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Ecological systems, as is often noted, are complex. Equally
notable is the generalization that complex systems tend to be
oscillatory, whether Huygens’ simple patterns of pendulum
entrainment or the twisted chaotic orbits of Lorenz’
convection rolls. The analytics of oscillators may thus provide
insight into the structure of ecological systems. One of the
most popular analytical tools for such study is the Kuramoto
model of coupled oscillators. We apply this model as a
stylized vision of the dynamics of a well-studied system of
pests and their enemies, to ask whether its actual natural
history is reflected in the dynamics of the qualitatively
instantiated Kuramoto model. Emerging from the model is a
series of synchrony groups generally corresponding to
subnetworks of the natural system, with an overlying
chimeric structure, depending on the strength of the inter-
oscillator coupling. We conclude that the Kuramoto model
presents a novel window through which interesting questions
about the structure of ecological systems may emerge.

1. Introduction

Definitions of objects to be studied and underlying assumptions
about how those objects relate to one another are basic to any
science. In particular, the history of ecology can be traced
through a succession and accumulation of defined objects, from
spatial vegetation patterns in succession [1] to coupled
populations as dynamical systems [2-4] to energy and matter
flows [5], and recently to individual, population, or species
networks of food webs [6]. Less well-known is the abstract
generalization of Platt & Denman [7] that a ‘... most important
characteristic of complex systems [is that] the functional
relations between the system components be of the nonlinear
kind’, and that ‘A crucial characteristic of nonlinear systems is
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their disposition toward periodic behavior, even for non-periodic boundary conditions’. Thus, in
addition to the well-known oscillatory parameter spaces for resource/consumer dynamics, the Platt
and Denman framework suggests that such may be the case for all ecological systems.

If it is true that ecological systems are characteristically periodic, interacting species can be studied as
collections of oscillators. Whether predators and their prey, or herbivores and their plants, or parasites
and their hosts, consumers eat their resources and then find themselves in a resource-poor
environment, thus lowering their growth rate and allowing the resources to recuperate—a
fundamentally oscillatory process. To the extent that the consumers tend to overlap in their diets, or
the resources interact, these oscillators are coupled with one another [8]. The collection of traditionally
defined objects of ecology (e.g. vegetational patterns, population dynamics, energy flows) thus might
be augmented by considering the simple idea of coupled oscillators, a common vehicle for developing
theory in many branches of science, from electronics to neurobiology.

Clearly all real ecosystems include complexities that preclude examination from the point of view of
resource and consumer alone, whether from practical necessity or deep structural realities. As a practical
necessity, for example, there are situations in which nothing more is known except that two species eat
the same resource, in which case their relationship is often treated as a phenomenon in and of itself and
conceptualized as competition (specifically, resource competition). Although sometimes representable as
other phenomenological constructs, for example mutualism or symbiosis, deep structural realities, such
as higher order effects will also negate such a simplified approach that restricts itself to who eats whom.
Nevertheless, as with much of the literature on network structure, consideration of only first-order effects
may provide insight into essential structure, and further elaboration of secondary effects may be thought
of as extra complications to be studied as modifications of this essential structure. To study the effects of
these complications, we must first understand the hypothesized essential structure.

Coupling oscillator sets has already gained traction in the ecological literature [9-20], mostly from a
theoretical perspective, including the potential to generate chaotic behaviour [20,21]. However, a perhaps
more basic question stimulated by the pioneering work of Arthur Winfree [22] is what will be the
patterns of synchrony within the collection of coupled oscillators? The early example of pendulum
clocks synchronizing over time due to even weak connections between them is legion [20,23] and
begins with the question of whether two oscillators will synchronize with the same phase or with
opposite phases. With this emphasis on the phase of the oscillators, Winfree approached the question
by interrogating the dynamics of the system from the point of view of the angle defining a point in
the cycle of two variables (which is to say the phase of the oscillators). Elaborating on this insight, the
model of Kuramoto [24] has become something of a standard approach to analysing synchrony in
collections of coupled oscillators [25].

