


from the facial appearance using ConvNets, and afterward

learn a model typically a regressor to map the features to

the landmark locations [54, 10, 33, 36]. Despite the excel-

lent performance of the ConvNets in different applications,

it has been shown [17, 43] that they can be very sensitive

and vulnerable to a small perturbation in the input domain

which can lead to a drastic change of the output domain,

e.g., predicted landmarks.

Many approaches solve the face alignment problem with

multi-tasking approaches. However, the task of face align-

ment might not be in parallel with the other tasks. For ex-

ample, in the classification task, the output needs to be in-

variant to small deformations such as translation. However,

in tasks such as landmark localization or image segmenta-

tion both the global integration of information as well as

maintaining the local information and pixel-level detail is

necessary. The goal of precise landmark localization has

led to evolving new architectures such as dilated convolu-

tions [52], recombinator-networks [21], stacked what where

auto-encoders [58], and hyper-columns [18] where each of

them attempts to preserve pixel-level information.

In this paper, we propose a geometry aggregated network

(GEAN) for face alignment which can comfortably deal

with rich expressions and arbitrary shape variations. We

design a novel aggregation framework which optimizes the

landmark locations directly using only one image without

requiring any extra prior which leads to robust alignment

given arbitrary face deformations. We provide three differ-

ent approaches to produce deformed images using only one

image and aggregate them in a weighted manner according

to their amount of displacement to estimate the final loca-

tions of the landmarks. Extensive empirical results indicate

the superiority of the proposed method compared to exist-

ing methods on challenging datasets with large shape and

appearance variations, i.e., 300-W [38] and ALFW [27].

2. Related Work

A common approach to facial landmark detection prob-

lem is to leverage deep features from ConvNets. These

facial features and regressors are trained in an end-to-end

manner utilizing a cascade strategy to update the landmark

locations progressively [42, 60]. Yu et al. [53] integrate ge-

ometric constraints within CNN architecture using a deep

deformation network. Lev et al. [31] propose a deep regres-

sion framework with two-step re-initialization to avoid the

initialization issue. Zhu et al. [1] also tried to deal with poor

initialization utilizing a coarse search over a shape space

with variant shapes. In another work, Zhu et al. [60], over-

come the extreme head poses and rich shape deformations

exploiting cascaded regressors.

Another category of landmark detection approaches

leverages the end-to-end training from ConvNets frame-

works to learn robust heatmaps for landmark detection

task [47, 4, 32]. Balut et al. [4] utilized the residual frame-

work to propose a robust network for facial landmark de-

tection. Newell et al. [32] and Wei et al. [47] consider the

coordinate of the highest response on the heatmaps as the

location of landmarks for human pose estimation task.

In a more general definition, this problem can also be

viewed as learning structural representation. Some stud-

ies [34, 35], disentangle visual content into different fac-

tors of variations such as camera viewpoint, motion and

identity to capture the inherent structure of objects. How-

ever, the physical parameters of these factors are embedded

in a latent representation which is not discernible. Some

methods can handle [55, 19] conceptualize structures in

the multi-tasking framework as auxiliary information (e.g.,

landmarks, depth, and mask). Such structures in these

frameworks are designed by humans and need supervision

to learn.

3. Proposed Method

Given a face image I ∈ R
w×h with spatial size W×H ,

the facial landmark detection algorithm aims to find a pre-

diction function Φ : RW×H → R
2×L which estimates the

2D locations of L landmarks. We seek to find a robust and

accurate version of Φ by training a deep function through

the aggregation of geometrically manipulated faces. The

proposed method consists of different parts which will be

described in detail.

3.1. Aggregated Landmark Detector.

The proposed approach attempts to provide a robust

landmark detection algorithm to compensate for the lack

of a specific mechanism to handle arbitrary shape varia-

tions in the literature of landmark detection. The method

builds upon aggregating set of manipulated images to cap-

ture robust landmark representation. Given a face image

I , a set of manipulated images are constructed such that

Îk = M(I, θk) is the k-th manipulated face image and

θk is its related parameters for the manipulating function

M . Considering the set of manipulated images, we seek a

proper choice of M such that aggregating landmark infor-

mation in the set {Φ(Î) : k = 1 . . .K} provides a more

accurate and robust landmark features compared to Φ(I)
which solely uses the original image I . Therefore, one im-

portant key in the aggregated method is answering the ques-

tion of “how” to manipulate images. Face images typically

have a semantic structure which have a similar global struc-

ture but the local and relative characteristics of facial re-

gions differ between individuals. Hence, a straightforward

and comprehensive choice of the manipulation function M
should incorporate the prior information provided by the

global consistency of semantic regions and uniqueness of

relative features which can be interpreted as the ID infor-

mation. Hence, we build our work based on a choice of M
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which incorporates geometric transformations to manipu-

late relative characteristics of inputs samples while preserv-

ing the semantic and global structure of input faces.

