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Abstract— Learning processes in games explain how players
grapple with one another in seeking an equilibrium. We study a
natural model of learning based on individual gradients in two-
player continuous games. In such games, the arguably natural
notion of a local equilibrium is a differential Nash equilibrium.
However, the set of locally exponentially stable equilibria of
the learning dynamics do not necessarily coincide with the
set of differential Nash equilibria of the corresponding game.
To characterize this gap, we provide formal guarantees for
the stability or instability of such fixed points by leveraging
the spectrum of the linearized game dynamics. We provide
a comprehensive understanding of scalar games and find that
equilibria that are both stable and Nash are robust to variations
in learning rates.

I. INTRODUCTION

The study of learning in games is experiencing a resur-
gence in the control theory [19], [21], [22], optimization [11],
[13], and machine learning [4]-[6], [8], [14] communities.
Partly driving this resurgence is the prospect for game-
theoretic analysis to yield machine learning algorithms that
generalize better or are more robust. Towards understanding
the optimization landscape in such formulations, dynamical
systems theory is emerging as a principal tool for analysis
and ultimately synthesis [1]-[3], [11], [12]. A predominant
learning paradigm used across these different domains is
gradient-based learning. Updates in large decision spaces can
be performed locally with minimal information, while still
guaranteeing local convergence in many problems [5], [13].

One of the primary means to understand the optimization
landscape of games is the eigenstructure and spectrum of
the Jacobian of the learning dynamics in a neighborhood of
a stationary point. In particular, for a zero-sum continuous
game (f,—f) with some continuously-differentiable f, the
Nash equilibria are saddle points of the function f. As the
example in Fig. 1 demonstrates, not all saddle points are
relevant. Loosely speaking, the equilibrium conditions for the
game correspond to constraints on the curvature directions
of the cost function and hence, on the eigenstructure of the
Jacobian nearby equilibria.

The local stability of a hyperbolic fixed point in a non-
linear system can be assessed by examining the eigenstruc-
ture of the linearized dynamics [9], [20]. However, in a
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(a) Natural game coordinates.

(b) Rotated coordinates.

Fig. 1: Cost landscape is crucial to understanding dynamics.
The zero-sum game defined by f(z,y) = %xQ — éyz has
a Nash equilibrium at the origin, which is a stable saddle
point of gradient play (1). If the cost function is rotated to
flz,y) = S22+ Hy? - %xy—a rotation by Z—then the
origin is no longer a Nash equilibrium, and is unstable under
gradient play.

game context there are extra constraints coming from the
underlying game—that is, players are constrained to move
only along directions over which they have control. They can
only control their individual actions, as opposed to the entire
state of the dynamical system corresponding to the learning
rules being applied by the agents. It has been observed in
earlier work that not all stable attractors of gradient play are
local Nash equilibria and not all local Nash equilibria are
stable attractors of gradient play [11]. Furthermore, changes
in players’ learning rates—which corresponds to scaling
rows of the Jacobian—can change an equilibrium from being
stable to unstable and vice versa [5].

To summarize, there is a subtle but extremely important
difference between game dynamics and traditional nonlinear
dynamical systems: alignment conditions are important for
distinguishing between equilibria that have game-theoretic
meaning versus those which are simply stable attractors of
learning rules, and features of learning dynamics such as
learning rates can play an important role in shaping not only
equilibria but also alignment properties. Motivated by this
observation along with the recent resurgence of applications
of learning in games in control, optimization, and machine
learning, in this paper we provide an in-depth analysis of the
spectral properties of gradient-based learning in two-player
continuous games.

Contributions. This paper characterizes the spectral prop-
erties of structured 2 x 2 matrices and analyzes the stability of
equilibria in continuous games. Having a complete algebraic
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understanding of the spectrum of the game Jacobian is
fundamental to understanding when Nash equilibria coincide
with stable equilibria. Many of our results are geometric in
nature and are accompanied by diagrams.

