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Abstract—A distributed computing scenario is considered,
where the computational power of a set of worker nodes is used
to perform a certain computation task over a dataset that is
dispersed among the workers. Lagrange coded computing (LCC),
proposed by Yu et al., leverages the well-known Lagrange poly-
nomial to perform polynomial evaluation of the dataset in such a
scenario in an efficient parallel fashion while keeping the privacy
of data amidst possible collusion of workers. This solution relies
on quantizing the data into a finite field, so that Shamir’s secret
sharing, as one of its main building blocks, can be employed.
Such a solution, however, is not properly scalable with the size of
dataset, mainly due to computation overflows. To address such a
critical issue, we propose a novel extension of LCC to the analog
domain, referred to as analog LCC (ALCC). All the operations in
the proposed ALCC protocol are done over the infinite fields of
R/C but for practical implementations floating-point numbers are
used. We characterize the privacy of data in ALCC, against any
subset of colluding workers up to a certain size, in terms of the
distinguishing security (DS) and the mutual information security
(MIS) metrics. Also, the accuracy of outcome is characterized
in a practical setting assuming operations are performed using
floating-point numbers. Consequently, a fundamental trade-off
between the accuracy of the outcome of ALCC and its privacy level
is observed and is numerically evaluated. Moreover, we implement
the proposed scheme to perform matrix-matrix multiplication
over a batch of matrices. It is observed that ALCC is superior
compared to the state-of-the-art LCC, implemented using fixed-
point numbers, assuming both schemes use an equal number of
bits to represent data symbols.

Index Terms—Coded computing, privacy-preserving comput-
ing, analog coding

I. INTRODUCTION

There has been a growing interest in recent years towards
performing computational tasks across networks of computa-
tional worker nodes by utilizing their computational power in
a parallel fashion [I[]-[5]]. Computations over massive datasets
need to be carried out at an unprecedented scale that entails
solutions scalable with the size of datasets associated with a
wide range of problems including machine learning [6], op-
timization [7]], etc. A well-established network architecture to
perform such tasks in a distributed fashion consists of a master
node together with a set of worker nodes having communication
links only with the master node [3]], [4]]. In such systems, a
dataset is dispersed among the servers across the network to
perform a certain computational task over the dataset. The
master node then aggregates the results in order to recover the
desired outcome, e.g., the output of a certain function over the
dataset.
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Dispersing data across a network gives rise to several fun-
damental challenges in practice. One of the major concerns in
such systems is to keep the data private as the computational
tasks often involve sensitive data such as patients recordings,
financial transactions, etc [[8]—[10]]. The worker nodes are often
assumed to be honest-but-curious, i.e., they do not deviate from
the protocol but may accumulate the shares of data they receive
and try to deduce information about the data. In such settings,
the challenge is to utilize the computational power of the nodes
while ensuring that almost no information about the dataset is
revealed to them. Furthermore, this restriction is often extended
to preserving the privacy of data against any subset of colluding
nodes up to a certain size.

Several security metrics are considered in different contexts
to measure privacy/security of data. This includes semantic se-
curity (SS) and distinguishing security (DS) in the cryptography
literature [|11]], mutual information security (MIS) in communi-
cation settings [12], differential security in machine learning
[13]], etc. From the information-theoretic perspective, the per-
fect privacy condition in a distributed computation setting is that
no information is leaked about the dataset to any of the worker
nodes/subsets of colluding worker nodes up to a certain size.
To this end, Shamir’s seminal secret sharing scheme is the main
building block in protocols providing perfect privacy in these
settings [14]]. In such protocols, the data symbols are always
assumed to be elements of a finite field IF,, leading to perfect
privacy guarantees. However, this often comes at the expense
of substantial accuracy losses due to fixed-point representation
of the data and computation overflows. Especially, this becomes
a major barrier in scalability of such protocols with respect to
the dataset size.

The seminal Shamir’s secret sharing scheme and its vari-
ous versions are often used to provide information-theoretic
security for data, referred to as a secret, while distributing it
among a set of servers/users [ 14]. Also, Shamir’s scheme serves
as the backbone of most of the existing schemes on privacy-
preserving multiparty computing such as the celebrated BGW
scheme [15]. In (n, k) Shamir’s secret sharing scheme, the se-
cret, which is regarded as an element of a finite field, is encoded
to a polynomial of degree kK — 1 whose constant coefficient
is the secret and all other coefficients are picked uniformly at
random from the field. The shares are then evaluations of the
polynomial at n distinct points. The secret can be uniquely
decoded when at least £ number of shares are available while no
information is revealed about the secret otherwise. In order to
employ Shamir-based distributed computing protocols the data
is quantized and then mapped to a finite field at the beginning.
This leads to a possibly substantial loss in the accuracy of
the computation results mainly due to computation overflows
when the dataset is large. In order to overcome this issue, an
analog counterpart of Shamir’s scheme is recently proposed
in [[16] and is then utilized to perform a learning task when
the data is provided using floating-point numbers. Lagrange



coded computing (LCC) [4] provides a framework to efficiently
perform distributed computation over a batch of data in a
parallel fashion. It can be utilized to provide privacy-preserving
machine learning schemes. Similar to Shamir’s scheme, in
LCC, the data is assumed to be an element of a finite field
and the secret/data is encoded to a certain polynomial, called
Lagrange interpolation polynomial. Hence, the loss in accuracy
due to overflow in computations is inherited to LCC as well.

