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Abstract— We provide a precise framework to study subspace
codes for non-coherent communications in wireless networks. To
this end, an analog operator channel is defined with inputs and
outputs being subspaces of n. Then a certain distance is defined
to capture the performance of subspace codes in terms of their
capability to recover from interference and rank-deficiency of
the network. We also study the robustness of the proposed model
with respect to additive noise. Furthermore, we propose a new
approach to construct subspace codes in the analog domain,
also regarded as Grassmann codes, by leveraging polynomial
evaluations over finite fields together with characters associated
to finite fields that map their elements to the unit circle in the
complex plane. The constructed codes, referred to as character-
polynomial (CP) codes, are shown to perform better compared to
other existing constructions of Grassmann codes in terms of the
trade-off between the rate and the normalized minimum distance,
for a wide range of values for n.

I. INTRODUCTION

Wireless networks are rapidly growing in size, are becoming
more hierarchical, and are becoming increasingly distributed.
While the efforts for 5G standardization are still ongoing, sev-
eral new features have been introduced in the recent releases
of the Long-Term Evolution (LTE) standard to start supporting
the diverse requirements of the wide range of use cases in 5G.
Started with Release 10 the deployment of small cells in LTE
is becoming increasingly popular to deliver enhanced spectral
capacity and extended network coverage [1], which is also
fundamental to enhanced mobile broadband (eMBB) and mas-
sive machine type communications (mMTC) scenarios in 5G.
Moreover, features such as coordinated multipoint (CoMP)
transmission and reception [2] together with enhanced intercell
interference coordination (eICIC) [3] have been introduced and
used since Release 10 and evolved since then.

The aforementioned techniques are, however, difficult to
scale as the number of small cells, that can be also regarded
as relays, keeps increasing and as more layers are added
in the hierarchical network. Motivated by the emergence of
such massive networks we study coding for wireless networks
consisting of many relays operating in a non-coherent fashion,
where the network nodes are oblivious to the channel gains
of the point-to-point wireless links as well as the structure
of the network. In a sense, this resembles a random linear
network coding scenario, though completely in the physical
layer, where physical-layer transport blocks are linearly com-
bined in the relay nodes as they receive the spatial sum of
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blocks sent by the neighboring nodes. This holds assuming
omni-directional radio frequency (RF) transmitter and receiver
antennas are deployed at the network nodes. Also, in the
considered setup, the relay nodes, such as small cells, do not
attempt to decode messages and only amplify and forward the
received physical-layer blocks.

In this paper, we define a new framework for reliable
communications over wireless networks in a non-coherent
fashion, as discussed above, using analog subspace codes. Let
W denote an ambient vector space of dimension n over a field
L, i.e., W “ Ln. A subspace code in W is a non-empty subset
of the set of all the subspaces of W . We observe that subspace
codes in the analog domain, where the underlying field L

is R or , become relevant for conveying information across
networks in such a scenario. This work is mainly inspired
by the seminal work by Koetter and Kschischang [4]. In a
sense, we develop a counterpart for Koetter-Kschischang’s
operator channel, introduced in [4], in the analog domain,
referred to as analog operator channel. More specifically,
the analog operator channel models the rank deficiency of
the network, caused by relay failures or lacking a sufficient
number of active relays, as subspace erasures. Also, it models
the interference from neighboring cells/small cells as subspace
errors. Furthermore, we propose a novel construction of analog
subspace codes by leveraging characters associated to Abelian
groups and mapping them to the complex plane.

Analog subspace codes can be also viewed as codes in
Grassmann space, also referred to as Grassmann codes, pro-
vided that the dimensions of all the subspace codewords are
equal. There is a long history on studying bounds [5]–[9],
using packing and covering arguments, and capacity analysis
in Grassmann space, mostly motivated by space-time coding
for multiple-input multiple-output (MIMO) wireless systems
[10]–[12]. In such systems, a separate block code is needed
to guarantee the reliability regardless, and the space-time code
can be interpreted as the means of improving the reliability by
exploiting the diversity the MIMO channel offers. However,
we arrive at the problem of constructing subspace codes from
the analog operator channel. In other words, subspace codes
are used for reliable communications over analog operator
channels the same way block codes are conventionally used
for reliable communications over point-to-point links. A de-
tailed overview of prior works on Grassmann codes and their
relations to our approach can be found in the extended version
of this paper [13].



