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Disturbance Decoupling for Gradient-Based
Multi-Agent Learning With Quadratic Costs

Sarah H. Q. Li
and Behcget Acikmese

Abstract—Motivated by applications of multi-agent learn-
ing in noisy environments, this letter studies the robust-
ness of gradient-based learning dynamics with respect to
disturbances. While disturbances injected along a coordi-
nate corresponding to any individual player’s actions can
always affect the overall learning dynamics, a subset of
players can be disturbance decoupled—i.e., such players’
actions are completely unaffected by the injected distur-
bance. We provide necessary and sufficient conditions to
guarantee this property for games with quadratic cost func-
tions, which encompass quadratic one-shot continuous
games, finite-horizon linear quadratic (LQ) dynamic games,
and bilinear games. Specifically, disturbance decoupling is
characterized by both algebraic and graph-theoretic con-
ditions on the learning dynamics, the latter is obtained by
constructing a game graph based on gradients of players’
costs. For LQ games, we show that disturbance decoupling
imposes constraints on the controllable and unobservable
subspaces of players. For two player bilinear games, we
show that disturbance decoupling within a player’s action
coordinates imposes constraints on the payoff matrices.
lllustrative numerical examples are provided.

Index Terms—Game theory, machine learning, decentral-
ized control.

|. INTRODUCTION

S THE application of learning in multi-agent settings

gains traction, game theory has emerged as an infor-
mative abstraction for understanding the coupling between
algorithms employed by individual players (see, e.g., [1]-[3]).
Due to scalability, a commonly employed class of algorithms
in both games and modern machine learning approaches to
multi-agent learning is gradient-based learning, in which play-
ers update their individual actions using the gradient of their
objective with respect to their action. In the gradient-based
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learning paradigm, continuous quadratic games stand out as
a benchmark due to their simplicity and ability to exemplify
state-of-the-art multi-agent learning methods such as policy
gradient and alternating gradient-descent-ascent [4].

Despite the resurgence of interest in learning in games,
a gap exists between algorithmic performance in simulation
and physical application in part due to disturbances in mea-
surements [5]. Robustness to environmental noise has been
analyzed in a wide variety learning paradigms [6], [7]. Most
analysis focuses on independent and identically distributed
stochastic noise drawn from a stationary distribution.

In contrast, we study adversarial disturbance without any
assumptions on its dynamics or bounds on its magnitude.
Though some work exists on the effects of bounded adversarial
disturbance in multi-agent learning [8], there is limited under-
standing of how gradient disturbance propagates through the
network structure as determined by the coupling of the play-
ers’ objectives. Does gradient-based learning fundamentally
contribute to or reduce the propagation of disturbance through
player actions? Our analysis aims to answer this question for
gradient-based multi-agent learning dynamics. The insights we
gain provide desiderata to support algorithm synthesis and
incentive design, and will lead to improved robustness of
multi-agent learning dynamics.

Contributions: The main contribution is providing a novel
graph-theoretical perspective for analyzing disturbance decou-
pling in multi-agent learning settings. For quadratic games,
we obtain a necessary and sufficient condition, which can
be verified in polynomial time, that ensures complete decou-
pling between the corrupted gradient of one player and the
learned actions of another player, stated in terms of alge-
braic and graph-theoretic conditions. The latter perspective
leads to greater insight on the types of cost coupling struc-
tures that enjoy disturbance decoupling, and hence, provides a
framework for designing agent interactions, e.g., via incentive
design or algorithm synthesis. Applied to LQ games, a bench-
mark for multi-agent policy gradient algorithms, we show that
disturbance decoupling enforces necessary constraints on the
controllable subspace in relation to the unobservable subspace
of individual players. Applied to bilinear games, we show that
disturbance decoupling enforces necessary constraints on the
players’ payoff matrices.

