A Study of the Learnability of Relational Properties
Model Counting Meets Machine Learning (MCML)

Muhammad Usman
University of Texas at Austin, USA
muhammadusman@utexas.edu

Kaiyuan Wang"
Google Inc., USA
kaiyuanw@google.com

Abstract

This paper introduces the MCML approach for empirically
studying the learnability of relational properties that can be
expressed in the well-known software design language Alloy.
A key novelty of MCML is quantification of the performance
of and semantic differences among trained machine learning
(ML) models, specifically decision trees, with respect to en-
tire (bounded) input spaces, and not just for given training
and test datasets (as is the common practice). MCML reduces
the quantification problems to the classic complexity the-
ory problem of model counting, and employs state-of-the-art
model counters. The results show that relatively simple ML
models can achieve surprisingly high performance (accuracy
and F1-score) when evaluated in the common setting of using
training and test datasets — even when the training dataset is
much smaller than the test dataset — indicating the seeming
simplicity of learning relational properties. However, MCML
metrics based on model counting show that the performance
can degrade substantially when tested against the entire
(bounded) input space, indicating the high complexity of
precisely learning these properties, and the usefulness of
model counting in quantifying the true performance.

CCS Concepts: - Mathematics of computing — Spectra

Wenxi Wang
University of Texas at Austin, USA
wenxiw@utexas.edu

Haris Vikalo
University of Texas at Austin, USA
hvikalo@ece.utexas.edu

of graphs; - Computing methodologies — Cross-validation.

Keywords: Relational properties, machine learning, model
counting, SAT solving, Alloy, ApproxMC, ProjMC

“Research performed while at the University of Texas at Austin.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI 20, June 15-20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.3386015

1098

Marko Vasic
University of Texas at Austin, USA
vasic@utexas.edu

Sarfraz Khurshid
University of Texas at Austin, USA
khurshid@ece.utexas.edu

ACM Reference Format:

Muhammad Usman, Wenxi Wang, Marko Vasic, Kaiyuan Wang,
Haris Vikalo, and Sarfraz Khurshid. 2020. A Study of the Learnabil-
ity of Relational Properties: Model Counting Meets Machine Learn-
ing (MCML). In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’20), June 15-20, 2020, London, UK. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3385412.3386015

1 Introduction

Relational properties which relate abstract entities that can
be viewed as vertices in a graph via edges that define the
relations, e.g., the connectivity of a social network, or of an
object graph on the heap, offer various benefits in the devel-
opment of software systems [30, 48, 58]. For example, they
enable automated analyses of software requirements, de-
signs, specifications, and implementations [37]. However, in
most cases, to benefit from the analyses the properties must
be written manually. For complex systems [51, 72], writing
them correctly is challenging, and faults in the properties’
statements can lead to erroneous confidence in correctness.

Our motivation is to leverage advances in machine learn-
ing (ML) to enhance software analyses, thereby improving
software quality and reducing the cost of software failures.
Our focus is on training binary classifiers that characterize
relational properties. Such classifiers, once trained to have
high accuracy, can offer much value in automated software
analysis. For example, an executable classifier can serve as a
run-time check, e.g., in an assertion, to validate that the pro-
gram states at that point conform to the property represented
by the classifier. Moreover, executable checks enable auto-
mated test input generation [5, 38], static analysis [19, 55],
error recovery [14, 35], and automated theorem proving [13].

ML models can also be utilized in tandem with program
synthesis techniques such as those based on sketching [56],
e.g., a decision tree can provide the basis for a sketch that is
completed by synthesis, or holes in a sketch can be filled in
by the decision tree logic [22]. Moreover, learnt properties,
even when somewhat imprecise, can be useful for the devel-
oper, e.g., a decision tree that approximates the properties of
program states at a specific control point can provide insight
into likely program behaviors and help seed other analyses.

PLDI 20, June 15-20, 2020, London, UK

In this paper, we introduce the MCML approach for em-
pirically studying the learnability of a key class of relational
properties that can be written in the well-known software
design language Alloy [30]. Our aim is not to formalize learn-
ability [4] of relational properties; rather, we aim to perform
controlled experiments and rigorously study various well-
known properties over small relations and graphs in order
to gain insights into the potential role of ML methods in this
important domain. Specifically, we consider training binary
classifiers with respect to relational properties such that the
trained classifiers accurately represent the properties, e.g.,
training a decision tree classifier to accurately classify each
input as a directed-acyclic graph (DAG) or not a DAG.

A key novelty of MCML is that it allows quantifying the
performance of trained decision tree models with respect to
the entire input space (for a bounded universe of discourse)
by utilizing given ground truth formulas, thereby enabling
an evaluation of learnability that is not feasible using the
commonly used ML approaches based on training and test
datasets alone. Likewise, MCML allows quantifying differ-
ences among trained decision tree models for the entire
(bounded) input space.

To quantify model performance and differences — irre-
spective of the datasets - MCML reduces the quantification
problems to the classic complexity theory problem of model
counting, which is to compute the number of solutions to a
logical formula [21]. The formulas in our case represent se-
mantic differences between the ground truth and the trained
model, or between the two models. Given ground truth ¢ and
decision tree d, the false negative count for d is the model
count of “p A /" where i is d’s logic that leads to the output
“0” because any solution to “¢p A " conforms to the ground
truth but leads the decision tree to output “0”; likewise, the
false positive count for d is the model count of “=¢ A7” where
7 is d’s logic that leads to the output “1”. The true positive
and true negative counts are defined similarly. Using these
counts accuracy, precision, recall and F1-score can be de-
rived. Furthermore, given two decision trees d; and da, their
semantic difference, i.e., the number of inputs for which the
tree outputs differ, is the sum of the model count of “y; A 7"
and the model count of “r1 A /»”, where i/; is d;’s logic that
outputs “0”, and 7; is d;’s logic that outputs “1” (i € {1, 2}).

Model counting generalizes the propositional satisfiability
checking (SAT) problem, and is #P-complete [49]. Despite
the theoretical complexity, recent technological and algorith-
mic advances have led to practical tools that can handle very
large state spaces [15, 26]. To embody MCML and quantify
the performance and differences by means of model count-
ing we employ two state-of-the-art tools: ApproxMC, which
uses approximation techniques to estimate the number of
solutions with high precision and provides formal guaran-
tees [57]; and ProjMC [39], which uses an effective disjunc-
tive decomposition scheme to compute the exact number of
solutions. As is common with many tools for propositional

1099

Usman, Wang, Vasic, Wang, Vikalo, and Khurshid

logic, ApproxMC and ProjMC take as input propositional
formulas in conjunctive normal form (CNF) — the standard
input format for SAT solvers. To create model counting prob-
lems in CNF, we define a translation from decision trees
to CNF in the spirit of previous work [25]. The translation
creates succinct CNF formulas that are linear in the size of
the input trees.

To train ML models, we use the standard practice of em-
ploying training datasets. To evaluate the trained models, we
use both the standard practice of employing test datasets and
the MCML metrics. Our study has three key distinguishing
characteristics: 1) for each property, we use bounded exhaus-
tive sets of positive samples which contain every positive
sample (up to partial symmetry breaking) within a bounded
universe of discourse; 2) we leverage ground truth formu-
las to quantify the performance of trained decision trees
with respect to the entire input space, not only the given
datasets; and 3) we quantify semantic differences among dif-
ferent trained decision trees with respect to the entire input
space without the use of ground truth formulas. Moreover,
we evaluate different strategies for splitting the datasets into
training sets and test sets, including ratios where the amount
of training data is much smaller than the amount of test data.

To create the datasets for learning, we rely on logical for-
mulas that describe the relational properties in Alloy — a
first-order language with transitive closure [30]. For each
property, we use Alloy’s SAT-based back-end to enumerate
all the solutions, i.e., valuations that exhibit the property,
up to Alloy’s default symmetry breaking which heuristically
removes many but not all isomorphic solutions. The solu-
tions created by the Alloy analyzer serve as the samples for
training and test/evaluation. The solution spaces are very
large — even with small bounds on the number of entities
in the relations. For non-trivial properties, the number of
positive samples is far smaller than the number of negative
samples, and exhaustive enumeration of all negative samples
is intractable. To avoid erroneously biasing the ML models to
simply predict false if the datasets overwhelmingly consist
of negative samples, we create balanced sets that contain the
same number of positive and negative samples [18].

As subjects, we use six ML models, including decision
trees, SVMs, and multi-layer perceptrons, and train them us-
ing datasets from 16 relational properties over small relations
and graphs. We use the adjacency matrix representation for
each data item in the training and test datasets; for example,
for a relation over 7 entities, i.e., a graph with 7 vertices, we
use 49 boolean inputs for the binary classifier which out-
puts true or false as the predicted value, and the space of all
possible inputs has 2% elements.

The results show that relatively simple ML models can
achieve surprisingly high performance (accuracy and F1-
score) at learning relational properties when evaluated in
the common setting of using training and test datasets — even
when the training dataset is substantially smaller than the

A Study of the Learnability of Relational Properties

test dataset — indicating the seeming simplicity of learning
these properties. However, the use of MCML metrics based
on model counting shows that the performance can degrade
substantially when tested against the entire (bounded) input
space, indicating the high complexity of precisely learning
these properties, and the usefulness of model counting in
quantifying the true performance.