To incorporate ID information, we consider a pretrained

face recognizer f : RW×H → R
nz mapping an input face

image to an ID representation z ∈ R
nz , where cardinality of

the embedding subspace is nz (typically set to be 128 [39]).

Having f makes it possible to compare IDs of two samples

by simply measuring the ℓ2-norm of their representation in

the embedding space. Hence, we geometrically manipulate

the input face image to change its ID. It should be noted

that since f is trained on face images, the corresponding

embedding space of IDs captures a meaningful representa-

tion of faces. Therefore, the manipulated faces contain rich

information with regards to face IDs.

To manipulate the face image I based on landmark co-

ordinates, we consider coarse landmark locations P =
{(x0, y0), . . . , (xL−1, yL−1)} and define the displacement

field d to manipulate the landmark locations. Given the i-th
source landmark (xi, yi), we compute its manipulated ver-

sion using the displacement vector di = (∆xi,∆yi). The

manipulated landmark pi + di is as follows:

pi + di = (xi +∆xi, yi +∆yi) . (1)

We present three different approaches to find a proper dis-

placement (d) for manipulating face images.

3.2. Manipulation by Adversarial Attack.

In the first approach we use adversarial attacks [16] to

manipulate facial landmarks to fool a face recognizer. Xiao

et al. [49], proposed stAdv attack to generate adversarial ex-

amples using spatially transforming benign images. They

utilize a displacement field for all the pixels in the input

image. Afterward, they computed the corresponding loca-

tion of pixels in the adversarial image using the displace-

ment field d. However, optimizing a displacement field for

all the pixels in the image is a highly non-convex function.

Therefore, they used the L-BFGS [29], with a linear back-

track search to find the optimal displacement field which is

computationally expensive. Here, our approach considers

the fact that the facial landmarks provide highly discrimi-

native information for face recognition tasks [23]. In fact,

face recognition tasks are highly linear around the original

coordinates of the facial landmarks as it is shown in [9].

In contrast to [49] which computes the displacement

field for all the pixels, our proposed method is inspired

by [9] and estimates the d only for L landmarks and it does

not suffer from the computational complexity. In addition,

it is possible to apply the conventional spatial transforma-

tion to transform image. Therefore, the adversarial (manip-

ulated) image using the transformation T is as follows:

Î = T (P, P + d, I) , (2)

where T is the thin plate spline (TPS) [3] transformation

mapping from the source landmarks (control points) P to

the target ones P + d. In order to make the whole frame-

work differentiable with respect to the landmark locations,

we select a differentiable interpolation function (i.e., differ-

entiable bilinear interpolation) [24] so that the prediction of

the face recognizer is differentiable with respect to the land-

mark locations.

In this approach, we employ the gradient of the predic-

tion in a face recognition model to update the displacement

field d and geometrically manipulate the input face image.

We extend Dabouei et al. [9] work in a way to generate K
different adversarial faces where each face represents a dif-

ferent ID (K different IDs will be generated). Considering

an input image I , a face recognizer f , and a set of k − 1
manipulated images SI = {Î1, ...., Îk−1} the cost is defined

as follows for the k-th adversarial face:

L =
∑

I′∈SI

||f(T (P, P + d, I))− f(I ′)||2 . (3)

Inspired by FGSM [16], we employ the direction of the

gradients of the prediction to update the adversarial land-

mark locations P + d, in an iterative manner. Considering

P + d as P adv , using FGSM [16], the t-th step of optimiza-

tion is as follows:

P adv
t = P adv

t−1
+ ǫ sign(∇Padv

t−1

L) . (4)

In addition, we consider the clipping technique to con-

strain the displacement field in order to prevent the model

from generating distorted face images. The algorithm con-

tinues the optimization for the k-th landmark locations until

min
I′∈SI

{||f(Î) − f(I ′)||2} < τ is failed, where τ is simply

the distance threshold in the embedding space. In this way,

we make sure that the k-th manipulated face has a mini-

mum distance of τ to the other manipulated images in the

face embedding subspace. Algorithm 1 shows the proposed

procedure for generating K different manipulated faces.