It is known that the quadratic numerical range of a block
operator matrix contains the operator’s (point) spectrum [23].
Thus, it serves as an important tool for quantifying the
spectrum of two-player game dynamics. The method for
obtaining the quadratic numerical range is by reducing a
block matrix to 2 X 2 matrices.

Towards this end, we decompose the 2 x 2 game Jacobian
into coordinates that reflect the interaction between the
players. The decomposition provides insights on games and
vector fields in general, which permits us to provide a
complete characterization of the stability of equilibria in two-
player gradient learning dynamics.

Organization. In Section II, we describe the gradient-
based learning paradigm and analyze the spectral properties
of block operator matrices using the quadratic numerical
range [23]. In Section III, we analyze the spectral properties
of two-player continuous games on scalar action spaces. Our
main results are on general-sum games, with insights drawn
from specific classes of games. In Section IV, we certify the
stability of Nash and non-Nash equilibria in two-player scalar
games. A key finding is that in the scalar case, equilibria that
are both stable and Nash are robust to variations in learning
rates; in the vector case, they are not. We provide an example
in Section V and conclude in Section VI.

II. PRELIMINARIES

This section contains game-theoretic preliminaries, math-
ematical formalism, and a description of the gradient-based
learning paradigm studied in this paper.

A. Game-Theoretic Preliminaries

A 2-player continuous game G = (f1, f2) is a collection
of costs defined on X = X; x Xy where player (agent)
i € Z ={1,2} has cost f; : X — R. In this paper, the results
apply to games with sufficiently smooth costs f; € C" (X, R)
for some r > 0. Agent ¢’s set of feasible actions is the d;-
dimensional precompact set X; C R%. The notation z_;
denotes the action of player ¢’s competitor; that is, x_; = x;
where j € Z\{i}.!

The most common and arguably natural notion of an
equilibrium in continuous games is due to Nash [16].

Definition 1 (Local Nash equilibrium): A joint action
profile x = (w1,72) € W1 x Wo C X1 x X, is a local
Nash equilibrium on W; x Ws if, for each player ¢ € Z,
Jilwi,w_y) < fiwj, x_s), Vaj € Wi
A local Nash equilibrium can equivalently be defined as in
terms of best response maps: x; € argminy, f;(y,z_;). From
this perspective, local optimality conditions for players’
optimization problems give rise to the notion of a differen-
tial Nash equilibrium [18], [19]; non-degenerate differential
Nash are known to be generic and structurally stable amongst

For 2-player games, x_1 = x2 and _2 = z1.

local Nash equilibria in sufficiently smooth games [17]. Let
D, f; denote the derivative of f; with respect to x; and,
analogously, let D;(D; f;) = D? f; be player 4’s individiaul
Hessian.

Definition 2: For continuous game G = (f1, f2) where

fi € C?(X1 x X5, R), a joint action profile (z1,z2) € X X
Xo is a differential Nash equilibrium if D, f;(x1,z2) = 0
and D? f;(x1,25) > 0 for each i € Z.
A differential Nash equilibrium is a strict local Nash equilib-
rium [18, Thm. 1]. Furthermore, the conditions D; f;(xz) = 0
and D? f;(x) > 0 are necessary for a local Nash equilibrium
[18, Prop. 2].

Learning processes in games, and their study, arose as one
of the explanations for how players grapple with one another
in seeking an equilibrium [7]. In the case of sufficiently
smooth games, gradient-based learning is a natural learning
rule for myopic players?.

B. Gradient-based Learning as a Dynamical System

At time ¢, a myopic agent ¢ updates its current action x;(t)
by following the gradient of its individual cost f; given the
decisions of its competitors x_;. The synchronous adaptive
process that arises is the discrete-time dynamical system

wi(t + 1) = 2 (t) — v Di fi(xi(t), v i (1)) (D

for each i € 7 where D, f; is the gradient of player i’s cost
with respect to x; and ~; is player ¢’s learning rate.

a) Stability: Recall that a matrix A is called Hurwitz
if its spectrum lies in the open left-half complex plane
C?.. Furthermore, we often say such a matrix is stable in
particular when A corresponds to the dynamics of a linear
system @ = Ax or the linearization of a nonlinear system
around a fixed point of the dynamics.’

