Design of Intrusion Detection Systems on the Internet of Things Infrastructure using
Machine Learning Algorithms

Yaser Banadaki'* Jalen Brook', and Safura Sharifi?,
'Department of Computer Science, Southern University, Baton Rouge, LA 70813
2Department of Physics, University of Illinois Urbana Champaign, IL 61820
(*Email: yaser_banadaki@subr.edu)

Abstract

Network intrusion detection systems (NIDS) for Internet-of-Things (IoT) infrastructure are among the most critical
tools to ensure the protection and security of networks against malicious cyberattacks. This paper employs four
machine learning algorithms and evaluates their performance in NIDS considering the accuracy, precision, recall, and
F-score. The comparative analysis conducted using the CICIDS2017 dataset reveals that the Boosted machine learning
techniques perform better than the other algorithms reaching the predicted accuracy of above 99% in detecting
cyberattacks. Such ML-based attack detectors also have the largest weighted metrics of F1-score, precision, and recall.
The results assist the network engineers in choosing the most effective machine learning-based NIDS to ensure
network security for today’s growing IoT network traffic.

Key Words: Network Intrusion Detection Systems; Machine Learning Algorithms; Internet-of-Things; Malicious
Cyberattacks; Network Traffic.

1. Introduction

Network intrusion detection systems play an important role in the dramatic growth of the Internet of Things (IoT) that
exposes new vulnerabilities in the network. Cyber-attacks are considered as a new remote weapon [1, 2] targeting
critical infrastructures such as a presidential campaign [3], a nuclear program [4], government personnel data [5], and
software providers [6]. It is vital to distinguish harmful data from normal data while using the internet network
efficiently. Intrusion detection was described as “the process of monitoring the events occurring in a computer system
or network and analyzing them for signs of intrusions, defined as attempts to compromise the confidentiality, integrity,
availability, or to bypass the security mechanisms of a computer or network™ [7]. Intrusion Detection System (IDS)
[8] is the most critical defense tool against the sophisticated and ever-growing network attacks. An IDS is a device
that monitors the traffic of internet-connected devices and attempts to distinguish malicious or normal traffic. Different
forms of harmful traffic such as a distributed denial of service (DDoS) attacks can happen on the internet, preventing
the proper functioning of a server. Different IDS systems have been developed to detect harmful traffics [8-10].

Different machine-learning algorithms such as naive Bayes [11], neural network regression [12], support vector
machine [13], principal component analysis [14], and random forest [15] have been used for attack detection [16].
Anomaly-based intrusion detection approach [17] trains on many normal behaviors in the network to detect abnormal
behavior in the network. However, the techniques are mostly suffering from consistent performance evolutions and
many false alarms. A reliable IDS with a low false alarm rate can be developed based on a set of signatures of known
attacks [18]. Farid et al. used the Bayesian classifier to reach the accuracy of over 99% in detecting DDoS attacks
[19]. For instance, ML-based detection of DDoS attack can help to take immediate action to reduce the $2.3 million
cost of such attacks [20].

Intrusion Detection Evaluation Dataset (CICIDS2017) available from the Canadian Institute for Cybersecurity
contains the most updated real-world attack scenarios in networks [21]. However, this dataset has ~600,000 benign
data from normal traffic and the amount of signature data describing each attack is a limited and very imbalance,
making the identification of attacks challenging. Lopez et al. [20] excluded some attack types from the ML-based
analysis due to the small number of samples. However, it is critical to evaluate the performance of ML algorithms for
different size of the training data for known attacks. The paper uses ML models in the IBM platform known as Auto
Al [24] to identify the best type of model for the given data and efficiently compare the performance of ML models.
Auto Al was described as “a suite of algorithms and feature transformations to automatically engineer new, high-value
features for a given dataset” [25]. The performance of ML models for specific training datasets is subjected to the
experience of the data scientists in tuning complex network parameters. The use of Auto Al ensures that the ML
process generates the most accurate and optimal predictive results that effectively scales with time and resources.
Several supervised classification algorithms, such as XGBoost (XGB) [26], Random Forest (RF) [27], Decision Tree
(DT) [28], and Gradient Boosting (GB) [29] are evaluated using metrics like detection accuracy, precision, recall, and

mailto:yaser_banadaki@subr.edu

F-score. Boosting makes a classifier strongly correlated with the true classification. This paper evaluates ML models
in detecting real network attacks to assist the network engineers in choosing the most effective ML-based detection
approach for today’s network traffic.

