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Abstract
Synthetic biology is a rapidly emerging research area, with expected wide-ranging impact in biology, nanofabrication, and

medicine. A key technical challenge lies in embedding computation in molecular contexts where electronic micro-

controllers cannot be inserted. This necessitates effective representation of computation using molecular components.

While previous work established the Turing-completeness of chemical reactions, defining representations that are faithful,

efficient, and practical remains challenging. This paper introduces CRN??, a new language for programming deterministic

(mass-action) chemical kinetics to perform computation. We present its syntax and semantics, and build a compiler

translating CRN?? programs into chemical reactions, thereby laying the foundation of a comprehensive framework for

molecular programming. Our language addresses the key challenge of embedding familiar imperative constructs into a set

of chemical reactions happening simultaneously and manipulating real-valued concentrations. Although some deviation

from ideal output value cannot be avoided, we develop methods to minimize the error, and implement error analysis tools.

We demonstrate the feasibility of using CRN??on a suite of well-known algorithms for discrete and real-valued com-

putation. CRN?? can be easily extended to support new commands or chemical reaction implementations, and thus

provides a foundation for developing more robust and practical molecular programs.

1 Introduction

A highly desired goal of synthetic biology is realizing a

programmable chemical controller that can operate in

molecular contexts incompatible with traditional electron-

ics. In the same way that programming electronic com-

puters is more convenient at a higher level of abstraction

than that of individual flip-flops and logic circuits, we

similarly expect molecular computation to admit specifi-

cation via programming languages sufficiently abstracted

from the hardware. This paper focuses on developing a

compiler for a natural imperative programming language to

a deterministic (mass-action) chemical reaction network

implementing the desired algorithm. We do not directly

make assumptions on how the resulting reactions would be

implemented in chemistry. This could in principle be

achieved by DNA strand displacement cascades (Solove-

ichik et al. 2010), or other programmable chemical tech-

nologies such as the PEN toolbox (Baccouche et al. 2014).

Deterministic (mass-action) chemical kinetics is Turing

universal (Fages et al. 2017), thus in principle allowing the

implementation of arbitrary programs in chemistry. Turing

universality was demonstrated by showing that arbitrary

computation can be embedded in a class of polynomial

ODEs (Bournez et al. 2017), and then implementing these

polynomial ODEs with mass-action chemical kinetics.

While these results establish a sound theoretical foundation

and show the power of chemistry for handling computation

tasks in general, translating and performing specific com-

putational tasks can lead to infeasibly large and complex

sets of chemical reactions.

In this work we develop a programming paradigm for

chemistry, based on the familiar imperative programming

languages, with the aim of making molecular programming

more intuitive, and efficient. Most commonly used pro-

gramming languages such as C, Java and Python, are

imperative in that they use statements that change a pro-

gram’s state, with typical branching constructs such as if/

else, loops, etc. Note that although CRNs are sometimes

talked about as a programming language (Chen et al.

2013), they are difficult to program directly (it is even
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unfair to equate them with assembly language). In contrast,

CRN??operates at a much higher level.

We introduce the syntax and semantics of CRN??, an

imperative programming language that compiles to deter-

ministic (mass-action) chemical reaction networks.

CRN??has an extensible toolset including a simulation

framework and error analysis functionality. A user speci-

fies a sequence of statements, termed commands, to exe-

cute. Assignment, comparison, loops, conditional

execution, and arithmetic operations are supported. The

generated reactions are logically grouped into modules

performing the corresponding command. Each module

transforms initial species concentrations to their steady-

state values which are the output of the module. We ensure

that such modules are composable by preserving the input

concentrations at the steady-state.

A mapping of imperative program logic to chemical

reactions manipulating continuous concentrations poses

various challenges that we must address. All reactions

happen concurrently, making it difficult to represent

sequential computation where, for example, the result of

one operation is first computed and then used in another

operation. Similarly, all branches of the program execution

(i.e., if/else) are followed simultaneously to some degree.

To mimic sequential execution in mass-action chemistry,

we ensure that the reactions corresponding to the current

command happen quickly, while other reactions are slow.

For this we rely on a chemical oscillator in which the clock

species oscillate between low and high concentrations, and

catalyzing reactions with different clock species. To

achieve conditional execution, we further need to ensure

that the reactions corresponding to the correct execution

branch happen quickly, while those corresponding to other

branches are inhibited. Our cmp module sets flag species to

reflect the result of comparison, and these species catalyze

the correct branch reactions.

A further source of error is that the set of basic modules,

such as addition, converge to the correct value only in the

limit, thus computing approximately in finite time. To

mitigate this source of error, we choose a set of modules to

exhibit exponential (fast) convergence. We further provide

a toolkit for error analysis and detection, which can help a

user to identify and mitigate the source of error, guiding the

design of more accurate CRN??programs.

We demonstrate the expressiveness of our language by

implementing and simulating common discrete algorithms

such as greatest common divisor, integer division, finding

integer square root, as well as real-valued (analog) algo-

rithms such as computing Euler’s number and computing

p. We implement the CRN??compiler which generates

the reactions implementing a high level imperative algo-

rithm, and use the CRNSimulator package (http://users.ece.

utexas.edu/*soloveichik/crnsimulator.html) to manipulate

and simulate chemical reactions using Mathematica.

CRN??is an extensible programming language allowing

for easy addition of new modules; we release the open-

source version (https://github.com/marko-vasic/crnPlus

Plus) of the tool to enable others make use of it, and extend

it further.

2 Examples

In this section we discuss the characteristics of chemical

reaction networks (CRNs) through examples. First, the

overall idea of computation in CRNs is presented, followed

by example programs in CRN??. The focus is to give a

high level idea of our technique, while later sections dis-

cuss internal details.

Although historically the focus of the study of CRNs

was on understanding the behavior of naturally occurring

biological reaction networks, recent advancements in DNA

synthesis coupled with general methods for realizing

arbitrary CRNs with DNA strand displacement cas-

cades (Soloveichik et al. 2010) opened the path to engi-

neering with chemical reactions. In this work we are not

interested in a way to engineer the molecules implementing

a reaction but focus on reaction behavior and dynamics.

We abstract away molecule implementation information

and denote molecular species with letters (e.g. A).

Molecular systems exhibit complex behaviors governed

by chemical reactions. To give a formal notation of

chemical reaction networks, consider the CRN 1 (Buisman

et al. 2009):

CRN 1 Example chemical reaction network

Aþ B�!1 Aþ Bþ C (1)

C�!1 ; (2)

The CRN 1 consists of two reactions. A chemical

reaction is defined with reactants (left side), products (right

side), and rate constant which quantifies the rate at which

reactants interact to produce products. To illustrate this,

reaction 1 is composed of reactants ¼ fA;Bg,
products ¼ fA;B;Cg, and rate constant k ¼ 1. Since most

reactions in CRN??have the rate constant equal to 1, from

now on we drop the rate constant when writing reactions,

unless it is different than 1. Note that multiple molecules of

same species can be in a list of reactants (analogously for

products); to support this we use the multiset notation. As

an example, to describe reaction: Aþ A �! B we write
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reactants ¼ fA2g, where the upper index (2) represents

multiplicity (number of occurrences).