It is known that (1) will converge locally asymptotically
to a differential Nash equilibrium if the local linearization is
a contraction [5]. Let

9(x) = (D1f1(x), D2 fo()) 2)

be the vector of individual gradients and let Dg(z) be its
Jacobian—i.e., the game Jacobian. Further, let 0,(A) C C
denote the point spectrum (or spectrum) of the matrix A, and
p(A) its spectral radius. Then, x is locally exponentially
stable if and only if p(I — I'Dg(z)) < 1, where I’ =
blockdiag (114, ,v214,) is a diagonal matrix and I, is the
identity matrix of dimension d;. The map I — I'Dg(x) is
the local linearization of (1). Hence, to study stability (and,
in turn, convergence) properties it is useful to analyze the
spectrum of not only the map I — I'Dg(x) but also Dg(x)
itself.

For instance, when v = ~; = 7», the spectral mapping the-
orem tells us that p(/ —yDg(r)) = maxyeq, (Dg(a)) |1 — VAl
so that understanding the spectrum of Dg(x) is imperative

2A mypoic player effectively believes it cannot influence its opponent’s
future behavior, and reacts only to local information about its cost.

3The Hartman-Grobman theorem [20] states that around any hyperbolic
fixed point of a nonlinear system, there is a neighborhood on which the
nonlinear system is stable if the spectrum of Jacobian lies in C° .
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for understanding convergence of the discrete time update.
On the other hand, when ~; # -2, we write the local lin-
earization as I —y; ADg(x) where A = blockdiag(l4,,714,)
and 7 = 79/1 is the learning rate ratio. Again, via the spec-
tral mapping theorem, when I — 3 ADg(x) is a contraction
for different choices of learning rate 7; is determined by
the spectrum of ADg(z). Hence, given a fixed point x (i.e.,
g(z) = 0), we study the stability properties of the limiting

continuous time dynamical system—i.e., © = —g(x) when
v1 = 72 and & = —Ag(z) otherwise. From here forward, we
will simply refer to the system & = —Ag(x) and point out

when A = Iy, 44, if not clear from context.

b) Partitioning the Game Jacobian: Let © = (1, 22)
be a joint action profile such that g(z) = 0. Towards better
understanding the spectral properties of Dg(z) (respectively,
ADg(z)), we partition Dg(x) into blocks:

_[=Difi(z) —Diafi(z)]  [Jun Jie
J(z) = _D211f2(x) —Dng(x)} _[J21 Jn] A3)

A differential Nash equilibrium (the second order conditions
of which are sufficient for a local Nash equilibrium) is such
that J;1 < 0 and Jos < 0. On the other hand, as noted
above, J is Hurwitz or stable if its point spectrum o, (J) C
C?.. Moreover, since the diagonal blocks are symmetric, J
is similar to the matrix in Fig 2. For the remainder of the
paper, we will study the Dg at a given fixed point x as
defined in (3).

J(@,y) ~ li<

c) Classes of Games: Different classes of games can be
characterized via .J. For instance, a zero-sum game, where
f1 = —fo, is such that Jj5 = —J;l. On the other hand, a
game G = (f1, f2) is a potential game if and only if Do f1 =
Da1 f5 [15, Thm. 4.5], which implies that Jy5 = Jo,.

Fig. 2: Similarity: the game Jaco-
bian in (3) is similar to a matrix
with diagonal block-diagonals.