The contributions of this paper are as follows. 1) Learning
relational properties. We present a systematic study of learn-
ing 16 relational properties using 6 off-the-shelf machine
learning models; 2) Model counting to quantify performance.
We reduce the problem of evaluating the performance of
trained decision tree models over the entire input space with
respect to ground truth formulas to the problem of model
counting, and employ cutting edge approximate and exact
counters to embody the reduction; and 3) Model counting to
quantify semantic differences. We also introduce the use of
model counting to quantify semantic differences between
trained decision trees over the entire input space — without
the need for ground truth formulas or evaluation datasets.

We believe the use of model counting in learning is a
promising research area that can help gain deeper insights
into the trained models, which can inform practical decisions
on how to best utilize the models. For example, if a trained
model in a deployed system is to be upgraded to a more
sophisticated model, model counting could be a metric that
in part informs the decision to upgrade.

2 Related Work

To our knowledge, MCML is the first work to introduce the
use of model counting to quantify performance of trained
decision trees with respect to ground truth formulas and to
quantify semantic differences among different decision trees.
Model Counting Applications in ML. The use of model
counting in machine learning has focused largely on proba-
bilistic reasoning [9, 16, 20, 40]. Recent work by Baluta [2]
introduced model counting for quantifying differences be-
tween binarized neural networks [28] that admit a transla-
tion to SAT/CNF [45]. This translation enables our MCML
metrics to generalize beyond decision trees and become ap-
plicable to quantify the performance of binarized neural
networks with respect to the entire input space. The MCML
metrics also directly generalize to other techniques that use
different solvers for model counting, e.g., techniques based
on ODDs and OBDDs [38, 53].

Verification and Testing of ML models. Verification and
testing of machine learning models is an active area of re-
search, including work on novel decision procedures such as
Reluplex [27, 34], which has been optimized for the analysis
of neural networks with ReLU activation functions, testing
trained models [46, 60], applying symbolic execution [24, 59],
and inferring verifiable policies by mimicking deep rein-
forcement learning agents [3, 68]. A key difference between

1100

PLDI ’20, June 15-20, 2020, London, UK

MCML and previous work on verification of properties of
trained models is the focus of previous work on either verify-
ing properties of one trained model, or checking equivalence
or implication between two models. In contrast, MCML met-
rics apply in a more general setting, even when two models
are neither equivalent nor such that one implies the other.

For translating decision trees to CNF formulas, Hastad [25]
introduced the idea to represent a decision tree as a Disjunc-
tive Normal Form (DNF) formula. He also showed that these
DNF formulas are convertible to Conjunctive Normal Form
(CNF) formulas. MCML leverages this work and uses CNF
formulas of trained decision trees to create the quantification
problems. While the formulas MCML creates are optimal in
terms of the size of the CNF formula with respect to the given
input tree in the general case, an alternative approach is to
use re-writing, e.g., aka compilation [8, 53], to create smaller
CNF formulas in some specific cases. However, re-writing
itself has a cost, which can be substantial for non-trivial for-
mulas, e.g., with hundreds of variables (as for our subjects).
Moreover, when compilation transforms a decision tree to a
simpler decision tree, MCML works in tandem with compila-
tion: first apply re-writing to reduce the tree, and then use
MCML’s translation to create a reduced CNF formula.
Analyzing Learnability. Efforts to understand the ability
of a machine learning model to generalize are at the core of
statistical learning theory. The key concepts for establishing
such results include the Probably Approximately Correct
(PAC) learning framework [65], Vapnik- Chervonenkis (VC)
theory [67], and the general learning setting [52, 66]. These
techniques enable formal analytical characterization of the
number of examples needed to train models for binary clas-
sification tasks and may provide useful intuition and offer
guidance about the design of learning algorithms. Blumer [4]
showed that the finiteness of Vapnik-Chervnenkis (VC) di-
mension is a basic requirement for distribution-free learning.
In particular, by relying on the VC dimension, he analyzed
the performance in terms of closure and complexity and
provided a detailed set of conditions for learnability.

The PAC learnability concepts, however, provide limited
insight in the performance of methods for learning relational
properties. This is because the number of positively labeled
samples in the domain set (i.e., the space of relational prop-
erties) is often orders of magnitude smaller than the number
of negatively labeled ones. Therefore, Precision, Recall and
F1-score, formally defined in Section 5, are rather more in-
formative performance metrics than the average 0-1 loss;
the latter is the focus of the PAC learnability analysis. In
contrast, MCML can precisely quantify generalizability both
in terms of the accuracy (i.e., the 0-1 loss) as well as precision,
recall and F1-score with respect to a given ground truth.

Indeed, our study complements existing theoretical frame-
works by providing insights based on empirical evidence
from controlled experiments using various relational prop-
erties that are common in software systems.

PLDI 20, June 15-20, 2020, London, UK

sig S{r: set S} // r is a binary relation of type SxS
pred Reflexive() { all s: S| s->s inr }
pred Symmetric() {
all s, t: S | s>t in r implies t->s in r }
pred Transitive() { all s, t, u: S |
s=>t in r and t->u in r implies s->u in r }
pred Equivalence() {
Reflexive and Symmetric and Transitive }
E4: run Equivalence for exactly 4 S

Figure 1. Alloy specification with one set S, one binary re-
lation r, four predicates (Re flexive, Symmetric, Transitive,
and Equivalence), and one command (E4).

Learning Program Properties. In the context of learning
properties of code, specifically of dynamic data structures
in Java programs, two recent projects [43, 64] used a variety
of machine learning models to show the effectiveness of
off-the-shelf models. However, both these projects used the
traditional metrics with training and test datasets, and did
not evaluate the performance of the trained models with
respect to the entire (bounded) input spaces. More broadly,
machine learning enabled automated detection of program
errors and repair of faults [6, 41].

Alloy. Alloy has been used in several projects: for design
and modeling of software systems [1, 11, 31, 36, 70, 73]; for
software analyses, including deep static checking [17, 32],
systematic testing [42], data structure repair [50, 71], and
automated debugging [23]; for analysis of hardware sys-
tems [10, 61, 62]; and testing and studying model coun-
ters [44, 69]. MCML introduces the use of Alloy for creat-
ing training and test data for machine learning models and
leverages Alloy’s backend for creating CNF formulas that
represent the ground truth.

3 Example

Figure 1 shows an Alloy specification that declares a set (sig)
S of atoms, a binary relation r : $X S, and four predicates (i.e.,
formulas) that specify reflexive, symmetric, transitive, and
equivalence relations. The keyword “all” is universal quan-
tification, “in” is subset, “and” is conjunction, and “implies”
is implication. The operator ‘->’ is Cartesian product; for
scalars s and t, s->t is the pair (s, t). The command “E4:
Equivalence for exactly 4 S” instructs the Alloy analyzer
to solve the formula(s) that define equivalence relation with
respect to a scope, i.e., bound, of exactly 4 atoms in set S. The
analyzer uses the bound to translate the Alloy specification
to a propositional satisfiability formula, and uses off-the-
shelf SAT solvers to solve it. The Alloy analyzer supports
incremental solvers that can enumerate all solutions.
Executing the command E4 and enumerating all solutions
creates the 5 solutions illustrated in Figure 2. Note, each
solution is non-isomorphic. The Alloy analyzer adds sym-
metry breaking predicates during the translation, which
breaks several (but, in general, not all) symmetries [54]. The

run

1101

Usman, Wang, Vasic, Wang, Vikalo, and Khurshid

Y &
Py
\o@

Qv
Q)

o &
o |

N

>%H
C’/.o

(sl
f&
‘3[

20

b

Figure 2.5 non-isomorph1c equlvalence relations.

space of all candidate solutions for the command E4 has size
21665536 since each candidate is a 4 X 4 matrix of boolean
variables. Note, how quickly the state space grows as the
number of vertices increases, e.g., for just 7 vertices, the state
space has size 27") = 249 which is greater than 10,
ApproxMC. To illustrate the use of ApproxMC, consider
estimating the number of solutions for the Equivalence predi-
cate with scope 20. The Alloy command “E20: run Equivalence
for exactly 20 S” defines the constraint solving problem.
The Alloy analyzer translates this problem to a CNF formula
that has 18,666 variables (of which 400 are primary variables)
and 27,202 clauses. ApproxMC solves this CNF formula in
17.8 seconds and reports an approximate model count of
11,264. The exact model count, which we calculate using the
Alloy analyzer (which uses an enumerating SAT solver), is
10,946, i.e., the ApproxMC count is within 3% error rate.
ProjMC. To illustrate the use of ProjMC, consider comput-
ing the exact model count for the Equivalence predicate for
scope 20. Given the CNF formula for the Alloy command E20,
ProjMC reports the exact model count of 10,946 in 351.1 sec-
onds. The count reported by ProjMC is, as expected, the
exact number of solutions we get using the Alloy analyzer.

4 MCML Approach

Our approach, called MCML, introduces the use of model
counting for quantifying performance of decision tree mod-
els in machine learning (ML). MCML is embodied by two
techniques: Accpyec, which quantifies the performance of
trained ML models with respect to ground truth formulas;
and Diffyrc, which quantifies the semantic differences be-
tween two trained models. Both Accyrc and Diffyrc compute
the results with respect to the entire input space and do not
require any datasets.