It may seem that a molecule of C is produced out of

nothing in reaction 1, since the multiset of reactants is a

submultiset of the products. This represents a level of

abstraction where fuel species that drive the reaction are

abstracted away (i.e., the first reaction corresponds to

F þ Aþ B �! Aþ Bþ C). Making this assumption

allows us to focus on the computationally relevant species.

The choice to use general (non-mass/energy preserving)

CRNs is an established convention for DNA strand dis-

placement cascades (Soloveichik et al. 2010).

When the molecular counts of all species are large, and

the solution is ‘‘well-mixed’’, the dynamics of the system

can be described by ordinary differential equations (mass-

action kinetics). Molecular concentrations are quantified by

a system of ODEs, where the concentration of each species

is characterized by the following ODE:

d½S�
dt

¼
X

8rxn2CRN

kðrxnÞ �netChangeðS;rxnÞ �
Y

8R2reactantsðrxnÞ
½R�mrxnðRÞðtÞ

The right side is a sum over reactions in the CRN, where

kðrxnÞ is a rate of reaction rxn, netChangeðS;rxnÞ is a net

change of molecules of S upon triggering of rxn (can be

negative), and mrxnðRÞ is the multiplicity of reactant R in

reaction rxn. To illustrate the general formula, the set of

ODEs characterizing CRN 1 is:

d½A�
dt

¼ 0;
d½B�
dt

¼ 0;
d½C�
dt

¼ ½A�ðtÞ � ½B�ðtÞ � ½C�ðtÞ

Since the concentrations [A] and [B] are constant

(derivatives zero), we have
d½C�
dt

¼ ½A�ð0Þ � ½B�ð0Þ � ½C�ðtÞ.
Thus [C](t) is increasing when smaller than ½A�ð0Þ � ½B�ð0Þ,
decreasing in the opposite case, and does not change when

½C�ðtÞ ¼ ½A�ð0Þ � ½B�ð0Þ. Therefore system has a global

stable steady-state ½C� ¼ ½A�ð0Þ � ½B�ð0Þ. We say that this

module computes multiplication, due to the relation

between initial concentrations and concentrations at the

steady state.

We simulate and plot the dynamics of the multiplication

CRN, as shown in Fig. 1. Initial concentrations of A and

B are 6 and 2, respectively, while the concentration of

C approaches value 12. Note that the exact value defined

by the steady state (½C�ðtÞ ¼ 12) is reached only at the limit

of time going to infinity. Since the computation has to be

done in finite time, the presence of error is unavoidable.

This error raises challenging issues with programming in

chemistry, and necessitates techniques for controlling it.

One crucial property that determines the error is the con-

vergence speed of the module. The multiplication com-

mand in CRN??is implemented through the above

module, following the design principles of convergence

speed and composability described in Sect. 3. Chemical

reactions are abstracted away from a user who can simply

write mul½a; b; c� to multiply.

CRN??is an imperative language, and as such supports

sequential execution. Note that even a simple operation of

multiplying and storing into the same variable, e.g.

A :¼ A � B, requires support for sequential execution. We

use operator ‘‘:¼’’ to relate input and output concentra-

tions; A :¼ A � B denotes that [A](t) converges to

½A�ð0Þ � ½B�ð0Þ. The above implementation of the mul

module necessarily assumes that the output species is dif-

ferent from the input species. Otherwise, mul½a; b; a� goes
to infinity or 0 depending on the value of B. To implement

A :¼ A � B, we split the computation into two sequential

steps: (1) C :¼ A � B, (2) A :¼ C. To multiply we use the

mul module described above. For the assignment we use

the load module (ld). To ensure the assignment executes

after the multiplication, we catalyze the two modules with

the clock species that reach their high values in different

phases of the oscillator. Importantly, the chemical oscil-

lator and clock species are abstracted away from a user,

who simply uses the step construct to order reactions:

step[{mul[a, b, c]}], step[{ld[c, a]}].

One of the basic blocks of programming languages are

conditional branches, executing upon success of a pre-

condition. Similarly to implementing sequential operations,

we implement conditional execution by activating (through

catalysis) some reactions and deactivating others, depend-

ing on a result of condition. Since no species can be driven

to 0 in finite time,1 all branches of condition will be active

to some extent, which makes this an interesting source of

errors without direct analogy in digital electronics. Anal-

ogous to clock species in sequential execution, reactions

are catalyzed by flag species to support branching. The flag

species have high and low values that reflect the result of

the comparison. Our cmp module sets the flag species to

0 5 10 15
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4
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8

10

12

Fig. 1 Multiplication CRN. [A] shown in orange, [B] in green, and

[C] in red. (Color figure online)

1 Although certain pathological CRNs can drive concentrations to

infinity in finite time (e.g., 2A ! 3A), and thereby drive certain other

species to 0 in finite time (e.g., with an additional Bþ A ! A ), these

cases cannot be implemented with any reasonable chemistry.

CRN++: Molecular programming language 393

123



reflect the result of the comparison. In the following

example we demonstrate the usage of cmp module and

conditional execution.

To demonstrate the expressiveness of our language we

showcase the implementation of Euclid’s algorithm

(Fig. 2) to compute the greatest common divisor (GCD) of

a two numbers. The GCD is computed by subtracting the

smaller of the values from the larger one until they become

equal.

Figure 3a shows the implementation of Euclid’s algo-

rithm in CRN??. Lines 2–3 define the initial concentra-

tions of species a and b, where constants a0 and b0 are

values for which GCD is computed. To order the execu-

tion, the step construct is used. Multiple instructions that do

not conflict with each other can be part of the same step

and they are executed in parallel. In the first step a and

b are stored into temporary variables and compared, setting

the flag species to reflect the result of the comparison. The

second step uses the result of the previous comparison, and

effectively stores a� b into a if a[ b, and vice versa.

Since the same species cannot be used as both input and

output to sub module, temporary variables are used (atmp

and btmp). Steps repeatedly execute due to the oscillatory

behavior of the clock species, thus implementing looping

behavior by default; the steps can be viewed as being inside

of the ‘forever’ loop. CRN??, in addition to the language

and compiler to chemical reactions, is connected to the

simulation backend that enables convenient testing for

correctness.

We show a simulation of the GCD program in Fig. 3b

where GCD(32,12) is computed. Although not visible in

the plot we can identify a number of non-idealities in the

CRN??implementation. First, modules converge to cor-

rect values only in limit of time going to infinity; thus for

example the first subtraction (second step) will set a to

value close to but not exactly 20. Second, modules that

should not be executing cannot be completely turned off,

and so when the first step executes the second does so as

well (of course, in much smaller extent). Analogously the

two subtraction operations in the second step are supposed

to be mutually exclusive, and yet they co-occur to some

extend. More discussion on the sources of error is provided

in Sect. 3.4.