2. The Kuramoto model

Consider angle ©® made by a point on the unit circle, to represent the position on the limit cycle of the
consumer/resource oscillator [19]. Presuming that synchronization will occur, the general Kuramoto
model holds that,

do;

K .
T o + Nz]: sin(O; — 6;), (2.1)

where o; is the winding number of oscillator i (the rate of advancement on the circle dictated by the
inherent oscillations), K is the intensity of coupling and N is the number of oscillators. This model is
commonly used when the phases of the oscillations are taken to be the key dynamical force. In its
classical form, the model assumes all oscillators identical and couplings are taken to be global (all to all).

This elementary model yields a simple and universal result. With random initiations of ©, and low
coupling, no synchrony occurs. As coupling intensity (K) increases, a critical value exists at which
point all oscillators rapidly synchronize and remain synchronized with further increases in coupling
intensity. This model has been useful in studying large systems of coupled oscillators [25]. One
interesting result is that among groups of strongly synchronous pairs of oscillators, for some
arrangements of coupling, there are individual oscillators that fail to synchronize with the rest,
creating a so-called chimeric pattern [26], although for finite N, they are now generally thought to be
extremely long transients [27].

Based on the reality of coupling types in consumer/resource systems, when two consumers share at
least one key resource, they will experience competition from one another. If their sharing is relatively
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weak, they will converge on a pattern of relative in-phase synchrony with one another [18]. If, contrarily, B

the coupling is through the competitive interactions of the resources, the oscillators will converge on a
pattern of relative anti-phase synchrony with one another [19]. This arrangement has led to some
speculations on its meaning for ecological communities in general [19,20] as well as empirical
confirmation in the field [23]. Elsewhere it has been shown that the pattern of coupling based on the
classical consumer resource model of MacArthur [28] follows precisely the qualitative predictions of
coupling patterns from the Kuramoto model [29].

To represent an actual empirical community, we relax the assumption of the universal constant
coupling in Kuramoto’s model (equation (2.1)), obtaining,

de; K .
F = w; + N;yi’j sm(@i — @]‘), (22)

where Kuramoto’s mean field approach has been disaggregated with the adjacency matrix I" (with
elements vy;;) stipulating the coupling of each pair of oscillators. For a non-weighted, non-directed
graph, y;; is either 0 or 1. The parameter K is retained since it is used as a tuning parameter to study
the system as a whole (rather than simply incorporating it into the ys).

The degree of synchrony is frequently measured by Kuramoto’s order parameter, which is the
absolute value of z where,

1)
1 i
z N ]Ele i, (2.3)

and N is the number of oscillators.

The behaviour of the Kuramoto model applied to ecological situations under various assumptions
about the distribution of the v;; has been analysed, albeit infrequently. For example, Banerjee et al. [30]
studied the behaviour of the model with y;; distributed as a distance related power law in a spatially
explicit framework, and Girén and colleagues examined the consequences of allowing some of the y;;
to be positive and others negative. In an earlier work, Hajian-Forooshani & Vandermeer [29]
compared a six-dimensional predator/prey framework modelled in the Lotka—Volterra style to the
same framework in the Kuramoto model showing that the synchronization patterns were qualitatively
identical. Numerous studies, not necessarily ecological, have focused on a central feature of the
model, the chimeric state that inevitably emerges when the 7;; collectively are too small to engage all
the oscillators in complete collective synchrony but too large to permit complete independence of
oscillator behaviour [31]. Others have noted the emergence of subnetworks as synchrony groups [32],
depending on the distribution of the y;; for several theoretical distributions.

3. A real ecological system

As interesting as the theoretical diversions of the basic model are, thus far there has not been an attempt
at applying the Kuramoto framework to a real ecological system. Here, we use the well-documented
system of pests and their natural enemies in the coffee agroecosystem [33,34] as a system in which
predators/ parasitoids/diseases attack four well-known pests of coffee and, therefore, can be viewed
as a single system of oscillators. The four pests are (i) the coffee berry borer (Hypothenemus hampei
Ferrari), (ii) the coffee leaf miner (Leucoptera coffeells Guérin-Méneville), (iii) the green coffee scale
(Coccus viridis), and (iv) the coffee leaf rust fungus (Hamaelia vastatrix Berk. & Broome). We ask, to
what extent does the Kuramoto model provide insight into the community structure of this well-
defined real community? Will the Kuramoto model reflect what we know about the system? Will it
provide any insights regarding the structure of this community? We diagram the basic system in
figure 1. It is critical to note that this rendering, although it includes top predators and parasitoids
(those that eat the consumers of the prey), is a simplified rendering, emphasizing the direct energy
transfer interactions and ignoring the well-known indirect higher order interactions [33]. Anticipated
further studies will incorporate those more complex additions of reality.

