally, with a pre-defined frequency, we generate a
query from two randomly selected latent codes among the
previous user’s preferences. We also let the user select
the current preference as the best generated image. If the
current preference is not selected as the best generated
image, we add the current preference and the best generated
image as another pair to the memory. Clearly, the former is
labeled as the preferred image.

4.1. Latent Code Sampling Policy

Since the environment is stateless in our formulation,
we only have a single action. However, we need a pair of
actions to train our reward network. In order to overcome
this problem, we select at least one of the codes at random.
The random code sampling policy is the key element of the
whole framework to succeed. Sampling uniformly from the
code distribution tends to destabilize the reward network
training. Consequently, at each step we select a pair of
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Figure 2: The evolution of the generated images by the latent code, and the desired image on different databases. Since the
latent code is initialized randomly, in each experiment the StackGAN++ generates a random image. In each experiment, the
first two rows are generated by human feedback and the last two rows are generated using synthetic feedback. However, for
bedroom and church datasets, all samples are generated by human feedback.

codes as follows:

P { z NN(zlast7U2)

z~ N (pe, U? )

where € is the probability of taking a completely random
action from the code space, zj,s¢ is the latest learned
latent code, N (zi4s¢, 02) is a normal distribution with mean
Z1qst and variance o2, and N (pq,03) is the distribution
of GAN latent code, which is assumed to be a normal
dlstnbutlon with mean p,. and variance o2 in this paper.
Here, 02 and € are the two hyper- parameters To face the
need to trade off between exploration and exploitation, €
is initialized to one and decays over time. Following this
formulation, we generate completely random images and
gradually give more chance to explore the neighborhood
of the learned latent code. Early experiments showed that
simply sampling pairs from the entire code space collapses
the model. Similar to [4], we sample multiple pairs at each
step, and select the pair with highest reward variance among
the ensemble of models, based on the current learned reward
networks, as a query to the user.

w. probability 1 — €

w. probability e O

4.2. Conditional Setting

Even though the PbIG framework can be applied to
the generative models, both in their unconditional and
conditional settings, conditioning on some human-sensible
attributes can benefit PblG, by limiting the latent code
search space. For example, in face generation, conditioning
the generated face on some facial attributes, such as the

gender, hair and skin colors narrows down the problem
into looking exclusively for the geometrical properties of
the desired face. This can reduce the average number of
comparisons by the user drastically.

In conditional setting, we provide the generator network
with an interpretable code c, like facial attributes, and a
random code z, which represents the subtle variations of
the image. Therefore, our framework only needs to learn
the random code z.

5. Experiments

The main goal of our experiments is to investigate if a
human subject can generate a desired image in a reasonable
time. The framework should be able to find the latent
code with the minimum number of user judgments. We
evaluate PbIG on CelebA [40], edges <> handbags [460],
edges <+ shoes [42], LSUN bedroom and church [27],
and CUB [35] datasets. To the best of our knowledge,
this work is the first attempt to retrieve GAN’s random
codes based on the human preferences, consequently we
use the Nearest Neighbor (NN) sample in training set as the
baseline for comparison. Note that NN is not applicable in
practice as it needs the ground truth. The image realism
and diversity of the output is always the same as the
underlying GAN framework and reporting them has no
meaning. However, we compared the results of CelebA
with IC-GAN [26] which is a conditional GAN based on
the facial attributes. We conducted a comprehensive set of
experiments in different settings, to evaluate the proposed
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PbIG both qualitatively and quantitatively.

Human or synthetic feedback: We trained the models
using both human and synthetic feedbacks. In human-based
experiments, feedback was provided by a subject who is
given a pair of generated images. For synthetic feedback,
the agent queries for comparison based on deep image
features, extracted from a VGG19 [29], instead of human
preferences. Note that, here, we use synthetic feedback in
order to conduct more experiments. Any comparison of the
human and synthetic feedbacks, which represents how well
the synthetic feedback mimics human evaluation is out of
scope of this work.