In addition, we implement a set of algorithms in

(a) discrete space—counter, factorial, integer division,

integer square root, as well as in (b) continuous space—by

implementing CRN??programs that approximate value of

Euler’s constant and p. These examples are shown in

Sect. 4.

3 Technique

This section explains CRN??, both the underlying con-

structs used to build it, as well as high level primitives that

represent the language itself. We start by presenting high-

level modules that are at the core of CRN??(Sect. 3.1),

followed by explanation of how the sequential behavior is

achieved (Sect. 3.2), after which we give an overview of

CRN??grammar (Sect. 3.3), and finally we discuss the

error detection and analysis tools we provide (Sect. 3.4).

3.1 Modules

Modules represent the core of CRN??, and in their form

are somewhat analogous to the instruction set architecture

(ISA) in machine languages. Modules implement basic

operations such as load, add, subtract, multiply, compare.

We provide the exhaustive list of modules in Table 1.

Importantly, CRN??is extensible, and supports easy

addition of new modules.

There are multiple ways of computing addition and

other operations in chemistry. As mentioned in the previ-

ous section, our implementation choice is led by two basic

principles: (a) convergence speed, and (b) composability.

3.1.1 Convergence speed

To provide intuition about the convergence speed of

modules we analyze the following CRN:

CRN 2 Simple CRN

Aþ B �! ;

The ODEs describing the above CRN are:
d½A�
dt

¼
�½A�ðtÞ � ½B�ðtÞ and

d½B�
dt

¼ �½A�ðtÞ � ½B�ðtÞ. Since the

amount of B decreases with the same speed as A, we can

express the dynamics of the system in terms of

D0 ¼ ½B�ð0Þ � ½A�ð0Þ:
d½A�
dt

¼ �½A�ðtÞ � ð½A�ðtÞ þ D0Þ

If D0 6¼ 0, the solution is:

½A�ðtÞ ¼ ½A�ð0ÞD0

�½A�ð0Þ þ ½A�ð0ÞeD0t þ D0eD0t

To consider the convergence speed we look at the non-

constant part of the equation. Due to the factor e�t the

decrease of the non-constant part is exponential, and we

say that the convergence speed is exponential. If D0 [ 0

394 M. Vasić et al.

123



(½B�ð0Þ[ ½A�ð0Þ) terms with exponential factors tend to

infinity, and [A] to zero. Conversely, when D0\0, expo-

nential factors converge to zero, and [A] to �D0.

When D0 6¼ 0 so far; by solving the ODE for D0 ¼ 0 we

get a following:

½A�ðtÞ ¼ ½A�ð0Þ
1þ ½A�ð0Þt

In this equation, non-constant part is not anymore expo-

nential, but linear; thus we say that the convergence speed

is linear. To summarize, CRN 2 exhibits exponential

convergence speed when ½A�ð0Þ 6¼ ½B�ð0Þ, and linear

otherwise.

1: procedure gcd(a, b)
2: while a �= b do
3: if a > b then
4: a ← a − b
5: else
6: b ← b − a
7: end if
8: end while
9: return a

10: end procedure

Fig. 2 Euclid’s algorithm for computing GCD

1 crn = {
2 conc[a,a0 ],
3 conc[b,b0],
4 step[{
5 ld [a, atmp],
6 ld [b, btmp],
7 cmp[a,b]
8 }],
9 step[{

10 ifGT[{ sub[atmp,btmp,a] }],
11 ifLT[{ sub[btmp,atmp,b] }]
12 }]
13 };

(a) GCD implementation

0 100 200 300 400 500
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(b) Dynamic simulation of the GCD pro-
gram for a0 = 32, b0 = 12. Concentra-
tions of a (green), and b (orange) are
shown in function of time.

Fig. 3 Implementation of

Euclid’s algorithm for

computing GCD in

CRN??(left), simulation

results of the implementation

(right). (Color figure online)

Table 1 CRN??modules

Type Restrictions Output (steady state) CRN

ld[A, B] B 6� A B :¼ A A �! Aþ B

B �! ;
add[A, B, C] C 6� A ^ C 6¼ B C :¼ Aþ B A �! Aþ C

B �! Bþ C

C �! ;
sub[A, B, C] C 6� A ^ C 6� B

C :¼ A� B; A[B

0; otherwise

�
A �! Aþ C

B �! Bþ H

C �! ;
C þ H �! ;

mul[A, B, C] C 6� A ^ C 6� B C :¼ A � B Aþ B �! Aþ Bþ C

C �! ;
div[A, B, C] C 6� A ^ C 6� B C :¼ A=B A �! Aþ C

Bþ C �! B

sqrt[A,B] B 6� A B :¼
ffiffiffi
A

p
A�!1 Aþ B

Bþ B�!
1
2 ;

cmp[A,B] A 6� B Sets flag species * Two CRNs (mapping and AM) triggering in a

two consecutive phases (as discussed in Sect. 3.1.7)

The first column denotes the type of the module. The restrictions column imposes compile-time restrictions for using modules, here 6� is used to

mean different species (not values)

The output column shows the value of outputs at the steady state. Finally, the CRN column shows chemical reactions implementing the module
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CRN??models computation in which an instruction

executes in a step (clock phase), and computation in sub-

sequent steps depends on values computed in previous

steps. In this reason, it is of a crucial importance to achieve

a high precision of computation until the end of a current

step; and to achieve this goal it is necessary to ensure a

high convergence speed. For this reason we want to ensure

that all of our modules exhibit exponential convergence.

So, for example, we do not want to use the reaction Aþ
A ! C to compute division by 2 since it exhibits only

linear convergence (corresponding to the A ¼ B analysis

above).

3.1.2 Composability

To explain composability we analyze two different CRNs

that perform addition (i.e., compute C :¼ Aþ B).

CRN 3 Addition CRN (preserves inputs). Inputs: A and B, output: C

A �! Aþ C

B �! Bþ C

C �! ;

CRN 4 Addition CRN (destroys inputs). Inputs: A and B, output: C

A �! C

B �! C

Although both of these CRNs compute addition (this is

evident for CRN 4; more detailed derivation is presented

for CRN 3 in Sect. 3.1.4), they behave very differently

when composed with other modules. For example, to

compute W :¼ ðX � YÞ þ Z, we can combine the mul

module (CRN 1) with X and Y as inputs and some species

K as output, with an addition module with K and Z as

inputs and W as output. If we use CRN 3 for addition, note

that K is not changed by it (the input acts catalytically), and

thus K approaches X � Y as expected, allowing the addition

module to correctly compute ðX � YÞ þ Z in the limit. In

contrast, if we use CRN 4 to perform addition, then by

consuming K the addition module will affect the equilib-

rium of the multiplication module, driving it lower than the

desired value X � Y . In this way CRN 4 is not composable,

while CRN 3 allows for the correct composition.