2475-1456 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 24,2021 at 20:28:55 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-5265-8929
https://orcid.org/0000-0001-8936-0229
https://orcid.org/0000-0002-8693-8109

224

IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 1, JANUARY 2021

Il. RELATED WORK

We study gradient-based learning for N—player quadratic
games with continuous cost functions and action sets.
Convergence guarantees for gradient-based learning are stud-
ied from numerous perspectives including game theory [1],
[3], [9], control [10], and machine learning [2], [11].

Convergence guarantees for gradient-based learning dynam-
ics under stochastic noise are studied in [2], [3], [11]. Despite
being an important property to understand for adversarial dis-
turbance, how non-stochastic noise propagates through the
player network has no guarantees.

Our analysis draws on geometric control [12]-[14]. In [12],
algebraic conditions for disturbance decoupling within a sin-
gle dynamical system is given. In [14], disturbance decoupling
for a single structured dynamical system is studied with
frequency-based techniques. In this letter, we provide both
the algebraic and graph-theoretic conditions for disturbance
decoupling of coupled dynamical systems in gradient-based
multi-agent learning.

II1. CONTINUOUS GAMES AND THE GAME
GRAPH MODEL

Let [N] = {1, 2, ..., N} denote the index set where N € N.
For a function f € C"(R", R) with r > 2, D;f = df/dx; is the
partial derivative with respect to x;.

Consider an N-player continuous game (fi, ..., fy) where
for each i € [N], f; € C"(R"*, R) with r > 2 is player i’s cost
function and R” = R™ x ... x R™ is the joint action space,
with R"™ denoting player i’s action space and n = Zf\;] nj.
Each player’s goal is to select an action x; € R to minimize
its cost f; : R” — R given the actions of all other players. That
is, player i seeks to solve the following optimization problem:

min  fi(xq, ... ,XN). (D

x; R

s Xiy o n
=x

One of the most common characterizations of the outcome of
a continuous game is a Nash equilibrium.

Definition 1 (Nash Equilibrium): For an N—player continu-
ous game (ff, ..., fy), a joint action x* = (x7,...,xy) € R"
is a Nash equilibrium if for each i € [N],

[ild®) < fix], oo X X Xy, X)), Y ox € R

A. Gradient-Based Learning

We consider a class of simultaneous play, gradient-based
multi-agent learning techniques such that at iteration k, player
i receives h;(x*) from an oracle to update its action as follows:

= =y, ), )

where y; > 0 is player i’s step size,
hi(x) = Dfy ) + df (3)
k

is player i’s gradient evaluated at the current joint action x
and affected by a player-specific, arbitrary additive disturbance
df-‘ € R"™. In the setting we analyze, dll-‘ can modify xi‘ to any
other action within R"™.

Under reasonable assumptions on step sizes—e.g., relative
to the spectral radius of the Jacobian of 4; in a neighborhood
of a critical point—it is known that the undisturbed dynamics
converge [2], [3]. While such a guarantee cannot be given for
arbitrary disturbances as considered in this letter, we provide
conditions under which a subset of players still equilibriates
and follows the undisturbed dynamics.

B. Quadratic Games

For an N-player continuous game (f1, ..., fy), behavior of
gradient-based learning around a local Nash equilibrium can
be approximated by linearizing the learning dynamics, where
the linearization corresponds to a quadratic game.

Definition 2 (Quadratic Game): For each i € [N], f; : R" —
R is defined by

fix) = xlTPix,- + x,Tr (Z/;gipiij + ). “4)

Quadratic games encompass potential games [15] with P;; =
P;, and zero sum games [16] with P;; = —P;. We give further
examples of quadratic games in Section III-D.

C. Game Graph

To highlight how an individual player’s action updates
depend on others’ actions, we associate a directed graph to
the gradient-based learning dynamics defined in (2).