Applying the model to this well-studied system, we seek to determine whether modules of
synchronization appear and whether these modules reflect the reality of what we know about that
real system. It is not claimed that the Kuramoto model will provide extra evidence that is not
apparent from the fairly obvious structure of this simple community. Rather, we seek to (i) use the
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Figure 1. Diagram of the study system. (a) Each arrow represents a negative (closed circle) effect of a consumer (predator or
parasitoid or disease) on one or more of the four pests, the berry borer (Hypothenemus hampei), the coffee leaf miner
(Leucoptera coffeella), the scale insect (Coccus viridis) or the coffee leaf rust fungus (Hamaelia vastatrix), or on one of the
consumers of those pests. The connections are thus oscillators and are numbered for reference in bold numbers (a total of 22
oscillators, with one, number 22, illustrated with a dashed line as it provides a key element to the overall network structure of
the system (see text)). References for each of the natural enemies are listed in the electronic supplementary material. (b)
Rendering of the network of oscillators and their particular couplings (numbers refer to the number of the oscillator in part (a)).

real system to interrogate the model and (ii) ask whether what we might conclude from the model
concords with what we know about the real ecological system.

4. The Kuramoto model and synchrony groups

The dynamics of coupled ecological oscillators is complicated and strongly dependent on the nature of
the coupling [8,18,29], with in-phase synchrony resulting from predators sharing prey and anti-phase
synchrony resulting from prey competing with one another. Empirical verification of these theoretical
propositions is rare [23]. However, the network we seek to investigate (figure 1) emerges from the
‘pest’ guild associated with the coffee agroecosystem and thus involves only predators consuming
prey, and thus are expected, if the coupling is weak enough, to produce nearly in-phase synchrony.
More complicated networks that include competition at lower trophic levels would require, minimally,
the expansion of equation (2.2) to include both positive and negative K [35]. Here, all of the oscillators
are predator/prey (in principle). Based on the simple idea that oscillators are coupled as long as one
element is shared (two predators eating the same prey, two prey eaten by the same predator or a
trophic triplet [chain]). Thus, for example, oscillators 8 and 3 are coupled because they are part of a
trophic triplet whereas oscillators 8 and 5 are not coupled because they neither share a resource or are
part of a trophic triplet. Based on these couplings, we established an adjacency matrix, which is
reflected visually in the graph of figure 1b. Using this matrix as I, we employed the extended
Kuramoto model at various coupling strengths (with identical w;=0.01), where every coupling of
oscillators (figure 1) is at the same strength, K. The general result shows particular patterns of
synchrony, occurring in groups of oscillators, what we call ‘synchrony groups’. We judge two
oscillators, i and j, to be in the same synchrony group if the difference in © for the two oscillators is
less than C, where the critical value of C is a parameter that may be tuned, and indicates membership
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Figure 2. Synchrony patterns as a function of coupling strength. (a) The order parameter (equation (2.3)) as a function of K. The
values of K are scaled to the 22 oscillators in the system, which is to say the K in the graph is k/22 (from equation (2.2)). Unusually
high variance is due to the small number of oscillators and specific clustered coupling pattern. (b) The coffee berry borer group only
(oscillators 17-21) calculating how many of the five are in synchrony based on the critical angular difference (c;;) of 0.01, as a
function of K. Note the typical failure to synchronize at low levels, not captured by the traditional order parameter due to the small
number of oscillators. Dashed curve connects the means at each coupling coefficient (the mean of observed points on the graph).

in a group. For every pair of oscillators we computed,

leij| = \/(sin@i - sin@]‘)2 + (cos®; — COS@]‘)Z , (4.1)

to compare with C (for all simulations reported herein, C =0.01 radians). The ‘stability’ of synchronous
groups was determined by randomly initiating the model 20 times and recording the number of times
that oscillators i and j fell into the same group. If two oscillators fell into the same group in at least 19
of the 20 runs, they were judged to be in the same ‘persistent’ synchronous group. Exploratory
simulations with 50 runs also run for a few examples to verify that the qualitative results from 20
runs are robust.