More generally, for any set of modules that: (1) use

inputs catalytically (does not produce or consume inputs),

(2) exhibit exponential convergence, and (3) have a unique

stable steady state, a CRN composed of such modules also

has the above three properties. A proof can be found in

Buisman et al. (2009). From this it follows that the com-

posed CRN of the mul module and CRN 3 exhibits the

exponential convergence speed, and has a stable steady

state defined by W :¼ ðX � YÞ þ Z.

Note that the above discussion of composability con-

cerns reactions occurring within a single step construct

(i.e., we discuss correct computations when reactions occur

concurrently). Even non-composable reactions can be

composed by separating them in time via the step con-

struct. However, in order to keep the number of steps low

and ensure faster computation we aim to make reactions

composable when possible. With this, we have set up the

two main design criteria (convergence speed and com-

posability) for the modules, and we next describe the

CRN??modules.

3.1.3 Ld module

Loads the value from source (first argument) into a desti-

nation (second argument). The CRN used for load opera-

tion is following:

CRN 5 load CRN

A �! Aþ B

B �! ;

A is the input and B is the output species. This module,

similar to add (see next section), has exponential conver-

gence speed (Buisman et al. 2009). In addition, the con-

centration of input species is constant, thus ensuring

composability.

3.1.4 Add module

Adds two values (first and second argument) and stores the

result into destination (third argument). The Add CRN is

shown in CRN 3.

By solving the ODEs that characterize [C](t) we get the

following equation: ½C�ðtÞ ¼ ½A�ð0Þ þ ½B�ð0Þ þ ð½C�ð0Þ �
½A�ð0Þ� ½B�ð0ÞÞ � e�t. From the equation it follows that

[C] converges to ½A�ð0Þ þ ½B�ð0Þ, and thus we say the CRN
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performs addition. Moreover, the CRN exhibits exponen-

tial convergence.

3.1.5 Sub module

Subtracts the second input value from the first and stores

into the destination (third argument).

CRN 6 subtraction CRN

A �! Aþ C

B �! Bþ H

C �! ;
C þ H �! ;

The above CRN was generated via evolutionary algo-

rithms (Buisman et al. 2009); by analyzing its system of

ODEs, the network computes truncated subtraction:

½C� ¼
½A� � ½B�; if ½A�[ ½B�
0; otherwise

�
ð3Þ

Input species A and B are not affected and the property of

composability is satisfied. Neither we nor Buisman et al.

found the analytical solution; however, our simulation

results show that the module converges exponentially

quickly unless A ¼ B (see the Sect. 3.1.1 for an analogous,

easy to analyze case).2 In a case inputs, A and B, are close

to each other the computation error is higher. The error

evaluation tools (Sect. 3.4) help in detecting and analyzing

problematic cases (e.g., where A and B are close), thus

enabling a user to redesign the CRN. In our examples,

A and B usually differ by at least 1. Runtime assertions in

the simulation package that automatically notify a user

about these kind of problems would help identify the

source of the error. Note that many algorithms can be

refactored to reduce the error (see Sect. 6).

3.1.6 Mul module

Multiplies inputs (first and second argument) and stores

into destination (third argument). The multiplication CRN

is shown in Sect. 2. This CRN does not affect inputs and

has exponential convergence speed (Buisman et al. 2009).

We have presented modules for performing arithmetic

operations (ld, add, sub, mul). These modules are imple-

mented within a single step. Multiple modules can be

executed in parallel within a single step as long as there is

no cyclic dependence between species: for example mul[a,

b, c] and add[c,d,a] forms a cycle, the output of the mul is

input to the add, and vice versa. Also, the CRN imple-

mentation imposes the restriction that same species cannot

be used as both input and output to the same module

(which is really a cycle of length 1). We now introduce the

cmp module providing for conditional execution, which is

executed in two steps.

3.1.7 Cmp module

Compares the two values, and produces signals (flag spe-

cies) informing which value is greater or if they are equal.

The cmp module is implemented using two sequentially

executed sets of reactions, which trigger in consecutive

clock phases. In the first phase, the inputs (X and Y) are

mapped to flag species XgtY and XltY . Values are mapped to

the range [0–1], by setting the initial concentrations of XgtY

and XltY such that their sum is 1. If, for example, ½X� ¼ 80

and ½Y� ¼ 20, flag species XgtY and XltY converge to 0.8 and

0.2, respectively.3 The mapping is done in order to preserve

the original values of the inputs (X and Y), considering that

the next phase of comparison consumes the compared

values (flags). The mapping CRN is shown in CRN 7, and

exhibits exponential convergence speed according to our

analysis.

CRN 7 CRN for mapping compared values

XgtY þ Y �! XltY þ Y

XltY þ X �! XgtY þ X

The goal of the second phase of comparison is to detect

which value is greater. We use a chemical Approximate

Majority (AM) algorithm (Cardelli and Csikász-Nagy

2012) to detect if XgtY or XltY is in the majority. All

molecules of the less populous species convert to the more

populous species. The AM reactions are:

2 A problematic feature of this module is that the concentration of H

increases without bound if [A]\[B]. Although this does not affect the

correctness of the computation, it is an interesting open question

whether there is another truncated subtraction module that satisfies

composability and exhibits exponential convergence but has bounded

concentrations for any input regime.

3 This convergence happens irrespective of the initial concentrations

of the flag species XgtY and XltY (as long as they sum to 1), so they do

not have to be reset before the mapping.
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CRN 8 approximate majority CRN

XgtY þ XltY �! XltY þ B

Bþ XltY �! XltY þ XltY

XltY þ XgtY �! XgtY þ B

Bþ XgtY �! XgtY þ XgtY

Recall that the normalization CRN is run in a previous

step, so:

½XgtY �ð0Þ þ ½XltY �ð0Þ ¼ 1 ð4Þ

Then in the AM network, the species (XgtY , XltY , B) con-

verge to values (1, 0, 0) if XgtYð0Þ[XltYð0Þ and (0, 1, 0) if

XgtYð0Þ\XltYð0Þ. In the subsequent step constructs, the

species XgtY are used as a catalysts in reactions that execute

when X[ Y , and the species XltY for the opposite case.

We now argue that CRN 8 exhibits exponential con-

vergence. Due to normalization, (4) holds, and moreover

½XgtY �(t)þ ½XltY �(t)þ [B](t) ¼ 1 (for all time t). Taking the

previous equality into account the ODEs of AM are:

d½XgtY �
dt

¼ ½XgtY �ðtÞð1� ½XgtY �ðtÞ � 2½XltY �ðtÞÞ ð5Þ

d½XltY �
dt

¼ ½XltY �ðtÞð1� ½XltY �ðtÞ � 2½XgtY �ðtÞÞ ð6Þ

Consider the function f ðtÞ ¼ ðXgtY�XltY Þ3
XgtYXltY

[the choice of this

function is guided by the closed form solution for t as a

function of XgtYðtÞ and XltYðtÞ (Perron et al. 2009)]. Taking

the derivative of f(t) with respect to t and substituting (5)

and (6) results in f(t) again. This means that f(t) has a

solution f ðtÞ ¼ Cet, which is unique by the Picard-Lindelöf

theorem. Therefore, Cet ¼ ðXgtY�XltY Þ3
XgtYXltY

\1=ðXgtYXltYÞ since

the concentrations are at most 1. This constrains

XgtYXltY\C�1e�t, which implies that XgtY or XltY con-

verges to 0 exponentially quickly.