We view a decision tree as
a set of paths; any input fol-
lows exactly one path, and
each path is a conjunction of
branch conditions such that
each condition contains one
input variable [29]. Since our

(o] (o]

Figure 3. A decision tree.

A Study of the Learnability of Relational Properties

Alloy Actye
Analyzer
MCPGen Model ”
mci,
@ Tree2CNF Counter "
| metric id |

(a) Quantifying the performance of decision tree d w.r.t. ground

truth ¢.
Co—

metric id

(b) Quantifying differences between trees dj and ds.
Figure 4. MCML Framework.

Diff,

mMc

Model
Counter

MCPGen
Tree2CNF

focus is on relational properties over graphs that are repre-
sented using adjacency matrices, the input variables for the
decision tree are all binary and so is the output. Moreover,
each branch condition on any path is simply of the form
either “('v)”, i.e., input v is “0” (false), or “(v)”, i.e., input v is
“1” (true). Therefore, each branch condition is simply a literal,
i.e., a variable or its negation. Figure 3 illustrates a decision
tree with 2 inputs (x and y) and 4 paths ([x, y], [x, 'y], ['x, y],
and [!x, ly]).

Accpyc: Quantifying model performance. Assume prop-
erty ¢ (ground truth) is learned by a decision tree d that is
a binary classifier with n inputs and so the input space has
size 2". Assume d has t unique paths py,...,p; (t > 0) that
predict label true, and f unique paths g1, ..., gy (f > 0) that
predict label false. For path p, let /(p) be the conjunction
of branch conditions along p; we refer to ¥/(p) as the path
condition for p [47]. We define the following four metrics
based on model counting to generalize (for the entire 2"
input space) the traditional metrics of true positives (tp), false
positives (fp), true negatives (tn), and false negatives (fn),
where mc(a, b) represents the model count for the formula a

with respect to bound b: ,

tp(¢.d) = me(d A v Y(pi).n) (1)
Fo(¢.d) = me(= A \j/lwpi), n) (2)
tn(g,d) = me(~ A Qw(q», n) (3)
fFr(g.d) = me(p A quo, n) (4)

The formula \/!_, ¢/(p;) characterizes the inputs that the
decision tree t classifies as true; the formula is a disjunction

1102

PLDI ’20, June 15-20, 2020, London, UK

of the path conditions for the paths that predict true and
any input that is classified as true must be a solution to
exactly one of these paths. For example, for the decision tree
depicted in Figure 3, the path condition formula for label true
should be (x Ay) V (IxAly). Likewise, the formula \/J;:1 ¥(qi)
characterizes the inputs that the tree ¢ classifies as false.
While a direct application of our metrics requires the
ground truth formula ¢ that characterizes the property of
interest, the metrics are also applicable when ¢ is not known.
Specifically, the metrics naturally generalize to allow quan-
tifying differences in two trained models, again without re-
quiring any datasets for quantification.
Diffupc: Quantifying model differences. Let d; and d; be
decision trees that are trained as binary classifiers (using the
same or different datasets) with n inputs. Let d; have paths
pPis-..,py, (t1 = 0) that predict true and paths ¢, ..., qs
(fi = 0) that predict false. Let dy have paths ry,...,ry,
(t2 2 0) that predict true and paths sy, ..., sg (f2 2 0) that
predict false. The following four metrics quantify the num-
ber of inputs (in the entire 2" input space) for which d; and
dz make the same decision - tt, i.e., both predict true, or f f,
i.e., both predict false — and numbers of inputs for which
the decisions differ - ¢ f, i.e., d; predicts true but d predicts
false, and ft, i.e., d; predicts false but d; predicts true:

tt(dr,dy) = me(\/ $(pi) A \/ ¥(rpm) (5)
i=1 j=1
51 f2

tf(ddo) = me(\/ o) A\ Y(shm)(6)

i=1 Jj=1

h Sz
Ffdido) = me(\/ Y@y A \/ yisp.m) ()
i=1 j=1

h 2}
frldi dy) = me(\/ 9(g) A \/ Y(rpm) ()
i=1 j=1

The semantic difference (dif) in d; and ds is quantified
as the ratio of the number of inputs x such that decisions
for x differ between d; and ds, to the total number of inputs;
and the similarity (sim) in d; and d; is quantified as the ratio
of the number of inputs x such that predicted labels for x
match between d; and ds, to the total number of inputs:

tf(dla dz) + ft(dlv dz)

dif f(ds.dy) = - o
sim(dy, dy) = tt(di, d>) ernff(dl, d>) (10)
ie, sim(dy, dy) = 1~ dif f(d,do) (1)

Framework. We embody the metrics into a prototype frame-
work that translates decision trees to CNF and leverages off-
the-shelf model counters. Figure 4a illustrates the key steps

PLDI 20, June 15-20, 2020, London, UK

to quantify the performance of a trained decision tree model
d with respect to the ground truth ¢ written in Alloy. ¢ is
translated by the Alloy analyzer with respect to bound b (e.g.,
20 vertices) into a CNF formula cn fy. The module MCPGen
takes as input d and cnfy, translates the relevant parts of d
with respect to the desired metric (tp, fp, tn, and fn) into
CNF using the sub-module Tree2CNF, and outputs the CNF
formula cnfy 4 which defines the model counting problem.
The CNF is an input to the model counter (e.g., ApproxMC
and ProjMC) that outputs the approximate model count and
exact model count respectively. Figure 4b illustrates the key
steps to quantifying the semantic differences between two
trained decision tree models d; and d,.

Translating decision tree logic to CNF. The goal of the
sub-module Tree2CNF is to translate a formula p of the form
VK (p;), which represents either all the paths that predict
label true or all the paths that predict label false, to CNF. p is
originally in disjunctive normal form and can be translated to
CNF using various techniques. One standard technique is to
apply propositional equivalences and De Morgan’s laws [33];
however, this technique can lead to a blow-up in the size of
the formula that can negatively impact the back-end solver’s
performance. Another standard technique is to apply the
Tseitin transformation [63] which creates formulas linear in
the size of the input; however, this technique uses auxiliary
variables and creates an equisatisfiable (but not necessarily
equivalent) formula which can have a different model count
than the original formula.

Our translation uses the following observation [25] that
allows a translation which does not cause a blow up in the
formula size and preserves the model counts: any input that
does not get classified as true gets classified as false and
vice versa. Therefore, if each 1/(p;) is a path condition for a
path that leads to label true and p = szlxﬁ(pi) represents
the decision tree logic that predicts true, the negation of p
characterizes the decision tree logic that predicts false. The
formula —p immediately simplifies to CNF because —p =
= Vf?zl Y(p;) = /\f?zl—uﬁ(p,-) and each /(p;) is a conjunction of
literals; therefore, each —i/(p;) is a disjunction of literals. For
example, for the decision tree in Figure 3, the path condition
formula for label false is the negation of the path condition
formula for label true, that is !((x A y) V (IxAly)) which can
be directly translated into CNF formula (!xV!y) A (x V y).
Analysis. Our translation creates a compact formula directly
in CNF without introducing any auxiliary variables — both
for output label true and for label false. For a decision tree
with n leaf nodes, the number of path conditions (PCs) is n,
i.e., linear in the tree size. If there are k features, the size of
the CNF formula is O(nk): each PC has < k conditions, each
condition is a literal, and the formula is a conjunction of the
negation of each PC. Thus, in terms of the size of the formula
for the back-end solver, the translation is an optimal choice
for CNF with no auxiliary variables used in the general case.

1103

Usman, Wang, Vasic, Wang, Vikalo, and Khurshid

Our tool embodiment of MCML supports two state-of-the-
art back-ends: 1) the exact model counter ProjMC [39]; and
2) the approximate model counter ApproxMC [57].

5 Study

This section describes our study methodology and summa-
rizes the evaluation results for the 16 relational properties
(Table 1) and 6 machine learning models (decision trees (DT),
random forest decision trees (RFT), Adaboost decision trees
(ABT), gradient boosting decision trees (GBDT), support
vector machines (SVM) and multi-layer perceptrons (MLP)
studied. The properties include: anti-symmetric, bijective,
connex, equivalence, function, functional, injective, irreflex-
ive, non-strict order, partial order, pre-order, reflexive, strict
order, surjective, total order and transitive.

Generation of positive and negative samples. For each
property and scope, we use Alloy to create two sets of solu-
tions — positive solutions, which satisfy the property, and
negative solutions, which negate it. For positive solutions,
we use the set of all solutions enumerated by Alloy’s backend
SAT engine (with respect to the scope). Due to the complex
nature of the properties, the number of negative solutions
is much larger than the number of positive solutions, and
it is infeasible to exhaustively enumerate all negative solu-
tions. To create the set of negative solutions, we sample them
at random from the entire state space (with respect to the
scope). Specifically, to sample a negative solution, we first
create a candidate solution at random and then confirm that
it does not satisfy the property using the Alloy Evaluator,
which simply evaluates the corresponding Alloy formula by
replacing all the variables in the formula with the values in
the given candidate solution, and using constant propagation
(without any constraint solving).