Calculating the order parameter over a range of values of the coupling coefficient, we obtain the usual
rapid increase to full coupling (figure 2). Contrary to the classic Kuramoto model, we do not see the
lower plateau at lower values of the coupling coefficient, nor a critical transition to full coupling, as
occurs in the classic model. We attribute this to the complexity of the coupling of the system, as well
as its small size [36]. With the coupling K=0, a relatively high value of the order parameter is
obtained (approximately 0.4 as an average), so any approach to 1 is obscured by the small range
(from less than 0.1 to 1.0), suggesting that the order parameter is not necessarily an efficient measure
of synchronization with such a small number of oscillators.

Contrarily, when we extract only the oscillators associated with an ecologically significant subset of
the oscillators, such as the coffee berry borer sub-community (oscillators 17-21, in figure 1), we obtain
a result that mirrors the classic results of the Kuramoto model (figure 2b). This suggests that key, well-
connected modules of interacting oscillators within our network behave qualitatively similarly to the
classic Kuramoto model (figure 2b), but this dynamic is obscured when considering the full network
of oscillators (figure 2a), as is typically done with uniformly global coupling. As with many real
networks [37], most nodes in this community have few links, potentially increasing their ability to
synchronize and increasing the sum that is the real global order parameter. This result highlights the
utility of the criterion |c;;| <C, from equation (4.1).

The amount of scatter in the order parameter before full synchronization reflects a complicated
approach to that synchrony, based on the sequential synchronization of independent synchrony
groups. In figure 3, we illustrate the approach to complete synchronization for one exemplary run.
The structure of the synchrony graph is based on K=0.01, and we see a clear division of oscillators in
three distinct sets in figure 3a. It is notable that oscillator 3 does not synchronize with any of the three
groups. To fully understand the significance of the graph, it is convenient to follow the trajectories of
all the oscillators over time as in figure 3b. It is evident that all the oscillators eventually synchronize
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Figure 3. Approach to synchrony groups and eventually to full synchronization for a single example. (a) The graph of the synchrony
groups obtained at time =20 (connected nodes are in the same synchrony group). (b) Time series of @ for all 22 oscillators,
indicating which oscillator synchrony groups are formed. (c) All 22 oscillators in the complex plane at three different points in
the time series. In (a) and (c), small red arrows point to oscillator number 3.
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Figure 4. Development of synchrony groups as a function of the coupling coefficient. The horizontal lines at various values of K
show the onset of new synchrony groups, where oscillators share a rectangle when they form a synchrony group. The horizontal line
at K=1.0 indicates the entire system is synchronized. Note that, once formed, synchrony groups are stable over time.

as they converge to a common oscillatory angle 6. Yet the pattern of synchronization is not a uniform
coming together of all the oscillators. It is clear that synchrony groups form rapidly (about {=5) and
subsequently the groups themselves synchronize, perhaps most clearly seen in the three diagrams in
the complex plane (figure 3c¢) placed at approximately the same position as the time series of the
angles representing the oscillators. Thus, the organization of synchrony groups is clearly a transient
phenomenon, suggesting the time to synchrony as a potentially important characteristic of the
synchrony group itself.

In figure 4, we illustrate the basic pattern of development of the stable synchrony groups as the
coupling coefficient (K) is increased, harvesting the simulations at +=20 (an arbitrary designation
based on empirical observations—figure 3). Note that the coffee berry borer group, narrowly
construed (i.e. oscillators 17-21) begins synchronizing at a very low value of K. Observations of the
process reveal that any two of the five oscillators can synchronize first at K~ 0.010, while any three of
the five at K~0.014, and any four of the five at K~0.015. These small synchrony groups are not
‘stable,’ in the sense that they appear from all initiation points at these low coupling coefficients and
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probably reflect the random positioning of the oscillators at the beginning of a simulation. Similar

observations are evident for the coffee leaf rust group (oscillators 10-13). It is clear, however, from
figure 4, that once a synchrony group is formed, it is invariant relative to further increases in K, with
the further addition of other oscillators as K increases.