II. PRELIMINARIES

A. Notation Convention

Let rns denote the set of positive integers less than or equal
to n, i.e., rns “ t1, 2, . . . , nu for n P N. Also, for x P R,
pxq`

def“ maxp0, xq.
In this paper, matrices are represented by bold capital letters.

The row space of a matrix X is denoted by xXy. Also, for a
square matrix X, the trace of X, denoted by trpXq, is defined to
be the sum of elements of X on the main diagonal. For a matrix
A, ∥A∥ and ∥A∥2 denote the Frobenius and spectral norm of
A, respectively. Also, A` and κA denote the pseudoinverse
and condition number of A, respectively.

The ambient vector space is denoted by W. The parameter
n is reserved for the dimension of W throughout the paper.
Also, we have W “ Ln, where L can be either R or . Let
PpWq denote the set of all subspaces of W. For a subspace
V P PpWq, the dimension of V is denoted by dimpVq. The
sum of two subspaces U, V P PpWq is defined as

U ` V def“ tu ` v : u P U, v P Vu, (1)

and the direct sum is defined as

U ‘ V def“ tpu, vq : u P U, v P Vu. (2)

Note that if U and V intersect trivially, i.e., U X V “ t0u,
where 0 is the all-zero vector, then U ` V “ U ‘ V.

The set of all m-dimensional subspaces of Ln is denoted
by Gm,npLq, which is referred to as Grassmann space or
Grassmannian in the literature.

For a set M, a σ-quasimetric on M is a function d : M ˆ
M ÝÑ R that satisfies all the conditions of a metric except the
triangle inequality being relaxed to

@x, y, z P M, dpx, zq ă σ
`

dpx, yq ` dpy, zq˘

, (3)

for a constant σ ą 1. This inequality is referred to as σ-relaxed
triangle inequality.

B. Analog operator channel

This model is motivated by non-coherent communications
over wireless networks, as discussed in Section I. Hence, each
piece of the model is followed by a brief explanation from
this perspective. Let xi Pn, for i P rms, denote the input
vectors. The input vectors, as physical layer transport blocks,
can be sent by several antennas of a transmitter, e.g., a
cellular base station, at different time frames. By discarding
the interference and the additive noise, the output of the
channel is a set of vectors yj “ řm

i“1 hj,ixi, where j P rls.
Each vector yj is the received transport block by an antenna
of the receiver at a certain time frame. Note that a time-frame-
level synchronization is assumed across the wireless links,
e.g., by employing specific patterns in a designated subset of
orthogonal frequency-division multiplexing (OFDM) symbols
in each time frame as in LTE networks [14]. Also, the relays in
the network, e.g., small cells, are assumed to be amplify-and-
forward relays. They can forward a transport block, received
during a certain time frame, in a subsequent time frame. This
is because the communication is assumed to be done in the unit

of time frame, i.e., the relay has to wait for the current time
frame to end before it can begin forwarding what it received.
Then, due to the different delays, in the unit of time frames,
that transport blocks may encounter as they are propagated
through the network, the received yj’s can be the combination
of transmitted xi’s across different antennas and time frames.
Under a non-coherent scenario, both the transmitter and the
receiver are oblivious to hj,i’s, the topology of the network,
and the link-level channel gains. It is possible that several
interference blocks, e.g., up to t of them, from neighboring
cells/small cells are also received by the receiver. Hence, we
have

Ylˆn “ HlˆmXmˆn ` GlˆtEtˆn, (4)

where X’s rows are the transmitted blocks x1, x2, . . . , xm, E’s
rows are the interference blocks e1, e2, . . . , et, Y’s rows are
the received blocks y1, y2, . . . , yl , and H “ rhj,islˆm and
G “ rgj,islˆt are assumed to be unknown to the transmitter
and the receiver. Note that both H and G depend on the
network topology as well as the link-level channel gains,
however, G also depends on the specific nodes where the
interference blocks have entered the network. An example of
the communication scenario, described by (4), is illustrated in
[13, Figure 1].