Each data sample has a feature vector and a binary label
that is 1 for the positive class and 0 for the negative class.
The features linearly represent the adjacency matrix, e.g., if
the scope of a property is 7, a 49-bit feature vector is used.
Selection of scope and symmetry breaking. We study
each property under two settings for symmetry breaking.
The first setting is when Alloy’s default symmetry breaking
constraints are used; in this setting we choose the smallest
scope such that there are >10,000 positive solutions. The
second setting is when no symmetry breaking constraints
are added by the Alloy analyzer; in this setting, we choose the
smallest scope such that there are >90,000 positive solutions.

Table 1 tabulates for each property, the scope (i.e., number
of atoms in set S), the size of the input space, the number of
positive samples created by Alloy, the count of positive sam-
ples estimated by ApproxMC, the count of positive samples
estimated by ApproxMC when symmetry breaking is turned
off, the count of positive samples given by ProjMC and the
count of positive samples given by ProjMC when symmetry
breaking is turned off.

A Study of the Learnability of Relational Properties

PLDI ’20, June 15-20, 2020, London, UK

Table 1. Subject properties and model counts. For each property, the scope used, the size of the state space, the number of
positive samples created by Alloy using its default enumeration with symmetry breaking, the count estimated by ApproxMC
with symmetry breaking, the count estimated by ApproxMC without symmetry breaking, the count computed by projMC

with symmetry breaking, and the count computed by ProjMC without symmetry breaking are shown. “-

B

” indicates time-out.

Property Scope | State | Valid- Est-Valid- Est-Valid- Valid- Valid-
Space | SymBr SymBr NoSymBr SymBr | NoSymBr

(Alloy) | (ApproxMC) | (ApproxMC) | (ProjMC) | (ProjMC)

Antisymmetric 5] 2% | 56723 55296 1998848 56723 | 1889568
Bijective 14| 219 | 25043 25088 - 25043 -
Connex 6| 23 |148884 147456 14680064 | 148884 | 14348907
Equivalence 20 | 2100 | 10946 11264 - 10946 -
Function 8| 26 | 16531 16640 17563648 16531 | 16777216
Functional 8| 2% | 35017 35328 48234496 35017 | 43046721
Injective 8| 20 | 16531 16640 17563648 16531 | 16777216
Irreflexive 5| 2% | 35886 36352 2686976 35886 | 1048576
NonStrictOrder 7| 29 | 26387 26112 6422528 26387 | 6129859
PartialOrder 6| 2% | 82359 88064 8126464 82359 | 8321472
PreOrder 7| 29 | 43651 43008 9175040 43651 | 9535241
Reflexive 5| 225 | 35886 35840 1048576 35886 | 1048576
StrictOrder 7| 2% | 26387 29184 6815744 26387 | 6129859
Surjective 14| 219 | 25043 25088 - 25043 -
TotalOrder 13| 2'%° | 15511 14848 | 5502926848 15511 -
Transitive 6| 2% | 95564 102400 9306112 95564 | 9415189

Training models. A key decision in evaluating ML models
is to select the training and test ratio. We use 5 different ratios
for training:test, specifically 75:25, 50:50, 25:75 10:90 and 1:99
to evaluate a wide range of settings. There is no overlap in
the training and test datasets. We performed the experiments
using basic out-of-the-box models. We explored tuning the
hyper-parameters but the results were only marginally im-
proved and the small increase in accuracy was offset by a
much larger increase in time spent on tuning. We report the
results obtained using the basic models without tuning of
hyper-parameters. We used Python programming language
and Scikit-Learn Library to implement machine learning
models. We kept time-out of 5000 seconds which is common
in field of model counting.
Performance metrics. We used four standard metrics to
determine the quality of classification results: accuracy, i.e.,
TP+TN ; precision, i.e., %; recall, i.e., %; and

TP+FP+TN+FN”’

_ ; 2xPrecision*Recall
Fl-score, ie., Precision+Recall *

Due to space limitations we show results for select proper-
ties and focus on ApproxMC. Complete results of all proper-
ties for ApproxMC and ProjMC with respect to all ratios and
list of metadata items such as number of primary variables,
total variables and total clauses for each property are avail-
able at : https://github.com/muhammadusman93/MCML-
PLDI2020. Alloy specifications of the properties and the de-
tailed results are also available at the GitHub repository. All
experiments were performed on Ubuntu 16.04 with an Intel
Core-i7 8750H CPU (2.20 GHz) and 16GB RAM.

Research questions. We answer the following research
questions in our empirical study.

e RQ1: How effective are ML models in learning rela-
tional properties?

Table 2. Classification results on the test set for PartialOrder.
“Training:Test” ratio is shown in the left column, and default
Alloy symmetry breaking is used to create datasets.

Ratio | Model | Accuracy | Precision | Recall | F1-score
7525 | DT | 09996 | 0.9992 |1.0000 | 0.9996
RET | 0.9999 | 0.9998 | 1.0000 | 0.9999
GBDT | 0.9951 | 0.9905 |0.9997 | 0.9951
ABT | 09412 | 09396 |0.9425 | 0.9411
SVM | 09993 | 0.9985 | 1.0000 | 0.9993
MLP | 0999 | 0.9993 | 1.0000 | 0.9996
25:75 | DT | 09983 | 0.9968 |0.9999 | 0.9983
RET | 09996 | 0.9993 | 1.0000 | 0.9996
GBDT | 0.9952 | 0.9906 |0.9998 | 0.9952
ABT | 09419 | 0.9401 |0.9441 | 0.9421
SVM | 09987 | 0.9973 | 1.0000 | 0.9987
MLP | 0.9991 | 0.9982 |1.0000 | 0.9991
1:99 | DT | 09798 | 0.9656 |0.9949 | 0.9801
RFT | 09931 | 0.9937 |0.9926 | 0.9931
GBDT | 0.9904 | 09846 |0.9964 | 0.9904
ABT | 09387 | 09351 |0.9428 | 0.9389
SVM | 09769 | 09767 |0.9772| 0.9770
MLP | 09909 | 0.9867 |0.9953| 0.9910
e RQ2: How well do ML (decision tree) models general-
ize (outside of the test set)?
¢ RQ3: How do symmetries in the dataset affect perfor-
mance of the ML models?
e RQ4: How does mismatch in symmetries present in
the training and evaluation sets affect the performance?
e RQ5: What is the quantitative difference between two

decision trees models?

5.1 Answers to the Research Questions

5.1.1 RQ1: How Effective are ML Models in Learning
Relational Properties? Table 2 summarizes performance
of ML classifiers for one selected property (PartialOrder). The

1104

PLDI 20, June 15-20, 2020, London, UK

Usman, Wang, Vasic, Wang, Vikalo, and Khurshid

Table 3. Decision tree performance on the test set (symmetries broken) and in respect to the entire state space encoded by

ground truth formula ¢ (constrained by symmetry breaking).

Property Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-score | Time[s]
Test Test | Test Test ¢ [l [l ¢
Antisymmetric 0.9913 0.9871] 0.9957 | 0.9914 0.9690 | 0.4576 | 0.9960 | 0.6271 0.9
Bijective 0.9971 0.9942 | 1.0000 | 0.9971 0.9729 | 0.0000 | 1.0000 | 0.0000 219.3
Connex 0.9996 0.9993 | 1.0000 | 0.9996 0.9992 | 0.0698 | 1.0000 | 0.1304 1.3
Equivalence 0.9958 0.9920 | 0.9997 | 0.9958 - - 0.9997 - -
Function 0.9954 0.9928 | 0.9980 | 0.9954 0.9924 | 0.0000 | 0.9982 | 0.0000 6.0
Functional 0.9991 0.9983 | 0.9998 | 0.9991 0.9943 | 0.0000 | 0.9998 | 0.0000 6.3
Injective 0.9979 0.9961 | 0.9998 | 0.9980 0.8889 | 0.0000 | 0.9998 | 0.0000 6.1
Irreflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.4
NonStrictOrder 0.9994 0.9989 | 1.0000 | 0.9994 0.9944 | 0.0000 | 1.0000 | 0.0000 3.1
PartialOrder 0.9963 0.9936 | 0.9990 | 0.9963 0.9675 | 0.0059 |0.9991 | 0.0116 2.3
PreOrder 0.9992 0.9985 | 0.9999 | 0.9992 0.9909 | 0.0000 | 0.9999 | 0.0000 3.5
Reflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.4
Strictorder 0.9991 0.9982 | 1.0000 | 0.9991 0.9915 | 0.0000 | 1.0000 | 0.0000 3.0
Surjective 0.9980 0.9961 | 1.0000 | 0.9980 0.9993 | 0.0000 | 1.0000 | 0.0000 208.1
TotalOrder 0.9994 0.9988 | 1.0000 | 0.9994 0.9983 | 0.0000 | 1.0000 | 0.0000 95.7
Transitive 0.9949 0.9910 | 0.9989 | 0.9949 0.9866 | 0.0030 | 0.9990 | 0.0059 2.1

dataset is generated using default Alloy symmetry breaking.
The dataset is further split into training and test datasets us-
ing different ratios (75:25, 25:75 and 1:99) to measure the per-
formance change when using different splits of the datasets.
All models exhibit high accuracy and F1-score, where the
accuracy is in range [0.94,1.00], the precision is in range
[0.94,1.00], the recall is in range [0.94,1.00], and the F1-
score is in range [0.94, 1.00]. Overall, all models achieve good
performance, and surprisingly even for a small training:test
ratio (1 : 99) models achieve good performance. We have also
performed similar experiments for all other relational prop-
erties (available at GitHub repository), and results are similar
as for the PartialOrder - accuracy is in range [0.92, 1.00],
and the F1-score is in range [0.92,1.00], where the lowest
accuracy is for Antisymmetric property. It is surprising to
note that on most of the properties, all models report accu-
racy > 0.92 even when trained on only 1% of dataset. The
results achieved demonstrate that relational properties are
learnable, and that even simple ML models are effective in
learning them.

