Natural Computing (2020) 19:391-407
https://doi.org/10.1007/s11047-019-09775-1

=

Check for
updates

CRN++: Molecular programming language

Marko Vasi¢' @ - David Soloveichik - Sarfraz Khurshid’

Published online: 3 January 2020
© Springer Nature B.V. 2020

Abstract

Synthetic biology is a rapidly emerging research area, with expected wide-ranging impact in biology, nanofabrication, and
medicine. A key technical challenge lies in embedding computation in molecular contexts where electronic micro-
controllers cannot be inserted. This necessitates effective representation of computation using molecular components.
While previous work established the Turing-completeness of chemical reactions, defining representations that are faithful,
efficient, and practical remains challenging. This paper introduces CRN++, a new language for programming deterministic
(mass-action) chemical kinetics to perform computation. We present its syntax and semantics, and build a compiler
translating CRN+-+ programs into chemical reactions, thereby laying the foundation of a comprehensive framework for
molecular programming. Our language addresses the key challenge of embedding familiar imperative constructs into a set
of chemical reactions happening simultaneously and manipulating real-valued concentrations. Although some deviation
from ideal output value cannot be avoided, we develop methods to minimize the error, and implement error analysis tools.
We demonstrate the feasibility of using CRN++on a suite of well-known algorithms for discrete and real-valued com-
putation. CRN++ can be easily extended to support new commands or chemical reaction implementations, and thus

provides a foundation for developing more robust and practical molecular programs.

1 Introduction

A highly desired goal of synthetic biology is realizing a
programmable chemical controller that can operate in
molecular contexts incompatible with traditional electron-
ics. In the same way that programming electronic com-
puters is more convenient at a higher level of abstraction
than that of individual flip-flops and logic circuits, we
similarly expect molecular computation to admit specifi-
cation via programming languages sufficiently abstracted
from the hardware. This paper focuses on developing a
compiler for a natural imperative programming language to
a deterministic (mass-action) chemical reaction network
implementing the desired algorithm. We do not directly
make assumptions on how the resulting reactions would be
implemented in chemistry. This could in principle be

< Marko Vasié¢
vasic @utexas.edu

David Soloveichik
david.soloveichik @utexas.edu

Sarfraz Khurshid
khurshid @utexas.edu

The University of Texas at Austin, Austin, USA

achieved by DNA strand displacement cascades (Solove-
ichik et al. 2010), or other programmable chemical tech-
nologies such as the PEN toolbox (Baccouche et al. 2014).

Deterministic (mass-action) chemical kinetics is Turing
universal (Fages et al. 2017), thus in principle allowing the
implementation of arbitrary programs in chemistry. Turing
universality was demonstrated by showing that arbitrary
computation can be embedded in a class of polynomial
ODEs (Bournez et al. 2017), and then implementing these
polynomial ODEs with mass-action chemical kinetics.
While these results establish a sound theoretical foundation
and show the power of chemistry for handling computation
tasks in general, translating and performing specific com-
putational tasks can lead to infeasibly large and complex
sets of chemical reactions.

In this work we develop a programming paradigm for
chemistry, based on the familiar imperative programming
languages, with the aim of making molecular programming
more intuitive, and efficient. Most commonly used pro-
gramming languages such as C, Java and Python, are
imperative in that they use statements that change a pro-
gram’s state, with typical branching constructs such as if/
else, loops, etc. Note that although CRNs are sometimes
talked about as a programming language (Chen et al.
2013), they are difficult to program directly (it is even

@ Springer

http://orcid.org/0000-0002-3404-7187
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-019-09775-1&domain=pdf
https://doi.org/10.1007/s11047-019-09775-1

392

M. Vasic et al.

unfair to equate them with assembly language). In contrast,
CRN++operates at a much higher level.

We introduce the syntax and semantics of CRN++, an
imperative programming language that compiles to deter-
ministic (mass-action) chemical reaction networks.
CRN+-+has an extensible toolset including a simulation
framework and error analysis functionality. A user speci-
fies a sequence of statements, termed commands, to exe-
cute. Assignment, comparison, loops, conditional
execution, and arithmetic operations are supported. The
generated reactions are logically grouped into modules
performing the corresponding command. Each module
transforms initial species concentrations to their steady-
state values which are the output of the module. We ensure
that such modules are composable by preserving the input
concentrations at the steady-state.