In the scenario described by (4), even in the absence of
the interference blocks E, the only way to convey information
to the receiver is through the subspace spanned by the rows
of X. This is mainly due to the underlying assumption on
non-coherent communications, where H is assumed to be
completely unknown to both the transmitter and the receiver.
Furthermore, H may not be full column rank, e.g., when l ă n,
which implies that xXy can not be fully recovered. In order to
capture the rank deficiency of H, a stochastic erasure operator
is defined as follows. For some k ě 0, HkpUq returns a random
k-dimensional subspace of U, if dimpUq ą k, and returns
U otherwise. Then the analog operator channel is defined as
follows:

Definition 1: An analog operator channel associated with
W is a channel with input U P PpWq and output V P PpWq
together with the following input-output relation:

V “ HkpUq ‘ E, (5)

where E is the interference subspace, also referred to as the
error subspace, with E X U “ t0u. Then ρ “ dimpUq ´ k is
referred to as the dimension of erasures and t “ dimpEq is
referred to as the dimension of errors.

In the communication scenario described by (4), the additive
noise of the physical layer, often modeled as additive white
Gaussian noise (AWGN), is discarded. Note that the intermedi-
ate relay nodes in the wireless network, such as small cells, are
not often limited by power constraints as the end mobile users
are. Hence, it is natural to assume that the relay nodes operate
at high signal-to-noise ratio (SNR). Nevertheless, it is essential
to investigate the effect of additive noise as a perturbation of
the transformation described by (4). This will be discussed in
Section V.



III. ANALOG METRIC SPACE, SUBSPACE CODES,
AND ERROR CORRECTION

In this section we provide a precise description of chordal
distance defined for Grassmann space. Then we extend and
modify the chordal distance to arrive at a new notion of
distance, defined for the set of all subspaces of the ambient
space, i.e., PpWq, and show that it conveniently captures the
error-correction capability of subspace codes when used over
analog operator channels.

The chordal distance dc : Gm,npLq ˆ Gm,npLq Ñ R was
first introduced for L “ R in [15] and was extended to L “
in [6]. Consider two m-planes U and V. Let Z denote an
orthonormal matrix spanning V P Gm,npLq, i.e. ,

V “ xZy, ZZH “ Im.

Then, the matrix PV “ ZHZ is an orthogonal projection op-
erator from Ln on V. Similarly, let PU denote the orthogonal
projection operator on U. Then the chordal distance between
U and V is defined as follows:

dcpU, Vqdef“ 1?
2
∥PU ´ PV∥ . (6)

Since the Frobenius norm induces a metric on the set of all n ˆ
n matrices, regardless of whether they are projection matrices
or not, one can use (6) to generalize the notion of chordal
distance to subspaces of different dimensions. This generalized
chordal distance, is further modified to arrive at a new notion
of distance over PpWq, defined as follows.

Definition 2: The distance d : PpWq ˆ PpWq ÝÑ R is
defined as

dpU, Vq def“ ∥PU ´ PV∥2 “ tr
`pPU ´ PVq2˘

, (7)

where U, V P PpWq and PU , PV are the projection matrices
associated to U, V, respectively.

Note that dp., .q “ 2dcp., .q2 by (6) and (7). It is shown in
[13, Lemma 13] that the square of a metric is a 2-quasimetric,
where a quasimetric is defined in Section II-A. Hence, dp., .q
is a 2-quasimetric. It is further shown in [13, Lemma 14] that
for U, V, T P PpWq, dp., .q satisfies the triangle inequality,
i.e., σ “ 1 in (3), as long as PU and PV are simultaneously
diagonalizable, i.e., one can find a basis in which both PU
and PV are diagonal matrices. This property is later utilized
to characterize the error-and-erasure correction capability of
codes used over analog operator channels in terms of their
minimum distance the same way it is done given an underlying
metric. Hence, we refer to dp., .q as a distance through the rest
of this paper.

Definition 3: An analog subspace code C is a subset of
PpWq. The size of C is denoted by |C|. The minimum distance
of C is defined as

dminpCq def“ min
U,VPC,U‰V

dpU, Vq,

where dp., .q is defined in Definition 2. The maximum dimen-
sion of the codewords of C is denoted by

lpCq def“ max
UPC

dimpUq.

The code C is then referred to as an rn, lpCq, |C|, dminpCqs

subspace code, where n is the dimension of the ambient space
W.