A. Our contribution

In this paper, we propose a framework to extend the privacy-
preserving LCC scheme to the analog domain and refer to it as
analog LCC (ALCC). It is assumed that all the worker nodes are
honest-but-curious. All the operations in the proposed scheme
are done over the infinite fields of R/C but for practical im-
plementations floating-point numbers are used. The proposed
ALCC protocol enables privately evaluating a polynomial func-
tion over a batch of real/complex-valued dataset in parallel.
We characterize the performance of the scheme in terms of
the accuracy of its outcome, when operations are performed
using standard floating-point numbers, and the privacy of data
in terms of the DS and MIS metrics when any subset of worker
nodes up to a certain size can collude. It is shown how various
parameters of the ALCC protocol, including parameters associ-
ated with Lagrange monomials as well as evaluation points in
the complex plane, can be carefully picked in order to provide
closed-form bounds for the performance of the protocol from
both the privacy and the accuracy perspectives. Furthermore,
a fundamental trade-off between the accuracy of the outcome
of ALCC and its privacy level is observed and is numerically
evaluated, in terms of various parameters of the scheme, when
the scheme is implemented using the floating-point numbers.
In a related work, we show that accuracy-privacy trade-offs
arise in distributed computing in the analog domain by tuning
the noise variance in the underlying protocol [[16]]. However,
the main distinction of the current paper is to illustrate that,
even for a fixed noise variance, the choice of certain parameters
of Lagrange monomials in ALCC leads to a new trade-off
between accuracy and privacy which is specific to ALCC.
Hence, one has to carefully pick these parameters apart from the
noise variance in order to avoid unnecessarily compromising
accuracy/privacy in practice. This is a new fundamental trade-
off that does not have a counterpart in either analog adapta-
tions of Shamir’s scheme, e.g., [16], or LCC with fixed-point
implementation over finite fields [4]. Also, it is numerically
illustrated that ALCC scales better with the number of repre-
sentation bits considered in the floating-point implementation
compared to LCC. Moreover, experiments are shown in which
the proposed protocol is implemented to perform matrix-matrix
multiplication over a batch of matrices. The results indicate the
superiority of the proposed ALCC compared to the state-of-
the-art LCC implemented using fixed-point numbers assuming
both schemes use an equal number of bits to represent each data
symbol.

Note that LCC simultaneously provides resiliency against
stragglers, security against malicious workers or workers with
erroneous returned results, and privacy of the dataset [4]]. Here,

we are mainly concerned with the privacy of dataset in the
analog domain. Our analysis of the proposed scheme also
takes into account the issue with slow/unresponsive nodes, also
referred to as stragglers. However, the issue with malicious
workers is left for future work.

B. Related work

Privacy-preserving distributed computing protocols have
been recently studied in a wide range of scenarios to fulfill
specific privacy requirements [17]-[21]. Furthermore, secure
matrix-matrix multiplication, as one of the main building blocks
for various machine learning algorithms, has been extensively
studied in the literature [22]-[27]. Also, Lagrange coded com-
puting [4] and its variations [28], [29] provide a framework
for evaluating a given polynomial function over a dataset with
perfect privacy [4]]. Such protocols have been recently adopted
to perform various machine learning tasks. Recently, it is shown
that LCC can be employed to break the aggregation barrier in
secured federated learning [21]. However, these prior works
often regard data as elements of a finite filed. As a result, they
suffer from scalability issues, as discussed earlier. By enabling
privacy in the analog domain, ALCC provides a framework to
perform several large-scale tasks, e.g., secure aggregation in
federated learning [21]], more efficiently in practice.

There is also another line of work on privacy-preserving ma-
chine learning that utilizes off-the-shelf multi party computa-
tion (MPC) protocols [30]], [31] to train a model over distributed
datasets [1]], [2]], [17], [32]—[34]. In these MPC-based machine
learning problems, often more than one client are assumed
that aim at learning model parameters collaboratively without
sharing sensitive data with each other and worker nodes. On
the other hand, in (A)LCC, it is assumed that all the data is
present in one central node/client, called the master node, that
utilizes the computational power of worker nodes for speed up
while keeping the data private from the workers. In other words,
the MPC-based schemes mainly concern with the privacy of
sensitive datasets over which a model is trained in a fully
distributed fashion, while (A)LCC-based methods provide a
framework for privacy-preserving machine learning in which
the dataset is offloaded to a cloud-computing environment to
gain speed up [|19]. However, MPC-based ML schemes are also
adopted in the case with one central client in the literature [[19],
[33]. In this approach, only a few number of worker nodes are
often considered mainly due to inefficiency of underlying MPC
schemes. In a recent work, a fully distributed implementation of
LCC is introduced in [35]], which is then utilized to train a linear
regression model over distributed datasets without considering
a central entity and is significantly faster than MPC-based
methods. In general, (A)LCC schemes reduce the amount of
randomness needed in data encoding and have less storage over-
head as well as computation complexity. Moreover, no commu-
nication is needed between worker nodes in (A)LCC, a factor
that contributes the most to the inefficiency of MPC-based ML
in practical systems. There is also a line of work concerning
with floating-point implementation of MPC protocols [|36[]—[38]]
which requires significantly more rounds of communications
and computations compared to the conventional MPC protocols



with fixed-point implementation. As a result, the inefficiency of
such protocols poses a major difficulty in their implementation
as well.

Another line of work on performing computations over real-
valued data is considered in [39]-[43]. In these works, the
coded distributed computing schemes are adapted to the analog
domain by addressing the numerical stability issues arising in
the inversion of underlying Vandermonde matrices. However,
the privacy constraints are not considered in these works. In
this paper, however, our main focus is on providing privacy-
preserving schemes in the analog domain. Also, codes in the
analog domain have been recently studied in the context of
block codes [44] as well as subspace codes [45] for analog er-
ror correction. However, secret sharing and privacy-preserving
computation in the analog domain are not discussed in these
works.

The rest of this paper is organized as follows. In Section[II}
the system model is discussed and the proposed protocol is
described. The accuracy of the protocol is analyzed in Sec-
tion[lTl] In Section[[V] the privacy level of data in ALCC is
characterized in terms of two well-known notions of security.
Various experimental results are provided in Section[V] Finally,
the paper is concluded in Section[V]]

II. SYSTEM MODEL

Consider a dataset X = (Xj,...,Xy) with X; € R™*" for
all ¢ € [k], where [k] denotes {1,2,..., k}. Each entry of X;’s
is assumed to be an instance of a continuous random variable
with the range [—r, r]. No further assumptions is made on the
probability distribution of the entries of X;’s.

We consider the problem of evaluating a polynomial f :
R™*" — R“*" over the dataset X in a distributed fashion
while keeping the privacy of X. More specifically, we say f(-)
is a D-degree polynomial function if all entries of the output
matrix are multivariate polynomial functions of the entries of
the input with total degree at most D, i.e., Y = f(X) implies
that

s Trmn) (1)

where y;; is the (4, j) entry of Y, for i € [u] and j € [h], z
is the (I, k) entry of X, for | € [m] and k € [n], and, f;; is
a multivariate polynomial of total degree at most D. We may
write the right hand side of () as f;;(X), or simply f;; when
the argument is clear from the context, throughout the rest of
the paper. The distributed computing setup consists of a master
node and N worker nodes/parties. It is assumed that there is
no communication link between the parties. More specifically,
in this setup, the goal of the master node is to compute f(X;)
for all 4 € [k], where f is a degree-D polynomial, using the
computational power of the parties. This is done in such a way
that the dataset is kept private from the parties assuming up to a
certain threshold, denoted by ¢, of them can collude. The notion
of privacy in the analog domain will be clarified in Section[[V]
Note that this setup is similar to the one considered for LCC
in [4] with the main difference that in [4] the dataset and all
the computations are assumed to be over a finite field. More
specifically, our problem setup can be regarded as an extension
of the problem setup considered in [4] to the analog domain.