A mapping of imperative program logic to chemical
reactions manipulating continuous concentrations poses
various challenges that we must address. All reactions
happen concurrently, making it difficult to represent
sequential computation where, for example, the result of
one operation is first computed and then used in another
operation. Similarly, all branches of the program execution
(i.e., if/else) are followed simultaneously to some degree.
To mimic sequential execution in mass-action chemistry,
we ensure that the reactions corresponding to the current
command happen quickly, while other reactions are slow.
For this we rely on a chemical oscillator in which the clock
species oscillate between low and high concentrations, and
catalyzing reactions with different clock species. To
achieve conditional execution, we further need to ensure
that the reactions corresponding to the correct execution
branch happen quickly, while those corresponding to other
branches are inhibited. Our cmp module sets flag species to
reflect the result of comparison, and these species catalyze
the correct branch reactions.

A further source of error is that the set of basic modules,
such as addition, converge to the correct value only in the
limit, thus computing approximately in finite time. To
mitigate this source of error, we choose a set of modules to
exhibit exponential (fast) convergence. We further provide
a toolkit for error analysis and detection, which can help a
user to identify and mitigate the source of error, guiding the
design of more accurate CRN+-+programs.

We demonstrate the expressiveness of our language by
implementing and simulating common discrete algorithms
such as greatest common divisor, integer division, finding
integer square root, as well as real-valued (analog) algo-
rithms such as computing Euler’s number and computing
7. We implement the CRN++-compiler which generates
the reactions implementing a high level imperative algo-
rithm, and use the CRNSimulator package (http://users.ece.
utexas.edu/ ~ soloveichik/crnsimulator.html) to manipulate

@ Springer

and simulate chemical reactions using Mathematica.
CRN++is an extensible programming language allowing
for easy addition of new modules; we release the open-
source version (https://github.com/marko-vasic/crnPlus
Plus) of the tool to enable others make use of it, and extend
it further.

2 Examples

In this section we discuss the characteristics of chemical
reaction networks (CRNs) through examples. First, the
overall idea of computation in CRNSs is presented, followed
by example programs in CRN++. The focus is to give a
high level idea of our technique, while later sections dis-
cuss internal details.

Although historically the focus of the study of CRNs
was on understanding the behavior of naturally occurring
biological reaction networks, recent advancements in DNA
synthesis coupled with general methods for realizing
arbitrary CRNs with DNA strand displacement cas-
cades (Soloveichik et al. 2010) opened the path to engi-
neering with chemical reactions. In this work we are not
interested in a way to engineer the molecules implementing
a reaction but focus on reaction behavior and dynamics.
We abstract away molecule implementation information
and denote molecular species with letters (e.g. A).

Molecular systems exhibit complex behaviors governed
by chemical reactions. To give a formal notation of
chemical reaction networks, consider the CRN 1 (Buisman
et al. 2009):

CRN 1 Example chemical reaction network

A+BLA+ByC @
e @

The CRN 1 consists of two reactions. A chemical
reaction is defined with reactants (left side), products (right
side), and rate constant which quantifies the rate at which
reactants interact to produce products. To illustrate this,
reaction 1 is composed of reactants = {A, B},
products = {A, B, C}, and rate constant k = 1. Since most
reactions in CRN++have the rate constant equal to 1, from
now on we drop the rate constant when writing reactions,
unless it is different than 1. Note that multiple molecules of
same species can be in a list of reactants (analogously for
products); to support this we use the multiset notation. As
an example, to describe reaction: A + A — B we write

http://users.ece.utexas.edu/%7esoloveichik/crnsimulator.html
http://users.ece.utexas.edu/%7esoloveichik/crnsimulator.html
https://github.com/marko-vasic/crnPlusPlus
https://github.com/marko-vasic/crnPlusPlus

CRN++: Molecular programming language

393

reactants = {A?}, where the upper index (2) represents
multiplicity (number of occurrences).

It may seem that a molecule of C is produced out of
nothing in reaction 1, since the multiset of reactants is a
submultiset of the products. This represents a level of
abstraction where fuel species that drive the reaction are
abstracted away (i.e., the first reaction corresponds to
F+A+4+B—A+4+B+(C). Making this assumption
allows us to focus on the computationally relevant species.
The choice to use general (non-mass/energy preserving)
CRNs is an established convention for DNA strand dis-
placement cascades (Soloveichik et al. 2010).