If the dimension of all codewords in C are equal, then the
code is referred to as a constant-dimension code, which is also
called a code on Grassmannian or a Grassmann code in the
literature.

Definition 4: Let C be an rn, l, M, dminpCqs subspace code.
The normalized weight λ, the rate R, and the normalized
minimum distance δ of C are defined as follows:

λ
def“ l

n
, R def“ ln M

n
, δ

def“ dminpCq
2l

.

As in conventional block codes, one can associate a min-
imum distance decoder to a subspace code C, e.g., when
used for communication over an analog operator channel, in
order to recover from subspace errors and erasures. Such a
decoder returns the nearest codeword V P C given U P PpWq
as its input, i.e., for any V1 P C, dpU, Vq ď dpU, V1q.
The following theorem relates the minimum distance of C
to its error-and-erasure correction capability under minimum
distance decoding.

Theorem 1: Consider a subspace code C used for com-
munication over an analog operator channel, as defined in
Definition 1, i.e., the input to the channel is U P C. Let t and
ρ denote the dimension of errors and erasures, respectively.
Then the minimum distance decoder successfully recovers the
transmitted codeword U P C from the received subspace V if

2pρ ` tq ă dminpCq, (8)

where dminpCq is the minimum distance of C defined in
Definition 3.

The proof is omitted due to space constraints, please see
[13] for the proof.

Theorem 1 implies that erasures and errors have equal
costs in the subspace domain as far as the minimum-distance
decoder is concerned. In other words, the minimum-distance
decoder for a code C can correct up to

Y

dminpCq´1
2

]

errors and
erasures.

Remark 1. If one uses the chordal distance, instead of the
distance dp., .q defined in Definition 2, a result similar to Theo-
rem 1 can be obtained while the condition in (8) is replaced
by

?
2p?

ρ ` ?
tq being strictly less than the minimum chordal

distance of the code. Since dp., .q “ 2dcp., .q2, where dcp., .q
is the generalized chordal distance, this condition can be
expressed in terms of dminpCq as follows:

4p?
ρ ` ?

tq2 ă dminpCq. (9)

Note that the left hand side of (9) is greater than or equal to
that of (8) by a multiplicative factor that is between 2 and 4.
This shows the clear advantage in using the new distance dp., .q
instead of the chordal distance in characterizing the error-
and-erasure correction capability of analog subspace codes.
The advantage is due to the fact that although dp., .q does
not always satisfy the triangle inequality, it exhibits properties
of a metric when dealing with inputs and outputs of analog
operator channels.



IV. CHARACTER-POLYNOMIAL SUBSPACE CODES

Consider a cyclic group G of order |G|. A character χ
associated to G is a homomorphism from G to the unit circle in
the complex plane with the regular multiplication of complex
numbers, i.e.,

χpg1g2q “ χpg1qχpg2q (10)

for all g1, g2 P G. The set of all characters associated to G
are described as follows [16]:

χjpg1kq “ ep jk
|G| q, (11)

for k “ 0, 1, . . . , |G| ´ 1, where g1 is a generator of G and
epxq def“ expp2πixq. For a finite field Fq the additive charac-
ters, using (11), are denoted by χj, for j “ 0, 1, . . . , q ´ 1, and
are described as follows [16]:

χjpαq “ ep trapjαq
p

q (12)

for j P Fq, where p is the characteristic of Fq, and

trapγq def“ γ ` γp ` ¨ ¨ ¨ ` γpm´1

is the absolute trace function from Fq to Fp, where q “ pm.
Note that (12) implies that χjpαq “ χ1pjαq and the trivial
additive character is χ0pαq “ 1 for α P Fq.

Next, for some k ă q, let

F def“ t f P Fqrxs : f pxq “
ÿ

iPrks,i mod p‰0

fixiu. (13)

Note that |F | “ qrkpp´1q{ps. We fix n “ q ´ 1 in our
construction.

Definition 5: The code CpFq Ď G1,npq, referred to as a
character-polynomial (CP) code, is defined as follows:

CpFq def“ txpc1, c2, . . . , cnqy : ci “ χ
`

f pαiq
˘

, @ f P Fu, (14)
where χ is a fixed nontrivial additive character of Fq, and αi’s
are distinct non-zero elements of Fq.