We consider a directed graph ([N], £), where [N] is the
index set for the nodes in the graph, and £ is the set of edges.
Each node i € [N] is associated with action x; of the i player.
A directed edge (j, i) points from j to i and has weight matrix
Wi € R%*% such that (j, i) € £ if Wj; # 0 element-wise. For
each node i, we assume the self loop edge (i, i) always exists
and has weight W;; € R"*"_ The composite matrix W € R"*"
with entries Wj; is the adjacency matrix of the game graph.

On a game graph, we define a path p = (i, vy, ..., vk—1,J)
as a sequence of nodes connected by edges. The set of paths
73[.'; includes all paths starting at i and ending at j, traversing
k + 1 nodes in total. For a path p = (i, vy, ..., vk—1,j), we
define its path weight as the product of consecutive edges on
the path, given by Wj,, ... W, ;= 1_[5:01 Wi

In the absence of disturbances d;, the update in (2) for a
quadratic game reduces to

= Wik — T, 5)

- T
where r = [I"Ir e rl—vr] ’ Wii = In,- - ViPia Wij = _ViPij’
and I = blkdiag(y1 1y, . . ., YnIny)-

D. Subclasses of Games Within Quadratic Games

To both illustrate the breadth of quadratic games and pro-
vide exemplars of the game graph concept, we describe two
important subclasses of games and their game graphs.

1) Finite Horizon LQ Game: Given initial state z° € R™
and horizon T, each player i in an N-player, finite-horizon
LQ game selects an action sequence (u?, e ul.T_l) with uf €
R™ in order to minimize a cumulative state and control cost
subjected to state dynamics:

T T—1
min 3 (Z(z’)TQ,-zf + Z(uﬁ)TRiu,f)
;R =0 =0
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N
st. M =A7+) Bul, t=0,....T—1. (6)
i=1

The LQ game defined by the collection of optimization
problems (6) for each i € [N] is equivalent to a one-
shot quadratic game in which each player selects U; =
[T, ..., @ ™HT1T € R% with n; = Tm, in order to
minimize their cost f;(U) defined by

N N
%(Z G;U; + HZO)TQi(Z G;U; + H?) + U/ RiU;,

j=1 j=1

where U = (Uy, ..., Uy) i§ the joint action profile, and the

cost matrices are given by Q; = blkdiag{Q;, ..., Q;},
0 ... 0
B; ... 0 !

Gl = . ) H= E ’ (7)
: - : T
AT_IB,' ... B; A
and R; = blkdiag{R;,...,R;}. This follows precisely

from observing that the dynamics are equivalent to Z =
SN GiU+HZ where Z = [()T, ..., (z])T]T. From here,
it is straight forward to rewrite the optimization problem in (6)
as miny, f;(U). The LQ game is a potential game if and only
if Q; =Qjand R; = R; for all i,j € [N].

LQ Game Graph: Suppose each player uses step size y;.
Since, D;f;(U) is given by

(G/ 0iGi + R)U; + Y G 0i(G;U; + HZ"), ®)
J#
the learning dynamics (5) are equivalent to

U = wu* — T101Gy, ..., ONGy] T HZ, 9)

where W = I,,— M, with M € R™" a blockwise matrix having
entries My = %G/ Q;G; if i # j and My = yi(G] Q:G; + R))
otherwise.

2) Bilinear Games: Bilinear games are an important class
of games. For instance, a number of game formulations in
adversarial learning have a hidden bilinear structure [17]. In
evaluating and selecting hyper-parameter configurations in so-
called fest suites, pairwise comparisons between algorithms
are formulated as bimatrix games [18], [19].

Formally, a two player bilinear game,' a subclass of con-
tinuous quadratic games, is defined by fi(x1, x2) = x;rsz and
fHx,x) = xirBsz where A € R">*™ and B € R™*™ and
x; € R". Common approaches to learning in games [17], [20],
simultaneous and alternating gradient descent both correspond
to a linear system.