vij = fij(@11, 212, -

Next we discuss the encoding process in analog Lagrange
coded computing (ALCC), i.e., how to encode the dataset X
into the shares distributed to the worker nodes. Let W denote
(X1,...,Xk,N1,...,N;) where N;’s are m x n random ma-
trices with i.i.d. entries drawn from a zero-mean circular sym-
metric complex Gaussian distribution with standard deviation

fﬁ’ denoted by N(0, ?), with ¢ being the maximum number

of colluding parties. Note that a zero-mean circular symmetric

complex Gaussian random variable (RV) with variance o2

cgnsists of two i.i.d. zero-mean Gaussian RV’s with variance

%- as its real and imaginary part. Let v and w denote the N-th

and the (k + t)-th root of unity, respectively. In other words,
27t 271

v = exp(%¢) and w = exp(£5), where i* = —1. In ALCC,
the Lagrange polynomial is constructed as

k k+t k+t
u(z) = Z lej(z) + 2 Nj_klj(z) = Z Wilj(z), )
Jj=1 j=k+1 j=1
where [;(-)’s are Lagrange monomials defined as
P
b= 1 5 ®
lelk+t]\j 77—

for all j € [k + t]. Furthermore, the parameters j3;’s are picked
to be equally spaced on the circle of radius 3 centered around 0
in the complex plane, for some 3 € R, i.e.,

Bj = Buw 1. )

The shares of encoded dataset to be distributed to the worker
nodes consist of the evaluation of u(z) over the N-th roots of
unity in the complex plane, i.e.,

Y = u(a), (&)

where .
Q; = 7 9 (6)

is sent to node i, for i € [IV]. The choice of a;’s and 3;’s are
demonstrated in Figure[l] for the choice of parameters k = 6,
t = 2, and N = 16 in the complex plane. It will be clarified
in Section that the specific choice of ;’s according to
(@) enables characterizing a closed-form upper bound on the
absolute error of the outcomes of ALCC. In this context, the
absolute error is the magnitude of the difference between the
ALCC outcome in a practical setting and the true result of the
computation.

Next, we discuss the decoding step during which the master
node recovers the desired outcome by collecting and processing
the results returned by a sufficient number of worker nodes.
The i-th node computes f(Y;) and returns the result back to the
master node. The master node then recovers f(X;), for i € [k],
in two steps. In the first step, it recovers the polynomial f(u(z))
by using the results returned from at least (k + ¢ — 1)D + 1
worker nodes. Note that this is the minimum number of returned
evaluations needed to guarantee a successful interpolation of
f(u(z)) since f(u(z)) has degree (k +t — 1)D. For ease of
notation, let

D= (k+t—1)D. (7

In the second step, to recover f(X;)’s, the master node com-
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Fig. 1: Demonstration of the locations of «;’s and 3;’s in the complex
plane for k = 6,¢t = 2, N = 16. Both circles are centered at the
origin.

putes f(3;) for j € [k]. Note that u(5;) = W; for j € [k + t],
since 1;(3;) is 1 for ¢ = j and is zero otherwise.

The ALCC protocol, as described above, can also take into
account the issue regarding stragglers same as how it is done in
LCC [4]. Let the maximum number of stragglers be denoted by
s. Hence, the number of computational parties is assumed to be
N=D+s+1.

Remark 1: In theory, if the computations are done over
the complex numbers with infinite precision, then f(X;)’s are
computed accurately. In practice, however, data is represented
using a finite number of bits, either as fixed point or floating
point. We assume floating-point representation for data symbols
and operations involving them in our analysis. This is more
suitable to mimic operations over complex (real) numbers. Let
b, denote the number of precision bits in the floating-point
representation, referred to as the mantissa, and b. denote the
number of bits used to represent the exponent part, referred to as
the exponent. Note that the entries of the noise matrices N;’s are
bounded in practice. In other words, for practical purposes, it is
assumed that the entries of the noise matrices are drawn from
the Gaussian distribution that is truncated to —9%, 9(’7'%], for
some 6 € R.

III. ACCURACY ANALYSIS

In this section, accuracy of the final outcome of ALCC,
specified in Section [II} is characterized in terms of various
other parameters of the scheme. This is done by assuming that
floating-point numbers are used to represent data symbols and
to carry out operations involving them.

A. Analytical results

We start by providing an alternative characterization for the
Lagrange monomials, defined in (3), given the certain values
for /3;’s specified in @). This is done in the following lemma.

Lemma 1: For all j € [k + t], we have

k+t—1
1 +

> (ﬁ%)l- ®)

=0

li(z) =

k+t

Proof: Using @, one can write

2z _ B k-1 2 _ b

B B; Bj
L) = 1 S = Lo
le[k+t]\j B; h=1

Note that w”, forh = 0,1,...,
unity. Hence, we have

k+t—1,isa (k+t)-th root of

ktt—1 ot ktt—1
H (z—wh) = Z a” (10)
h=1 r= 1
Using (I0) one can write
k+t—1 (i)kﬂ_l k+t—
[](F) o=+ Z =)' an
1 Bi 51 h=0 ﬁ
and
ktt—1 ktt—1
[T a-wh Z 1=Fk+t. (12)
h=1
Combining (TT) and (I2) completes the proof. [

In the following lemma, we use Lemmaﬂ]to characterize the
coefficients of Lagrange polynomial in terms of W and other
parameters of the scheme. The result will be used later to derive
an upper bound on the absolute error of the outcome of ALCC.

Lemma 2: The Lagrange polynomial, as specified in (Z)), can
be written as

(13)
1
=0 5
where
k+t—1
wE Y Wi (14)
j=0

Proof: The proof is by combining and Lemmall] as
follows:

k+t—1 1 k+t—1 P
uz) = Y, Wi— > () (15)
Jr k+t o ﬂj
1 k+t—1 P
= W;(5) w7 (16)
+1 Pyt I5)
1 k+2_1 P k-iil
= — = W,w=h) (17)
5 3
- L k+t—1 @Zl s
%
+1 = 15}
]

Let wgl and wg denote the (g,1) entry of W, and W;,
for (g,1) € [m] x [n], respectively. Then (T4) implies that
(ﬁ;gl, e ~) is the discrete Fourier transform (DFT) of
(wgl, Wy 7). Hence, the encoder can utilize the fast
algorithms developed for the DFT implementation to compute
Wj ’s and then computes the shares sent to the nodes according

to (T3), see, e.g., [406].