C. Spectrum of Block Matrices

One useful tool for characterizing the spectrum of a block
operator matrix is the numerical range and quadratic numeri-
cal range, both of which contain the operator’s spectrum [23]
and therefore all of its eigenvalues. The numerical range of
J is defined by

W(J)={(Jz,z2): z€ Chtdz Izl = 1},

and is convex. Given a block operator J, let

(J110,0) <J12w7v>]

Tow = [(lev,w (J2ow, w) @

where v € C% and w € C%. The quadratic numerical range
of J, defined by

w2y =

vEST, WESs

op(Jo,w), (5)

is the union of the spectra of (4) where o,(-) denotes the
(point) spectrum of its argument and S; = {z € C% :

@] ®o,(J)
1 O'I,(Ju)
i L op(Ja)
_I. }‘Il ' Re(A)
W) 7

Fig. 3: Spectrum of a stable equilibrium that is not Nash.
The spectrum of J, Jy1, and Js2 in Example 1 are contained
in the numerical range (convex dashed region) and quadratic
numerical range (non-convex region) of J. The eigenvalues
of J are in the left plane, hence the fixed point is stable
under gradient play (1). However, the first player’s Ji; is
indefinite, hence the fixed point is not a Nash equilibrium.

|[zll2 = 1}. It is, in general, a non-convex subset of C.
The quadratic numerical range (5) is equivalent to the set
of solutions of the characteristic polynomial

)\2 - >\(<J11’U,U> + <J22w,w>) + <J11’U,’U><J22’w, 'U}>

- <J12U, w><<]21w,’u> =0 (6)

for v € §; and w € Sy. We use the notation (Jz,y) = z*Jy
to denote the inner product. Note that W?2(J) is a subset
of W(J) and, as previously noted, contains o,(.J). Albeit
non-convex, W?2(J) provides a tighter characterization of the
spectrum4.

Example 1: Consider the game Jacobian of the zero-sum

game (f,—f) defined by cost f : R? x R? — R,
flz,y) = —%x% + %x% + Ty1w1 — 3Y2x2 — 23/% - 63/5'

The numerical range, quadratic numerical range, spectrum
and diagonal entries of J, defined using the origin as the
fixed point, are plotted in Fig. 3. In this example, the origin
is not a differential Nash equilibrium since D% f1(0,0) is
indefinite, yet it is an exponentially stable equilibrium of
% = —g(x) since all the eigenvalues of J are all negative.

Observing that the quadratic numerical range for a block
2 x 2 matrix J derived from a game on a finite dimensional
Euclidean space reduces to characterizing the spectrum of
2 x 2 matrices, we first characterize stability properties of
scalar 2-player continuous games.

III. STABILITY OF 2-PLAYER SCALAR GAMES

We characterize the stability of differential Nash equilib-
ria in 2-player scalar continuous games. Consider a game
(f1, f2) with action spaces X;,X> C R. Let x be a
fixed point of (2) such that g(z) = 0. We decompose its
game Jacobian (3) into components that reflect the dynamic
interaction between the players.

4There are numerous computational approaches for estimating the numer-
ical ranges W () and W2(:) (see, e.g., [10, Sec. 6]).
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A. Jacobian Decomposition: 2 X 2 case

Consider the decomposition of a R2%2? game Jacobian

_la b _|m -z h p
O | s S A G

where m = L(a+d), h = 3(a—d), p=1(b+c), 2 =
1(c—b). Let tr(J) be its trace, det(.J) be its determinant, and
disc(.J) be the discriminant of its characteristic polynomial.’
Several directly verifiable quantities are stated.

Statement 1: Given a matrix J € R2*?2 and its spectrum

op(J) = {1, A2}, the above decomposition gives rise to the
following conditions:

tr(J) =M+ X2 =a+d=2m,
det (J) = MAz = ad — be = (m® + 2%) — (h? + p?),
disc (J) = (A1 4+ A2)® — 4\ g = 4(h* + p* — 27),

A2 = 2 (tr(J) F /disc(J)) = m F /h? 4 p? — 22.
The change of coordinates from (a,b,c,d) to (m,h,p, z)
in Statement 1 provides important insights into linear vector
fields and, in particular, to games. The stability of vector field
T = Jx is given by the trace and determinant conditions.
Proposition 1: The matrix J € R?*2 is stable if and only
if m? 4+ 22 > h? +p? and m < 0.