If input species are initially equal ([XgtY ](0) = [XltY ](0))

then the system preserves their equality, and following

ODE holds: ½XgtY �0ðtÞ ¼ 2½XgtY �ðtÞð1� 3½XgtY �ðtÞÞ. This is a
logistic differential equation which converges exponen-

tially quickly to values (1/3, 1/3, 1/3).) Even though con-

vergence is exponential we do not know how the time

changes as a function of the difference between the input

species, when the difference is small. Thus, even if the

compared species are close to each other, the system may

exhibit undesirably slow convergence to (1, 0, 0) or (0, 1,

0); As we later explain, our error evaluation framework can

help detect such cases.

Equality checking Due to the ever-present error in

chemical computation, checking for equality is actually

approximate-equality checking. Consider having a chemi-

cal program with real values, then if the values are close to

each other it is impossible to tell if they are actually equal

but affected with error, or they represent different real

valued signals. Due to this issue, while comparing for

equality is impossible, we compare for �-range equality.

For discrete algorithms we use equality checking with

� ¼ 0:5, allowing easy comparison of the integer values

(e.g., values in range (2.5, 3.5) are considered to be equal

to 3).

To support equality checking we compare xþ � with

y (generating signals XgtY and XltY ), and at the same time

compare yþ � with x (generating signals YgtX and YltX).

Combining the signals of the two comparisons gives the

desired result: If X ¼ Y , signal XgtY is high (XltY low) and

YgtX is high (YltX low) due to the added offset. To execute a

reaction upon equality both XgtY and YgtX are used cat-

alytically. If X[ Y , signal XgtY is high (XltY low) and YltX is

high (YgtX low), so both XgtY and YltX should be used cat-

alytically. Symmetrically for X\Y , both XltY and YgtX are

used catalytically. After calling cmp in a step, a user can

use instructions ifGT (greater than), ifGE (greater or

equal), ifEQ (equal), ifLT (less than), ifLE (less or equal) in

subsequent steps to conditionally execute reactions. Note

that the flags are active until the next call to the cmp

module.

3.2 Sequential execution

CRN??allows programming in a sequential manner,

despite the intrinsically parallel nature of CRNs. To model

sequential execution it is necessary to isolate two reactions

from co-occurring, and control the order in which they

0 20 40 60 80 100

0.5

1.0

1.5

2.0

Fig. 4 Chemical oscillator containing 3 species: X1 (red), X2 (green),

and X3 (blue). (Color figure online)
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happen. The key construct we rely on to achieve these

goals is a chemical oscillator.

A chemical oscillator is a CRN in which the concen-

trations of species oscillate between low and high values.

The oscillatory CRN (Lachmann and Sella 1995) we use is

described with a following set of reactions:

CRN 9 oscillator CRN

i ¼ 1; . . .; n� 1 : Xi þ Xiþ1 �! 2Xiþ1

Xn þ X1 �! 2X1

Concentrations of the clock species (Xi) oscillate (see -

Fig. 4). Different clock species have different oscillation

phase and reach minimum and maximum at different times.

To control the rate at which a reaction fires, clock species

are added as both reactant and product (catalyst), in that

way preventing reactions from co-occurring and ordering

them (see CRN 10). While overlap between the clock

species exists, it is small and thus enables sequential exe-

cution. To ensure the small overlap, in CRN??we use

every third clock species, i.e. X3, X6, X9, etc., to catalyze

the reactions that execute at different time moments.

CRN 10 ordering reactions: original reactions (left), ordered (right)

A �! B Aþ X3 �! Bþ X3

B �! C Bþ X6 �! C þ X6

The chemical oscillator is abstracted from a

CRN??user, who can order reactions using the step con-

struct. Reactions in different steps are isolated from each

other through clock species acting catalytically.

Non-conflicting instructions can be part of the same

step. Splitting instructions across multiple steps is needed

in a case of (a) conditional execution—comparison needs

to be done before conditional execution is possible;

(b) reading and writing to the same species—this is not

possible within the step (as discussed earlier), and requires

temporal ordering. The number of clock species used is

determined by the number of step instructions. Each step

requires three clock species, with the exception of steps in

which cmp module is used, for which six clock species are

used. The cmp module requires two temporarily ordered

operations: normalization and approximate majority, and

thus six clock species are used. The oscillatory behavior of

the clock species causes steps to get repeated eventually,

causing the loop-like behavior.

3.3 Grammar

CRN??grammar expresses syntactic rules of

CRN??programs, and is shown in Listing 1.1. A program

consists of a sequence of RootS statements, where RootS

can be either ConcS which defines the initial concentration

of species, or StepS which orders execution. Furthermore, a

StepS statement is divided into a list of CommandS state-

ments, where each CommandS is either: (1) RxnS which

explicitly defines a reaction, (2) ModuleS which defines a

module, or (3) ConditionalS which conditinally executes a

block based on the result of a previous comparison. Based

on the result of the comparison, only the appropriate con-

ditional blocks are executed: ifGT (greater than), ifGE

(greater or equal), ifEQ (equal), ifLT (less than), ifLE (less

or equal). Note that the semantic rules of CRN??require

that comparison is done in a step prior to the conditional

execution.

The grammar can be easily extended; e.g., new modules

can be added to the list of ModuleS nonterminals.

〈Crn〉 ::= ‘crn = {’〈RootSList〉‘}’
〈RootSList〉 ::= 〈RootS〉

| 〈RootS〉 ‘,’ 〈RootSList〉
〈RootS〉 ::= 〈ConcS〉

| 〈StepS〉
〈ConcS〉 ::=

‘conc[’〈species〉‘,’〈number〉‘]’
〈StepS〉 ::= ‘step [’CommandSList ‘]’

〈CommandSList〉 ::= 〈CommandS〉
| 〈CommandS〉 ‘,’ 〈CommandSList〉

〈CommandS〉 ::= 〈RxnS〉
| 〈ArithmeticS〉
| 〈CmpS〉
| 〈ConditionalS〉

〈RxnS〉 ::= ‘rxn[’〈Expr〉‘,’〈Expr〉‘,’〈number〉‘]’
〈ModuleS〉 ::= ‘ld [’〈species〉‘,’〈species〉‘]’

| ‘add [’〈species〉‘,’〈species〉‘,’〈species〉‘]’
| ‘sub [’〈species〉‘,’〈species〉‘,’〈species〉‘]’
| ‘mul [’〈species〉‘,’〈species〉‘,’〈species〉‘]’
| ‘div [’〈species〉‘,’〈species〉‘,’〈species〉‘]’
| ‘sqrt [’〈species〉‘,’〈species〉‘]’
| ‘cmp [’〈species〉‘,’〈species〉‘]’