When the molecular counts of all species are large, and
the solution is “well-mixed”, the dynamics of the system
can be described by ordinary differential equations (mass-
action kinetics). Molecular concentrations are quantified by
a system of ODESs, where the concentration of each species
is characterized by the following ODE:

d|S
% = Z k(rxn) -netChange(S,rxn) - H

Vrxne CRN

[R}mrw(R) (1)

VR € reactants(rxn)

The right side is a sum over reactions in the CRN, where
k(rxn) is a rate of reaction rxn, netChange(S,rxn) is a net
change of molecules of S upon triggering of rxn (can be
negative), and m,,(R) is the multiplicity of reactant R in
reaction rxn. To illustrate the general formula, the set of
ODEs characterizing CRN 1 is:

du]_ o B dic]

=0, SR 0. S Al - B)) - ()0

Since the concentrations [A] and [B] are constant

(derivatives zero), we have % = [A](0) - [B](0) — [C](2).
Thus [C](?) is increasing when smaller than [A](0) - [B](0),
decreasing in the opposite case, and does not change when
[C](r) = [A](0) - [B](0). Therefore system has a global
stable steady-state [C] = [A](0) - [B](0). We say that this
module computes multiplication, due to the relation
between initial concentrations and concentrations at the
steady state.

We simulate and plot the dynamics of the multiplication
CRN, as shown in Fig. 1. Initial concentrations of A and
B are 6 and 2, respectively, while the concentration of
C approaches value 12. Note that the exact value defined
by the steady state ([C](f) = 12) is reached only at the limit
of time going to infinity. Since the computation has to be
done in finite time, the presence of error is unavoidable.
This error raises challenging issues with programming in
chemistry, and necessitates techniques for controlling it.
One crucial property that determines the error is the con-
vergence speed of the module. The multiplication com-
mand in CRN++is implemented through the above
module, following the design principles of convergence

0 5 10 15

Fig. 1 Multiplication CRN. [A] shown in orange, [B] in green, and
[C] in red. (Color figure online)

speed and composability described in Sect. 3. Chemical
reactions are abstracted away from a user who can simply
write mulla, b, ¢| to multiply.

CRN+-+1is an imperative language, and as such supports
sequential execution. Note that even a simple operation of
multiplying and storing into the same variable, e.g.
A := A x B, requires support for sequential execution. We
use operator “:=” to relate input and output concentra-
tions; A:=A=xB denotes that [A](f) converges to
[A](0) = [B](0). The above implementation of the mul
module necessarily assumes that the output species is dif-
ferent from the input species. Otherwise, mul[a, b, a] goes
to infinity or 0 depending on the value of B. To implement
A := A x B, we split the computation into two sequential
steps: (1) C:=AxB, (2) A := C. To multiply we use the
mul module described above. For the assignment we use
the load module (Id). To ensure the assignment executes
after the multiplication, we catalyze the two modules with
the clock species that reach their high values in different
phases of the oscillator. Importantly, the chemical oscil-
lator and clock species are abstracted away from a user,
who simply uses the step construct to order reactions:
step[{mulla, b, c]}], step[{ld[c, a]}].

One of the basic blocks of programming languages are
conditional branches, executing upon success of a pre-
condition. Similarly to implementing sequential operations,
we implement conditional execution by activating (through
catalysis) some reactions and deactivating others, depend-
ing on a result of condition. Since no species can be driven
to O in finite time,l all branches of condition will be active
to some extent, which makes this an interesting source of
errors without direct analogy in digital electronics. Anal-
ogous to clock species in sequential execution, reactions
are catalyzed by flag species to support branching. The flag
species have high and low values that reflect the result of
the comparison. Our cmp module sets the flag species to

! Although certain pathological CRNs can drive concentrations to
infinity in finite time (e.g., 2A — 3A), and thereby drive certain other
species to O in finite time (e.g., with an additional B+ A — A), these
cases cannot be implemented with any reasonable chemistry.

@ Springer

394

M. Vasic et al.

reflect the result of the comparison. In the following
example we demonstrate the usage of c¢mp module and
conditional execution.