Proof: Statement 1 and direct computation show that
these conditions are equivalent to A\; + Ay < 0 and A; Ay >
0, well-known conditions for stability of 2 x 2 systems
(illustrated in Fig. 5b). |

B. Discussion of Decomposition

The purpose of the decomposition into the alternative
coordinates is to geometrically—and thus more directly—
assess the conditions for stability of a differential Nash
equilibrium.

a) Relationship to complex plane: Fig. 4 plots the
coordinates of m, z, h, p relative to each other to illustrate
the decomposition in Statement 1. If A = 0,p = 0, then the
eigenvalues of J are A\; o = m F z¢. Fig. 4a corresponds to
a plot of eigenvalues in the complex plane. Stability is given
by the familiar open-left half plane condition: o, (J) C C2.
If h # 0 or p # 0 a circular region in the center of the plane
expands the values of m, z for which the eigenvalues of the
matrix are purely real. Fig. 4b shows that the eigenvalues are
purely real if and only if 22 < h2 + p2.

b) Effect of rotation in game vector fields: Note the
similarity between (7) and the well-known symmetric/skew-
symmetric (Helmholtz) decomposition

_la b _|m+h p 0 —=z
J@—L 4_[p m_4+L J.<&
Assuming that m < 0, from Proposition 1 we can see
that increasing the rotational component of the Jacobian

helps stability. Increasing the relative magnitude of p, the
non-rotational interaction term hurts stability. If there is no

SThe characteristic polynomial of J is A + det(J — AI) and its
discriminant is tr(J)? — 4 det(J) for J € R2X2,

(a) The complex plane. (b) A representation of the

m, z, h, p coordinates.
Fig. 4: Visualization of Statement 1: If h and p are zero,
then the eigenvalues of J are Ay 2 = m F zi. If h and/or p

are non-zero, then a circle centered around the origin with
radius \/h? + p? is excluded from left-half stability region.

det
f»@ 2 %, et(J)
L
S 2
17 \\0
At tr(J)
/\1, Ay € R
(a) Level sets of (b) Real or imaginary

det(J) = A1 A2, eigenvalues.

Fig. 5: Visualization of Proposition 1: y = J(x)y is stable
<= det(J) > 0 and tr(J) < 0.

rotational component, ie. J is symmetric, p’s negative impact
on stability can be seen directly from the Schur complement®.
In this case J is stable iff J < 0 and thus stability
requires that both the diagonals and the Schur complement
are negative: a < 0, d < 0, and a — p?d~! < 0. If d < 0,
increasing p can only increase the Schur complement.

C. Types of Games

The decomposition also provides a natural classification
of 2-player scalar games into four types based on specific
coordinates being zero, as illustrated in Fig. 7.

a) Potential games (z = 0): The point (m,z) lives
on the horizontal axis in Fig. 7a, thus stable fixed points
are a subset of Nash equilibria. Since z = 0, Proposition 1
indicates that increasing p, the interaction term between the
players, and increasing h, the difference in curvature between
the two players both only hurt stability.

b) Zero-sum games (p = 0): The point (h,p) lives on
the horizontal axis in Fig. 7b, thus all Nash equilibria are
stable, but not all stable fixed points are Nash. The magnitude
of the interaction term z helps stability and may make a fixed
point stable even if it is not Nash.

¢) Hamiltonian games (m = 0): The point (m, z) lives
on the vertical axis in Fig. 7c, thus no strict Nash equilibria
can exist. At best these games are marginally stable if |z is
large enough relative to the magnitude of (h,p).