Game graph for simultaneous gradient play: Players update
their strategies simultaneously by following the gradient of
their own cost with respect to their choice variable:

K=k Ak, = — B (10)

IThe bilinear game formulation and corresponding game graph for different
gradient-based learning rules easily extend to an N-player setting, however the
results in Section IV are presented for two player games.

The simultaneous gradient play game graph is given by

. 1 —V1A
w1, ]
Game graph for alternating gradient play: In zero-sum
bilinear games, it has been shown that alternating gradient play

has better convergence properties [20]. Alternating gradient
play is defined by

(1)

k+1

x’f“ = xlf — yleé, x];r] = xlé — y2Bx] (12)

Examining the second player’s update, we see that xé‘” =+
Y ygBA)xé - ygB)/f. The game graph in this case is defined by

w=|_,

—y2B (13)

—VA
I+ VzBA}'

Remark 1: Convergence of (10) and boundedness of (12)
depend on choosing appropriate step sizes y; and y» [3], [20].
We consider disturbance decoupling for settings such as these
where the undisturbed dynamics are convergent.

IV. DISTURBANCE DECOUPLING ON GAME GRAPH

In this section, we derive the necessary and sufficient con-
dition that ensures decoupling of gradient disturbance from
the learning trajectory of a subset of players. We emphasize
that the condition holds for disturbances with arbitrary magni-
tudes and functions. This is a useful result because it provides
guarantees on both the equilibrium behavior and the learning
trajectory under adversarial disturbance.

Definition 3 (Complete Disturbance Decoupling): Given
initial joint action O eRrn, game costs (f1, ..., fv), step sizes
' e R, suppose that player i’s gradient update is corrupted
as in (3), then for player j # i, action x; is decoupled from
the disturbance in player i’s gradient if the uncorrupted and
corrupted dynamics, given respectively by

K =wk —TF, YT =W -Tr-Td" (14

result in identical trajectories for player j when y° = x°. That
is, y§ = x} holds for all k > 0, d* € D;, where

Di={d=Idi,....,dy] €R" | dj =0,V j #i}.

A. Algebraic Condition

We first derive an algebraic condition on the joint action
space for disturbance decoupling. Define M+ = {x €
R | x"¥ = 0, VX € M} and let im(A) = {Ax | x € R"}
denote the image of A € R"™*",

Proposition 1: Consider an N-player quadratic game
(f1,...,fy) as in Definition 2 under learning dynamics as
given by (2), where player i experiences gradient disturbance
as given by (3). Let S(i) = {x = [x1,...,xn] e R" | x; =0,
V j # i} be the joint action subset. For player j # i, the
following statements are equivalent:

(i) Player j is disturbance decoupled from player i.

() WheSH,VveS3i),V0<k<n.

(iii) im(WXE) C im(Y), V 0 < k < n, where E € R"™ " and
Y € R™ =) are matrices such that im(E) = S(i) and
im(Y) = S()*.
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Proof: For a quadratic game (fi,...,fy), the learning

dynamics without and with disturbances reduce to the equa-

tions in (14). Given initial joint action X0,

P
g

WO [7" A
wOIr[@)T ..., (@ HT]".

Then, Definition 3 is equivalent to Zﬁal WM=I=14l ¢ S(j)*
satisfied for M > 1 and d' € S(i). Since the condition holds
for all M > 1, it is equivalent to W*d! € S(j)* for all k > 0
and d' € S(i). This is then equivalent to wkdl € S (j)* for all
0<k<nandd € S(@). To see this equivalence, consider
the following result from Cayley-Hamilton theorem, W* =

?;01 alW’ for some «; € R. Thus, for k > n and any d € S(i),
Whd = Y1) Wlayd = Y1) Wld) where dp = aid € S(i)
for / =0,...,n — 1, which implies that Wkd € S(j)l. This
concludes the equivalence.

Finally, we note that (iii) is a restatement of (ii).
Furthermore, (iii) can be verified in polynomial time. |

Remark 2: In connection to geometric control theory, con-
dition (iii) of Proposition 1 is equivalent the fact that
im([E, ..., W"_lE]), the smallest W-invariant subspace con-
taining im(E), must be a subset of S(j)* [12, Th. 4.6].