3.3. Manipulation of Semantic Groups of Land­
marks using Adversarial Attacks.

In the first approach, we consider a fast and efficient ap-

proach to generate different faces based on the given face

image. However, the first approach does not directly con-

sider the fact that different landmarks semantically placed

in different groups (i.e., landmarks related to lip, left eye,

right eye, etc.). This might lead to generating severely dis-

torted adversarial images.

We added the clipping constraint to mitigate this issue

in the first approach. Here, we perform semantic land-

marks grouping [9]. We categorize the landmarks into n
semantic groups Pi, i ∈ {1, . . . n}, where pi,j denotes the

j-th landmark in the group i which contains ci landmarks.
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and concatenated together before each up-sampling to re-

tain the resolution information. Therefore, hourglass is an

appropriate topology to capture and consolidate information

from different resolutions and scales.

After manipulating the face images (employing either of

the three aforementioned approaches), we employ the hour-

glass network, Φ, to extract the landmarks from the ma-

nipulated images. The network Φ is shared among all the

branches of the framework as it is shown in Fig. 2. Each

landmark has a corresponding detector, which convolution-

ally extracts a response map. Taking ri as a i-th response

map, we use the weighted mean coordinate as the location

of the i-th landmark as follows:

p̂i = (xi, yi) =
1

ζi

H
∑

u=1

W
∑

v=1

(u, v).ri(u, v) , (6)

where H and W are the height and width of the response

map which are the same as the spatial size of the input im-

age, and ζi =
∑

u,v ri(u, v).

3.6. Aggregation.

After extracting the facial landmarks using the shared

landmark detector Φ for each of the manipulated face im-

ages, we aim to move the predicted landmarks P̂ toward

their original locations. Let T be a transformation that is

used to convert the original faces to the manipulated ones

(i.e., via adversarial attack approaches or the known trans-

formation approach). We employ the inverse of the trans-

formation matrix on the predicted landmarks to compensate

for the displacement of them and denote the new landmark

locations as P̃ .

The proposed approach contains a set of landmarks from

K branches, i.e., P̃ = {p̃i,k} in which i ∈ {1, . . . , L}, and

k ∈ {1, . . . ,K} is the i-th landmark location in k-th branch

of the framework. Each branch considers a score value

which normalizes the displacement of landmarks caused by

the manipulation approach (i.e., via adversarial attacks or

known transformations) in each branch of the aggregated

network as follows:

Sci,k =

√

∆x2

i,k +∆y2i,k
K
∑

k=1

√

∆x2

i,k +∆y2i,k

, (7)

where Sci,k represents the displacement value for the i-
landmark in the k-th branch. This score is utilized as

a weight to cast appropriate loss punishment in different

branches during the optimization of the proposed aggre-

gated landmark detection as follows:

LT =
1

LK

L
∑

i=1

K
∑

k=1

Sci,k||p
∗

i − p̃i,k||2 , (8)

where p̃i,k represents the i-th estimated landmark at k-th

branch and p∗i indicates the ground truth for i-th landmark

location.

Given a test image, we extract the rough estimation of

the landmark coordinates employing the trained landmark

detector Φ in the aggregated approach and consider them as

the coarse landmarks P . Afterward, we perform the manip-

ulation approach on the extracted landmarks P and generate

manipulated images. The extracted landmarks and manipu-

lated images are used in the aggregated framework to pro-

duce the final landmarks. The final landmarks are calculated

as follows:

pfi =
K
∑

k=1

Sci,k.(p̃i,k) , (9)

where pfi is the coordinate of the i-th landmark employing

the proposed aggregated network such that Φ(I) = P f for

L landmark locations.

As it is mentioned in the manuscript, during the train-

ing phase the manipulation is performed on the coarse land-

marks’ locations and we have access to them. However,

given a test image, we extract the landmarks using the

trained landmark detector Φ and then use them as the coarse

landmarks’ locations in the aggregated framework to pre-

dict the final landmark locations.

One question that comes to mind is: what if the pre-

dicted landmark locations using the trained landmark de-

tector Φ are not an accurate representation for the origi-

nal coarse landmarks? To compensate this issue and make

the conditions equal for the training and testing phases, we

add random noise to the ground truth landmarks such that

P = P ∗ + η where P ∗ is the ground truth for landmark

coordinates and η is random noise. Afterward, we employ

these landmarks as the coarse landmarks P in the aggre-

gated framework during the training phase.