To demonstrate the expressiveness of our language we
showcase the implementation of Euclid’s algorithm
(Fig. 2) to compute the greatest common divisor (GCD) of
a two numbers. The GCD is computed by subtracting the
smaller of the values from the larger one until they become
equal.

Figure 3a shows the implementation of Euclid’s algo-
rithm in CRN++. Lines 2-3 define the initial concentra-
tions of species a and b, where constants a0 and b0 are
values for which GCD is computed. To order the execu-
tion, the step construct is used. Multiple instructions that do
not conflict with each other can be part of the same step
and they are executed in parallel. In the first step a and
b are stored into temporary variables and compared, setting
the flag species to reflect the result of the comparison. The
second step uses the result of the previous comparison, and
effectively stores a — b into a if a > b, and vice versa.
Since the same species cannot be used as both input and
output to sub module, temporary variables are used (atmp
and btmp). Steps repeatedly execute due to the oscillatory
behavior of the clock species, thus implementing looping
behavior by default; the steps can be viewed as being inside
of the ‘forever’ loop. CRN++, in addition to the language
and compiler to chemical reactions, is connected to the
simulation backend that enables convenient testing for
correctness.

We show a simulation of the GCD program in Fig. 3b
where GCD(32,12) is computed. Although not visible in
the plot we can identify a number of non-idealities in the
CRN++implementation. First, modules converge to cor-
rect values only in limit of time going to infinity; thus for
example the first subtraction (second step) will set a to
value close to but not exactly 20. Second, modules that
should not be executing cannot be completely turned off,
and so when the first step executes the second does so as
well (of course, in much smaller extent). Analogously the
two subtraction operations in the second step are supposed
to be mutually exclusive, and yet they co-occur to some
extend. More discussion on the sources of error is provided
in Sect. 3.4.

In addition, we implement a set of algorithms in
(a) discrete space—counter, factorial, integer division,
integer square root, as well as in (b) continuous space—by
implementing CRN++programs that approximate value of
Euler’s constant and n. These examples are shown in
Sect. 4.

@ Springer

3 Technique

This section explains CRN++-, both the underlying con-
structs used to build it, as well as high level primitives that
represent the language itself. We start by presenting high-
level modules that are at the core of CRN++(Sect. 3.1),
followed by explanation of how the sequential behavior is
achieved (Sect. 3.2), after which we give an overview of
CRN++grammar (Sect. 3.3), and finally we discuss the
error detection and analysis tools we provide (Sect. 3.4).

3.1 Modules

Modules represent the core of CRN++, and in their form
are somewhat analogous to the instruction set architecture
(ISA) in machine languages. Modules implement basic
operations such as load, add, subtract, multiply, compare.
We provide the exhaustive list of modules in Table 1.
Importantly, CRN++is extensible, and supports easy
addition of new modules.

There are multiple ways of computing addition and
other operations in chemistry. As mentioned in the previ-
ous section, our implementation choice is led by two basic
principles: (a) convergence speed, and (b) composability.

3.1.1 Convergence speed

To provide intuition about the convergence speed of
modules we analyze the following CRN:

CRN 2 Simple CRN

A+B—10

The ODEs describing the above CRN are: 4]

d
—[A)(r) + [BI(r) and = —[A](1) * [B](1).
amount of B decreases with the same speed as A, we can

express the dynamics of the system in terms of
Do = [B](0) — [A](0):

Since the

dA]

=~ * ()0 + Do)
If Dy # 0, the solution is:
Al) = A,

—[AJ(0) + [A](0)ePe" + DoeP!

To consider the convergence speed we look at the non-
constant part of the equation. Due to the factor e’ the
decrease of the non-constant part is exponential, and we
say that the convergence speed is exponential. If Dy > 0

CRN++: Molecular programming language

395

1:
2
3:
4:
5
6
7
8

procedure GCD(a, b)
while a # b do

if a > b then
a<—a—>b
else
b—b—a
end if

end while

9: return a
10: end procedure

Fig. 2 Euclid’s algorithm for computing GCD

Fig. 3 Implementation of
Euclid’s algorithm for
computing GCD in
CRN+++(left), simulation
results of the implementation
(right). (Color figure online)

([B](0) > [A](0)) terms with exponential factors tend to
infinity, and [A] to zero. Conversely, when Dy <0, expo-
nential factors converge to zero, and [A] to —Dy.