The decoder’s task is to interpolate the polynomial f(u(z))
followed by evaluating it over «;’s, for ¢ € [N]. Let the
polynomial f(u(z)) be expressed as

19)

with V; € R**" Let A = {i1,...,ip,} denote the indices of
non-straggler users, i.e., users that have returned their compu-
tation results to the master node. The interpolation step at the
decoder is equivalent to inverting the following matrix:

it 261 th‘l
ot 1 ,YiQ ,Y2i2 ,YD@
B(D+1)><(D+1) = . .
1 fyif)+1 ryQiDJrl Dii)+1

(20)
Remark 2: In general, in a system of linear equations Ax =
y, where x is a vector of unknown variables and A is referred
to as coefficient matrix, the perturbation in the solution caused
by the perturbation in y is characterized as follows. Let y
denote a noisy version of y, where the noise can be caused by
round-off errors, truncation, etc. Let also x denote the solution
to the considered linear system when y is replaced by g. Let
AxE5 — xand Ay y y denote the perturbation in x and
y, respectively. Then the relative perturbations of = is bounded
in terms of that of y as follows [47]]:

| Ax]] [Ay]l
X KA B
(x| ly

21

where r4 is the condition number of A and ||.|| denotes the [2-
norm.

For (g,1) € [u] x [h], let U;z denote the (g, ) element of V; for

i =0,1,.. D where V; is specified in , and fgl denote
the (g,1) element of f(X;) for j € [k]. Let also
def D
'Ugl = ('Ugl, e ,’Ung),

for g € [u] and [ € [h]. For ease of notation, let

D+2
g1
p?—1
The following lemma establishes a relation between the error
in the entries of the outcome of the scheme, i.e. f ;> and the
entries of V;, i.e., v? ol Note that in this analysis the error due
to representing «;;’s and /3;’s using floating-point numbers is
discarded as it is dominated in practice by the error imposed by
the precision loss in the elements of V;’s, specified in (19).

Lemma 3: For all g € [u], [ € [h], and j € [k] we have
Afl, < Bllogl rp2 b,

(22)

(23)

where 3 is defined in (22), B is defined in (20), and b,,, is the
number of precision bits in the floating-point representation,
specified in Remark][T]

Proof: Let f;ldiffgl( (a;)) for all i € [N], g € [u] and
l € [h], andf def(fgl7 o f D“) where i1,...,ip,  repre-
sent the indices of worker nodes that returned the computation

results. Note that the evaluations of (I9) over «;’s, for i € A,
can be regarded as u x h systems of linear equations all with B
as the underlying coefficient matrix, i.e.,

f gl
for all g € [u] and I € [h]. By utilizing the statement in Re-
mark[] one can write

— Bo,., (24)

s

B - .
2

Note that the precision error in the considered floating-point
numbers is bounded by 27 since it is assumed that no other
error is imposed on the computation results in the worker nodes.
Hence, one can write

[Avg|l

[og:l

(25)

|25
< 270, (26)
2
Combining (25) with (26) results in
A
[Avg| < kg2 ~bm, (27)
[og]

for all g € [u] and [ € [h]. Moreover, note that

D .
= Z Vis;.
i=0

,5}7), for j € [k]. Then one can

f(X5) = Fu(B)))

Let 3, denote (1, BJ, <L
write

£ = Bj - vg1, (28)

which implies that
Afy < (|85 ] I1Avgll,

where - denotes the inner product operation. Note that for all
j e [k,

(29)

26%=———i B.

18;]° < (30)

Combining 27), (Z9) and @I) yields
Af < Bllogl ke2™"m, 31)
which completes the proof. [ ]

Let c;; denote the maximum absolute value of the coeffi-
cients of f;;(-) forall i € [u] and j € [h], ¢ max; ; c;j .
and \;, denote the minimum singular value of B, defined in
(20). In the next theorem, an upper bound on the absolute error
in the outcome of the protocol is provided for the general class
of polynomials over matrices, defined in (TJ).

Theorem 4.: The absolute error on the entries of f(X
j € [k], in the outcome of ALCC is bounded as follows:

;), for

D
= 1

)™ /B 1k +t80,) P g2 (110(--)),
o

B (32)

where £ is defined in 1} B is defined in (20), and b,, is the

number of precision bits in the floating-point representation,

Af<B

)\min



specified in Remark[T]
Proof: Note that (24) implies
f gl

)\min '
for any arbitrary set of non-straggler indices A. Also, Lemma[J]

implies that the j-th entry of the DFT of (wy,, ... ,w';l”’l) is

lvg| < (33)

equal to ﬁ); ;- Hence, we have

W) < kr + toy, (34)

where we used the fact that the absolute value of entries of X;’s
and Nj;’s are less than r and 9””;, respectively, as discussed in

Section[ll] Moreover, for i € [N] one can write

f;l < c(mme)? (kr + t00,)P (1 + O(i))7

n

(33)

which holds by noting that the number of total monomials of

degree D in mn variables is equal to (™" ~") and we have
D—-1 D-1

where e is the natural number. Then (33)) implies that

IF,o]| < clmne)> VD4 1(0kr + 160,02 (1 + O(Ui)), (36)
since f o1 has D + 1 components. Substituting (36) into (33)
together with the result of Lemma(3|complete the proof. ]

Theoremf] provides an upper bound on the accuracy of the
outcome of ALCC with floating-point implementation for a
general polynomial function f(-). However, the polynomial
f () often has a certain structure in practice that can be lever-
aged to strengthen the result of Theorem[d] More specifically,
we say that f(-) is a matrix polynomial function, or simply
a matrix polynomial, if it can be expressed by matrix addi-
tion, multiplication, and transposition as well as addition and
multiplication by a constant matrix/vector/scalar. For instance,
f(X) = aXX", for some vector a, is such a matrix polynomial
function. The difference between a general polynomial, defined
in (I), and a matrix polynomial is illustrated in the following
example.

T x
Example 3.1: Let X = 17120 Then the
T21 T22
2 2
. Tri{; + T11x12 + @ x .
funcion gy (X)%F |11 T2 T A L is a
$21+Z11$22 x5

2
polynomial function of degree 2, as defined in (),
but is not a matrix polynomial function. The function
2 2
x x 110 12T .
g2(X)d§f 11t 12 11 §1+ 12722 | yxt o g
) T21%11 + L2712 T31 + 5o
matrix polynomial function of degree 2. Note also that the de-
terminant of a matrix, i.e., g3 (X)difdet(X) = 211%99 — T12%9]
is a polynomial but not a matrix polynomial. The matrix

inversion function, i.e., g4(X)d§fX ~1 is not even a polynomial
function.
The following corollary provides a stronger accuracy bound on
the outcome of ALCC with matrix polynomial as its underlying
function.