Viewed and Semi-viewed: For human subjects, we
set up viewed and semi-viewed scenarios. In former, the
desired image was available to the subjects for comparison
all the time. In contrast, in the semi-viewed case, the
desired image was shown to the subjects for 30 seconds,
and they were asked to compare the generated images based
on their memories. The latter simulates the forensic facial
reconstruction performed by the law enforcement.

Network Structure: We train the PbIG using the Adam
optimizer [20], with learning rate of 0.0002, 5; = 0.5,
B2 = 0.999 and mini-batch size of 20. The algorithm
is implemented in PyTorch [25]. The reward network
has 4 Fully-Connected (FC) layers with 300, 300, 300, 1
nodes. Each FC layer, except the last one, is followed by a
LeakyRelu activation function and a dropout layer. For all
the three datasets, we train a distinct Stack-GAN++ with a
random code of size 100 drawn from a normal distribution
with zero mean and unit variance, i.e., z ~ N(0,1). The
generator is trained to generate images of size 256 x 256.
We set all the hyper-parameters as in the original paper
to train our Stack-GAN++. Finally, we use ¢ = 0.5 for
random code sampling policy.

Synthetic Feedback: We generate the synthetic
feedback in a way to simulate the human comparisons.
To this end, an L1 loss is computed over deep image
features, extracted from a pretrained VGG19 [29], which is
sometimes referred to as perceptual loss [7]. To evaluate the
similarity using both fine and course features, we calculate
an average perceptual loss over conv3_4 and conv5_4 of
the VGG19 network. Since the perceptual loss can only
represent the content of an image, we use the Gram matrix,
which is the inner product between the vectorized feature
maps of a layer, over conv2_2 and conv3_4 to consider the
style of generated images as well. Finally, we define the
total similarity distance between a generated image and the
desired image as a weighted average of the content and style
losses. Next, the preferred image is defined as the image
with the minimum perceptual loss with the desired image

Target Last Step First Step Target Last Step
h

Figure 3: PbIG in conditional setting (CUB dataset).

based on the following formulation:

1,0 ls(img;) < ls(img;) — the

ls(img;) < ths

| 1s(img;) — ls(img;) [|< the ;
Is(img;) < ths or ls(img;) < ths
0,0 else

lil; =4 0.5,0.5

where img;, 7 = 1, 2 represent the images to be compared,
ls(img;) is the total similarity distance between img;
and the desired image, th. is the minimum difference
between the similarity distances of img; and imgs to be
comparable, and th, is the maximum value of similarity
distance between img; and the desired image to select img;
as the preference. More specifically, it simulates the human
inability to compare two images when both are too far from
the desired image. We also randomly modified the values of
l; and 5 with a probability of 5% to simulate user mistakes.
We use th. = 0.1 for the synthetic-feedback experiments.
The value of th, selected as 90% of the dataset Average
Similarity Distance (ASD), computed between randomly
selected images of each dataset (see Table 1).

5.1. Qualitative Analysis

Figures 2a, 2b, and 2c show how the generated images
evolve during the comparison steps, following the proposed
PblG framework. For each experiment, the desired image
is generated randomly using the StackGAN++ generator.
The first two rows of each experiment are generated by
the human feedback and the last two rows show the results
of synthetic feedback. We stopped each human-feedback
experiment as soon as the user is satisfied with the generated
image. The user has access to the goal image during the
whole experiment. The synthetic-feedback experiments
were also executed for 600 comparisons and the resultant
generated images are stored to be compared by the user.
The stopping step is defined as the earliest step which
satisfies the user. The result clearly reveals the success of
PbIG to reach the desired image in a limited number of
comparisons. For the CelebA dataset, the best achieved
results of IC-GAN are also illustrated in Figure 2c. We
also conducted more experiments on bedroom and church
datasets which has more complexity (see Figure 2d). Note
that all the experiments for these datasets are human-
feedback generated, as the synthetic-feedback experiments
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Final ASD ANS

Dataset Dataset ASD | NN ASD | Feedback W Do Wo Daan | W Daan | Wio Do
Human | 0.46 £ 0.17 | 0.47 £0.20 | 310 =33 | 322 =+ 40