B. Graph-Theoretic Condition

Next we derive the graph-theoretic condition on the joint
action space for disturbance decoupling.

Theorem 1: Consider an N-player quadratic game
(fi,...,fy) as in Definition 2 under learning dynamics
as given by (2), where player i experiences gradient distur-
bance as given by (3). Player j # i is disturbance decoupled
if and only if the path weights of paths with length k satisfy

k—1
Z l—[WVI+1»Vl =0, VO <k<n,

pePhi=0

5)

where (v, vi+1) denotes consecutive nodes on path p =
V1, e ey VE—1,])-

Proof: The result follows from equivalence between
Proposition 1 condition (i) and (15). Note that x € S(i) is
equivalent to x, = 0 for all £ # i, and Wrx € S(j)* is equiv-
alent to (W"x)j = 0 for all n > k > 0. We prove the result
by induction. For k = 0, (Wox)j =0V x € S@) holds if and
only if i # j. For k > 0, (ka)j =0V x e S@) is equivalent
toi # jand (Wk)jl- = 0. Suppose that for i,j € [N], (Wk)ji
is the sum of path weights over all paths of length k, origi-
nating at i and ending at j, then (Wk“)j,- is the sum of path
weights over all paths of length k + 1, originating at i and
ending at j. Let WX = M, then (W*thy; = 37 v Mjg Wi,
where M;,W,; # 0 if and only if the sum of path weights of
length k from ¢ to j is nonzero and there is an edge from i
to g. Furthermore, Mj,Wy; is the sum of path weights over
all paths of length k + 1 from i to j each of which contains
Vi = q. Since we sum over g € [N], we conclude that (Wk+1)j,~
is the sum of all paths weights of length k+ 1 from i to j, i.e.,
Gvis. o) € PETL n

The concept of disturbance decoupling is quite counter-
intuitive: any change in player i’s action does not affect player

Fig. 1. A simple game graph between four players.

J’s action, despite f; being implicitly dependent on x; through
the network of player cost functions. As we see from the proof
of Theorem 1, this situation arises when the dependencies
‘cancel’ each other out, i.e., the sum of path weights from
i to j is always zero for equally lengthed paths.

Example 1 (Disturbance Decoupled Players): Consider a
4 player quadratic game where x; € R and the game
graph is given by Figure 1. Edge weights «, B, y, and
8§ € R, while each self loop has weight w; > 0.
Paths of length k < 4 from player 1 to player 4 are
enumerated as P114 = {7}, 73124 = {(1,2,4),(1,3,4)},
and ’Pf4 = {(1,1,2,4),(1,1,3,4),(1,2,2,4),(1,3,3,4),
(1,2,4,4),(1,3,4,4)}. To satisfy Theorem 1, the sum of path
weights for each P{‘4 must be 0 for 0 < k < 4. There are
no paths of length one, summation for k = 2 implies the
criteria ¢y + 88§ = 0, and summation for & = 3 implies
the criteria (w; + wy + wa)ay + (w1 + w3 + wa)B6 = 0.
If wp = w3, ay + 86 = 0 is necessary and sufficient for
disturbance decoupling between player 1 and player 4.

Remark 3: Disturbance decoupling is a structural property
of the game in terms of disturbance propagation and atten-
uation. An open research problem is linking this structural
property to robust decision making under uncertainties in cost
parameters P;, Pj; and step sizes y;.

The following corollary specializes to the class of potential
games [15], which arise in many applications [21]-[23].

Corollary 1: Consider an N-player quadratic potential
game under learning dynamics as given by (2), where player
i experiences gradient disturbance as given by (3). Player i is
disturbance decoupled from player j # i if and only if player
Jj is also disturbance decoupled from player i.