When Dy # 0 so far; by solving the ODE for Dy = 0 we
get a following:

__[A)0)
[A](1) = m

In this equation, non-constant part is not anymore expo-
nential, but linear; thus we say that the convergence speed
is linear. To summarize, CRN 2 exhibits exponential
convergence speed when [A](0) # [B](0), and linear
otherwise.

30

© 0O~ Uk WN -

e =4
concla,a0],
concl[b,b0],
step[{

Id[a, atmp],
Id[b, btmp],
cmpla,b]

step[{
10 ifGT[{ sub[atmp,btmp,a] }],
11 ifLT[{ sub[btmp,atmp,b] }]

25

20

0 100 200 300 400 500

12} (b) Dynamic simulation of the GCD pro-
133 gram for a0 = 32, b0 = 12. Concentra-
tions of a (green), and b (orange) are
(a) GCD implementation shown in function of time.
Table 1 CRN++modules
Type Restrictions Output (steady state) CRN
ld[A, B] B#A B:=A A—A+B
B—10
add[A, B, C] C£ANC#B C:=A+B A—A+C
B—B+C
c—10
sub[A, B, C] C£ZANCZB C'_{A—B, A>B A—A+C
’ 0, otherwise B—B+H
Cc—90
C+H—0
mul[A, B, C] C£ZANC#B C:=A-B A+B—A+B+C
Cc—190
div[A, B, C] C£ZANC#B C:=A/B A—A+C
B+C—B
sqrt[A,B] B#£A B:=+A A;A B
B+ B—%>(/)
cmp[A,B] A#B Sets flag species * Two CRNs (mapping and AM) triggering in a

two consecutive phases (as discussed in Sect. 3.1.7)

The first column denotes the type of the module. The restrictions column imposes compile-time restrictions for using modules, here # is used to
mean different species (not values)

The output column shows the value of outputs at the steady state. Finally, the CRN column shows chemical reactions implementing the module

@ Springer

396

M. Vasic et al.

CRN++models computation in which an instruction
executes in a step (clock phase), and computation in sub-
sequent steps depends on values computed in previous
steps. In this reason, it is of a crucial importance to achieve
a high precision of computation until the end of a current
step; and to achieve this goal it is necessary to ensure a
high convergence speed. For this reason we want to ensure
that all of our modules exhibit exponential convergence.
So, for example, we do not want to use the reaction A +
A — C to compute division by 2 since it exhibits only
linear convergence (corresponding to the A = B analysis
above).

3.1.2 Composability

To explain composability we analyze two different CRNs
that perform addition (i.e., compute C := A + B).

CRN 3 Addition CRN (preserves inputs). Inputs: A and B, output: C

A—A+C
B—B+C
C—10

CRN 4 Addition CRN (destroys inputs). Inputs: A and B, output: C

More generally, for any set of modules that: (1) use
inputs catalytically (does not produce or consume inputs),
(2) exhibit exponential convergence, and (3) have a unique
stable steady state, a CRN composed of such modules also
has the above three properties. A proof can be found in
Buisman et al. (2009). From this it follows that the com-
posed CRN of the mul module and CRN 3 exhibits the
exponential convergence speed, and has a stable steady
state defined by W := (X *Y) + Z.

Note that the above discussion of composability con-
cerns reactions occurring within a single step construct
(i.e., we discuss correct computations when reactions occur
concurrently). Even non-composable reactions can be
composed by separating them in time via the step con-
struct. However, in order to keep the number of steps low
and ensure faster computation we aim to make reactions
composable when possible. With this, we have set up the
two main design criteria (convergence speed and com-
posability) for the modules, and we next describe the
CRN++modules.

3.1.3 Ld module
Loads the value from source (first argument) into a desti-

nation (second argument). The CRN used for load opera-
tion is following:

A— C
B—C

Although both of these CRNs compute addition (this is
evident for CRN 4; more detailed derivation is presented
for CRN 3 in Sect. 3.1.4), they behave very differently
when composed with other modules. For example, to
compute W:= (X*Y)+Z, we can combine the mul
module (CRN 1) with X and Y as inputs and some species
K as output, with an addition module with K and Z as
inputs and W as output. If we use CRN 3 for addition, note
that K is not changed by it (the input acts catalytically), and
thus K approaches X * Y as expected, allowing the addition
module to correctly compute (X *Y) + Z in the limit. In
contrast, if we use CRN 4 to perform addition, then by
consuming K the addition module will affect the equilib-
rium of the multiplication module, driving it lower than the
desired value X x Y. In this way CRN 4 is not composable,
while CRN 3 allows for the correct composition.