For K ~ 0.6, four distinct synchrony groups are stable. It is also notable that the make-up of the groups
corresponds quite well to the general nature of the network with the four groups corresponding to the
biological control system of each of the pests, another group associated with the phorid parasitoid, forms
at a higher coupling coefficient. As coupling reaches approximately the level of 0.7, the coffee berry borer
group merges with the leaf miner group, and the scale insect group merges with the coffee leaf rust
fungus group at approximately K =0.9. Oscillator 3, the predation of a spider on the small parasitoids,
synchronizes only at the point that all oscillators are in synchrony.

It is also worth noting that over specific ranges of coupling, there are some oscillators that act
something like oscillator 3, for a range of coupling values. For example, in the range K=0.1-0.4,
while there are two synchrony groups in which seven of the 22 oscillators are involved, while the
remaining oscillators fail to synchronize either with one of these groups or among themselves. Such
isolated oscillators are sometimes referred to as chimeric elements in the overall structural
framework. Thus, when K=0.6, for example, we could describe the ‘community structure’ as
consisting of four specific synchrony groups plus eight chimeric elements, at K=0.7 we have three
synchrony groups plus four chimeric elements, and at K=0.8, we have four synchrony groups plus
one chimeric element.

Thus, a comparison of the model with this real-world ecological network reveals a complex set of
patterns within the synchrony group range. Of particular interest is the fact that the larger synchrony
groups are not necessarily predictable from a qualitative interpretation of the elementary network
structure (figure 1), nor is the timing of synchrony groups obvious. For instance, oscillator 3 is
coupled with both oscillator 8 and oscillator 2, and those two oscillators are in different large
synchrony groups (i.e. when K is high), explaining why oscillator 3 only joins in synchrony when the
large group synchronizes, since even at very high coupling strengths it apparently remains chimeric.
Furthermore, the coupling of 8 with 3 connects what would otherwise be completely independent
networks ({1-4, 1422} and {5-13}—see inset in figure 1). Thus, if oscillator 3 were eliminated from the
system, the complete synchronization of the entire ensemble would not occur at all, even though that
very oscillator is extremely resistant to synchronizing with other oscillators, because of its coupling to
elements in the two major independent large synchrony groups.

An alternative look at the basic graph (figure 1b) reveals another obvious division of the graph into
independent subgraphs with the elimination of oscillator 22 (leaving the two completely separate groups
1-13 and 14-21). This is an interesting point of departure for examining the consequence of different
weightings of the coupling coefficient, since this particular connection is indeed a bit special in the
real system. Oscillator 22 involves the keystone ant species Azteca sericeasur and its consumption of the
coffee berry borer. There is some debate among experts (see for example, the alternative
interpretations of Perfecto & Vandermeer [38] versus Jiménez-Soto ef al. [39] as to how much energy
transfer occurs in this interaction). Furthermore, there are dramatic trait-mediated indirect effects
involved [40—42] which ultimately must translate into at least a weak coupling of 22 with all the other
oscillators associated with the coffee berry borer. Consequently, we did a series of simulations setting
the subset of coupling coefficients involving oscillator 22 to 10% less than all the other couplings. The
results of this were that, on the one hand, the basic smaller synchrony groups emerged similarly as to
when all coefficients were constant, suggesting that it is the structure of the network that mainly
drives the overall community dynamics and structure, in the case with these adjustments to K. On the
other hand, subtleties did emerge. For example, in our original analysis, oscillator 3 (an orb-weaving
spider, Pocobletus sp., a Linyphiidae catching parasitoids in its web) failed to synchronize with any
group unless the coupling became very strong (figure 4). Yet, after we lowered oscillator 22 couplings,
it merged with one of the two major groups [1-13] at the relatively low general coupling of K=0.5.
Based on the real network structure (figure 1), we infer that when oscillator 22 is tightly coupled with
its associated pairs, oscillator 3 is pulled in both major synchrony group directions, first because of its
‘indirect’ coupling with oscillator 22 (through the couplings with oscillators 2 and 4) pulling it in the
direction of group 14-21 simultaneously with its coupling with oscillator 8, also pulling it in the
direction of group 1-13. As the system becomes completely coupled, the major transition that
previously occurred from four large synchrony groups to two (and eventually to complete synchrony)
changes dramatically to include entirely different members when the coupling coefficient of oscillator
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Figure 5. Last two synchrony groups before complete coupling of the whole system, depending on whether the coupling of
oscillator 22 to the system is weak or strong. (a) The four synchrony groups before merging into a total of two groups.
(b) Before final synchronization of all oscillators, with strong coupling with oscillator 22. (c) Before final synchronization of all
oscillators, with weak coupling with oscillator 22. Note that, metaphorically, when oscillator 22 is weak, the joint coupling of
oscillators 8 and 9 combines to create the mega group of the coffee leaf rust and scale groups with the phorid group, but
when oscillator 22 is strong (equal coupling as the other oscillators), it dominates the tendency of either oscillators 8 or 9.