%The Schur complements of the matrix in (3) are Ji1 — J12J2}1 Jo1
(where Ja22 is invertible) and Joo — J21 Jl_ll J12 (where Jp1 is invertible).
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>
: m

(a) Geometry of decomposi- (b) Change of coordinates re-
tion in (7). veals regions of stability.

Fig. 6: Decomposition of a general scalar game. The rows
vectors of J are plotted in (a) and the same matrix with a
change of coordinates is plotted in (b). Nash regions (m <
—|h|) and stability regions (m < 0, m?+ 2% > h? 4 p?) are
visible. Their set differences characterize the conditions for
a stable non-Nash and unstable Nash equilibria.

(a) Potential:
Stable C Nash.

(b) Zero-sum:
Stable D Nash

(c) Hamiltonian: (d) Matching:
Re(A1,2) =0.  Stable C Nash.
Fig. 7: Stability and Nash for different classes of games.
(a) Potential games: symmetric interaction term only hurts
stability. (b) Zero-sum games: rotation can compensate for
unhappy player. (c) Hamiltonian games: players have zero
total curvature, a + d = 0. (d) Matching, a = d: there are no
stable non-Nash equilibria.

%)

L)

@ 71 > 72 b)) 71 <72

Fig. 8: Time-scale separation affects stability. The learning
rate ratio 7 = o /1 > 0 affects the stability of the game
dynamics. The factor 5 = :—4__% expands or shrinks the region
for stability.

d) Constant-curvature games, (h = 0): The point (h, p)
lives on the vertical axis in Fig. 7d, so any stable point is
also a Nash. Any fixed point with a, d having the same sign
can be rescaled to have constant curvature y;a = y2d by a
choice of non-uniform learning rates 1,7y, > 0.

IV. CERTIFICATES FOR STABILITY OF GAME DYNAMICS
A. Stability: Uniform Learning Rates

For a game G = (f1, f2), let the set of differential Nash
equilibria be denoted DNE(G) and let the stable points of
# = —g(x) be S(G). Let DNE(G) and S(G) be their respective
complements. The intersections of these sets characterize the
stability/instability of Nash/non-Nash equilibria.

Theorem 1 (Certificates for 2-Player Scalar Games):
Consider a game G = (f1, f2) on X; x Xo C R?. Let z be
a fixed point of (2) and let m, h, p, z be defined by (7). The
following equivalences hold:

(i) x € DNE(G) NS(G) —
{m < —|h]} A{m? + 2% > h? + p*}.
(i) z € DNE(G) NS(G) <~
{m < —|h]} A {m? + 2% < A% + p?}.
(ili) = € DNE(G) NS(G) <
{0>m > —|h]} A {m? + 22 > h? + p?}.
(iv) z € DNE(G) NS(G) —
{{0>m > —|h|} A{m?+ 2% < h?+p?}} Vv {m > 0}.
The contributions to the stability of a non-Nash equilib-
rium or the instability of a Nash equilibrium are stated in
(i1) and (iii). We illustrate the geometry of these two cases
with the shaded regions in Fig. 6b.

B. Stability: Non-Uniform Learning Rates

Consider players updating their actions according to gra-
dient play as defined in (1) with individual learning rates
Y1,7v2 > 0, not necessarily equal. We study how the players’
ratio 7 = 2 /71 affects the stability of fixed point = under
the learning dynamics by analyzing the game Jacobian

J(x):[a b]. ©)

¢ Td

Learning rates do not affect whether a fixed point is a Nash
equilibrium. They do, however, affect whether it is stable.

Corollary 1 (Stability in General-Sum Scalar Games):
Consider a game G = (f1, f2) on X3 x Xy C R? and a
fixed point z. Suppose players perform gradient play (1)
with learning rate ratio 7 = -2 /1. Then, the following are
true.