The rest of the paper is organized as follows. An overview of the training process, CICIDS2017 dataset, and the attack
scenarios are presented in Section 2. Section 3 discusses the performance of machine learning-based attack detectors,
including the relative importance of the features for each model and their performance considering precision, recall,
F-score, sensitivity, and specificity. The paper is summarized with some conclusions in section 5.

2. Methodology

To train ML-based models, raw datasets are adopted from CICIDS2017 [1] that contains a mix of benign traffic and
the most up-to-date common attacks. The dataset covers a diverse set of attack scenarios resembling the true real-
world data that can be used for network security and intrusion detection purposes. In this paper, a subset of data from
CICIDS2017 is taken to optimize the ML model that can be used to detect eight attack profiles: Brute Force attacks,
DoS (Slowloris, and Slowhttptest), Heartbleed, Web attacks, Botnet and DDoS. SQL injection web attack includes a
string of SQL commands that are created to force the database to reply to the request required to reveal information
to find the administrator’s password. Brute Force Attacks are used for cracking passwords and discovering hidden
content in a web application. DoS Attack makes a machine or network resource unavailable temporarily by flooding
the targeted machine or resource with superfluous requests that overload the machine leading to a denial of some
legitimate requests. DoS Slowloris and DoS Slowhttptest keep a single machine’s connection open with minimal
bandwidth to consume the web server resources. DoS Hulk generates volumes of unique and obscure traffic at a web
server to bypass caching engines and hit the server’s direct resource pool. Heartbleed attack originates from a bug in
the OpenSSL cryptography library. Following Transport Layer Security (TLS) protocol, a malformed heartbeat
request is normally exploited with a small payload and large length field to a vulnerable server to extract the victim’s
response. Botnet includes several internet-connected devices to allow the attacker access to the device and network to
steal data and send spam. The DDoS attack includes flooding the bandwidth or resources of the targeted system by
generating huge network traffic.

The features of traffic flow are generated by the network traffic analyzer known as CICFlowMeter [30]. Recursive
Feature Elimination (RFE) techniques are used to extract 85 appropriate features based on the time-stamp, source and
destination IPs, source and destination ports, protocols, and type of attack in a CSV format file. The ML algorithms
need to be kept generic so that a trained algorithm can predict an unseen instance correctly. As such, the available
dataset is split into training and test dataset where the algorithm is trained using a training dataset with known attack
labels, and a test dataset is used to evaluate the model performance in predicting the attack labels. A confusion matrix
can be generated using the number of correct predictions on the test dataset to find the actual class label against the
predicted class label for each category and to extract the classification metrics.

Figure 1 shows the training progress pipelines of four ML-based attack detectors, including XGBoost, random forest,
decision tree, and gradient boosting classifiers that have been chosen as the top-performing ML algorithms. These
algorithms are best suited to the CICIDS2017 data resulting in more significant accuracies among six available
classifiers in Auto Al. XGBoost is a strong learner because of the optimizing step for every new tree that attaches,
that reduces false alarms and improve the classification accuracy. Random forests have many trees combined using
averages or majority rule at the end of the process. Decision trees are a series of sequential steps designed to provide
probabilities, costs, or other consequences of making a particular decision. While random forests build each tree
independently, gradient boosting builds one tree at a time, improving the shortcomings of existing weak learners.
Also, gradient boosting combines results along the way, while random forests combine results at the end of the process.

For each of these four ML algorithms, AutoAl generates the following pipelines: automated model selection (Pipeline
1), hyperparameter optimization (Pipeline 2), automated feature engineering (Pipeline 3), hyperparameter
optimization (Pipeline 4). The Hyper-parameter optimization (HPO) process includes finding a set of optimal
parameters for the learning procedure to enable fast convergence to a better performing solution. To reduce ML bias,
features are equally scaled, and the raw data is transformed into the combination of features that best represents the
intrusion detection problem to achieve the most accurate detection of attacks. In the model selection process, small
subsets of the data are tested to rank candidate ML algorithms, and gradually, the size of the subsets for the most
promising algorithms are increased to find the best algorithm that matches CICIDS2017 data. The models use transfer
learning (TL), in which the knowledge gained while solving one problem is applied to a different but related problem.
The approach extracts existing knowledge learned from one environment to solve new problems. The pre-trained
models take advantage of training with a lower amount of data for the new problem, and significantly shortens the
training procedure.