Corollary 5: Let f(-) be a matrix polynomial function. Then,

the absolute error on the entries of f(X;), for j € [k], in the
outcome of ALCC is bounded as follows:

Ay < Chr + t00,) Prp2 > (14 O(-1)),

n
where C’difﬁcmai(%\/b + 1.

Proof: Note ‘that the number of D-degree monomials in

a matrix polynomial is at most max(m,n)”. The remaining of

the proof is similar to that of Theoremf] ]

Remark 3: Note that when no stragglers are assumed, i.e.,

s = 0, picking «;’s in the proposed ALCC protocol according

to (6) implies that the matrix B, defined in (20), is a unitary

matrix. Hence, we have kg = 1 which is the minimum possible

for the condition number kg. For the case of ALCC with

stragglers, i.e., s > 0, one can utilize the following upper bond
on xg [40, Theorem 1]:

(37

5+6

kg < O(N ), (38)

where N is the smallest odd number larger than N. Combining
(38) with (32) leads to an upper bound on the accuracy of
ALCC scheme with s stragglers.

B. Comparisons with LCC and numerical results

In this section we compare the accuracy of ALCC with
that of LCC that employs finite field operations. In LCC the
computations are preformed over a finite field of a prime size p,
denoted by IF,, and are implemented using fixed-point numbers
[4]]. In order to have a fair comparison, we assume that the
number of bits that are used to represent data symbols in ALCC,
that uses floating point, and LCC, that uses fixed point, are
equal. Let that number be denoted by b. It is also assumed that
b is fixed throughout the implementation of the scheme. It is
shown in Section[[lI-Alhow the accuracy of ALCC depends on
b. Same as in ALCC, the accuracy of LCC also depends on b as
discussed next.

In LCC the real-valued data are assumed to be first quantized
and then mapped to elements of IF,,. Also, note that if a symbol
computed during the process by one of the workers in LCC
becomes larger than p, an incident referred to as an overflow
error, then a successful recovery of the outcome of the compu-
tation can not be guaranteed. Let A denote the corresponding
quantization step. Let also s;; denote the sum of the absolute

values of the coefficients of the polynomial f;;, for i € [u]

. def . .
and j € [h], and let 5,= max; j S;;. Then, in order to avoid

overflow errors, it is required that

Pt (39)
since the left hand-side of (39) corresponds to the maximum
value of the polynomial f(-) when evaluated over the quantized
data. The latter is by noting that f;;(z) < s,z” < s,rP forall
1, j, the quantization step is A, and the magnitude of the entries
of X is upper bounded by r.

The next step is to characterize how large p can be given the
fixed number of representation bits b. To this end, two different
scenarios can be considered regarding how the intermediate
multiplications, at the worker nodes, are carried out. More
specifically, the intermediate multiplications may or may not



be done modulo p. We consider the two cases separately and
provide bounds on the accuracy in both cases. Performing
intermediate multiplications modulo p leads, in general, to a
better accuracy, as will be also shown in the remaining of
this section. However, this improvement comes at the cost
of increased latency of the fixed-point implementation. This
is because, in practice, performing multiplications over large
finite fields require further processing, compared to the regular
multiplication, and are slower than the regular multiplications.

In the first case, it is assume that the intermediate multiplica-
tions are done modulo p. Then in order to avoid overflow errors
in multiplications while employing fixed-point implementation,
it is necessary to have

p? < 2% (40)

In the second case, it is assumed that the underlying multipli-
cations are done over Z and the worker nodes need to compute
the result modulo p only once after the polynomial evaluations
are completed. In this case, the condition in (40) is modified as
follows: s

a D b
—p° <2
A p

Combining (39) with {@0), for the first case, and with @TJ), for
the second case, provides lower bounds on the absolute error of
the outcomes of LCC. In particular, one must have

(41)

S TD 1
™ <A @
for the first case, and
ST B)pD D

) Bz < A,

(

for the second case.

2(5-1) (“43)

Now, consider ALCC with floating-point implementation
where each symbol is represented by b bits. In current standard
systems, 8 bits are allocated to represent the exponent. Also,
one bit is reserved for indication of zero and one bit is reserved
for the sign flag. Hence, the total number of precision bits b,, is
equal to b — 10. We use these parameters to plot the bounds
on the accuracy of ALCC versus that of LCC. In Figure[2]
the upper bound on the absolute error in ALCC with floating-
point implementation, provided in Corollary[3} is plotted and is
compared with the lower bounds on the absolute error in LCC
with fixed-point implementation, provided in @2) and {@3), for
the two aforementioned cases. Note that for the experiments
with the results shown in Figure the terms O(Ui"), that are
used in the bounds provided in Theorem[d] and Corollary[3] are
equal to zero due to the certain matrix polynomial function
considered. In general, such terms can be often discarded in
ALCC with general underlying polynomial functions as o,
considered in practice is relatively large due to privacy con-
cerns, e.g., o, = 10'2 in the considered experiments. Note
that these bounds are plotted as a function of b, i.e., the total
number of bits reserved to represent a data symbol in both
the fixed-point and the floating-point implementation while the
other parameters of the system are fixed. It can be observed that
for b larger than a certain threshold, the upper bound derived
on the error in ALCC is smaller than both of the lower bounds
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Fig. 2: Comparison of upper bound on the absolute error in floating-
point (FLP) implementation with lower bounds on the error in fixed-
point (FXP) implementation employing conventional (FXP 1) and
(FXP 2). The underlying function considered is f(X) = XX'. The
parameters are as follows: k = 5,t = 3,s = 0,m = n = 1000,r =
100,60 = 3,0, = 10"%,

on the error in LCC. Since these bounds may not be tight, the
actual threshold would perhaps be lower than what is shown in
Figure[]

One can also analyze the aforementioned bounds in terms
of the decay rate of the absolute error as b increases. More
specifically, the lower bounds on the absolute error in LCC,
derived in @I)) and (@2)), decay exponentially in b with an
exponent between 5 Dl ) and 57 +1D +1- However, the upper
bound on the absolute error in ALCC, derived in @, decays
exponentially in b with exponent 1. This significant improve-
ment in accuracy comes at the expense of deviating from the
perfect privacy, in an information-theoretic sense, in ALCC
compared to LCC. This will be discussed in details in the next
section. In particular, it will be shown that this deviation is
negligible for practical purposes.