Proof: In a potential game graph, W;; = W]—lr Therefore, a
path p with path weight W;,,_, ... W,, ; exists from i to j if
and only if a path p’ with path weight W; ,,, ..., W,,_, ; exists
from j to i. Therefore, (15) holds from player i to player j if
and only if it holds from player j to player i. |

Corollary 2: Consider an N-player finite horizon LQ game
as in (6) under learning dynamics as given by (9), where
player i experiences gradient disturbance as given by (3), if
disturbance decoupling holds between player j and gradient
disturbance from player i, then

.
B;

0j[Bi

: AT-1B;] =o.
TAT\T—1
B (A)

(16)

If Q]; is positive definite and 7 >m, the controllable subsp~ace
of (A, B;) must lie in the unobservable subspace of (BJ-T,AT)

where A = 0;°A0;"%, B; = 0;*B;, and B; = 0,*B;.
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Proof: For player j to be disturbance decoupled from
player i, edge (i, j) cannot exist, i.e., —)/jGjTQjG,- = 0 from (7).
Expanding G]TQjGi =M e R, M,, € R"*™ is given
by ZIT;IYIHH{I, B AN PQ;AB;. We unwrap these con-
ditions starting from p = T — 1, ¢ = T — 1; in this
case My, = B-TQjBi = 0 is necessary. Then we consider
Mr_agr_o = BfATQjAB,» + B/ Q;B; = 0, which implies that
B]-TATQjABi is necessary. Subsequently, this implies that all
BJT(AT)IQJ-A’B,' = 0 is necessary for ¢ € [0, T). Similarly,
we note that M7, = B]TQJ-A‘IB; = 0and My 1 =
B (AT)?Q;B; = 0. From these we can use the rest of M to
conclude that BJT (AT)ijA‘]Bi = 0 for any p, g € [0, T). This
condition is equivalent to (16). |

We apply Theorem 1 to two player bilinear games and prove
a necessary condition for disturbance decoupling between
different coordinates of each player’s action space that is
independent of players’ step sizes.

Corollary 3: Consider a two player bilinear game under
learning dynamics (10) and (12), where coordinates x; ; and
x2,; experience gradient disturbance as given by (3). If j # i
and coordinate x; ; is disturbance decoupled from coordinate
X1,i» (A, B) must satisfy 222:1 bgiaje = 0, where a,q and by,
denote the (p, ¢)™ elements of A and B, respectively. Similarly,
if j # i and coordinate x;; is disturbance decoupled from
coordinate x2 ;, (A, B) must satisfy 22”:1 bjpas; = 0.

Proof: We construct games played by n; + np players
with actions {x1,1, ..., X1, X2,1, ..., X2} and whose game
graphs are identical to Wy (11) and W, (13). First consider
disturbance decoupling of x;; from x;;. In both learning
dynamics, {x1,1,...,X1,,;} do not have any edges between
players. Therefore, paths between x;; and x;; with length
2 is given by P = {(x1,;,x2,¢,x1,) | £ € [n2]}. We sum
path weights over P to obtain 22'2:] beiaje = 0 for distur-
bance decoupling of xj ; from x;; in (10) and (12). A similar
argument follows for disturbance decoupling of x;; from x; ;
in (10). For disturbance decoupling of x; j from x; ; in (12), we
note that a edge from x; ; to x2; exists with weight y1y2(BA);;
when j # i. Disturbance decoupling requires y1y2(BA)j;i = 0,
therefore Y ;L bjeas; = 0. [}

Corollary 4: Consider a two player bilinear game under
learning dynamics (10) and (12), where coordinates x; ; and
X2,; experience gradient disturbance as given by (3). If coordi-
nate xp ; is disturbance decoupled from coordinate x ;, (A, B)
must satisfy b = 0 and Y02 | bgi Y7y, aggbje = 0, where apg
and by, denote the (p, q)™ elements of A and B, respectively. If
coordinate xi; is disturbance decoupled from coordinate xp ;,
(A, B) must satisfy a;; = 0 and 221:1 agi 222:1 begaje=0.