〈ConditionalS〉 ::=
‘ifGT [’〈CommandSList〉‘]’

| ‘ifGE [’〈CommandSList〉‘]’
| ‘ifEQ [’〈CommandSList〉‘]’
| ‘ifLT [’〈CommandSList〉‘]’
| ‘ifLE [’〈CommandSList〉‘]’

〈Expr〉 ::= 〈species〉 { ‘+’ 〈species〉 }

Listing 1.1: CRN++ Grammar

CRN++: Molecular programming language 399

123



3.4 Error evaluation

Programming chemistry is inherently error-prone. We

identify three specific sources of error in CRN??. First,

CRNs converge asymptotically—only in the limit is the

correct value reached—thus leaving certain amount of

error in a finite time. Second, we cannot completely turn

off modules which are not supposed to be currently exe-

cuting, whether they belong to another sequential step, or

to another branch of execution. Third, comparison has to

take into account possible error in the compared values.

Our design decisions were based on minimizing the

error; however since error cannot be avoided altogether, we

provide a toolkit that helps in error analysis and guiding the

CRN (program) design. Using the tool, users can, for any

species of interest, track the difference between the correct

value, and the (simulated) value in chemistry. For example,

if operation add[a, b, c] is executed in a step, than c ¼
aþ b is expected in the following step. CRN??allows

measuring the difference between the expected c ¼ aþ b,

and actual simulation value. To use the error evaluation, a

user simply runs a Mathematica function we provide,

called EvaluateError which accepts two inputs: (1)

CRN??program and (2) simulation duration. This helps

users analyze the error, and detect if the error builds up

over time.

We analyze the value of operand a from GCD example

Fig. 3, and plot the error in Fig. 5. In Fig. 5, the x-axis

represents time, while the y-axis shows the difference

between expected and actual value of a. Note that the error

is sufficiently small that the algorithm executes correctly

throughout the analyzed time. The error is not constant,

which opens interesting questions of correlating the error

with instructions in the program. To correlate error with

program instructions we examine the GCD simulation

(Fig. 3b). By looking at the time axis, it is easy to connect

the first two spikes of the error with the subtraction of a.

We provide the error evaluation framework with the

vision of it being a guiding element for programming in

CRN??. We found this technique particularly useful for

validation of programs, analyzing the error, understanding

the sources of error, and redesigning the CRN for

correctness.

4 Evaluation

In this section, we evaluate CRN??on a set of discrete and

real-valued examples. Later in this section, we characterize

the error of basic modules.

4.1 Examples

We first show a set of discrete algorithms implemented in

CRN??—counter, factorial, integer division, integer

square root; followed by real-valued algorithms—approx-

imating Euler’s and p constants.

4.1.1 Discrete counter

We implement a discrete counter that counts from a pre-

defined value to zero, and repeats the process. Figure 6

shows both the CRN??program and the simulation results.

Variable c stores value of the counter, cInitial stores the

initial value of the counter for later refills, while one and

zero store constants 0 and 1, respectively. Initial concen-

trations of the species are set in lines 2–3; where c0 is a

parameter of the program representing the initial value of

the counter. In step 1 (lines 4–7), one is subtracted from the

counter and stored into cnext, and at the same time the

counter is compared with zero. In step 2 (lines 8–11), if the

counter is zero, then its value is reset to the initial value;

otherwise, cnext is stored into the counter. Steps exhibit

looping behavior, thus described commands repeat.

4.1.2 Factorial

We implement a program in CRN??that computes the

factorial function. Figure 7 shows both the program and

simulation results. To compute the factorial of a positive

integer n, we store n in the iterator variable i, and repeat-

edly multiply f with i, decreasing i until it becomes zero.

Initial concentrations of the species are defined in line 2. In

step 1 (lines 3–7), the iterator i is compared with one to

check the termination condition, f is multiplied with

i storing the value in the temporary variable fnext, and

finally i is decremented storing the value in the temporary

inext. In step 2 (lines 8–13), if i[ 1, the temporary vari-

ables are stored back to f, and i.

4.1.3 Integer division

We implement integer division of two numbers, computing

the quotient and the remainder of the operation. Figure 8Fig. 5 Error evaluation of species a from GCD program
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shows both the program and simulation results. Variable

a stores the dividend, b the divisor, q the quotient, and r the

remainder. The divisor is subtracted from the dividend until

the dividend becomes smaller than the divisor. In step 1

(lines 3–5), the dividend and divisor are compared to detect

if the termination condition is satisfied. In step 2 (lines

6–11), if a[ b, the divisor is subtracted from the dividend,

and the quotient is incremented. In step 3, if a[ b, the new

values for the dividend and quotient are restored from the

temporary variables into the original ones. Also, in step 3,

if a\b, the dividend is stored into the remainder (line 17).

1 crn = {
2 conc[c,c0 ], conc[ cInitial ,c0 ],
3 conc[one ,1], conc[zero ,0],
4 step[{
5 sub[c,one,cnext ],
6 cmp[c,zero]
7 }],
8 step[{
9 ifGT[{ ld [cnext,c] }],

10 ifLE[{ ld [ cInitial ,c] }]
11 }]
12 }

(a) CRN++ code.
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(b) Simulation results for c0 = 3; value
of c is shown (green line).

Fig. 6 Discrete counter. (Color

figure online)

1 crn={
2 conc[f ,1], conc[one ,1], conc[ i , f0 ],
3 step[{
4 cmp[i,one],
5 mul[f , i , fnext ],
6 sub[ i ,one, inext ]
7 }],
8 step[{
9 ifGT[{

10 ld [ inext , i ],
11 ld [ fnext , f ]
12 }]
13 }]
14 }

(a) CRN++ code.
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(b) Simulation results for f0 = 5; value
of f is shown (green line).

Fig. 7 Factorial. (Color

figure online)

1 crn={
2 conc[a,a0 ], conc[b,b0], conc[one ,1],
3 step[{
4 cmp[a,b]
5 }],
6 step[{
7 IfGE[{
8 sub[a,b,anext ],
9 add[q,one,qnext]

10 }]
11 }],
12 step[{
13 IfGE[{
14 ld [anext,a ],
15 ld [qnext,q]
16 }],
17 ifLT[{ ld [a, r ]}]
18 }]
19 };

(a) CRN++ code.
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(b) Simulation results for a0 = 20,
b0 = 3; values of a (green), b (orange),
q (red), and of r (blue) are shown.