5.1.2 RQ2: How Well do ML (Decision Tree) Models
Generalize (Outside of the Test Set)? In RQI we show
that ML models can exhibit high accuracy when learning
relational properties. Now, we move to the question of how
well do those models generalize outside of the test set. Our
framework allows us to answer that question for decision
tree models, which is focus of this section. Specifically, we
answer the question of how well the previously trained deci-
sion tree models perform in respect to the entire input space.
Table 3 compares performance of the (same) decision trees
models when evaluated: (1) on the test set, and (2) in respect
to the entire input space. Decision trees are trained using
10% of the constructed dataset (used in the previous section),
while the test set represents the remaining part of the dataset.

1105

Table 4. Classification results on the test set for PartialOrder
property. “Training:Test” ratio is shown in the left column,
and symmetry breaking is turned off when creating datasets.

Ratio | Model | Accuracy | Precision | Recall | F1-score
75:25 DT 0.9985 0.9970 | 1.0000 | 0.9985
RFT 0.9981 0.9963 | 1.0000 | 0.9981
GBDT | 0.9788 0.9593 | 1.0000 | 0.9792
ABT 0.8414 0.8636 | 0.8098 | 0.8359
SVM 0.9940 0.9881 1.0000 | 0.9940
MLP 0.9989 0.9978 | 1.0000 | 0.9989
25:75 DT 0.9966 0.9935 10.9997 | 0.9966
RFT 0.9963 0.9927 | 1.0000 | 0.9963
GBDT | 0.9780 0.9578 | 1.0000 | 0.9784
ABT 0.8394 0.8613 | 0.8085 | 0.8341
SVM 0.9901 0.9806 | 1.0000 | 0.9902
MLP 0.9977 0.9954 | 1.0000 | 0.9977
1:99 DT 0.9692 0.9511 | 0.9893 | 0.9698
RFT 0.9821 0.9699 | 0.9950 | 0.9823
GBDT | 0.9734 0.9495 | 1.0000 | 0.9741
ABT 0.8352 0.8409 | 0.8268 | 0.8338
SVM 0.9635 0.9320 | 1.0000 | 0.9648
MLP 0.9842 0.9704 | 0.9988 | 0.9844

Time shown is the total time taken by MCML for computing
all 4 performance metrics, where MCML leverages the model
counting techniques to predict the number of true positives
and negatives, and false positives and negatives. To evaluate
in respect to the entire input space we use the ground truth
formula constrained with symmetry breaking conditions !.

When decision trees are evaluated on the test set, accu-
racy, recall and F1-score is > 0.99 while precision is > 0.98.
However, when decision trees are evaluated on ground truth,
minimum accuracy decreases to 0.89, minimum precision
and F1-score decreases to 0.00 and minimum recall remains
at 0.99. Precision and F1-score is spread all over the range

!Symmetry breaking conditions are added so as to make distributions of
examples similar to the ones present in the training set. We later show
evaluation where we remove this constraint.

A Study of the Learnability of Relational Properties

PLDI ’20, June 15-20, 2020, London, UK

Table 5. Decision tree performance on the test set and in respect to the entire state space encoded by ground truth formula ¢

Property Accuracy | Precision | Recall | Fl-score | Accuracy | Precision | Recall | F1-score | Time[s]
Test Test | Test Test ¢ [l [l ¢

Antisymmetric 0.9997 0.9996 | 0.9998 | 0.9997 0.9996 | 0.9935 | 0.9998 | 0.9967 2.1
Bijective 0.9991 0.9982 | 1.0000 | 0.9991 0.9981 | 0.0000 | 1.0000 | 0.0000 225.8
Connex 0.9957 0.9933 | 0.9982 | 0.9957 0.9935 | 0.2258 |0.9985 | 0.3683 0.8
Equivalence 0.9997 0.9994 | 1.0000 | 0.9997 0.9995 | 0.0000 | 1.0000 | 0.0000 34.1
Function 0.9946 0.9900 | 0.9993 | 0.9946 0.9899 | 0.0001 | 0.9993 | 0.0001 2.4
Functional 0.9968 0.9940 | 0.9997 | 0.9969 0.9945 | 0.0003 | 0.9997 | 0.0006 2.6
Injective 0.9968 0.9940 | 0.9997 | 0.9969 0.9877 | 0.0001 | 0.9989 | 0.0001 2.3
Irreflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.5
NonStrictOrder 0.9990 0.9985 | 0.9994 | 0.9990 0.9983 | 0.0011 | 0.9995| 0.0022 1.9
PartialOrder 0.9934 0.9879 | 0.9991 | 0.9935 0.9864 | 0.2407 |0.9992 | 0.3879 1.2
PreOrder 0.9985 0.9974 1 0.9996 | 0.9985 0.9972 | 0.0012 | 0.9997 | 0.0024 2.0
Reflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.5
StrictOrder 0.9988 0.9979 | 0.9997 | 0.9988 0.9979 | 0.0009 | 0.9998 | 0.0019 1.9
Surjective 0.9988 0.9979 | 0.9997 | 0.9988 0.9984 | 0.0000 | 1.0000 | 0.0000 283.3
TotalOrder 0.9999 0.9997 | 1.0000 | 0.9999 0.9997 | 0.0000 | 1.0000 | 0.0000 8.4
Transitive 0.9999 0.9997 | 1.0000 | 0.9999 0.9760 | 0.1588 | 0.9902 | 0.2737 2.0

0 to 1, and is generally low. In-fact, out of 15 properties
that did not time-out, precision is around 0 on 12 properties.
This is because of high false positive rate showing that the
decision trees are classifying many negative instances as
positives. This indicates that the models are biased towards
classifying an example as positive, likely learning patterns
present in training dataset but not generalizable—applying
the models outside of the dataset will likely incur many false
positives. For the properties Reflexive and Irreflexive, the
models continue to have perfect performance since estab-
lishing these properties requires only checking the diagonal.
To summarize the findings, while the results in previous sec-
tion showed encouraging results of learnability of relational
properties, evaluation in respect to the entire input space
shows concerning issues (with false positives) if models are
to be used in the wild.

In summary, MCML'’s ability to quantify w.r.t. the entire

state space is of unique value as it quantifies model’s general-
izability, and avoids a false sense of confidence in traditional
ML metrics. In addition, MCML is also time efficient as it
reported results for 12 properties within 10 seconds and
3 properties within 220 seconds. It timed-out on only one
property (Equivalence), where the state space for possible
solutions is around 2%,
5.1.3 RQ3: How do Symmetries in the Dataset Affect
Performance of the ML Models? We now move on to
study the effect of symmetries in the dataset on ML models
performance. We perform experiments similar as in the RQ1
and RQ2 now shown in Table 4 and Table 5, but without
performing symmetry breaking on training and evaluation
sets.

Table 4 summarizes performance of ML classifiers for one
selected property (PartialOrder). The dataset is generated
without performing symmetry breaking. Across all ratios,
the accuracy is > 0.83, the precision is > 0.84, the recall
is > 0.80, and the F1-score is > 0.83. We have performed

1106

experiments for other properties (available at GitHub repos-
itory), and noticed similar trends. Across all 16 properties,
all 5 ratios, and all 6 ML models, the accuracy is > 0.82, the
precision is > 0.81, the recall is > 0.81, and the F1-score is
> 0.82. Similar to before, all models achieve good perfor-
mance, and good performance is preserved even for small
training:test ratio. However, in comparison to the previous
results (Table 2) there is a noticeable decrease in terms of ac-
curacy and F1-score, introduced by symmetries. This shows
that if symmetries are broken (in both train and test set) than
model can better learn the properties, as it only uses the rep-
resentatives of distinct groups for learning. This is analogous
to training a digit classifier where all digits are upright. In-
troducing symmetries, e.g., digits at different orientations
makes it harder for classifier to learn well.

Table 5 compares results of the decision tree models on
the test set and in respect to the entire input space. Unlike
in RQ2, now the training set is generated without symmetry
breaking, and the entire input space encoded by the formula
¢ is now not constrained with symmetry breaking. On the
test set accuracy, recall and F1-score is > 0.99 and preci-
sion is > 0.98. However, in respect to the entire input space,
minimum accuracy is 0.98, minimum precision and F1-score
decreases to 0.00, but minimum recall remains at 0.99. The
outliers are properties Reflexive and Irreflexive, where the
models continue to have perfect performance. In summary,
the results shows a similar trend as before, where even with
enhancing the training set with symmetric examples, deci-
sion tree models still generalize poorly.