° L) © @

P1 P2 P3 P4

@ Progress step o} [} [)

) XGB Classifier Hyperparameter Feature Hyperparameter
@ XGB Classifier optimization engineering optimization
@ Random Forest Classifier

@ Decision Tree Classifier P5 o o7 Pa
@ Gradient Boosting Classifier
Random Hyperparameter Feature Hyperparameter
Forest optimization engineering optimization
Classifier
Read dataset Split holdout Read training Preprocessing Model selection P9 P10 P11 P12
data data
Decision Hyperparameter Feature Hyperparameter
Tree Classifier optimization engineering optimization
P13 P14 P15 P16

Hyperparameter Feature Hyperparameter
optimization engineering optimization

Figure 1: Training progress pipelines for four ML models: XGBoost classifier, random forest classifier, decision tree classifier, and gradient
boosting classifier.

3. Results and Discussion

Figure 2 shows the relative importance of the first six features in predicting the attacks. The figure shows features
in the order of its importance for each pipeline (i.e., ML models). It can be noticed that classification models
evaluated the importance of their appropriate features differently to ensure the highest accuracy. Correlation
between a pair of features is analyzed to eliminate features that contribute the same information about the data. The
destination port is the key feature in both XGB classifiers (pipeline 2 and 4) and gradient boosting classifiers
(pipeline 13-16). The importance of destination port is ~[0.10 - 0.12] for XG boost classifier and ~[0.17 - 0.19] for
gradient boosting classifier. Boosting makes a strong learner by optimizing step for every new tree, allowing the
classification model to generate less False Alarms and higher accuracy of classification. XGB algorithm has a
regularization aspect to avoid data overfitting problems that make the classifier fast in dealing effectively with the
system overwhelming with a float of attack. As such, XGB outperforms many existing models to deal with the
majority of the attacks in a real-world network.

Five metrics are calculated: precision, recall, F-score, sensitivity, and specificity to evaluate the classification
performance of the predictive models to detect each attack. The accuracy is calculated as a fraction of true positive
among all the positive’s recalled and can be viewed as a measure of a classifier’s exactness. Recall (or sensitivity)
is a fraction of true positives among all the true events and can be viewed as a measure of a classifier’s completeness.
Low precision and recall indicate many false positives and many false negatives, respectively. The F-score
considers both precision and recall as the harmonic mean of the Precision and Re-call indicating the worst accuracy
when it becomes 0, while the best accuracy corresponds to 1.

In micro-averaged F1-score or the micro-F1, micro-averaged precision and micro averaged recall is calculated over
all the samples, and then combine the two. Micro qualifier calculates metrics globally by counting the total true
positives, false negatives, and false positives. In other words, a micro-average look at all the samples together that
is a proper measure of classification when the size of datasets is variable.

Table 1 shows the classification metrics for all the 16 pipelines of four classifiers. Each model pipeline is scored
for a variety of classification metrics. The accuracy is used as the ranking metric for multi-class classification
models. It can be observed the XGB classifier has generated the best possible accuracy of attack detection. XGB-
based attack detectors also have the largest weighted metrics of F1-score, precision, and recall equal to 0.979, 0.987,
and 0.984 for pipeline 1. Micro qualifier does not take label imbalance into account by calculating metrics for each
label and finds their unweighted mean. While each class has equal weights in macro-averaged metrics, the metrics
of each class are weighted by the number of samples from that class in weighted-average metrics. Decision tree-
based attack detectors show the largest F1 macro and recall macro are 0.911 and 0.912 in pipelines 9 and 10. Macro-
averaged F1-score or the macro-F1 is an arithmetic mean of the per-class F1-scores, and macro-averaged recall is
arithmetic mean of the per-class recall. Macro-averaged metrics evaluate the performance of attack detectors across
different datasets. Figure 3. provides a visual comparison of how each of these models from each pipeline performs
based on various metrics. It can be observed that XGB-based attack detectors are the best in accuracy, followed by
Gradient Boosting-based attack detector. Both detectors out-perform RT and DT in F1 weighted, precision macro,
precision weighted, and recall weighted.