IV. PRIVACY ANALYSIS

In this section, we analyze the privacy level of data in ALCC
by considering two notions of security, namely, the mutual
information security (MIS) and the distinguishing security (DS)
over the continuous probability space.

A. Privacy analysis with Gaussian noise

We first characterize the privacy of ALCC in terms of the
MIS metric by utilizing existing results on the capacity of
multiple-input-multiple-output (MIMO) channel. Furthermore,
by using the relation between the MIS and the DS security
metrics in the analog domain the privacy of ALCC is also
characterized in terms of the DS metric. Such a relation is
observed in the context of wiretap channels in [48|] and has been
also utilized in [[16].

Consider the ALCC protocol described in Section[ll] For j €
[k] and i € [t], let X; and IN; denote the (g,!) element of the
matrices X; and N;, respectively, for some fixed g € [m] and
[ € [n]. For the sake of clarity, g and [ are fixed throughout this



section. However, the analysis does not depend on the specific
choice of g and [.

The Lagrange polynomial introduced in (@) is written for the
fixed considered indices as follows:

k k+t
U(z) = D, X;li(2) + Y Njgli(2), (44)
j=1 j=k+1

where data symbols X;’s are random variables with arbitrary
distribution and with the range Dxdéf[fr, r], for j € [k], and
N; ~ N(0, é), for i € [t]. Let Y; denote the corresponding
entry of Y;, for i € [N]. In other words, V; = U(w;). Let T =
{i1,- - , it} denote the set of indices for the colluding parties.
Letalso X, N, and Y7 denote (X1, -+, X)), (Ny, -+, N)T,
and (Y;,,---,Y;,)T, respectively, where (-)T is the transpose
operation. By convention, a random variable/vector is denoted
by a capital letter and its instance is denoted by the correspond-
ing lower case letter.

The following equation relates the encoded symbols received
by the colluding set of parties 7' to the dataset symbols and the
added noise symbols:

Yr=LrX + ETN, (45)
where
1(eiy) U (i)
e 1(0[2', ) e lk(ai, )
Lr e | % 7 : (46)
l1<ait) lk(alf) txk
and
liv1 (i) lrv1 (i)
. lpt2(as,) lpt2(as,)
Lyt | 770" e @7)
Dot (0, ) lere(os,) |,

The amount of information revealed to the set of colluding
parties can be measured in terms of the MIS metric, denoted
by 7., defined as follows:

def
7 = Max max

(48)
T Px:|X;|<rVje[k]

I(Yr; X),
where Py is the probability density function (PDF) of X and
the maximization is taken over all T' c [N] with |T'| = ¢. Since
|X;| < r, we have E[X;]? < r?. Then, one can write

I(X;Yr). 49)

e < max max
T Px:E[X7]<r?
Next, we characterize the right hand side of @]) in terms of
other parameters of the system. To this end, the capacity results
of MIMO channels are utilized as discussed next. Consider a
MIMO channel with & transmit and ¢ receive antennas and the
input-output relation

y=Hx+n, (50)

where x and y are the £ x 1 transmitted signal and the ¢ x 1 re-
ceived signal vectors, respectively, H; «; represent the channel
gain matrix known to both the transmitter and the receiver, and
M1 is an additive zero-mean Gaussian noise vector. Let N,
denote the noise correlation matrix, i.e., the covariance matrix

of the vector n. By using the results on the capacity of MIMO
channel with equal-power allocation constraint and correlated
noise, one can get an upper bound on the right-hand side of
(@9). The capacity of this MIMO channel, under equal-power
allocation constraint, is well-known and is expressed as follows
(49, TV-A]:

C =log, |I; + PN, 'HH"|, (51)

where P is the maximum transmission power of each antenna
at the transmitter side, I; is the ¢ x ¢ identity matrix and | - |
denotes matrix determinant.
Theorem 6: In the proposed ALCC, the MIS metric 7,
defined in (48), is upper bounded as follows:
2
7t -1
ne < maxlogy [I; + — X X7,
T o2

(52)

where fJTdifI:Tig and ETdifLTLQH . Also, 37 and Ly are

specified in {@6)) and (@7), respectively.

Proof: Note that in (@3)) the term L7 N can be regarded as
the noise vector and, consequently, @I} can be turned into an
equation similar to (50) describing the MIMO channel model.
Hence, by using this observation together with (51)) and the
definition of capacity, leads to (52). [ |

Corollary 7: For r = o(o,,), we have
2 2

1 ~—1 r
Ne < 7111,12})(&(2/1—‘ ET)O‘T + 0(@)

In(2) (53)

Proof: The proof is by utilizing |I; + €A| = 1 + etr(A) +
o(e) together with log, (1+¢€) = wey + o(€) in the upper bound
presented in Theorem|6] [ ]

Next, we characterize the privacy of ALCC in terms of the
DS metric. The DS metric is defined using the notion of the
total variation (TV) distance D7y (., .). In general, for any two
probability measures P, and P» on a o-algebra F, the TV dis-
tance is defined as Dy (Py, Po) sup g5 |P1(B) — Py(B)|.
While DS metric is often defined for discrete random variables
in the cryptography literature, it can be also extended to the
case of continuous random variables [16]. In particular, in the
proposed ALCC protocol 7 is defined as as follows:

def
ns = max max Dryv(Py,x=x> Pyr|x=x.) (54)

T x ,XQEDX
where Dy = [—r,7]* is the support of X. Note that, roughly
speaking, a smaller value for 7, implies data is kept more
private against any set of ¢ colluding parties.

Next, we discuss the privacy guarantee for ALCC in terms of
the DS metric 7. This is done by utilizing relations between 7,
and 7, and the upper bound on 7). derived in Theorem|f]

Relations between MIS and DS metrics was first established
in [50] though for discrete random variables. In particular, it is

shown in [50] that:
Ns < /270,

assuming all underlying random variables are discrete. This
result is also extended to the analog domain in [48]]. In other
words, it is shown that (53] also holds when the underlying
random variables are continuous. Then, combining @]) with

(55)



(39) yields the following upper bound on the DS metric 7;:

T2t o —1
s < 21njgx log, It + EET . (56)
In particular, for r = o(o},), we have
2t ~—1 T r
s < 4| —— tr(X, X7)— —). 7
. \/ln(?) max (X, T)Jn + O(on) (57)

Remark 4: Note that both (52) and (56) imply that increas-
ing the standard deviation of the added noise, i.e., o,, while
other parameters of ALCC are fixed, improves bounds on the
privacy level of ALCC. However, this improvement comes at
the expense of degrading the accuracy of the outcome of ALCC,
according to Theoremfd] This exhibits a fundamental trade-off
between the accuracy and privacy of ALCC. Such a trade-
off between accuracy and privacy in the analog domain has
been observed for the first time in [[16] for a privacy-preserving
distributed computing setup.