5.1.4 RQ4:How does Mismatch in Symmetries Present
in the Training and Evaluation Sets Affect the Perfor-
mance? We now move to the next question of how the mis-
match in presence of symmetries in training and evaluation
sets affect the performance. Specifically, we look at the two
scenarios: (1) symmetries are not present in the training set

PLDI 20, June 15-20, 2020, London, UK Usman, Wang, Vasic, Wang, Vikalo, and Khurshid

Table 6. Decision tree performance on the test set (symmetries broken) and in respect to the entire state space encoded by
ground truth formula ¢.

Property Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-score | Time[s]
Test Test | Test Test ¢ [l [l ¢
Antisymmetric 0.9913 0.9871] 0.9957 | 0.9914 0.9442 | 0.5098 |0.2241 | 0.3114 1.3
Bijective 0.9971 0.9942 | 1.0000 | 0.9971 - - - - -
Connex 0.9996 0.9993 | 1.0000 | 0.9996 0.9992 | 0.0520 | 0.1731 | 0.0800 1.9
Equivalence 0.9958 0.9920 | 0.9997 | 0.9958 - - - - -
Function 0.9954 0.9928 | 0.9980 | 0.9954 0.9922 | 0.0000 | 0.0667 | 0.0000 86.6
Functional 0.9991 0.9983 | 0.9998 | 0.9991 0.9980 | 0.0000 | 0.2907 | 0.0000 277.5
Injective 0.9979 0.9961 | 0.9998 | 0.9980 0.9961 | 0.0000 | 0.2565 | 0.0000 79.6
Irreflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.5
NonStrictOrder 0.9994 0.9989 | 1.0000 | 0.9994 0.9990 | 0.0000 | 0.6263 | 0.0000 8.9
PartialOrder 0.9963 0.9936 | 0.9990 | 0.9963 0.9937 | 0.0068 | 0.3435| 0.0134 2.9
PreOrder 0.9992 0.9985 | 0.9999 | 0.9992 0.9987 | 0.0000 | 0.5180 | 0.0000 16.6
Reflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.6
StrictOrder 0.9991 0.9982 | 1.0000 | 0.9991 0.9983 | 0.0000 | 0.4660 | 0.0000 8.3
Surjective 0.9980 0.9961 | 1.0000 | 0.9980 - - - - -
TotalOrder 0.9994 0.9988 | 1.0000 | 0.9994 0.9990 | 0.0000 | 0.4737 | 0.0000 | 3059.5
Transitive 0.9949 0.9910 | 0.9989 | 0.9949 0.9914 | 0.0038 | 0.2394 | 0.0074 3.6

Table 7. Decision tree performance on the test set and in respect to the entire state space encoded by ground truth formula ¢
(constrained by symmetry breaking).

Property Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-score | Time[s]
Test Test | Test Test ¢ [l [l ¢
Antisymmetric 0.9997 0.9996 | 0.9998 | 0.9997 1.0000 | 1.0000 | 1.0000 | 1.0000 0.7
Bijective 0.9991 0.9982 | 1.0000 | 0.9991 0.9992 | 0.0000 | 1.0000 | 0.0000 10.1
Connex 0.9957 0.9933 | 0.9982 | 0.9957 0.9959 | 0.1510 | 1.0000 | 0.2624 0.6
Equivalence 0.9997 0.9994 | 1.0000 | 0.9997 0.9991 | 0.0000 | 1.0000 | 0.0000 15.7
Function 0.9946 0.9900 | 0.9993 | 0.9946 0.9922 | 0.0000 |0.9912 | 0.0001 1.6
Functional 0.9968 0.9940 | 0.9997 | 0.9969 0.9964 | 0.0003 | 1.0000 | 0.0005 1.5
Injective 0.9968 0.9940 | 0.9997 | 0.9969 0.9914 | 0.0002 | 1.0000 | 0.0003 1.5
Irreflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.4
NonStrictOrder 0.9990 0.9985 | 0.9994 | 0.9990 0.9972 | 0.0016 | 1.0000 | 0.0032 1.5
PartialPrder 0.9934 0.9879 1 0.9991 | 0.9935 0.9862 | 0.2784 | 1.0000 | 0.4356 1.0
PreOrder 0.9985 0.9974 | 0.9996 | 0.9985 0.9971 | 0.0028 | 0.9997 | 0.0056 1.6
Reflexive 1.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000 0.5
StrictOrder 0.9988 0.9979 1 0.9997 | 0.9988 0.9977 | 0.0021 | 1.0000 | 0.0041 1.5
Surjective 0.9988 0.9979 | 0.9997 | 0.9988 0.9968 | 0.0000 | 1.0000 | 0.0000 10.9
TotalOrder 0.9999 0.9997 | 1.0000 | 0.9999 0.9996 | 0.0000 | 1.0000 | 0.0000 9.4
Transitive 0.9999 0.9997 | 1.0000 | 0.9999 0.9906 | 0.1673 | 0.9912 | 0.2863 0.8

Table 8. Evaluating differences between decision tree models.

Subject T TF FT FF Diff | Time [s]
Antisymmetric | 7.86E+05 | 3.28E+04 | 3.17E+04 | 3.36E+07 | 0.19 1.1
Bijective 9.19E+54 | 5.88E+56 | 3.86E+56 | 1.00E+59 | 0.96 | 117.8
Connex 3.62E+07 | 1.15E+07 | 1.21E+07 | 6.87E+10 | 0.03 1.7
Equivalence 7.88E+116 | 1.95E+118 | 3.91E+118 | 2.54E+120 | 2.25 852.8
Function 6.31E+16 | 8.11E+16 8.11E+16 | 1.84E+19 | 0.87 8.1
Functional 2.03E+16 | 1.58E+16 1.58E+16 | 1.84E+19 | 0.17 7.4
Injective 7.21E+16 0 0| 1.84E+19 | 0.00 4.2
Irreflexive 1.05E+06 0 0| 3.25E+07 | 0.00 0.5

NonStrictOrder | 2.92E+11 | 2.92E+11 2.92E+11 | 5.63E+14 | 0.10 4
PartialOrder 3.02E+08 | 1.07E+08 1.17E+08 | 6.87E+10 | 0.32 2.4

PreOrder 3.78E+11 3.78E+11 3.78E+11 | 5.63E+14 | 0.13 3.8
Reflexive 1.05E+06 0 0 | 3.25E+07 | 0.00 0.5
StrictOrder 6.18E+11 | 3.44E+11 3.44E+11 | 5.63E+14 | 0.12 3.8
Surjective 2.45E+55 | 3.68E+56 3.68E+56 | 1.00E+59 | 0.73 119.2
TotalOrder 3.65E+47 | 3.65E+47 3.65E+47 | 7.48E+50 | 0.10 79.5
Transitive 4.36E+08 | 2.01E+08 1.93E+08 | 6.87E+10 | 0.57 2.4

1107

A Study of the Learnability of Relational Properties

but are in the evaluation set, and (2) symmetries are present
in the training set but not in the evaluation.

Table 6 shows results of decision tree models trained and
tested on datasets with symmetry breaking, but evaluated on
the entire input space (without symmetry breaking). When
decision trees are evaluated on the test set accuracy, recall
and F1-score is > 0.99, while precision is > 0.98. However,
when decision trees are evaluated on ground truth (with-
out symmetry breaking constraints), minimum accuracy de-
crease to 0.94, minimum precision and F1-score decreases to
0.00, while minimum recall decrease to 0.06. Since symme-
tries are present in the entire input space, the performance
decreases compared to the case where symmetries are also
present in the training set (Table 5) These experiments show
that decision trees perform worst when they are trained on
the dataset without symmetries and evaluated w.r.t entire
state space (with no symmetry breaking). This is expected
result since the trained model did not see any symmetrical
instances in the training dataset and is likely to perform
incorrectly when tested on permutations of same instances.
This is similar to an example of neural networks failing to
generalize on digit recognition task, when seeing digits at
different orientation than observed during the training [7].

Table 7 shows results of decision tree models trained and
tested on datasets without symmetry breaking, and evalu-
ated on the entire input space with added symmetry breaking
constraints. When decision trees are evaluated on the test
set, accuracy, recall and F1-score is > 0.99 while precision
is > 0.98. However, when decision trees are evaluated on
ground truth (with added symmetry breaking), minimum ac-
curacy remains at 0.99, minimum precision and F1-score de-
creases to 0.00 while minimum recall remains at 0.99. These
results show that even when training set is richer (contains
symmetries) than evaluation set, ML models still fail to gen-
eralize in respect to the entire input space.

5.1.5 RQ5: What is the Quantitative Difference Be-
tween Two Decision Tree Models? We next employ MCML
to quantify the difference between the two decision tree
models. Our framework allows us to get rigorous measure
of the differences between the two models, i.e., the measure
in respect to the entire input space (not just the train/test
datasets). We trained two decision tree models for each prop-
erty, using different values of hyperparameters, and mea-
sured difference between the two.