Fig. 8 Division. (Color

figure online)

CRN++: Molecular programming language 401

123



4.1.4 Integer square root

Algorithm 1 Integer square root.
1: procedure Int Sqrt(n)
2: z ← 0
3: while (z + 1)2 ≤ n do
4: z ← z + 1
5: end while
6: return z
7: end procedure

We implement a program that finds the integer square

root of a number. Algorithm 1 shows the pseudo-code

algorithm: the square root of a number n is found by iter-

ating through positive integer numbers: 0, 1, 2, etc, until

square of the number overshoots n. We map this algorithm

to a CRN??program, and show the code and simulation

results in Fig. 9. In step 1 (lines 3–7), z is incremented

(znext :¼ zþ 1), and the square of zþ 1 is computed

(zpow :¼ znext � znext) and compared with n. In step 2

(lines 8–11), if zpow\n, znext is stored into z; otherwise,

the result is computed and stored in out.

4.1.5 Euler’s number approximation

So far we presented discrete algorithms, however chem-

istry naturally allows for real-valued (analog) computa-

tions. For programming with real values we make use of

CRN??module for performing division. The div module

follows the same design principles and characteristics as

other arithmetic modules we presented (see Table 1).

We implement a program that approximates Euler’s

number. Euler’s number can be computed using the fol-

lowing infinite series:

e ¼
X1

n¼0

1

n!
¼ 1

1
þ 1

1
þ 1

1 � 2þ
1

1 � 2 � 3þ � � �

We map this program into CRN??code, as shown in

Fig. 10. Variable e stores the current approximation of the

constant, while element stores the current element of the

series. In step 1 (lines 5–9), element is divided by the di-

visor, divisor is incremented for the next iteration, and e is

incremented by the current element of the series. In step 2

(lines 10–14), the temporary variables elementNext, eNext,

and divisorNext, are restored into the original variables.

The precision achieved at the end of simulation is up to 5

decimal digits—2.71828.

4.1.6 Approximating p

We approximate the constant p via a CRN??program. We

rely on the following infinite series to do so:

p ¼ 4

1
� 4

3
þ 4

5
� 4

7
þ 4

9
� 4

11
þ � � �

Figure 11 shows both the code and simulation. In step 1

(lines 6–13) following instructions are executed: (a) 4 is

divided by the current divisor divisor1 and stored into

factor1, (b) 4 is divided by the divisor2 and stored into

factor2, (c) factor1 subtracted by factor2 is added to the pi,

(d) divisor1 and divisor2 increased by 2 are stored into

divisor1Next and divisor2Next, respectively. In step 2 (li-

nes 14–18), the temporary variables divisor1Next, divi-

sor2Next, and piNext are restored to the original variables.

At the end of simulation we measure the output value

3.20185. Error evaluation shows that the error is greater in

computing p compared to Euler’s number due to using

subtraction (of close values), which is the most error-prone

out of all arithmetic operations we present [see (4.2)].

4.1.7 Size of CRNs

Table 2 shows the sizes of CRNs, in terms of the number of

reactions and species, that result from compilation of cor-

responding CRN??programs.

4.2 Error characterization

In this section we evaluate error of the CRN??modules.

4.2.1 Error of arithmetic modules

Using our error evaluation mechanisms (Sect. 3.4) we

analyze the error of the modules. We evaluate each module

separately, on different inputs, to characterize its behavior.

Figure 12 shows the error evaluation results, where a and

b axes reflect the values of the first and second operand,

respectively, and the height shows the magnitude of the

error. The plots provide useful information such as: (a) The

error of the mul and add modules increases as the value

being computed increases; (b) Since these CRNs are

symmetric with respect to the inputs, the error does not

depend on the order of the arguments; (c) The sub module

exhibits the largest error when the inputs are close to each
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other, and in general, has a higher error than the other

arithmetic modules. This information is useful when

designing CRN??programs: error-prone subtraction of

inputs close to each other is the reason why the error in the

program approximating p (4.1.6) is higher than in the one

approximating Euler’s number (4.1.5). Having this in mind,

a user can optimize a program; for example, the subtraction

of close operands can often be done in alternative, less

error-prone ways (see below, Fig. 13b). We plan to add

runtime assertions to CRN??programs that alert for pos-

sible issues in the program; for example, when values being

subtracted are closer than � to each other.

1 crn = {
2 conc[one ,1], conc[n,n0],
3 step[{
4 add[z,one,znext ],
5 mul[znext,znext,zpow],
6 cmp[zpow,n]
7 }],
8 step[{
9 ifLT[{ ld [znext,z ]}],

10 ifGE[{ ld [z,out]}]
11 }]
12 };

(a) CRN++ code.
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(b) Simulation results for n0 = 10. Val-
ues of z (green), zpow (orange), and out
(red) are shown.

Fig. 9 Integer square root.

(Color figure online)

1 crn = {
2 conc[e, 1], conc[element, 1],
3 conc[ divisor , 1], conc[one, 1],
4 conc[ divisorMultiplier , 1],
5 step[{
6 div [element, divisor , elementNext],
7 add[ divisor , one, divisorNext ],
8 add[e, elementNext, eNext]
9 }],

10 step[{
11 ld [elementNext, element ],
12 ld [ divisorNext , divisor ],
13 ld [eNext, e]
14 }]
15 };

(a) CRN++ code.
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(b) Simulation results. Approximation
of Euler’s number is shown in green
line, while dashed orange line shows the
correct value as a reference.

Fig. 10 Approximating Euler’s

number through infinite series.

(Color figure online)

1 crn={
2 conc[four , 4],
3 conc[ divisor1 , 1],
4 conc[ divisor2 , 3],
5 conc[pi , 0],
6 step[{
7 div [ four , divisor1 , factor1 ],
8 add [ divisor1 , four , divisor1Next ],
9 div [ four , divisor2 , factor2 ],

10 add [ divisor2 , four , divisor2Next ],
11 sub [ factor1 , factor2 , factor ],
12 add [ pi , factor , piNext]
13 }],
14 step[{
15 ld [ divisor1Next , divisor1 ],
16 ld [ divisor2Next , divisor2 ],
17 ld [piNext, pi ]
18 }]
19 };

(a) CRN++ code.
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(b) Simulation results. Approximation
of π constant is shown in green line,
while dashed orange line shows the cor-
rect value as a reference.

Fig. 11 Approximating Pi

constant through infinite series.

(Color figure online)
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4.2.2 Reducing the error through program refactoring

The sub module has a high error when the operands are

close to each other. In this section we show an example

where the error can be reduced by replacing the sub module

with an alternative subtraction algorithm. Figure 13b

shows the alternative code for performing subtraction. The

value of b is subtracted from a, by repeatedly subtracting 1

from both a and b, until b reaches 0. This method ensures

smaller error which is also constant in time, however it is

less time efficient.

5 Related work

Computational power of chemical reaction networks Pre-

vious research demonstrated techniques of achieving

complex behaviors in mass-action chemistry, such as

computing algebraic functions and polynomials (Buisman

et al. 2009; Salehi et al. 2017, 2018), logarithms (Chou

Table 2 Size of CRNs

Program #Species #Reactions

Discrete counter 25 31

Factorial 26 33

Integer division 32 39

Integer square root 26 32

Euler 24 20

p 29 29

Fig. 12 Error evaluation of arithmetic modules. Axes a and b show the values of the first and second operand, respectively; the height shows the

absolute value of the error (difference between the correct and actual value of the operation)
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2017), implementing logic gates and finite state machi-

nes (Hjelmfelt et al. 1992; Magnasco 1997; Ge et al.