@ Springer

CRN 5 load CRN

A—A+B
B—10

A is the input and B is the output species. This module,
similar to add (see next section), has exponential conver-
gence speed (Buisman et al. 2009). In addition, the con-
centration of input species is constant, thus ensuring
composability.

3.1.4 Add module

Adds two values (first and second argument) and stores the
result into destination (third argument). The Add CRN is
shown in CRN 3.

By solving the ODEs that characterize [C](f) we get the
following equation: [C](r) = [A](0) + [B](0) + ([C](0) —
[A](0)— [B](0)) - e~'. From the equation it follows that
[C] converges to [A](0) + [B](0), and thus we say the CRN

CRN++: Molecular programming language

397

performs addition. Moreover, the CRN exhibits exponen-
tial convergence.

3.1.5 Sub module

Subtracts the second input value from the first and stores
into the destination (third argument).

CRN 6 subtraction CRN

A—A+C
B—B+H
cC—10

C+H—1

The above CRN was generated via evolutionary algo-
rithms (Buisman et al. 2009); by analyzing its system of
ODEs, the network computes truncated subtraction:

_ [[Al-[B], if [A]>[B]
1= {O, otherwise

(3)

Input species A and B are not affected and the property of
composability is satisfied. Neither we nor Buisman et al.
found the analytical solution; however, our simulation
results show that the module converges exponentially
quickly unless A = B (see the Sect. 3.1.1 for an analogous,
easy to analyze case).” In a case inputs, A and B, are close
to each other the computation error is higher. The error
evaluation tools (Sect. 3.4) help in detecting and analyzing
problematic cases (e.g., where A and B are close), thus
enabling a user to redesign the CRN. In our examples,
A and B usually differ by at least 1. Runtime assertions in
the simulation package that automatically notify a user
about these kind of problems would help identify the
source of the error. Note that many algorithms can be
refactored to reduce the error (see Sect. 6).

3.1.6 Mul module

Multiplies inputs (first and second argument) and stores
into destination (third argument). The multiplication CRN
is shown in Sect. 2. This CRN does not affect inputs and
has exponential convergence speed (Buisman et al. 2009).

2 A problematic feature of this module is that the concentration of H
increases without bound if [A] < [B]. Although this does not affect the
correctness of the computation, it is an interesting open question
whether there is another truncated subtraction module that satisfies
composability and exhibits exponential convergence but has bounded
concentrations for any input regime.

We have presented modules for performing arithmetic
operations (Id, add, sub, mul). These modules are imple-
mented within a single step. Multiple modules can be
executed in parallel within a single step as long as there is
no cyclic dependence between species: for example mul[a,
b, c] and add[c,d,a] forms a cycle, the output of the mul is
input to the add, and vice versa. Also, the CRN imple-
mentation imposes the restriction that same species cannot
be used as both input and output to the same module
(which is really a cycle of length 1). We now introduce the
cmp module providing for conditional execution, which is
executed in two steps.

3.1.7 Cmp module

Compares the two values, and produces signals (flag spe-
cies) informing which value is greater or if they are equal.

The cmp module is implemented using two sequentially
executed sets of reactions, which trigger in consecutive
clock phases. In the first phase, the inputs (X and Y) are
mapped to flag species X,y and X;y. Values are mapped to
the range [0-1], by setting the initial concentrations of X,y
and X,y such that their sum is 1. If, for example, [X] = 80
and [Y] = 20, flag species X,y and X;,y converge to 0.8 and
0.2, respectively.’ The mapping is done in order to preserve
the original values of the inputs (X and Y), considering that
the next phase of comparison consumes the compared
values (flags). The mapping CRN is shown in CRN 7, and
exhibits exponential convergence speed according to our
analysis.