Table 8 shows the results for quantifying differences be-
tween 2 trained models, where we show number of examples
in which both models predict true (TT), in which the first
predicts true and second false (TF), and the other combi-
nations denoted by FT and FF. The Diff column shows the
percentage of cases in which the two models make a different
prediction. In all cases, the difference is close to 0. MCML is
able to quantify the differences between the two models in
respect to the entire input space, which makes it a powerful

1108

PLDI ’20, June 15-20, 2020, London, UK

Table 9. Comparison of performance between traditional
metrics and MCML for antisymmetric property for differ-
ent class ratios (ratio of valid samples to invalid samples in
training dataset); true ratio for the entire state space is 1:99.

Ratio of Traditional

Valid:Invalid in . MCML Precision
training dataset Precision

99:1 0.98 0.19

90:10 0.97 0.21

75:25 0.98 0.44

50:50 0.99 0.46

25:75 0.99 0.56

10:90 0.99 0.75

1:99 1.00 0.97

technique for evaluation of models. For example, one can
take a smaller (compressed) model and rigorously quantify
it in respect to the larger model to see if it can be used as a
replacement. MCML is able to detect this for 12 properties
within 10 seconds and is able to detect all properties within
1000 seconds.

5.2 Discussion

5.2.1 Traditional Metrics and MCML. Tables 2 and 4
evaluate off-the-shelf models using traditional ML metrics
based on training and test datasets. These metrics give a false
sense of confidence, which our proposed MCML framework
addresses. Tables 3, 5, 6 and 7 show that the majority of preci-
sion scores and F1-scores are low w.r.t the entire state space.
An important characteristic of the properties we consider is
that the number of positive cases is far too small compared
to the number of negative cases. We believe new classifiers
are needed to handle complex relational properties.

Alloy formulas are intuitively simple but semantically
quite complex, and getting high precision with respect to the
entire state space is hard. In fact, in only 2 cases (reflexive
and irreflexive) the precision is 1, and that is because the
properties can be checked simply by inspecting the diagonal
entries — the trained decision trees indeed do so. In all other
cases, the precision is very low (<0.1). MCML provides a new
tool to rigorously study properties that seem “easy” to learn
in the traditional setting of training and test data, but are
actually “hard” to learn when viewed in the context of the
entire state space. For example, for partial order, precision
was 0.9936 in traditional setting whereas MCML reported
that the precision is 0.0059 for the entire state space. This
indicates that the model is biased towards classifying an
example as a partial order, likely learning patterns present
in training dataset but not generalizable — when using data
outside of dataset one can anticipate many false positives.
MCML’s ability to quantify w.r.t. the entire state space is of
unique value as it quantifies model’s generalizability, and
avoids a false sense of confidence in traditional ML metrics.

PLDI 20, June 15-20, 2020, London, UK

Varying class ratios (ratio of valid samples to invalid
samples in training dataset). A key utility of MCML is
that it allows quantifying model generalizability even if the
training distribution is different from the true distribution.
Table 9 illustrates this for the antisymmetric property. The
traditional metric reports precision to be >0.97 for all ratios
whereas MCML metrics report that the precision is as low
as 0.19 (for 99:1 ratio) and is >0.97 only when the models
are trained on datasets having a class ratio of 1:99, which
is very close to the true distribution ratio. Thus, for this
property, traditional metrics fail to capture the performance
for almost all class ratios; in contrast, MCML metrics allow
precise quantification of true performance of the trained
model for each class ratio.

The primary limitation of MCML is its requirement for ¢,
which characterizes the ground truth and is not required by
traditional metrics (which are not able to utilize it). We expect
property synthesis methods can help MCML apply more
generally; moreover, even when the exact ¢ is not available,
an approximation of ¢ that is human understandable can be
of much use.

5.2.2 Use of Alloy/SAT. We used the Alloy toolset for
writing the properties and generating the datasets for this
study. The use of Alloy introduces a potential for bias in the
results due to the specific techniques employed by Alloy. Our
study mitigates this potential threat to validity as follows.
There are two sources of potential bias: 1) translation from
Alloy to propositional logic; and 2) solving the propositional
formula. When Alloy’s symmetry breaking is turned off, the
propositional formula Alloy creates faithfully represents the
original property (with respect to the scope). Specifically, the
set of solutions at the Alloy level is the same (modulo data
representation) as the set of solutions at the propositional
level with respect to the primary variables. For positive data
samples, recall, we use every solution enumerated by the SAT
backend. Any SAT solver that enumerates every solution will
create the same set of solutions. Indeed, different solvers may
create that set in different orders. However, our experiments
do not depend on the order in which the solutions are created.
For example, when we use 10% of valid solutions for training,
we do not select the first 10% of the solutions created by the
solver, rather we select a random subset with the desired size
from all the solutions. For negative data samples, recall, we
do not use any constraint solving at all, and instead select a
set of negative solutions at random (as described earlier in
this section). Hence, when symmetry breaking is turned off,
our results do not suffer from bias from the use of Alloy.
When symmetry breaking is turned on, Alloy adds symme-
try breaking predicates to the propositional formula before
it is solved by the backend SAT engine. Alloy’s motivation of
adding these predicates, which preserve the satisfiability of
the original formula, is to enable faster solving (by helping
SAT prune more effectively, especially for formulas that are

1109

Usman, Wang, Vasic, Wang, Vikalo, and Khurshid

unsatisfiable). A consequence of adding them for our study
is that they remove valid solutions and can substantially re-
duce the number of solutions, although the actual reduction
depends on the specific formula and scope. To illustrate, con-
sider the common example of enumerating binary trees [12].
For trees with 3 nodes, Alloy removes all symmetries and
gives a 6X reduction in the number of solutions; but for 7
nodes, it gives a 1160X reduction whereas full symmetry
breaking gives 5040X reduction [69]. Thus, under symmetry
breaking turned on, our results are specific to the symmetry
breaking predicates added by Alloy’s default setting for each
property and scope. A different setting in Alloy or a different
tool may lead to different results. We plan to more deeply
study the impact of symmetry breaking on learnability in
future work.

Note also that MCML uses a very efficient encoding of
decision trees directly into CNF that does not use any auxil-
iary variables and is linear in the size of the tree. Thus, the
translation is not only faithful but also allows the resulting
formulas to be solved readily by off-the-shelf model counters.

6 Conclusion

This paper introduced the MCML approach for empirically
studying the learnability of relational properties that can
be expressed in the software design language Alloy. A key
novelty of MCML is quantification of the performance of and
semantic differences among trained machine learning (ML)
models, specifically decision trees, with respect to entire in-
put spaces (up to a bound on the input size), and not just for
given training and test datasets (as is the common practice).
MCML reduces the quantification problems to the classic
complexity theory problem of model counting. The results
show that relatively simple ML models can achieve surpris-
ingly high performance (accuracy and F1-score) when evalu-
ated in the common setting of using training and test datasets,
indicating the seeming simplicity of learning these proper-
ties. However, the use of MCML metrics shows that the per-
formance can degrade substantially when tested against the
entire (bounded) input space, indicating the high complexity
of precisely learning these properties, and the usefulness of
model counting in quantifying the true performance.
MCML offers exciting new directions for leveraging model
counting in machine learning, e.g., 1) it provides quantitative
answers to key questions like "did we train enough?", "how
much did we overfit?", and "is this model basically the same
as this other model (I have in mind)?"; and 2) it allows in-
formed decision making for ML-based systems, e.g., "should
a deployed model be replaced with another (newer) model?".

Acknowledgments

We thank Darko Marinov and the reviewers for very helpful
comments and feedback. This work was partially supported
by the National Science Foundation grant CCF-1718903.

A Study of the Learnability of Relational Properties

References

(1]

[2

—

(3]
(4]

(5]
(6]
(71

(8]
(9]
(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]
[21]

[22]

(23]

[24]

[25]

Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson. 2018.
A formal approach for detection of security flaws in the Android
permission system. Formal Asp. Comput. (2018).

Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S Meel, and Pra-
teek Saxena. 2019. Quantitative Verification of Neural Networks And
its Security Applications. arXiv preprint arXiv:1906.10395 (2019).
Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable
reinforcement learning via policy extraction. In ASIACCS.

Anselm Blumer, A. Ehrenfeucht, David Haussler, and Manfred K. War-
muth. 1989. Learnability and the Vapnik-Chervonenkis Dimension.
JACM 36, 4 (1989).

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002.
Korat: Automated Testing Based on Java Predicates. In ISSTA.

Y. Brun and M. D. Ernst. 2004. Finding latent code errors via machine
learning over program executions. In ICSE.

Can Deep Networks Learn Invariants [n. d.]. Can Deep Networks
Learn Invariants. ([n. d.]). https://blog.singularitynet.io/can-deep-
networks-learn-invariants-1e06a5052555.

Hei Chan and Adnan Darwiche. 2003. Reasoning About Bayesian
Network Classifiers. In UAL

Mark Chavira and Adnan Darwiche. 2008. On probabilistic inference
by weighted model counting. JAI 172, 6-7 (2008).

CheckMate GitHub. 2019. https://github.com/ctrippel/checkmate.
(2019).

Nathan Chong, Tyler Sorensen, and John Wickerson. 2018. The Se-
mantics of Transactions and Weak Memory in x86, Power, ARM, and
C++.In PLDL

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The
MIT Press.

Leonardo Mendonga de Moura, Soonho Kong, Jeremy Avigad, Floris
van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover
(System Description). In CADE.