Next, the provided upper bounds on the maximum amount
of information revealed about the dataset to a subset 71" of
colluding parties with size ¢ are numerically evaluated. This
is done for both the MIS security metric, bounded in (32)),
as well as the DS metric, bound in @), for a certain set of
parameters and the results are shown in Figure [3] Both 7,
and 7). are plotted versus . It can be observed that both the
bounds are decreased by increasing /5. In other words, this
indicates that increasing [, in general, leads to enhancement in
the privacy of the ALCC protocol. However, the provided upper
bound on the accuracy of the outcome of ALCC, provided in
(32) and (@7), implies that the precision loss would also grow
by increasing /3. The upper bound on the absolute error in
ALCC with general underlying matrix polynomial function is
plotted versus 3 in Figure[d]for a certain set of parameters. Note
that, same as in the experiments with results demonstrated in
Figure the terms o(é) are discarded in the plot in FigureEIas
well since - = 10723 is negligible. This together with the plot
in Figure[3] demonstrates a new fundamental trade-off between
the accuracy and the privacy of the ALCC protocol which is
specific to ALCC and is controlled by the choice of j. It can
be also observed from Figure[3] and Figurefd] that a reasonable
value for 3, e.g., B = 1.5, can be picked for which the upper
bounds on 7, and 7, are reasonably low, e.g., ~ 107'° and
~ 10720, respectively, while the upper bound on the error in
the outcome is reasonable for practical purposes, e.g., ~ 1073,

B. Privacy analysis with truncated noise

The results presented in Section[[V-A] are derived assuming
that the entries of the noise matrices N;’s in (2)) are drawn from
a complex circular-symmetric Gaussian distribution. However,
as discussed in Section[II] these noise terms should be bounded
for practical implementations. In other words, the actual PDF of
the noise terms is a properly scaled version of the Gaussian PDF
truncated between —0‘\7}% and 9%, for some # € R. Roughly
speaking, we say that the noise terms are truncated. In this
section, we extend the results on bounding 7, to the case with
the noise terms being truncated. We use the upper bound on the

DS metric in a similar setup with truncated complex Gaussian
noise [16] that involves the following quantity:

nean ' max  max |Lr(x1 — x2)].
T x1,x26Dx

(58)

Note that conditioned on X = x in @I), Yr is a complex
Gaussian vector with mean Lrx. Then the parameter diean,
defined in (58), is the maximum Euclidean distance between
the means of any two such conditional random vectors in the
t-dimensional complex vector space, where the maximum is
taken over the set of all colluding sets 7" with size ¢ and all
x1,%2 in the range of the random vector X. In the following
lemma an upper bound on dpe,, is obtained by using the
alternative characterization of Lagrange monomials derived in
Lemmal[il

Lemma 8: The parameter dpean, defined in (38)), is upper
bounded as follows:

kr (%)kﬂ -1
k+t (5)—1
Proof: Forall x;,xs € Dx and T < [N] with |T| = t, we
have

(59)

mean <

\LT(xl - XQ)| < |LTX1‘ + |LTx1| (60)
< 2max |Lyx]| (61)
xeD x
k
<2Vimax max Y zjli(a)  (62)
ie[N] Jaa|zr =1
< kr max |l (a;)] (63)
ie[N]
1\k+t
kr (3 -1
B iy 64
k+t (3)—1

where (62)) is by the definition of L7 in (@6) and noting that Lrx
is a t-dimensional vector, (63) holds by noting that |z;| < r
and the summation has & terms, and (64) is by |z;| < r, upper
bounding |l;(a;)| by (8) and noting that |c;| = 1 foralli. M

Let 7, denote the DS metric for the case where the noise
terms in are truncated. The following theorem provides an
upper bound on 7/, in terms of 7, the upper bound on dpean,
and other parameters of the ALCC protocol.

Theorem 9: The DS metric, defined in (54), for the case
where the entries of N;’s in are drawn from a truncated
complex Gaussian distribution with truncation level 0% sat-
isfies the following inequality:

, 1 1 1

< —m. + —(2exp(—=(0 —
M < o +w( exp( 2(

8mean\/Z 2\\ ¢
Sy

where w = (1 — 2exp(—9—;))75 and

def kr (%)]H—t -1
R (%) -1
Proof: The proof follows by combining [[16, Theorem 5]
and Lemmal[8] [

A numerical evaluation of the bound provided in Theorem[9]
implies that, for instance, having § = 10 with ¢ = 10, together
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Fig. 3: Upper bounds on 7s and n. for N = 15,k = 4,t = 4,0, =
1023, r = 10'°.

with a very small 07—" which is often the case in practice, we
get . ~ 7. In other words, the privacy of dataset is not
compromised by truncating the noise terms as long as 6 is large
enough, e.g., 6 = 10.

V. EXPERIMENTS

In this section, we demonstrate the performance of ALCC
when applied to a certain computational task through exper-
iments. In the first part of this section, it is shown that the
precision of ALCC outcome closely follows that of a cen-
tralized computation, that is when the computations are done
directly at a central node without any encoding and decoding.
In particular, it is shown that the accuracy of ALCC is scalable
with dataset size, i.e., the precision of the results remains
almost the same for a wide range of sizes of the dataset. In
the second part, the performance of LCC [4] employing fixed-
point representation applied to the same computational task
is demonstrated. It is shown that the error in the outcome of
LCC experiences a sharp increase due to overflow errors as the
dataset size passes a certain threshold.

We consider the task of performing a certain matrix-matrix
multiplication. For the sake of clarity, we consider computing
XTX where X € R™*" is a tall real-valued matrix, i.e.,
m’ » n. Such computation is one of the main building blocks in
various learning algorithms including training a linear regres-
sion model [4], or a logistic regression model [16], [19], etc.,
where X represents a dataset consisting of m’ samples in an n-
dimensional feature space. The matrix X can be represented as
a batch of matrices X = (X7],---,X})T, where X; € R™*"
with m’ = k x m. Then we have

k
X'X = Y X'X;.
i=1

Hence, the task of computing XX is reduced to evaluating
a degree-2 polynomial over a batch of matrices, consisting of
Xi,..., Xk, for which ALCC can be utilized to provide speed
up by leveraging the computational power of distributed nodes
in parallel.
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Fig. 4: Upper bound on the accuracy of ALCC versus 3 for D =
2,k =4,t=4,5=0,c=1,m = n = 1000, = 10'°,0 =
3,0, = 10%® and v = 200.