CRN 7 CRN for mapping compared values

Xy +Y — Xy +Y
Xy +X — thY +X

The goal of the second phase of comparison is to detect
which value is greater. We use a chemical Approximate
Majority (AM) algorithm (Cardelli and Csikasz-Nagy
2012) to detect if Xy or X;y is in the majority. All
molecules of the less populous species convert to the more
populous species. The AM reactions are:

* This convergence happens irrespective of the initial concentrations
of the flag species Xy and Xy (as long as they sum to 1), so they do
not have to be reset before the mapping.

@ Springer

398

M. Vasic et al.

CRN 8 approximate majority CRN

Xgy +Xuy — Xyy + B
B+ Xyy — Xuy + Xuy

Xy + Xgry — Xgy + B
B+ Xgy — Xoy + Xy

Recall that the normalization CRN is run in a previous
step, so:

[Xerr](0) + [Xuy](0) = 1 (4)

Then in the AM network, the species (X,y, X;y, B) con-
verge to values (1, 0, 0) if X,y (0) > X;y(0) and (0, 1, 0) if
Xy (0) <Xy (0). In the subsequent step constructs, the
species X,y are used as a catalysts in reactions that execute
when X > Y, and the species Xy for the opposite case.
We now argue that CRN 8 exhibits exponential con-
vergence. Due to normalization, (4) holds, and moreover
[Xerr](t) + [Xuy](t) + [BI(t) = 1 (for all time t). Taking the
previous equality into account the ODEs of AM are:

d [thY]

S = Xer](O(1 = X] (1) = 2[Xr] (1)) (5)
d[);fY] = [Xuy| (1) (1 — [Xuy] (1) — 2[Xey](2)) (6)

Consider the function f(¢) = X%y Lthe choice of this
function is guided by the closed form solution for ¢ as a
function of X,y (¢) and X;,y () (Perron et al. 2009)]. Taking
the derivative of f(r) with respect to ¢ and substituting (5)
and (6) results in f(f) again. This means that f(r) has a
solution f (1) = Ce', which is unique by the Picard-Lindel6f

3
theorem. Therefore, Ce' = % <1/(XevXny) since
most 1. This
XoyXyy <C~le™', which implies that X,y or Xy con-
verges to 0 exponentially quickly.

If input species are initially equal ([Xgy](0) = [X};y](0))
then the system preserves their equality, and following
ODE holds: [Xy]'(f) = 2[Xgy](t)(1 — 3[Xy](2)). This is a
logistic differential equation which converges exponen-
tially quickly to values (1/3, 1/3, 1/3).) Even though con-
vergence is exponential we do not know how the time
changes as a function of the difference between the input
species, when the difference is small. Thus, even if the
compared species are close to each other, the system may
exhibit undesirably slow convergence to (1, 0, 0) or (0, 1,
0); As we later explain, our error evaluation framework can
help detect such cases.

the concentrations are at constrains

@ Springer

Equality checking Due to the ever-present error in
chemical computation, checking for equality is actually
approximate-equality checking. Consider having a chemi-
cal program with real values, then if the values are close to
each other it is impossible to tell if they are actually equal
but affected with error, or they represent different real
valued signals. Due to this issue, while comparing for
equality is impossible, we compare for e-range equality.
For discrete algorithms we use equality checking with
e = 0.5, allowing easy comparison of the integer values
(e.g., values in range (2.5, 3.5) are considered to be equal
to 3).

To support equality checking we compare x + ¢ with
v (generating signals Xy and X;y), and at the same time
compare y + € with x (generating signals Y,x and Yjx).
Combining the signals of the two comparisons gives the
desired result: If X =Y, signal X,y is high (X;;y low) and
Ygix is high (¥x low) due to the added offset. To execute a
reaction upon equality both X,y and Ygx are used cat-
alytically. If X > Y, signal X,y is high (X;;y low) and Y, is
high (Ygx low), so both X,y and Y;x should be used cat-
alytically. Symmetrically for X <Y, both X;;y and Y are
used catalytically. After calling cmp in a step, a user can
use instructions fGT (greater than), ifGE (greater or
equal), ifEQ (equal), if LT (less than), ifLE (less or equal) in
subsequent steps to conditionally execute reactions. Note
that the flags are active until the next call to the cmp
module.