4. Experiments

In the following section, we consider three variations of

our GEAN approach. GEANadv (3.2) represents the case

when the manipulated faces are generated using the adver-

sarial attack approach. GEANGadv (3.3) and GEANGK

(3.4) represent the cases when the manipulated faces are

generated using the semantically grouped adversarially at-

tack and known transformations approach, respectively. In

order to show the effectiveness of GEAN we evaluate its

performance on three following datasets:

300-W [38]: The dataset annotates five existing datasets

with 68 landmarks: LFPW [2], AFW [62], HELEN [28],

iBug, and XM2VTS. Following the common setting in [12,

31], we consider 3,148 training images from LFPW, HE-

LEN, and the full set of AFW. The testing dataset is split

into three categories of common, challenging, and full
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Figure 3: The representative results for three face images from the 300-W dataset. For each face, the first row represents

displacement fields for the aggregated network with K = 3 (the arrows are exaggerated for the sake of illustration). The

second row shows manipulated images using the corresponding displacement field, and the third row represents the extracted

landmarks given the corresponding manipulated images to the landmark detector,Φ(Î). The fourth row represents landmarks’

locations on the input image I from the base detector (in blue), ground-truth (in green), and GEAN landmark detector (in

magenta), respectively.

Methods ERT [26]

LBF [37]

CFSS [1]

CCL [60]

Two-St. [31]

SAN
[12]

ODN
[59]

LRef. [41]

GEANad
v

GEANG
K

GEANG
ad

v

AFLW-Full 4.35 4.25 3.92 2.72 2.17 1.91 1.63 1.63 1.69 1.64 1.59

AFLW-Front 2.75 2.74 2.68 2.17 - 1.85 1.38 1.46 1.44 1.38 1.34

Table 1: Comparison of different methods based on normalized mean errors (NME) on AFLW dataset.

groups. The common group contains 554 testing images

from LFPW and HELEN datasets, and the challenging test

set contains 135 images from the IBUG dataset. Combining

these two subsets form the full testing set.

AFLW [27]: This dataset contains 21,997 real-world im-

ages with 25,993 faces in total with a large variety in ap-

pearance (e.g., pose, expression, ethnicity, and age) and en-

vironmental conditions. This dataset provides at most 21

landmarks for each face. Having faces with different pose,

expression, and occlusion makes this dataset challenging

to train a robust detector. Following the same setting as

in [31, 12], we do not consider the landmark of two ears.

This dataset has two different categories of AFLW-Full and

AFLW-Frontal [60]. AFLW-Full contains 20,000 training

samples and 4,386 testing samples. AFLW-Front uses the

same set of training samples as in AFLW-Full, but only con-

tains 1,165 samples with the frontal face for the testing set.

COFW [5]: This dataset contains 1,345 images for

training and 507 images for test. Originally this dataset an-

notated with 21 landmarks for each face. However, there is

a new version of annotation for this dataset with 68 land-

marks for each face [14]. We used a new version of annota-

tion to evaluate proposed method and comparison with the

other methods.

Evaluation: Normalized mean error (NME) and and

Cumulative Error Distribution (CED) curve are usually

used as metric to evaluate performance of different meth-

ods [60, 31]. Following [37], we use the inter-ocular dis-

tance to normalize mean error on 300-W dataset. For the

AFLW dataset we employ the face size to normalize mean

error as there are many faces with inter-ocular distance clos-

ing to zero in this dataset [31].

Implementation Details: We employ the face recogni-

tion model developed by Schroff et al. [39] which obtain the

state-of-the-art accuracy on the Labeled Faces in the Wild

(LFW) [22] dataset as the face recognizer. We train this

model on more than 3.3M training images and the average

of 360 images per ID (subject) from VGGFace2 dataset [6]

to recognize 9,101 celebrities. The landmarks are divided to

five different categories based on facial regions as: 1) P1 :
right eye and eyebrow, 2) P2 : left eye and eyebrow, 3) P3 :
nose, 4) P4 : mouth, and 5) P5 : jaw. The number of land-

marks in each group is as: {n1 = 11, n2 = 11, n3 = 9,

n4 = 20, n5 = 17}. We set τ = 0.6, δ to 5% of the width

of the bounding box of each face.