No

Feature

K=o~ oS R S R)

EIFVFARANNES

81

82
83
84

Flow ID

Source IP
Source Port
Destination IP
Destination Port
Protocol

Time stamp
Flow Duration
Total Fwd Packets
Total Backward Packets
Total Length of Fwd Pck
Total Length of Bwd Pck
Fwd Packet Length Max
Fwd Packet Length Min
Fwd Pck Length Mean
Fwd Packet Length Std
Bwd Packet Length Max
Bwd Packet Length Min
Bwd Packet Length Mean
Bwd Packet Length Std
Flow Bytes/s

Flow Packets/s

Flow IAT Mean

Flow IAT Std

Flow IAT Max

Flow TAT Min

Fwd IAT Total

Fwd IAT Mean

Fwd IAT Std

Fwd IAT Max

Fwd IAT Min

Bwd IAT Total

Bwd IAT Mean

Bwd IAT Std

Bwd IAT Max

Bwd IAT Min

Fwd PSH Flags

Bwd PSH Flags

Fwd URG Flags

Bwd URG Flags

Fwd Header Length
Bwd Header Length
Fwd Packets /s

Bwd Packets/s

Min Packet Length

Max Packet Length
Packet Length Mean
Packet Length Std
Packet Len. Variance
FIN Flag Count

SYN Flag Count

RST Flag Count

PSH Flag Count

ACK Flag Count

URG Flag Count

CWE Flag Count

ECE Flag Count
Down/Up Ratio
Average Packet Size
Avg Fwd Segment Size
Avg Bwd Segment Size
Fwd Avg Bytes/Bulk
Fwd Avg Packets/Bulk
Fwd Avg Bulk Rate
Bwd Avg Bytes,/ Bulk
Bwd Avg Packets/Bulk
Bwd Avg Bulk Rate
Subflow Fwd Packets
Subflow Fwd Bytes
Subflow Bwd Packets
Subflow Bwd Bytes
Init_Win_bytes_fwd
Act_data_pkt_fwd
Min_seg_size_fwd
Active Mean

Active Std

Active Max

Active Min

Idle Mean

Idle Packet

Idle Std

Idle Max

Idle Min

Label

@)

XGBoost Classifier
Pipeline 1 Pipeline 2 o Pipeline 3 Pipeline 4
Destination [Bwd Fackst Destination
Active Mean o1 i 012 LengiMiean 0.22 Part

Packet
Length V. 009 Packet Length V.. 0.11 PacketLength V. Packet Langth V.
Active Min 0.08 Total Length of Destination Part Tetal Length of
Bwd IAT Min Bwd Packet Lang Total Length of. Bwd Facket Leng
Packet
Length Std 0.05 Packet Length Std Packet Length Std Packet Langth Std
Bwd IAT Std 0.05 Bwd IAT Std Bwd IAT Std Bwd IAT Std
Importance Importance Importance Importance
Random Forest Classifier
Pipeline 5 Pipeline 6 Pipeline 7 Pipeline 8
nit_Win_bytes. nit_Win_bytas 0.06 Init_\Win_bytes__ Init_WWin_bytes_...
Avg
Avg Swd Segment... 0.05 Packet Length Std Packet Length Std

Swd Segment..

sum(Average Packet Size.
Bud Packet Length Max)

0.04

Bwd Packets/s Bwd Packets's

sum(Bwd
Packet Length Mean.
Ausrsge Packet Size)

Flow IAT Sid Flow IAT Std

Fwd IAT Mean Fwd IAT Maan Max Packet Langth

Packet

Backet
=ewet Lengtn Mean

Subflow Fwd Packets
Length Mean

pcalAll)

pea(All)

Max Packet Length

Subflow Fwd Packets

Importance Importance Importance Importance
Decision Tree Classifier
Pipeline 9 Pipeline 10 Pipeline 11 Pipeline 12

nxor(Avg
Bwd Sagment Size
Packet Length Mean)

Swd Bwd
- Packet Lengt... 0.13

Packet Lengt

0.1 ™o o[Max Packst Length,

Init_Win_b
nit_Win_bytes. Im_Win_byte=_backaard)

Init_Win_bytes]

nxa»%n L
Win_bytes_forward,

010 5:_yfin_bytes_backward)

nxorl Avg
Bwd Segmen: Size
Packet Length Mean)