CelebA 1135 0483 mSynthetic [ 039 £0.14 [ 040 £ 0.13 | 302 29 | 276 £ 39
Human | 0.54 £ 0.16 | 0.56 £ 0.14 | 360 £52 | 381 £ 59

Handbags 1.782 0-332 =5/ thetic [ 049 £ 0.12 | 049 £ 0.15 | 33250 | 297 = 62
Human | 048 £0.19 | 0.51 £0.18 | 347 £45 | 369 £ 53

Shoes 1.637 0419 =gy nthetic | 046 £0.13 [ 0.47 £0.15 | 311 £42 | 250 L 64
CUB 7 03g7 | _Human | 0435022 049+025 [ 98£39 | 124£51
(conditional) ' ' Synthetic | 0.40 £0.18 | 042 £0.20 | 102 £36 | 123 £40

Table 1: The average perceptual distance between the final generated image and the goal image, and the average number of
steps to stop training the latent code on different datasets for human and synthetic feedbacks.

First Step Generated Images Lastsiep | G0

L LEEEEEEEED:
AP0 R00 0
BRepersEAAR
AAREEEEEEE R

Figure 4: The evolution of the generated image by the latent
code, and the goal image on CelebA database in semi-
viewed setting. The users looked at goal images for 30
seconds and then asked to generate it.

)

A

fail to converge to an user-acceptable image. The final
results on these datasets show the lack of our framework’s
ability on capturing small image details. A possible
reason could be the poor performance of the StackGAN++
in these datasets, having too much of artifacts. Note
that the performance of our framework is bounded by
the performance of the underlying GAN framework in
generating high quality images. Figure 3 also shows the
PbIG results in conditional setting (CUB). The images are
generated using conditional StackGAN++, conditioned on
text description, which narrowed down the search space.

We also conducted a series of semi-viewed human-
feedback experiments. Figure 4 illustrates the results of our
semi-viewed experiments on CelebA dataset.

5.2. Quantitative Analysis

Table 1 presents the quantitative analysis of the
generated images by the proposed framework. We
evaluate the PbIG using two metrics, namely average
similarity distance (ASD), and average number of steps
(ANS). The ASD is calculated by averaging the similarity
distance between the generated image after the experiment
termination, based on the explained stopping criteria, and
the goal image (over 100 experiments in the synthetic-
feedback setting, and 20 experiments in the human-

feedback setting). The effect of incorporating the
discriminator of StackGAN++, D¢ 4N, in training the latent
code is also investigated. Based on our human-feedback
experiments each query takes 3 seconds in average to
receive a user feedback. That means, based on the values
of ANS in Table 1, it takes roughly 15 (5) minutes for
the users to generate their goal images using unconditional
(conditional) PbIG. We also tried to redo the human-
feedback CelebA experiments for IC-GAN by tuning its
conditions. The ASD was calculated as 0.694, compared
to 0.458 of PbIG, which confirms the visual difference
in Figure 2c. Table 2 is also lists the results of more
experiments on LSUN bedroom and church datasets. Note
that we conducted it only in human-feedback setting, as the
synthetic-feedback did not generate acceptable results. The
reason is that the poor performance of the StackGAN++ in
these datasets, having too much of artifacts.

Since the ASD might not be a perfect alternative to the
human comparison ability, its value for the human-feedback
experiments is greater than the synthetic-feedback. A
possible reason could be that the network, when using
synthetic feedback, learns to apply subtle modifications to
the generated images that are almost undetectable to the
human eyes (see adversarial samples [31]). For the sake
of clarity, the average similarity distance between 1000
randomly generated images is also reported for each dataset.
We also reported ASD for NN training sample.

Employing the discriminator of StackGAN++, Dgan,
unexpectedly increases the ANS of the synthetic-feedback
experiments while the ASD remains almost unaltered.
This increase is a direct consequence of changing the
direction of policy search by the discriminator to satisfy
the realism of the generated image. However, the final
result could be in average more plausible to the human
user as some unrealistic images might have a low similarity
distance to the goal image. In contrast, for human-feedback
experiments, using Dg 4N reduces the ANS notably. Here,
removing the Dg 4, results in the latent code to generate
unrealistic images in some experiments, while learning,
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which increases the number of selecting ’not comparable”
by the user (see the generated images in the first row of
Figure 4). The ASD of the human-feedback experiments
is rather similar with and without Dgan, while its
larger variation, in comparison with synthetic-feedback
experiments, is associated with its relatively smaller number
of experiments over which the ASD is calculated.