22 is small (figure 5), again consistent with evidence of the importance of this ant-beetle interaction for
the whole community and agroecosystem.

5. Discussion

Reflecting on the prescient ideas of Platt and Denman, we suggest that joining their perspective with the
powerfully elegant model of Kuramoto provides a new window through which ecological communities
and ecosystems might be examined both theoretically and empirically. Here, we study this framework as
applied to a real-world example of four pest species and their biological control elements, all of which are
conceptualized as oscillators and coupled together in specific ways according to published studies. We
argue that this mode of analysis generates new ways of looking at ecosystems. In particular, rather
than a focus on species population densities (or biomasses) and attendant features such as diversity
and traditional stability, it might be useful to analyse the system based on synchronization groups and
patterns of synchronization. Such a suggestion depends on an initial assumption that the ecosystem is
itself relatively permanent, which is to say the traditional questions of stability (Lyapunov or more
generally) are not involved. Rather we look, theoretically, at patterns of approach to synchrony and
the synchrony groups that emerge, and empirically, at spatial and temporal correlations predicted by
the Kuramoto model (i.e. elements co-occurring in a synchrony group would probably be correlated
empirically). Somewhat similar to the change in scale of the description of groups of populations into
meta-populations, the attraction of our approach is that it permits the prediction of coarser scale
synchrony patterns to be expected based on nothing more than a qualitative understanding of
consumption patterns.

An issue that has attracted a great deal of attention in the literature surrounding the Kuramoto model is
perhaps relevant to ecosystems as well: chimeric elements [25,36,43,44]. The result herein is that increasing
the coupling strength of the oscillators in the model may, under at least some circumstances, produce one
or more synchrony groups, but also some individual oscillators that ‘refuse” to synchronize with any group
at all. We refer to those as chimeric elements. In the most extreme case, a large number of identical
oscillators synchronize at some critical coupling strength, but other oscillators, identical in every way, do
not synchronize and continue wandering in state space, apparently in perpetuity. The idea of chimeric
elements is similar in spirit to chaos in that it appears to emerge almost magically under some
circumstances, and in physical systems also seems to have some empirical support [45,46].
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Mathematically there is some question about the reality of chimeric elements, although in practice [ 9 |

extremely long transients are quite relevant in practical applications.

Given the extensive literature suggesting that chimeric elements, even if just long transients, exist in a
wide variety of physical systems, we might also expect them to occur in ecological situations. If this be
the case, we can summarize further a vision of community structure as the structure of synchrony groups
plus associated chimeric elements. So, for example, the synchrony groups that emerge in the present
example are clearly associated with particular pest species, which is not surprising. The parallel
question of how they relate to the natural history of the empirical system stems partly from
‘competition” from distinct synchrony groups. Thus, oscillator 3 in the present system, by bridging the
gap between the two main synchrony groups (at relatively high values of K) is pulled in both
directions and, at best, stabilizes in a position between them, but never moves toward one or another.

Yet the idea of a chimeric element perhaps recalls a basic idea in community ecology. It is easy to
postulate other, perhaps more complicated, ecosystems, or perhaps with additional complications to
the basic Kuramoto framing, as having chimeric elements in addition to synchrony groups. For
example, the idea of fugitive species [47,48], a common referent in early literature, fits this idea
perfectly, in that we could imagine the normal semi-stable or permanent community, structured along
the lines of synchrony groups, but the fugitive species coming and going, apparently without fitting
into the basic community structure of the permanent resident species. Other formulations from
classical ecology are also possible (e.g. the very nature of the keystone species, if coupled to two
relatively equally attractive synchrony groups could also be chimeric, as in the case of oscillator 22).

