


a condition.

To overcome these limitations, we propose a universal

framework that enables users to produce arbitrary images

in a sequential fashion. At each step, the users are

required to compare a pair of generated images by a

pre-trained generative model and select their preferences.

The proposed framework then learns the corresponding

latent representation of users’ mental images. In essence,

this framework fits within the Preference Learning (PL)

paradigm [10]. Roughly speaking, preference learning is

about modeling the preference using a set of instances,

which are associated with an order relation. In recent

past, extensive research has been conducted to address

this problem proposing different techniques to learn from

human judgments [1, 11, 36, 38, 30]. After the success

of Reinforcement Learning (RL) in many applications [16],

they are extended to a new paradigm, namely Preference-

based Reinforcement Learning (PbRL), which enables RL

algorithms to learn from preferences rather than absolute

reward values [37]. Typically, they first learn a preference

function using a set of training examples, and subsequently,

a policy is learned to make actions which minimize the

number of mis-ranked pairs. A series of experiments are

conducted in [3, 23], involving actual human feedback, to

play video games or perform robotics tasks. In [43], a new

technique, called dueling bandit, is proposed which uses

preferences in an interactive, but non-sequential setting.

One notable difference is that they deal with a sequence of

actions in a relatively low dimensional space, while we need

to learn a single high dimensional action.

Our framework, which is developed based on PbRL,

jointly trains a reward network, which fits a reward function

to a user’s preferences, and a trainable latent code that

generates the user’s mental image. More directly, the

latent code optimizes the underlying function of the reward

network. Compared to prior work, our key contribution

is proposing a novel framework, called Preference-Based

Image Generation (PbIG), that can find the corresponding

random code of a desired image, for a given generative

model, through a sequence of preference judgments by

the user. We develop a training strategy, and the required

considerations for its success, to retrieve a latent code on

a relatively small number of judgments. It takes between

5-15 minutes in average for a non-expert user to generate

a mental image using PbIG, which is way less than a

couple of hours that they need to edit/generate an image in

many applications such as sketch-to-photo synthesis in law

enforcement or art, interior design (like bedroom/kitchen

datasets), and exterior designs (tower dataset).

To the best of our knowledge, this work is the first

to leverage the power of preference-based learning in

predicting the random codes of generative models to

produce user-desired images. Since PbIG is completely

decoupled from the training stage of the generative models,

it can be adopted by any pre-trained generative models with

no more effort. Note that conditioning on some human-

sensible attributes can also benefit PbIG, by limiting the

latent code search space. In this work, we evaluate the

PbIG framework using multiple baseline datasets. We

employed StackGAN++ [44] to conduct our experiments,

as it can efficiently generate more realistic and diverse

images in different domains compared to other generative

models. However, the whole framework is identical for

any other generative models. Finally, we utilize Model-

Agnostic Meta-Learning (MAML) [9] to reduce the number

of comparison required by the user.

2. Preliminaries

In this section, we provide some rudiments of GANs and

PbRL, necessary to understand the proposed preference-

based image generation framework.

2.1. Generative Adversarial Networks (GANs)

GANs [12] are a group of generative models which learn

the statistical distribution of the training data, allowing us

to synthesize data samples by mapping a random noise z

to an output image y: G(z) : z −→ y, where G is the

generator network. GAN in its conditional setting (cGAN)

is proposed in [15] which learns a mapping from an input

x and a random noise z to the output image y: G(x, z) :
{x, z} −→ y, using an autoencoder network. The generator

model G(x, z), is trained to generate an image which is

not distinguishable from ”real” samples by a discriminator

network, D. Simultaneously, the discriminator is learning,

adversarially, to discriminate between the ”fake” generated

images by the generator and the real samples from the train

dataset. The objective function of GAN is given by:

lGAN (G,D) = Ex,y∼pdata
[logD(x, y)] (1)

+Ex,z∼pz
[log(1−D(x,G(x, z)))],

where G attempts to minimize it and D tries to maximize

it. Since the adversarial loss is not enough to guarantee

that the trained network generates the desired output, one

may add an extra Euclidean distance term to the objective

function to generate images which are near the ground truth.

Consequently, the final objective is defined as follows:

G∗ = argmin
G

max
D

lGAN (G,D) + λlL1(G), (2)

where lL1(G) =‖ y − G(x, z) ‖1 and λ is a weighting

factor.