013

nxor{MaxPackst Length,

nxar{Init_Win_

bytes_forward,
Bwd Packets/s Bwd Packets/'s Fud IAT Stc) Fuwd IAT Std)
Dastination
Port Destn o Swd Packets/s Bwd Packats/s
Bwd
Bwd K n
S e Packet Leng Bwd Packet Leng Bwd Packet Leng
nxar(Avg necor(Avg
Find Segment Size,
o Fwd S ent Size,
Bwd IAT Mean| Bwd IAT Mean W epg’:;lg ll.izir) Active Min)
Importance Importance Importance Importance
Gradient Boosting Classifer
Pipeline 13 Pipeline 14 Pipeline 15 Pipeline 16
Destination Destination D D
. D 1? ot U 19 EEU"‘“'CDF 0 19 Destination
Subflow Total Subflow
. Length of Bwd Bytes g\.::ﬂ;;‘:es
Total Subflow Tot Total
Length of. Bwd Bytes L::glh of. Length of

Active Maan Active Mean Active Mean

Flow |AT Min Flow IAT Min Flow |AT Min

Packet
Length Std Bwd IAT Min Bwd IAT Min

Importance Importance Importance

@)

Active Mean

Flaw IAT Min

Bwd IAT Min

Importance

Figure 2: (a) list of 84 features of CICIDS2017 dataset. (b) Feature importance of attack detectors for four training algorithms in sixteen
pipelines.

Table 1: Pipeline leaderboard of four attack classifiers and their classification metrics.

Name Algorithm Accuracy F1 Precision Recall
macro micro weighted macro micro weighted macro micro weighted Enhancements

Pipeline 1 I XGB Classifier 0.984 0.888 0.984 0.979 0.967 0.984 0.987 0.897 0.984 0.984 None
Pipeline 2 XGB Classifier 0.984 0.900 0.984 0.982 0.910 0.984 0.982 0.901 0.984 0.984 HPO-1
Pipeline 3 XGB Classifier 0.983 0.896 0.983 0.981 0.905 0.983 0.981 0.898 0.983 0.983 HPO-1 FE
Pipeline 4 XGB Classifier 0.983 0.896 0.983 0.981 0.905 0.983 0.981 0.898 0.983 0.983 HPO-1 FE HPO-2

Pipeline 14 Gradient Boosting Classifier 0,983 0.900 0.983 0.981 0.910 0.983 0.981 0.901 0.983 0.983 HPO-1
Pipeline 15 Gradient Boosting Classifier 0.983 0.899 0.983 0.981 0.908 0.983 0.981 0.900 0.983 0.983 HPO-1 FE
Pipeline 16 Gradient Boosting Classifier 0.983 0.899 0.983 0.981 0.908 0.983 0.981 0.900 0.983 0.983 HPO-1 FE HPO-2

Pipeline 5 Random Forest Classifier 0.981 0.896 0.981 0.980 0.901 0.981 0.979 0.896 0.981 0.981 None

Pipeline 13 Gradient Boosting Classifier 0.981 0.851 0.981 0.978 0.897 0.981 0.978 0.836 0.981 0.981 None
Pipeline 7 Random Forest Classifier 0.980 0.865 0.980 0.979 0.904 0.980 0.979 0.846 0.980 0.980 HPO-1 FE

Pipeline 8 Random Forest Classifier 0.980 0.865 0.980 0.979 0.904 0.980 0.979 0.846 0.980 0.980 HPO-1 FE HPO-2

Pipeline 9 Decision Tree Classifier 0.980 0.911 0.980 0.980 0.911 0.980 0.980 0.912 0.980 0.980 None
Pipeline 10 Decision Tree Classifier 0.980 0.911 0.980 0.980 0.911 0.980 0.980 0.912 0.980 0.980 HPO-1 FE HPO-2
Pipeline 11 Decision Tree Classifier 0.980 0.854 0.980 0.980 0.836 0.980 0.980 0.909 0.980 0.980 HPO-1 FE

Pipeline & | Random Forest Classifier 0.981 0.896 0.981 0.980 0.901 0.981 0.979 0.896 0.981 0.981 HPO-1
| Decision Tree Classifier 0.980 0.854 0.980 0.980 0.836 0.980 0.980 0.909 0.980 0.980 HPO-1 FE HPO-2

Pipeline 12

Model Name Accuracy F1 weighted Precision macro Precision weighted Recall macro
* 1= -