(i) If a Nash equilibrium is stable for some 7, then it is
stable for all 7.
(i1) If a non-Nash equilibrium is stable, then there exists
some 7 that makes it unstable.
(iii) If a fixed point is non-Nash, the determinant of its game
Jacobian is positive and m < |h/|, then there exists some
7 that makes it stable.

Proof: To prove (i), we observe that if m < —|h/, then
m < (Bh for all 8 such that |3| < 1. To prove (ii), choose
T < |%| Without loss of generality, assume a < 0 and d > 0.
Then, it directly follows that a +7d < 0. To prove (iii), note
that a matrix J is stable if and only if the determinant of J
is positive and m < 0. Hence, without loss of generality, let
d < 0. Then there is a learning rate 7 such that 7|d| > |a|
so that m < 0.
|
Stable Nash equilibria in scalar games are robust to vari-
ations in learning rates and non-Nash equilibria are not. For
continuous games with vector action spaces, Corollary 1(i)
no longer holds, demonstrating that Nash equilibria are not
robust, in general, to variations in learning rates.
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V. AN ILLUSTRATIVE EXAMPLE

We demonstrate our main results below and in Fig. 9.

Example 2 (Nonlinear torus game): Consider a game
G = (f1, f2) defined on S x S' with costs

fi(z,y) = %cos (%x) + %cos (%2 +by),
folz,y) = %COS (%y) + %cos (gy + cac) .
There is a fixed point of the learning dynamics at the origin.
Its linearized game Jacobian is J(0) = [2 4] . First, to show
Corollary 1(i), we start with an unstable, Nash fixed point
of a potential game (¢ = —0.4,b = 1,¢ = 1,d = —1).
We decrease p = %(b + ¢) until it becomes stable (b =
0.2,¢ = 0.2). Then, we decrease 7 from 1 to 0.1 while
maintaining stability. Second, to show Corollary 1(ii), we
start with an unstable, non-Nash fixed point of a zero-sum
game (a = 0.4,b = —0.2,¢c = 0.2,d = —1). We increase
z = 1(c—b) until it becomes stable (b = —1,c = 1). Then,
we decrease 7 from 1 to 0.01 making it unstable again. Third,
to show Corollary 1(iii), we start with an unstable, non-Nash
fixed point of a Hamiltonian game (¢ = 0.5,b = 0.1,¢ =

0.5,d = —0.5). We increase the interaction term z = 3(c—b)

until it becomes marginally stable (b = —0.5, ¢ = 1.1). Then,
we increase 7 slightly from 1 to 2, making the fixed point
stable.

VI. CONCLUSION

We characterize the local stability and Nash optimality
of fixed points of 2-player general-sum gradient learning
dynamics. Our results give valuable insights into the in-
teraction of algorithms in settings most accurately modeled
as games, for example, when agents lack trust or reliable
communication. In the sequel, we characterize continuous
games defined on vector action spaces.

REFERENCES

[1] David Balduzzi, Wojiech M Czarnecki, Thomas W Anthony, Ian M
Gemp, Edward Hughes, Joel Z Leibo, Georgios Piliouras, and Thore
Graepel. Smooth markets: A basic mechanism for organizing gradient-
based learners. Proc. Inter. Conf. Learning Representations, 2020.

[2] Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, and
Simon Lacoste-Julien. A closer look at the optimization landscapes
of generative adversarial networks. Proc. Inter. Conf. Learning
Representations, 2020.

[3] Victor Boone and Georgios Piliouras. From Darwin to Poincaré and
von Neumann: Recurrence and Cycles in Evolutionary and Algorith-
mic Game Theory. In Inter. Conf. Web and Internet Economics, pages
85-99, 2019.

[4] Jingjing Bu, Lillian J Ratliff, and Mehran Mesbahi. Global con-
vergence of policy gradient for sequential zero-sum linear quadratic
dynamic games. arXiv preprint arXiv:1911.04672, 2019.