2016), and neural networks (Hjelmfelt et al. 1991; Salehi

et al. 2018). Moreover, the Turing completeness of

chemistry has been proven, using the strategy of imple-

menting polynomial ODEs (which have been previously

shown to be Turing universal) in mass-action chemical

kinetics (Fages et al. 2017). Even though Turing complete,

this translation to chemistry can result in infeasibly com-

plex chemical reaction networks, which motivates other,

more direct methods.

Modular reactions Adding even a single reaction to a

CRN can completely change its dynamics, which makes

the design process challenging. The idea of ‘‘composable’’

reactions seeks a set of reactions that can be composed in a

well-defined manner to implement more complex behav-

iors. Buisman et al. (2009) computed algebraic expressions

by designing the core modules that implemented basic

arithmetic operations, which can be further composed to

achieve more complex tasks. Our goal is to make modular

designs, and we follow some of the proposed design

principles for achieving the goal, such as input-preserving

CRNs.

Synchronous computation Previous work utilized syn-

chronous logic to achieve complex tasks. Soloveichik et al.

implemented state machines in chemistry by relying on a

‘‘rock-paper-scissors’’ type of chemical clock (oscilla-

tor) (Soloveichik et al. 2010). We use the same clock

module, with clock species acting catalytically to order

reactions. Jiang et al. (2011), also relying on clock species,

designed a model of memory in chemistry to support

sequential computation, demonstrating their technique on

examples of a binary counter and a fast Fourier transform

(FFT). Previous work shows the promise of programming

synchronous logic in reactions, which we advance by

providing an explicit programming language and frame-

work for designing and testing wide-range of programs.

Asynchronous computation Huang et al. (2012) used

‘‘absence indicators’’ to implement complex algorithms

such as integer division and GCD. An absence indicator is

a species that is present in high concentration when a target

species is present in low concentration (Senum and Riedel

2011). Absence indicators can be used to drive a reaction

when a particular reaction has finished, providing a method

for executing modules in desired order. Generally speak-

ing, the absence indicator for species A is produced at a

constant rate and gets degraded by A. The absence indi-

cator has to be produced slowly, or else it will be present in

non-negligible concentration even if A is present. The

absence indicators in the literature relied on a difference

between rate constants of several orders of magnitude;

e.g., Huang et al. (2012) uses two reaction rates, ‘fast’ and

‘slow’, where the fast rate needs to be orders (2–3) of

magnitude larger to ensure the proper function of the sys-

tem. Since, in practice, biochemical systems allow for a

restricted range of reaction rates, requiring a large differ-

ence in rates slows down the computation when the com-

putation speed is dictated by the slow rates. In contrast, we

allow all reactions to take the same (or comparable) rate

constants.

While the goal of our work is not to compare asyn-

chronous and synchronous computation, we mention a few

insights which we gained through empirical studies. First,

absence indicators are not robust, and typically require fine

tuning to get the system right. Second, error detection is

easier with synchronous logic. Since all operations follow

the clock signal, there is a direct mapping from a time

moment to a command that is executing, which provides a

way to check correctness of a system at any point of time.

We provide a framework for implementing molecular

programs which is easily extensible, and can be used to
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(a) Comparing error of Sub module
(blue lines) and alternative way to sub-
tract (orange lines). X-axis show the
value of both minuend and subtrahend.

1 crn = {
2 conc[a, a0 ], conc[b, b0],
3 conc[one, 1], conc[zero , 0],
4 step[{
5 cmp[b, zero]
6 }],
7 step[{
8 ifGE[{
9 sub[a, one, anext ],

10 sub[b, one, bnext]
11 }]
12 }],
13 step[{
14 ifGE[{
15 ld [anext, a ],
16 ld [bnext, b]
17 }]
18 }]
19 }

(b) Alternative way to subtract.

Fig. 13 Comparing error of sub

with the alternative way of

subtracting (b). Error evaluation
is shown (a) for the cases when

the operands are equal (minuend

and subtrahend same), since sub

exhibits the highest error in that

case
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compare synchronous and asynchronous logic. We include

support for absence indicators through the ifAbsent con-

struct, thus allowing easier comparison of the two

paradigms.

6 Discussion and conclusions

There are multiple ways in which we can further improve

CRN??. Note that currently every high-level module is

mapped to exactly one CRN implementing the operation.

Letting the tool decide which implementation to use in

different contexts could boost the performance. For

example, the described modules have a useful property of

preserving inputs, but that property might not be needed in

every case. If the input preserving property is redundant,

CRN??could choose to use the more optimized version

(for example the more compact subtraction CRN discussed

above). Also, we could provide a more flexible program-

ming experience by (a) letting the compiler automatically

schedule instructions to different steps (instead of the

explicit step construct); (b) allowing the same species as

both input and output of a module and automatically gen-

erate the additional instructions.

We plan to further explore the support for nested loops

in CRN??. Currently nested loops can be mimicked

through conditional execution: the loop condition is com-

puted through comparison and the main loop conditionally

executes the instructions of the desired loop. Besides

explicit support for nested loops, future work will support

nested conditionals by adding multiple flag species for

multiple comparisons.

An important direction for future research concerns

reducing the error in our construction, and understanding

how it builds up over time. We noticed that different

algorithms, even computing the same function, accumulate

varying levels of error. For example, as seen in 4.2.1, the

error of the Sub module increases with the magnitude of

the operands, and also increases the closer they are.

However, we also found an alternative way to subtract, that

keeps the error constant and independent of the operands

(see Fig. 13b) at the cost of a slower run-time.

Our error analysis shows that for most examples we tried,

but not all, error builds up over the course of the computation.

For CRN??programs where the error builds up in this way,

there is some maximum input complexity beyond which the

error overwhelms the output. Can all CRN??programs be

refactored (preferably automatically) to bound the cumula-

tive error of every module such that it does not build up over

time? Note that if this were possible, we would obtain

another, more efficient, way to achieve Turing universality.

To the best of our knowledge we are the first to provide

an imperative programming language which compiles to

chemical reaction networks. Moreover, we build tools that

can help users get a better understanding of CRNs and

improve their design. Although absolutely correct compu-

tation is not achieved, we provide tools that help under-

stand why error occurs, and thus help improve the design of

CRNs. We release our toolkit as open-source, to encourage

new research and improvement of the CRN??, with the

hope of advancing the engineering of information pro-

cessing molecular systems.

In this work we advance the state of imperative pro-

gramming with CRNs. It remains an important open

question, however, whether fundamentally new program-

ming paradigms are needed to fully and effectively utilize

the computational power of chemistry.
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