09320 0985

0.987 4

0,986 4

0.985

0.984 4

0.9834

097854

Figure 3: View of classification metric chart for 16 pipelines of four attack classifiers

4. Conclusion

Reliable network intrusion detection systems are critical tools for the protection and security of IoT networks against
malicious cyberattacks. In this paper, four machine learning algorithms are employed to evaluate their performance
in detecting intrusions considering the accuracy, precision, recall, and F-score. The analysis of ML-based NIDS
conducted using the CICIDS2017 dataset that contains the most updated real-world attack scenarios in networks. The
results show that XGBoost performs better than the other ML algorithms leading to higher accuracy and higher
weighted metrics of Fl-score, precision, and recall. The accuracy, weighted F1-score, weighted precision, and
weighted recall of XGB-based attack detectors reach the maximum values 0of 99.6%, 97.9, 98.7, and 98.4, respectively.
The paper assists the network engineers in choosing the most effective ML-based NIDS, ensuring network security
for IoT devices.

(1
(2]
(3]

(4]
[5]

(6]

(7]

(8]

[9]

[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

Reference

A. Ahmim, N. Ghoualmi-Zine, A new adaptive intrusion detection system based on the intersection of two different classifiers, International
Journal of Security and Networks 9(3) (2014) 125-132. https://doi.org/10.1504/IJSN.2014.065710

A. Ahmim N.G. Zine, A new hierarchical intrusion detection system based on a binary tree of classifiers, Information & Computer Security
23(1) (2015) 31-57. https://doi.org/10.1108/ICS-04-2013-003 1

S. Detrow, Obama on Russian Hacking: We Need to Take Action. And We Will, NPR News, 2016.
https://www.npr.org/2016/12/15/505775550/obama-on-russian-hacking-we-need-to-take-action-and-we-will, December 15, 2016.

R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, /EEE Security & Privacy 9(3) (2011) 49-51. https://doi.org/10.1109/MSP.2011.67
1. Bouteraa, M. Derdour, A. Ahmim, Intrusion Detection using Data Mining: A contemporary comparative study, 3rd IEEE International
Conference on Pattern Analysis and Intelligent Systems (2018) 1-8. https://doi.org/10.1109/PAIS.2018.8598494

N. Kshetri, Kaspersky Lab: from Russia with anti-virus, Emerald Emerging Markets Case Studies 1(3) (2011) 1-10.
https://doi.org/10.1108/20450621111180954

R. Bace, P. Mell, NIST special publication on intrusion detection systems, Booz-Allen and Hamilton Inc McLean (2001).
https://www.nist.gov/publications/intrusion-detection-systems

H.J. Liao, C.H.R. Lin, Y.C. Lin, K.Y. Tung, Intrusion detection system: A comprehensive review, Journal of Network and Computer
Applications, 36(1) (2013) 16-24. https://doi.org/10.1016/j.jnca.2012.09.004

F. Ertam, L.F. Kilincer, O. Yaman, Intrusion detection in computer networks via machine learning algorithms, /EEE International Artificial
Intelligence and Data Processing Symposium (IDAP) (2017) 1-4. https://doi.org/10.1109/IDAP.2017.8090165

A. Lazarevic, V. Kumar, J. Srivastava, Intrusion detection: A survey, Managing Cyber Threats: Springer (2005) 19-78.
https://doi.org/10.1007/0-387-24230-9_2

W. Li, Q. Li, Using naive Bayes with AdaBoost to enhance network anomaly intrusion detection, 3rd International Conference on Intelligent
Networks and Intelligent Systems (2010) 486-489. https://doi.org/10.1109/ICINIS.2010.133

S.K. Gautam, H. Om, Computational neural network regression model for Host based Intrusion Detection System, Perspectives in Science
8 (2016) 93-95. https://doi.org/10.1016/j.pisc.2016.04.005

J. Jha, L. Ragha, Intrusion detection system using support vector machine, International Journal of Applied Information Systems (IJAIS) 3
(2013) 25-30. 10.5120/icwac1342

G. Liu, Z. Yi, S. Yang, A hierarchical intrusion detection model based on the PCA neural networks, Neurocomputing 70(7) (2007) 1561-
1568. https://doi.org/10.1016/j.neucom.2006.10.146