The following theorem provides a lower bound on the
normalized minimum distance of CpFq in terms of q and d.

Theorem 2: The code CpFq has size qrkpp´1q{ps and

δ ě 1 ´
`pk ´ 1q?q ` 1

˘2

n2 , (15)

where δ “ dmin{2m (here m “ 1) is the normalized minimum
distance of the code.

Proof: The main ingredient in the proof is the result, due
to Weil [17], on the summations over characters. Please see
[13] for more details.

In Figure 1, we compare the trade-off between the rate R
and the normalized minimum distance δ that the CP codes
offer at different values of n with Shannon’s lower bound [5],
for n Ñ 8, and lower bounds derived by Henkel [18, Theorem
4.2] for finite values of n. Note that these lower bounds are of
the same type as Gilbert-Varshamov bound and do not yield
explicit constructions. Nevertheless, it can be observed that CP
codes can outperform these lower bounds at low rates thereby
improving these bounds while providing explicit constructions.
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Fig. 1: Comparison of CP codes with lower-bounds in terms of the
trade-off between R and δ.
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Fig. 1: Comparison of the codes in G2,npRq obtained from CP codes
with the codes constructed in [?] and [?].

Fig. 2: Comparison of the codes in G2,npRq obtained from our pro-
posed CP codes in G1, n

2
pq with the codes constructed by Calderbank

et al. [19] and Ashikhmin et al. [20].

Remark 2. Given a subspace code in C Ď Gm,npq one can
construct a code in G2m,2npRq by mapping Ci P C to

„

ℜpCiq ℑpCiq
´ℑpCiq ℜpCiq

ȷ

, (16)

where ℜp.q and ℑp.q represent the real part and the imaginary
part of their input, respectively. It can be observed that
this mapping preserves the normalized distance between the
codewords. This mapping enables us to construct codes in
G2,npRq using the proposed CP codes, while keeping the
normalized minimum distance and the size of the code the
same, in order to have fair comparisons with existing code
constructions in the real Grassmann space.

In Figure 2, we compare CP codes with two existing con-
structions of Grassmann codes, that are constructed explicitly
for a wide range of n, in the literature. In [19], Calderbank
et al. introduce a group-theoretic framework for packing in
G2i ,2k pRq for any pair of integers pi, kq with i ď k. In another
prior work, Ashikhmin et al. [20] provide a code construction
method in G2i ,2k pq based on binary Reed-Muller (RM) codes.
By utilizing the mapping specified in (16) for both CP codes
and the codes constructed in [20] with i “ 0, we compare the
log-size of the codes obtained in G2,npRq with that of codes



in G2,npRq from [19], while fixing δ “ 1
2 for codes from

[19] [20] and having δ ě 1
2 for CP codes, for all considered

values of n. The results are shown in Figure 2. Note that n
is equal to 2k for the constructions in [19] and [20], while
for CP codes we pick n “ 2p, where p is the largest p with
p ă 2k´1, for k P t3, . . . , 10u. Also, since the rates, for all
considered codes, is decreasing with n, we plot the log-sizes of
these codes instead of their rates. It can be observed that CP
codes offer significantly larger code size and, consequently,
rate comparing to the other explicit constructions, as n grows
large.

V. ROBUSTNESS AGAINST ADDITIVE NOISE

In this section, we analyze the robustness of the analog
operator channel in the presence of an additive noise. The
additive noise is denoted by N Plˆn, referred to as the noise
matrix. In the presence of the additive noise, the transform
equation described in (4) is extended as follows:

Ylˆn “ HlˆmXmˆn ` GlˆtEtˆn ` Nlˆn. (17)

More specifically, the effect of all the noise terms added to
the blocks across the wireless network is included in the noise
matrix N. For ease of notation, let A denote the term HX `
GE, consisting of terms associated to the transmitted blocks
and the interference blocks, referred to as the signal matrix.