Brian Demsky and Martin C. Rinard. 2003. Automatic detection and
repair of errors in data structures. In OOPSLA.

Niklas Eén and Niklas Sérensson. 2004. An Extensible SAT-solver. In
Theory and Applications of Satisfiability Testing, Enrico Giunchiglia
and Armando Tacchella (Eds.). 502-518.

Daan Fierens, Guy Van den Broeck, Ingo Thon, Bernd Gutmann, and
Luc De Raedt. 2012. Inference in Probabilistic Logic Programs using
Weighted CNF’s. CoRR abs/1202.3719 (2012).

J. P. Galeotti, N. Rosner, C. G. Lopez Pombo, and M. F. Frias. 2013.
TACO: Efficient SAT-Based Bounded Verification Using Symmetry
Breaking and Tight Bounds. TSE (2013).

Salvador GarcAna and Francisco Herrera. 2009. Evolutionary Under-
sampling for Classification with Imbalanced Datasets: Proposals and
Taxonomy. Evolutionary Computation 17, 3 (2009).

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016.
Learning Invariants Using Decision Trees and Implication Counterex-
amples. In POPL.

Robert Gens and Pedro Domingos. 2013. Learning the Structure of
Sum-product Networks. In ICML.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. 2008. Model
Counting. (2008).

Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, and Satish Chan-
dra. 2014. Data-guided repair of selection statements. In 36th Interna-
tional Conference on Software Engineering (ICSE). 243-253.

Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-Based Program Repair Using SAT. In TACAS.

Divya Gopinath, Kaiyuan Wang, Mengshi Zhang, Corina S. Pasareanu,
and Sarfraz Khurshid. 2018. Symbolic Execution for Deep Neural
Networks. CoRR abs/1807.10439 (2018).

Johan Hastad. 1987. Computational Limitations of Small-depth Circuits.
MIT Press, Cambridge, MA, USA.

1110

[26]

[27]
(28]

[29]

(30]
(31]
(32]
(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

[50]

PLDI ’20, June 15-20, 2020, London, UK

Marijn J. H. Heule, Matti Juhani J;arvisalo, and Martin Suda. 2018.
Proceedings of SAT Competition 2018: Solver and Benchmark De-
scriptions (Department of Computer Science Series of Publications B).
http://hdl.handle.net/10138/237063

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017.
Safety Verification of Deep Neural Networks. In CAV.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. Binarized neural networks. In NIPS.

Ronald L. Iman, Jon C. Helton, and James E. Campbell. 1981. An
Approach to Sensitivity Analysis of Computer Models: Part 14ATIntro-
duction, Input Variable Selection and Preliminary Variable Assessment.
JOT 13, 3 (1981).

Daniel Jackson. 2002. Alloy: A Lightweight Object Modeling Notation.
TOSEM 11, 2 (April 2002).

Daniel Jackson and Kevin J. Sullivan. 2000. COM revisited: Tool-
assisted modelling of an architectural framework. In SIGSOFT FSE.
Daniel Jackson and Mandana Vaziri. 2000. Finding Bugs with a Con-
straint Solver. In ISSTA. Portland.

P. T. Johnstone. 1979. Conditions related to de Morgan’s law.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. 2017. Relu-
plex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
CAV.

Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015.
Repairing Programs with Semantic Code Search (T). In ASE.

Sarfraz Khurshid and Daniel Jackson. 2000. Exploring the Design of an
Intentional Naming Scheme with an Automatic Constraint Analyzer.
In ASE00. Grenoble, France.

Moonzoo Kim and Yunho Kim. 2011. Automated Analysis of Industrial
Embedded Software. In Automated Technology for Verification and
Analysis, Tevfik Bultan and Pao-Ann Hsiung (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 51-59.

B. Korel. 1990. Automated software test data generation. TSE 16, 8
(1990).

Jean-Marie Lagniez and Pierre Marquis. 2019. A Recursive Algorithm
for Projected Model Counting. AAAI 33 (2019), 1536-1543.

Yitao Liang, Jessa Bekker, and Guy Van den Broeck. 2017. Learning
the Structure of Probabilistic Sentential Decision Diagrams. In UAL
Fan Long and Martin Rinard. 2016. Automatic Patch Generation by
Learning Correct Code. In 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL). 298-312.
Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A novel frame-
work for automated testing of Java programs. In ASE. 22-31.
Facundo Molina, Renzo Degiovanni, Pablo Ponzio, German Regis,
Nazareno Aguirre, and Marcelo Frias. 2019. Training Binary Classifiers
as Data Structure Invariants. In ICSE.

Wenxi Wang Muhammad Usman and Sarfraz Khurshid. 2020. TestMC:
A Framework for Testing Model Counters using Differential and Meta-
morphic Testing. (2020). Under submission.

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk,
Mooly Sagiv, and Toby Walsh. 2018. Verifying Properties of Bina-
rized Deep Neural Networks. In AAAL

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deep-
Xplore: Automated Whitebox Testing of Deep Learning Systems. In
SOSP.

J- R. Quinlan. 1987. Generating Production Rules from Decision Trees.
In IJCAL

J. Rumbaugh, L Jacobson, and G. Booch. 1998. The Unified Model-
ing Language Reference Manual. Addison-Wesley Object Technology
Series.

Sartaj Sahni and Teofilo Gonzalez. 1976. P-Complete Approximation
Problems. JACM 23, 3 (July 1976). https://doi.org/10.1145/321958.
321975

Hesam Samimi, Ei Darli Aung, and Todd D. Millstein. 2010. Falling
Back on Executable Specifications. In ECOOP.

PLDI 20, June 15-20, 2020, London, UK

(51]

(52]

(53]
[54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. 2005.
Using Dependency Models to Manage Complex Software Architecture.
SIGPLAN Not. 40, 10 (Oct. 2005), 167-176. https://doi.org/10.1145/
1103845.1094824

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Srid-
haran. 2010. Learnability, Stability and Uniform Convergence. JMLR
11 (Dec. 2010). http://dl.acm.org/citation.cfm?id=1756006.1953019
Andy Shih, Arthur Choi, and Adnan Darwiche. 2018. Formal Verifica-
tion of Bayesian Network Classifiers. In PGM.

Ilya Shlyakhter. 2001. Generating Effective Symmetry-Breaking Predi-
cates for Search Problems. In SAT.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le
Song. 2018. Learning Loop Invariants for Program Verification. In
NIPS.

Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal
Ebcioglu. 2005. Programming by sketching for bit-streaming programs.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 281-294.

Mate Soos and Kuldeep S. Meel. 2019. BIRD: Engineering an Efficient
CNF-XOR SAT Solver and its Applications to Approximate Model
Counting. In AAAL

J. M. Spivey. 1992. The Z Notation: A Reference Manual (second ed.).
Prentice Hall.

Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta
Kwiatkowska, and Daniel Kroening. 2018. Concolic Testing for Deep
Neural Networks. In ASE.

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest:
Automated testing of deep-neural-network-driven autonomous cars.
In ICSE.

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. Check-
Mate: Automated Synthesis of Hardware Exploits and Security Litmus
Tests. In MICRO.

1111

(62]

(63]

(64]

[65]

[66]

(67]

[68]

(69]

[70]

(71]
(72]

(73]

Usman, Wang, Vasic, Wang, Vikalo, and Khurshid

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2019. Se-
curity Verification via Automatic Hardware-Aware Exploit Synthesis:
The CheckMate Approach. IEEE Micro 39, 3 (2019).

G. S. Tseytin. 1966. On the complexity of derivation in propositional
calculus. (1966). Presented at the Leningrad Seminar on Mathematical
Logic.

Muhammad Usman, Wenxi Wang, Kaiyuan Wang, Cagdas Yelen, Nima
Dini, and Sarfraz Khurshid. 2019. A Study of Learning Data Structure
Invariants Using Off-the-shelf Tools. In SPIN.

L. G. Valiant. 1984. A Theory of the Learnable. CACM 27, 11 (Nov.
1984). https://doi.org/10.1145/1968.1972

Vladimir N. Vapnik. 1995. The Nature of Statistical Learning Theory.
V. N. Vapnik and A Ya. Chervonenkis. 1971. On the Uniform Conver-
gence of Relative Frequencies of Events to Their Probabilities. Theory
of Probabibility and its Applicactions (1971).

Marko Vasic, Andrija Petrovic, Kaiyuan Wang, Mladen Nikolic,
Rishabh Singh, and Sarfraz Khurshid. 2019. MoET: Interpretable and
Verifiable Reinforcement Learning via Mixture of Expert Trees. CoRR
(2019).

Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang,
Kuldeep S. Meel, and Sarfraz Khurshid. 2020. A Study of Symmetry
Breaking Predicates and Model Counting. In TACAS. To appear.
John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constan-
tinides. 2017. Automatically Comparing Memory Consistency Models.
In POPL.

Razieh Nokhbeh Zaeem and Sarfraz Khurshid. 2010. Contract-Based
Data Structure Repair Using Alloy. In ECOOP.

Pamela Zave. 2012. Using Lightweight Modeling to Understand Chord.
SIGCOMM CCR 42, 2 (2012).

P. Zave. 2017. Reasoning About Identifier Spaces: How to Make Chord
Correct. IEEE Transactions on Software Engineering (2017).