[5] Benjamin Chasnov, Lillian Ratliff, Eric Mazumdar, and Samuel Bur-
den. Convergence Analysis of Gradient-Based Learning in Continuous
Games. In Proc. Uncertainty in Artificial Intelligence, 2019.

[6] Tanner Fiez, Benjamin Chasnov, and Lillian J Ratliff. Implicit Learn-
ing Dynamics in Stackelberg Games: Equilibria Characterization, Con-
vergence Analysis, and Empirical Study. Proc. Inter. Conf. Machine
Learning, 2020.

[7] Drew Fudenberg, Fudenberg Drew, David K Levine, and David K
Levine. The theory of learning in games. MIT press, 1998.

[8] IanJ. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative Adversarial Nets. In Advances in Neural Information
Processing Systems, 2014.

[9] Hassan K Khalil. Nonlinear systems theory. Prentice Hall, 2002.

(a) Potential game: a Nash goes from unstable to stable, and remains
stable with time-scale separation.

(b) Zero-sum game: a non-Nash goes from unstable to stable, and
destabilizes with decreasing 7.

4, /

(c) Hamiltonian game: a non-Nash goes from unstable to marginally
stable, and stabilizes with increasing 7.

Fig. 9: Demonstration of Corollary 1: vector field plots of
the three scenarios from Example 2.

[10] Heinz Langer, A Markus, V Matsaev, and C Tretter. A new concept
for block operator matrices: the quadratic numerical range. Linear
algebra and its applications, 330(1-3):89-112, 2001.

[11] Eric Mazumdar, Lillian J Ratliff, and Shankar Sastry. On gradient-
based learning in continuous games. SIAM Journal on Mathematics
of Data Science, 2(1):103-131, 2020.

[12] Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Pil-
iouras. Cycles in adversarial regularized learning. In Proc. 29th
Ann. ACM-SIAM Symp. Discrete Algorithms, pages 2703-2717. SIAM,
2018.

[13] Panayotis Mertikopoulos and Zhengyuan Zhou. Learning in games
with continuous action sets and unknown payoff functions. Mathe-
matical Programming, 173(1-2):465-507, 2019.

[14] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Un-
rolled generative adversarial networks. Proc. Inter. Conf. Learning
Representations, 2017.

[15] Dov Monderer and Lloyd S Shapley. Potential games. Games and
economic behavior, 14(1):124-143, 1996.

[16] John Nash. Non-cooperative games. Ann. Math., pages 286-295,
1951.

[17] L. J. Ratliff, S. A. Burden, and S. S. Sastry. Genericity and
structural stability of non-degenerate differential Nash equilibria. In
Proc. Amer. Control Conf., pages 3990-3995, 2014.

[18] Lillian J Ratliff, Samuel A Burden, and S Shankar Sastry. Char-
acterization and computation of local Nash equilibria in continuous
games. In Proc. 51st Ann. Allerton Conf. Communication, Control,
and Computing, pages 917-924. IEEE, 2013.

[19] Lillian J Ratliff, Samuel A Burden, and S Shankar Sastry. On the
Characterization of Local Nash Equilibria in Continuous Games. /EEE
Trans Automa. Control, 61(8):2301-2307, 2016.

[20] S. Shankar Sastry. Nonlinear systems: analysis, stability, and control.
Springer-Verlag New York, 1999.

[21] Yujie Tang and Na Li. Distributed zero-order algorithms for nonconvex
multi-agent optimization. In Proc. 57th Allerton Conf. Communication,
Control, and Computing, pages 781-786, 2019.

[22] T. Tatarenko and M. Kamgarpour. Learning Nash Equilibria in
Monotone Games. In Proc. IEEE Conf. Decision and Control, pages
3104-3109, 2019.

[23] Christiane Tretter. Spectral theory of block operator matrices and
applications. World Scientific, 2008.

3548

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 24,2021 at 20:31:55 UTC from IEEE Xplore. Restrictions apply.



		2021-01-09T13:13:50-0500
	Preflight Ticket Signature