In the rest of this section, we aim at characterizing the
perturbation imposed by the additive noise in terms of the
subspace distance. Let r “ rankpAq and rd denote the rank
deficiency of A, i.e.,

rd
def“ l ´ r. (18)

Also, let A1 be an r ˆ n full row rank sub-matrix of A and A2
denote the sub-matrix of A consisting of its remaining rows.
Let N1 and N2 be sub-matrices of N with row indices asso-
ciated with row indices of A1 and A2, respectively. Without
loss of generality one can write

A “
„

A1
A2

ȷ

, N “
„

N1
N2

ȷ

, (19)

where both A1 and N1 are r ˆ n matrices and both A2 and
N2 are rd ˆ n matrices. Then we have the following theorem.

Theorem 3: Let A Plˆn with rankpAq “ r. Let A1 Prˆn

denote a foll row rank sub-matrix of A. Then for any N Plˆn

that satisfies
⃦⃦

A`
1

⃦⃦
2 ∥N∥2 ă 1 we have

dpxAy, xA ` Nyq ď p?
rd ` ?

∆q2, (20)

where rd is the rank deficiency of A, as defined in (18). Also,

∆ def“ 2ϵ ` ϵ2, (21)

where

ϵ
def“ p p1 ` ?

2qκpA1q
1 ´ ⃦⃦

A`
1

⃦⃦
2 ∥N∥2

.
∥N∥
∥A1∥2

q2. (22)

The proof is omitted due to space constraints, please see
[13] for the proof.

Theorem 3 shows that the additive noise affects the output
of the analog operator channel in two ways. It, in a sense,
rotates the output subspace by a value upper bounded by ∆ and

also implicitly induces an extra interference term of dimension
upper bounded by rd (For simplicity, we consider the worst
case scenario where this dimension is rd). This motivates us
to define the noisy analog operator channel as follows. First,
we define a stochastic operator R∆, called rotation operator,
which takes a subspace U P PpWq as the input and returns a
random subspace V P PpWq with dimpVq “ dimpUq as the
output such that dpU, Vq ď ∆.

Definition 6: A noisy analog operator channel associated
with the analog ambient space W is a channel with input U
and output V, where U, V P PpWq, with the following input-
output relation:

V “ R∆
`

HkpUq ‘ E
˘ ‘ F, (23)

where HkpUq and E induce subspace erasures and errors,
respectively, as in the analog operator channel model, defined
in Definition 1, R∆ is the rotation operation defined above, and
F is the implicit interference caused by the additive noise.

The following theorem extends the result of Theorem 1 to
take into account the effect of the additive noise as well as
subspace errors and erasures.

Theorem 4: Consider a subspace code C used for commu-
nication over a noisy analog operator channel, as defined in
Definition 6, i.e., the input to the channel is U P C. Let t,
ρ, and rd denote the dimension of errors, erasures, and the
implicit noise interference F, respectively. Then the minimum
distance decoder successfully recovers the transmitted code-
word U P C from the received subspace V if

ρ ` t ` pa

ρ ` t ` ∆ ` ?
∆ ` 2

?
rdq2 ă dminpCq. (24)

The proof is omitted due to space constraints, please see
[13] for the proof.
Remark 3. Note that Theorem 4 reduces to Theorem 1 by
setting rd “ ∆ “ 0. In other words, Theorem 4 properly
extends the result of Theorem 1, on relating the minimum
distance of analog subspace codes to their error-and-erasure
correction capability, to the noisy analog operator channel sce-
nario. In practice, the implicit noise interference term F and,
consequently, the term rd in (24) can be potentially removed
by simply discarding a certain number of received blocks at
the receiver. However, this requires knowing the rank of the
received signal by the receiver which may not be readily avail-
able due to the assumptions on non-coherent communications.
This can be further explored when considering a practical
wireless networking scenario to see whether such information,
i.e., the rank of the received signal, can be obtained or well-
approximated, e.g., using principal component analysis (PCA)
methods, by the receiver. Also, as shown in Theorem 3, the
other term, besides rd, resulting from the additive noise that
affects the output subspace is ∆. Note that for a fixed signal
matrix A, as ∥N∥ Ñ 0, we have ϵ Ñ 0 as well as ∆ Ñ 0,
where ϵ and ∆ are specified in (22) and (21), respectively. This
together with a procedure to remove the rd term, as discussed
above, show that the analog operator channel can be made
robust with respect to the additive noise, i.e., the subspace
distance perturbation in the received signal matrix, caused by
the additive noise, goes to zero as ∥N∥ Ñ 0.
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