2.2. Preference­Based Reinforcement Learning

In standard reinforcement learning setup, an agent

interacts with an environment E. At each timestep the agent
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receives an observation o ∈ O from the environment, and

takes an action a ∈ A based on a policy, π : O → A,

which maps states to a probability distribution over the

actions. Subsequently, the environment assign a scalar

reward r(o, a) ∈ R to the taken action. The goal in

reinforcement learning is to learn an optimal policy, which

maximizes the discounted sum of rewards through all the

steps. However, in PbRL the environment does not supply

any rewards to the agent. In contrast, the agent’s actions are

evaluated by a human user, and a label is provided to the

agent in terms of preferences between pairs of actions. In

this context, we write o1 > o2 indicating the observation o1
is preferred, by the user, to the observation o2.

In PbRL, the policy and reward estimators are

implemented as two neural networks which are updated in

the following steps: first, the agent takes an action, a, based

on the policy network π, i.e., a = π(o). The parameters of

π are optimized to maximize the sum of estimated rewards

r̂ = NR(o, a) where NR is the reward network; then, a

pair of observations are passed to the user for comparison;

finally, the parameters of the reward network are updated to

estimate a higher reward for the user preferred observation.

2.3. Model­Agnostic Meta­Learning (MAML)

The goal in meta-learning is to train a model which can

rapidly adapt to new tasks with a few training iterations.

The Model-Agnostic Meta-Learning (MAML) [9] is a meta

learning algorithm which learns a data-driven initialization

of the models that accelerate the standard reinforcement

learning on new task drawn from a task distribution p(τ).
The meta-training objective of MAML is:

θ′i = θ − α▽θLτi(πθ) (3)

θ = θ − β▽θ

∑

τi∼p(τ)

Lτi(πθ′

i
),

where θ is the parameters of the policy network πθ which

maps states to a probability distribution over the actions,

and L represent an arbitrary loss function which is selected

based on the application. In effect, the MAML finds model

parameters that with small changes will improve the loss

function of any task drawn from the p(τ), when moving

in the direction of that loss [9]. Our framework employs

MAML to initialize the reward network parameters and

accelerate the preference-learning process. Its effectiveness

is explored in Sec 5.3.

3. Preference-Based Image Generation (PbIG)

In our proposed Preference-Based Image Generation

(PbIG) the state of environment does not change as the user

has a fixed mental image at all time, and taking new actions

does not change the desired image. In other words, we can

look at our problem as a continuous multi-armed bandit

(stateless reinforcement learning) [34]. Consequently, the

reward is a sole function of the action (see Figure (1)).

In our formulation, we do not have a policy network. In

contrast, we optimize directly the GAN random code z that

produces user’s mental image. This code is considered as

the action in our RL formulation. Note that for the rest

of this paper, for the sake of consistency with the GAN

formulation, we use z to refer to the actions.

Following the approach in [3], the reward estimator

network, NR, can be interpreted as a preference-predictor

when we consider r̂ = NR(z) as a factor which quantifies

the user’s judgments. Then, the probability of preferring an

action depends exponentially on the value of the estimated

reward and can be calculated as follows:

P [z1 > z2] =
er̂1

er̂1 + er̂2
, (4)

where r1 = NR(z1) and r2 = NR(z2) are the

corresponding rewards of the two latent codes z1 and z2,

respectively.

At each time step, the user is given a pair of images

generated from z1 and z2 to indicate (a) which image is

more similar to the desired image, (b) the two images are

equally similar, or (c) none of them is comparable to the

desired image. If one of the images is selected as preferable,

then its corresponding label l is set to one. Correspondingly,

the label of the unfavored image is set to zero. In the case

of neutral preference, both the labels are set to 0.5. Finally,

when both images are rejected by the user, both labels are

set to zero. In other words, the corresponding label of

each image, or its corresponding latent code, determines the

probability of being preferred by the user.

We can update the parameters of NR to predict the user’s

preference labels. To this end, we minimize the cross-

entropy loss between the estimated preferred probability

and the actual labels provided by the user:

LR(r̂1, r̂2) =−
∑

(z1,z2,l1,l2)∈B

l1 logP [z1 > z2] (5)

+ l2 logP [z2 > z1],

where B is the training batch, l1 and l2 are the

corresponding rewards of the two random codes z1 and

z2, respectively. We update the reward and code with

some modifications to the proposed steps in PbRL. Since

our formulation is stateless, we cannot generate a pair of

codes using a policy network to update the parameters

of reward function. In order to sidestep this issue, we

select two codes following a modified ǫ-greedy policy. The

GAN generator then produces two images from the given

codes for user comparison. The parameters of the reward

network are updated based on the user-assigned labels and

their estimated values to minimize the loss function in (5).
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