J. Zhang, M. Zulkernine, A. Haque, Random-forests-based network intrusion detection systems, /EEE Transactions on Systems, Man, and
Cybernetics, Part C 38(5) (2008) 649-659. https://doi.org/10.1109/TSMCC.2008.923876

C.F. Tsai, Y.F. Hsu, C.Y. Lin, W.Y. Lin, Intrusion detection by machine learning: A review, Expert systems with applications, 36(10) (2009)
11994-12000. https://doi.org/10.1016/j.eswa.2009.05.029

D. Alexander, 5.6 million fingerprints stolen in US personnel data hack: government, ed: Reuters (2015). Online:
https://www.reuters.com/article/us-usa-cybersecurity-fingerprints-idUSKCNORN1V820150923

J. Peng, K.-K. R. Choo, and H. Ashman, User profiling in intrusion detection: A review, Journal of Network and Computer Applications 72
(2016) 14-27. https://doi.org/10.1016/j.jnca.2016.06.012

D. M. Farid, M. Z. Rahman, Anomaly network intrusion detection based on improved self adaptive bayesian algorithm, Journal of
Computers, 5(1) (2010) 23-31. doi: 10.4304/jcp.5.1.23-31

A.D. Lopez, A. P. Mohan, S. Nair, Network traffic behavioral analytics for detection of DDoS attacks, SMU data science review 2(1) (2019)
14.

https://scholar.smu.edu/datasciencereview/vol2/iss1/14?utm_source=scholar.smu.edu%?2Fdatasciencereview%2Fvol2%2Fiss1%2F 14&utm
_medium=PDF&utm_campaign=PDFCoverPages.

1. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, Toward generating a new intrusion detection dataset and intrusion traffic characterization,
ICISSP, (2018) 108-116. https://doi.org/10.5220/0006639801080116

S. X. Wu, W. Banzhaf, The use of computational intelligence in intrusion detection systems: A review, Applied soft computing 10(1) (2010)
1-35. https://doi.org/10.1016/j.a50¢.2009.06.019

H. Chauhan, V. Kumar, S. Pundir, E. S. Pilli, A comparative study of classification techniques for intrusion detection, /EEE International
Symposium on Computational and Business Intelligence (2013) 40-43. https://doi.org/10.1109/ISCBL2013.16

R. E. Hoyt, D. H. Snider, C. J. Thompson, S. Mantravadi, IBM Watson analytics: automating visualization, descriptive, and predictive
statistics," JMIR public health and surveillance 2(2) (2016) €157. doi: 10.2196/publichealth.5810

G. Regkas, Empowering Citizen Data Scientists with IBM Watson AutoAl, Online: https://towardsdatascience.com/empowering-citizen-
data-scientists-with-watson-autoai-49a087df99e5, (2020).

S. S. Dhaliwal, A.-A. Nahid, R. Abbas, Effective intrusion detection system using XGBoost, Information, 9(7) (2018) 149.
https://doi.org/10.3390/info9070149

N. Farnaaz, M. Jabbar, Random forest modeling for network intrusion detection system, Procedia Computer Science 89(1) (2016) 213-217.
https://doi.org/10.1016/j.procs.2016.06.047

X. Li, N. Ye, Decision tree classifiers for computer intrusion detection, Journal of Parallel and Distributed Computing Practices 4(2) (2001)
179-190. https://doi.org/10.1145/1167253.1167288

P. Verma, S. Anwar, S. Khan, S. B. Mane, Network intrusion detection using clustering and gradient boosting, 9th [EEE International
Conference on Computing, Communication and Networking Technologies (ICCCNT) (2018) 1-7.
https://doi.org/10.1109/ICCCNT.2018.8494186

A. H. Lashkari, A. Seo, G. D. Gil, A. Ghorbani, CIC-AB: Online ad blocker for browsers, International Carnahan Conference on Security
Technology (ICCST) (2017) 1-7. https://doi.org/10.1109/CCST.2017.8167846

https://doi.org/10.1504/IJSN.2014.065710
https://doi.org/10.1108/ICS-04-2013-0031
https://www.npr.org/2016/12/15/505775550/obama-on-russian-hacking-we-need-to-take-action-and-we-will
https://www.nist.gov/publications/intrusion-detection-systems
https://www.reuters.com/article/us-usa-cybersecurity-fingerprints-idUSKCN0RN1V820150923