We also study how sensitive is the proposed framework
for the complexity of the reward network. To this end, we
calculated the ASD on the synthetic-feedback experiments
for multiple reward networks with different complexity,
namely 2 x fc200, 3 x fc200, 3 x fc300, 4 x fc300,
3 x fc400, and 4 x fc400. Here, "n x fcm” represents n
subsequent fully-connected layers with m nodes. Figure 5a
shows how the reward network complexity affects the ASD
(models sorted as reported above). The proposed learning
scheme is quite robust to the complexity of the reward
network. However, for very simple or complex networks,
the ASD increases drastically due to the underfitting and
overfitting, respectively. More specifically, in both cases,
the learned latent code diverges significantly from its mean
(zero in StackGAN++). Figure 5b illustrates how the ASD
decreases as more feedbacks are provided to the framework.
The ASD eventually starts settling down which means the
PbIG is able to generate an acceptable representation of the
goal image in less than 350 comparisons. Note that the
results of this figure, as well as the results on Table 1, are
reported for the reward network #3.

5.3. Ablation Study

To further gain deep insights of the improvements
obtained by each part of the proposed method, we
conduct more additional synthetic-feedback experiments
for ablation studies:

MAML initialization: Adding MAML initialization to
the reward network results in a roughly %25 improvement
in ANS. Table 3 shows the ANS of synthetic feedback
experiments with and without MAML initialization.
However, the final ASDs changed for less than +%2.

Random queries: Replacing the proposed random code
sampling policy, in which we gradually give more chance
to explore the neighborhood of the learned latent code,
with complete random selection, results in the learned latent
code converging to a point with a high similarity distance.

Best sample tracking: Removing the best sample
tracking, significantly increases the ANS. Table 3 shows
the ANS for the same experiments as in Table 1, without
best sample tracking. The improvement in ANS is a result
of incorporating automatically generated pairs, to train the
reward network, which provides a global information about
the most significant direction of reward maximization.

Weighted replay memory: We conducted the same
experiments with un-weighted replay memory. The ASD

Feedback | ASD | ANS
Human 0.67 320
Human 0.71 291

Bedroom
Church

Table 2: Human feedback results on LSUN bedroom and
church datasets.

w/o CelebA Handbags Shoes
BST 365(21% 1) | 378 (14% 1) | 367 (18% 1)
MAML | 359 (19% 1) | 417 (25% 1) | 387 (24% 1)

Table 3: Removing the best sample tracking (BST) or
MAML increases the average number of steps significantly.

Ave. Perc. Distance vs Model Complexity ASD vs # of steps
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Figure 5: ASD vs. model Complexity and number of steps.

at step 500 increased by 18%, 27%, and 20% for CelebA,
Shoes, and Handbags datasets, respectively. Note that, as
was mentioned, using a weighted replay memory will allow
the network to learn faster, specifically in the early steps
as most of the samples are drawn randomly from the latent
code space. However, in late steps, there is more chance of
sampling from the neighborhood of the learned latent code.

Comparison of previous preferences: Asking the users
to compare their preferred images from the previous steps
decreases the ANS by 9%, 12%, and 14% for CelebA,
Shoes, and Handbags datasets, respectively. This trend
of comparison, provides relative scores between previous
preferred samples, which results in training of a better
reward estimator.

6. Conclusion

In this paper, we present PbIG which enables the user
to control the generation process of a generative model.
To the best of our knowledge, it is the first universal
framework which retrieves the desired latent code of a
generative model which produce the user’s desired image.
The proposed method leverages the power of preference-
based reinforcement learning to find the desired latent code
from a set of user’s preferences. The proposed framework
can be easily be adopted by any generative model in its
conditional or unconditional setting. Our future work will
explore a more systematic sampling policy to minimize the
number of comparisons by the human user.
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