The landmarks’ coordinates are scaled to lie inside the

range [−1, 1]2 where (−1,−1) is the top left corner and

(1, 1) is the bottom right corner of the face image. All the
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Method Common Challenging Full Set

LBF [37] 4.95 11.98 6.32

CFSS [1] 4.73 9.98 5.76

MDM [46] 4.83 10.14 5.88

TCDCN [56] 4.80 8.60 5.54

Two-Stage [31] 4.36 7.42 4.96

RDR [50] 5.03 8.95 5.80

Pose-Invariant [25] 5.43 9.88 6.30

SAN [12] 3.34 6.60 3.98

ODN [59] 3.56 6.67 4.17

LRefNets [41] 2.71 4.78 3.12

GEAN 2.68 4.71 3.05

Table 2: Normalized mean errors (NME) on 300-W dataset.

coordinates are assumed to be continuous values since TPS

has no restriction on the continuity of the coordinates be-

cause of the differentiable bilinear interpolation [24]. The

face images are cropped and resized to (256×256). We fol-

low the same setting in [51] and use four stacks of hourglass

network for the landmark detection network. We train our

model with the batch size of 8, weight decay of 5 × 10−4,

and the starting learning rate of 5 × 10−5 on two GPUs.

The face bounding boxes are expanded by the ratio of 0.2

and random cropping is performed as data augmentation.

4.1. Comparison with State­of­the­arts Methods:

Results on 300-W. Table 2 shows the performance

of different facial landmark detection methods on 300-W

dataset. We compare our method to the most recent state-

of-the-art approaches in the literature [12, 50, 25, 41]. The

number of branches in training and testing phases is set to

K = 5. Among the three proposed approaches, we consider

GEANGadv as the final proposed method to compare with

the state-of-the-art methods. The results show its superior-

ity compared to the other methods for both types of bound-

ing boxes. The superiority of the proposed method shows

the effect of manipulated images which target the important

locations in the input face image. Aggregation of these im-

ages improves the facial landmark detection by giving more

attention to the keypoint locations of the face images.

Results on AFLW. We conduct our experiments on

the training/testing splits and the bounding box provided

from [60, 1]. Table 1 shows the effectiveness of proposed

GEAN. AFLW dataset provides a comprehensive set of un-

constrained images. This dataset contains challenging im-

ages with rich facial expression and poses up to ±120◦ for

yaw and ±90◦ for pitch and roll. Evaluation of proposed

method on this challenging dataset shows its robustness to

large pose variations. Indeed, the weighted aggregation of

predictions obtained on the set of deformed faces reduces

the sensitivity of GEAN to large pose variations.

Results on COFW. Figure 4 shows the evaluation of our

proposed method in a cross-dataset scenario. We conduct

Figure 4: Comparison results of different methods

(ODN [59], CFSS [1], TCDCN [57], RCPR [5],

SAPM [15], HPM [13], LRefNets [41], and GEAN) on

COFW dataset.

evaluation using the models trained on the 300-W dataset

and test them on re-annotated COFW dataset with 68 land-

marks [14]. The comparison is performed using the CED

curves as plotted in Figure 4. The best performance belongs

to our method (GEAN) with 4.24% mean error compared to

the previous best [41] with 4.40% mean error. This shows

the robustness of our method compared to other state-of-

the-art methods in detecting facial landmarks.

Timing of the proposed approach directly depends on the

number of branches and also the approach that we take to

generate the manipulated faces. It is shown in [9] that se-

mantically grouping the landmark locations increases the

time of manipulated faces generation. However, it can over-

come the problem of face distortion due to considering the

semantic grouping. Therefore, there is a trade-off between

the speed and accuracy of the proposed framework. How-

ever, in the case of aggregating with five branches and em-

ploying GEANGadv for generating manipulated faces, the

framework runs in 17 FPS with NVIDIA TITAN X GPU.

4.2. Ablation Studies

Number of branches: In this section, we observe the

effect of adding branches on the performance of the aggre-

gated framework. We start with k = 1 in which there is no

aggregation and one manipulated image is generated. We

increase the number of branches from one to seven and mea-

sure the performance of aggregated network on the com-

mon, challenging, and full split of the 300-W dataset.

In addition, the number of branches in the training and

testing phases is not necessarily the same. For example,

the number of branches in the aggregated framework can be

three while the number of branches in the testing phase is

equal to 10. This is essentially important due to the time

complexity of the framework during the training and testing

325

Authorized licensed use limited to: West Virginia University. Downloaded on April 22,2021 at 00:25:02 UTC from IEEE Xplore.  Restrictions apply. 