Let Y denote the result of computing XX in a centralized
fashion employing floating-point operations. Let also Y’ denote
the result of a distributed computing protocol, e.g., ALCC. In
order to measure the accuracy loss of the outcome in the dis-
tributed protocol compared to the centralized one, we consider
the following notion of relative error:

oy e I Y]
* Y|

In a sense, e, measures how much the outcome precision is
proportionally compromised by utilizing a distributed protocol
while providing privacy/speed up. The entries of the dataset X
in our experiments are drawn independently from a zero-mean
Gaussian distribution with variance 1. We use 64 bits for both
the fixed-point and the floating-point numbers to implement
both the LCC and the ALCC protocols in our experiments,
respectively.

(65)

The relative error e, defined in (63)), is computed for the
outcome of ALCC in our experiment and is shown in Table[l]
for a range of values for the dataset size, that is represented by
m/, and the Lagrange monomials parameter /3. As discussed in
Section[I[V-A] it is expected that increasing 3 results in lower
precision outcomes which is also shown in our experiment. But
note that it also leads to better privacy as shown in Figure[3]
Also, no notable dependence between the relative error in the
outcome of ALCC and the size of dataset m’ is observed in
Table[l] This implies that ALCC is scalable with the dataset size
as far as the relative error is concerned.

Next, the performance of LCC [4]] employing fixed-point
numbers is compared to that of ALCC from the relative error
perspective. In Figure[3] the relative error is plotted for both
LCC and ALCC versus the parameter m/, that is proportional
to the size of the dataset. For LCC, this is plotted for a few
different choices for the size of the underlying finite field p,
according to the discussion in Section[[TI-B] and keeping in
mind that the total number of available bits for representation
is 64. In particular, the first case discussed in Section[[II-B] is
assumed where the worker nodes compute the results module



! p 1.1 1.5 1.8 2
10* 4.466 | 3.304 | 2.316 | 1.699
2 x 10* | 4.532 | 3.307 | 2.320 | 1.713
4 x 10" | 4.584 | 3.306 | 2.331 | 1.723
6 x 10* | 4.602 | 3.316 | 2.326 | 1.727
8 x 107 | 4.612 | 3.313 | 2.332 | 1.731
10° 4.614 | 3.320 | 2.334 | 1.728

TABLE I: Demonstration of —log;,(éwi) in ALCC for multiple
dataset sizes and 5 = 1.1, 1.5, 1.8, 2. Other parameters are k = 5,¢ =
3,s =0,N = 15,0, = 10% n = 100 for all schemes.
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Fig. 5: Comparison of the relative error in the outcome between
ALCC and LCC. For LCC, different values of p are considered
(p ~ 2%, p~2% p~ 2%) For ALCC, 8 = 2and 8 = 1.5 are
considered for FLP1 and FLP2, respectively. Also, in both protocols
wehave k =5,¢t = 3,5 =0, N = 15, 0, = 10°, and n = 100.

p only once after the polynomial evaluations are completed.
Also, for ALCC, e is plotted for two values of . It can
be observed in Figure[3] that for all the scenarios considered
for LCC, there exists a certain threshold for m’ after which
the computation results become very unreliable due to a very
high e.. As discussed earlier, this significant precision loss is
mostly due to overflow errors that are inherent to the fixed-
point implementation employed by LCC. As expected, the
sharp increase in ey occurs at a larger value for m’ when a
larger p is picked. However, the choice of p is limited by the
number of bits available for representing fixed-point numbers.
Furthermore, the advantage of ALCC compared to LCC is
evident in Figure[5] by observing that the relative error in the
outcome of ALCC with floating-point implementation is almost
constant for the considered range of sizes of the dataset. This
motivates employing ALCC in certain problems involving very
large datasets.

VI. CONCLUSION

In this paper, the Lagrange coded computing framework is
extended to the analog domain in order to efficiently evaluate
polynomials over real-valued datasets in a distributed fashion.
To this end, the analog Lagrange coded computing (ALCC)
protocol is proposed that leverages Lagrange polynomials with
a certain set of parameters carefully chosen in the complex

plane. The privacy of ALCC is measured in terms of the DS
and the MIS security metrics in the analog domain. By utilizing
the relations between the DS and the MIS security measures
and the existing results on the capacity of MIMO channel with
correlated noise, bounds on the privacy level of data in ALCC,
amidst possible collusion of workers, is characterized in terms
of the aforementioned measures. Moreover, the accuracy of the
outcome of ALCC is characterized assuming that the floating-
point numbers are employed in the implementation of the pro-
tocol. Furthermore, a new trade-off between the accuracy of the
outcome and the privacy level of the protocol is characterized
that is controlled by the choice of Lagrange polynomial pa-
rameters. In our experiments, the ALCC is adopted to perform
matrix-matrix multiplication and the outcome is compared to
the computation result in a centralized fashion. Finally, the
scalability of ALCC and LCC with respect to the dataset size
are compared together. It is shown that the accuracy of LCC
significantly diminishes after the dataset size passes a certain
threshold while the accuracy of ALCC remains almost constant
for a wide range of dataset sizes.

There are several directions for future work. Characterizing
the accuracy and the privacy level of the ALCC protocol for a
general choice of Lagrange monomial parameters 3;’s in the
complex plane is an interesting direction. In particular, it is not
known what choice of 3;’s provides the best possible accuracy-
privacy trade-off in ALCC and how tight the bounds provided
in this paper are with respect to such an optimal scenario.
Another direction is to extend ALCC in order to take into ac-
count the presence of Byzantine workers, i.e., the worker nodes
that deliberately send erroneous computation results [51]-[54].
Providing an efficient and numerically accurate counterpart of
Reed-Solomon decoding algorithm in the analog domain would
be the main challenge in this direction. Adopting ALLC to
provide speed up in performing computational tasks involved
in a wide range of applications such as decentralized control,
distributed optimization, data mining, etc. [S5]-[59]] is another
future direction. Generalizing ALCC in order to evaluate multi-
ple polynomials in one round by applying techniques utilized
in multi-user secret sharing [60]] is another approach to be
considered for future work.
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