Proof: We construct games played by n; + np players
with actions {x1,1, ..., X1, %2,1, ..., %2} and whose game
graphs are identical to Wy (11) and W, (13). In both learn-
ing dynamics, disturbance decoupling requires no direct path
between the decoupled players. Therefore aj; = 0 or bj; = 0.

Consider disturbance decoupling of x;; from x;; in (10),
paths of length 3 from x,; to x1; without self loops is given
by P = {(x2,i, X1,4- X2,¢, x1,) | ¢ € [n1], £ € [n2]}. A path of
length 3 with self loops must also include (x;,;, x1 ), whose
weight is 0. We sum path weights over p € P to obtain

D g1 9qi 2y=y begaje = 0. A similar argument is made for
disturbance decoupling of x; ; from x1; in (10).

Consider disturbance decoupling of xz; from x;; in (12),
paths of length 2 from x;; to xp; without self loops is
given by @ = {(x1,;,x,4, x/)lg € [n2l]}. A path of
length 2 with self loops must also include (x1,;, x2 ), whose
weight is 0. Weight of (x2,4,x2;) is given by y1y2(BA)j,
= Y1V Zzlzlbjgagq. We sum path weights over p € Q to
obtain 222:1 bgi >_yL | aggbje = 0. A similar argument is made
for disturbance decoupling of x;; from x;; in (12). [ |

V. NUMERICAL EXAMPLE

We provide an example of disturbance decoupling in a LQ
game. Consider a tug-of-war game in which a single target
z € R? is controlled by four players. We assume that player
i can move z along vector B; € R2 by u; € R, and that z is
stationary without any player input, i.e., A = I. Starting with a
randomized initial condition z°, at each ste}) t, the target moves
according to the dynamics 7! =/ + Y"1, Bju! where By =
(1,01, By = [ 75,51, Bs = [ 55, 551", Ba = [0, 11",
Each player i’s cost function is given by

8

2

L+ 205l = a5+ 10]u];
=0

which describes player i’s objective to move target z towards
¢; € R? in a finite time 7 = 10 by using minimal amount of
control. By designing the game dynamics to satisfy Theorem 1,
we ensure that player 4’s action is disturbance decoupled from
player 1’s.

Using the equivalent formulation as  described
in Section II-DI, Dfi(U) = (G Q:Gi + R)U; +
>4 Gl Qi(GiU; + H® — C)) where C; = [¢],....¢]]T.

1

oo

Hence, the learning dynamics are vl = wuk o+
IQilGi. ..., Gyl [(H eyl HE — on']T,
where W; = G/ Q,G; = E ® B/ B; with B/B, = B| B3
T 1 T T T 1

= B2B4 = 7§a B2B3 = B1B4 = 0, B3B4 = _«/_i’
B/B=B,B,=B{B3=B/Bs=1, and

9 8 7 ... 1

8 8 7 ... 1

E=|7 7 71 . 1|eR™,
1

To ensure convergence of the undisturbed learning dynam-
ics [3], we use uniform step sizes such that ' =
blkdiag(y1/. ... yal) with y; = £ where & = Amin(} (W +
WHTW + WT)) and B = Amax(WTW) with Apax(-) and
Amin(-) denoting the maximum and minimum eigenvalues of
their arguments, respectively. The associated game graph is
given in Figure |, where « = B =y = LZE and § = —LZE.
A path p = (1,vq,...,vk—1,4) of length k must have path
weight (_—;)mé(%)mVEk, where ms (m, ) denotes the number
of times the edge with weight § () is traversed in p.

Disturbance decoupling between players 1 and 4 is guar-
anteed if all paths of length k € (0, 36) satisfy (15). We can
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1.50 A aims to leverage these analysis results to design incentives for
1.25 = players to ensure disturbance decoupling.
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