Common test set Challenging test set Full test set

Train 1 3 5 7 1 3 5 7 1∗ 1 3 5 7

1 4.40 3.77 3.48 3.43 5.44 5.35 5.30 5.28 4.80 4.80 4.49 4.07 4.02

3 3.67 3.25 3.03 2.98 5.33 5.27 5.18 5.10 4.68 4.46 4.01 3.77 3.74

5 3.35 2.99 2.68 2.66 5.26 4.97 4.71 4.67 4.63 4.04 3.64 3.05 3.01

7 3.32 2.93 2.65 2.63 5.22 4.90 4.65 4.60 4.59 3.96 3.56 3.00 2.97

Table 3: Comparison of NME on three test sets of 300-W with different numbers of branches for the training and testing.

The column with asterisk demonstrates the results for evaluating the performance of our model without aggregation.

phases. In addition, one can train the network on two or

three branches while test it on more branches to get more

accurate results. Table 3 shows the evaluation results of 16

training and testing combinations, i.e., four different train-

ing architectures (K = 1, 3, 5, 7) multiply four different

testing architectures on 300-W common, challenging, and

full test set, respectively.

As we can observe, the performance will be increased

if the number of branches is increased during the training

phase. However, we observe that adding more than five

branches to the framework does not significantly improve

the results with the cost of more computational complexity.

The same behavior is observed for the testing framework.

By increasing the number of branches in the testing phase,

the accuracy is increased. This is useful when we want to

reduce the computational complexity in training and main-

taining the performance in the testing phase to some extent.

Considering both accuracy and speed, we choose the frame-

work with the number of training and testing branches equal

to five for the sake of comparison with state-of-the-art (4.1).

We also conduct another experiment to demystify the ef-

fect of aggregation part in the proposed GEAN. In this case,

GEAN with just one branch is trained on all the deformed

and manipulated faces without the aggregation part. Table 3

and Figure 4 show the performance of GEAN w/o Agg.
compared to the proposed GEAN. For the sake of fair com-

parison, we trained the network on the same number of ma-

nipulated face images for both methods. By comparing col-

umn (1∗) with column (1) of 300-W full test set, it is shown

that the proposed GEAN which is trained with the exact

same faces is superior to its counterpart without aggrega-

tion. Figure 4 also confirms the effectiveness of aggregation

part and illustrates the fact that proposed GEAN performs

beyond a careful augmentation.

A Comparison between Three Different Variations

of GEAN: Three different approaches of GEANadv ,

GEANGadv , and GEANGK have been introduced in this

paper. Through this section, we evaluate the performance

of three different variations of our GEAN method on

AFLW dataset. As Table 1 shows, both GEANGadv and

GEANGK outperform GEANadv approach. We attribute

this to the fact that GEANadv does not consider grouping

different landmarks semantically. This causes inconsistent

displacements for the landmarks of one region (e.g., left

eye) and generate distorted images. In addition, the amount

of displacement of landmarks in manipulated images might

be greater than the manipulated images with the other two

methods. However, this displacement might not be benefi-

cial as it does not consider the general shape of each face

region. Utilizing clipping constraint can mitigate this issue

to some extent. However, this approach still suffers from

not considering the semantic groups.

GEANGadv works the best among all three proposed

approaches. Several reasons can explain this superiority.

This approach considers the semantic relationship among

the landmarks of same regions of the face. In addition, the

manipulated images in this approach have different face IDs

from the original face image. Therefore, in the framework

with K branches, the aggregation is performed in K differ-

ent face IDs. This makes this approach to preserve a rea-

sonable relative distance among different groups of land-

marks since it could fool the recognizer to misclassify it.

However, this is not necessarily the case for the GEANGK

approach. This makes the GEANGadv to capture more

important landmark displacement for the image manipula-

tion which is beneficial for the aggregation. The advantages

of the other two approaches (i.e., adversarially attack tech-

nique in GEANadv and semantic grouping of landmarks

in GEANGK) is unified in GEANGadv which leads to a

better landmark detection performance.

5. Conclusion

In this paper, we introduce a novel approach for facial

landmark detection. The proposed method is an aggregated

framework in which each branch of the framework contains

a manipulated face. Three different approaches are em-

ployed to generate the manipulated faces and two of them

perform the manipulation via the adversarial attacks to fool

a face recognizer. This step can decouple from our frame-

work and potentially used to enhance other landmark detec-

tors [12, 31, 51]. Aggregation of the manipulated faces in

different branches of GEAN leads to robust landmark de-

tection. An ablation study is performed on the number of

branches in training and testing phases and also on the ef-

fect different approaches of face image manipulation on the

facial landmark detection. The results on the AFLW, 300-

W, and COFW datasets show the superiority of our method

compared to the state-of-the-art algorithms.
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