Our general results may be summarized as follows: first, as the strength of oscillator couplings
increases, synchrony groups tend to form, each one of which is associated with a particular pest
species. Second, these groups tend to merge, ultimately forming three major groups, (i) the coffee
berry borer/miner group, (ii) the coffee leaf rust/scale insect group, and (iii) the phorid group
(figures 3 and 4), all mirroring ecological structures within the system. Third, relaxing the assumption
of perfectly uniform couplings, allowing the A. sericeasur/coffee berry borer oscillator (number 22) to
be only a tenth of the others (based on our knowledge of the system), provokes changes, the main one
of which is that the phorid group synchronizes with the coffee leaf rust/scale group rather than the
coffee berry borer/miner subgroup as it did previously. We conclude that the general pattern of
synchrony group formation is a consequence of the structure of the network, but that particulars of
synchrony group formations may vary depending on the heterogeneity of oscillator coupling
strengths, and, of course, the inevitable stochasticity of nature is bound to have an effect. All of the
synchrony group results that emerge from the Kuramoto model make perfectly consistent sense with
what we know of the system in the field, an encouraging result.

It is satisfying that the Kuramoto model does seem to represent the underlying qualitative dynamics
of the real system. Since this system is about pests of an important crop, it is obvious of potential practical
importance that an approximate toy model such as this one can reflect the basic structure of this system
as we have come to know it from over two decades of study [33]. There is a clear relationship between the
number of nodes and the timing of the formation of synchrony groups, suggesting that a herbivore guild
containing multiple species attacking it is likely to synchronize the whole group quite rapidly. Yet there
are other examples in which it seems to be the relative isolation of the group that allows for rapid
synchronization as is the case of Pseudacteon and its antagonists, of clear importance to the key spatial
patterning of the system as a whole [33,49]. From practical experience on the ground, it is clear that
these various synchrony groups do indeed occur in the field, correlated in space and time.

However, it must be noted that this real-world system itself is represented in a simplified fashion, as
we know from the large amount of empirical work that has already been published (see references in
electronic supplementary material). Most important are the trait-mediated indirect interactions (or
higher order interactions) associated, for example, with oscillator 22, which are known to be
important empirically [39], and, given the analysis here, are likely to be important in the further
detailed study of synchrony groups of the system [41,42]. Incorporating such complexities is a
challenge for the future. Yet it is worth emphasizing that the apparent concordance of the qualitative
nature of synchrony groups is remarkable especially since the model is very explicitly ignoring some
key features.

Nevertheless, even with this simplified version of the real system, certain patterns suggest qualitative
predictions. For example, the set of oscillators associated with the scale insect [5-8] is almost always a
synchrony group, suggesting that spatial and temporal correlations among the members of that group
should be observable in nature. Such a prediction is, in our practical experience in the field, certainly
true [50,51]. Furthermore, our model of the system also provides new predictions about the
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spatio-temporal correlations that may be apparent given the modification of the underlying coupling of
components of the system. This may be realized in the empirical agroecosystem through several avenues
such as coupling strengths being modified due to seasonal factors or under different regimes of
management of the agroecosystem.

The present study is in the spirit of many other network studies in framing the question, ‘What can I
say about the system knowing nothing more than which nodes are connected?” While it is tempting to
compare our results with other approaches, for example, foci on connectedness (e.g. [52]) or stability
[53], our intent here is to simply offer an example of how the Kuramoto model concords with the
basic natural history of a real system, using a non-traditional framing of the network. Since the nodes
we propose here are not species or populations but, rather, oscillators, and our focus is not stability or
permanence but rather synchrony, perhaps some unique insights emerge. Connecting this theoretical
programme with empirical work provides, perhaps, more insight than a direct application of a
dynamic model (e.g. a system of ODEs) to the system. The pattern of oscillator couplings (which
oscillators are coupled with which), determination of which is a rather easy empirical exercise,
suggests questions about qualitative patterns of co-occurrence in the field (which elements are
expected to be correlated in their spatial and/or temporal occurrence) which would be subject to
empirical verification.
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