3.2 Sequential execution
CRN++allows programming in a sequential manner,
despite the intrinsically parallel nature of CRNs. To model

sequential execution it is necessary to isolate two reactions
from co-occurring, and control the order in which they

[
LA AL

0 20 40 60 80 100

JVTVT

Fig. 4 Chemical oscillator containing 3 species: X; (red), X, (green),
and X3 (blue). (Color figure online)

CRN++: Molecular programming language 399
happen. The key construct we rely on to achieve these 3.3 Grammar
goals is a chemical oscillator.
A chemical oscillator is a CRN in which the concen-)
trations of species oscillate between low and high values. (Crn) = “ern= {(RootSList)'}
The oscillatory CRN (Lachmann and Sella 1995) we use is (RootSList) ::= (RootS) ,
described with a following set of reactions: | {RootS) *," {RootSList)
(RootS) ::= (ConcS)
| (StepS)
CRN 9 oscillator CRN (ConcS) ==
] ‘conc [’(species)‘,’(number)‘]’
P b X X 2 (StepS) = ‘step [’CommandSList‘]’
X, + X — 2X;
(CommandSList) ::= {CommandS)
| (CommandS) ‘,’ (CommandSList)
(CommandS) ::= (RxnS)
Concentrations of the clock species (X;) oscillate (see - | <gmh§netics>
Fig. 4). Different clock species have different oscillation I 2 CZ?diiionalS)
phase and reach minimum and maximum at different times. (RanS) = ‘rxnl(Espr)*, (Bspr)* " (number)]’
To control the rate at which a reaction fires, clock species - ’ ’
are added as both reactant and product (catalyst), in that (ModuleS) ::= L,Zd C(sp ecw?y”(‘(’m ecie;)‘]’

. . . . | ‘add [’(species)*,’(species)‘,’(species)]’
way preventing reactions from co-occurring and ordering | “sub ['(species)", (species), (species)]’
them (see CRN 10). While overlap between the clock | ‘mul [{species)*, (species)*, (species)1’
species exists, it is small and thus enables sequential exe- | ‘div [(species)*, (species)*, (species)‘]’
cution. To ensure the small overlap, in CRN++we use | ‘sqrt [(species)‘,’(species)‘]’
every third clock species, i.e. X3, X, Xo, etc., to catalyze | ‘emp [(species)‘,’(species)‘]’
the reactions that execute at different time moments. (ConditionalS) :=

‘1 fGT [’(CommandSList)‘]’
| “ifGE [’(CommandSList)‘]’
CRN 10 ordering reactions: original reactions (left), ordered (right) | ‘ifEQ[{CommandSList)‘]1’
| “4fLT [’(CommandSList)‘]’
A—B A+Xs —B+X | ‘4fLE[’{CommandSList)‘]’
B—cC B+Xe — C+ X (Ezpr) = (species) { ‘+’ (species) }
Listing 1.1: CRN++ Grammar
The chemical oscillator is abstracted from a
CRN+-+grammar expresses syntactic rules of

CRN++user, who can order reactions using the step con-
struct. Reactions in different steps are isolated from each
other through clock species acting catalytically.

Non-conflicting instructions can be part of the same
step. Splitting instructions across multiple steps is needed
in a case of (a) conditional execution—comparison needs
to be done before conditional execution is possible;
(b) reading and writing to the same species—this is not
possible within the step (as discussed earlier), and requires
temporal ordering. The number of clock species used is
determined by the number of step instructions. Each step
requires three clock species, with the exception of steps in
which cmp module is used, for which six clock species are
used. The cmp module requires two temporarily ordered
operations: normalization and approximate majority, and
thus six clock species are used. The oscillatory behavior of
the clock species causes steps to get repeated eventually,
causing the loop-like behavior.

CRN++programs, and is shown in Listing 1.1. A program
consists of a sequence of RootS statements, where RootS
can be either ConcS which defines the initial concentration
of species, or StepS which orders execution. Furthermore, a
StepS statement is divided into a list of CommandS state-
ments, where each CommandsS is either: (1) RxnS which
explicitly defines a reaction, (2) ModuleS which defines a
module, or (3) ConditionalS which conditinally executes a
block based on the result of a previous comparison. Based
on the result of the comparison, only the appropriate con-
ditional blocks are executed: ifGT (greater than), ifGE
(greater or equal), ifEQ (equal), if LT (less than), if LE (less
or equal). Note that the semantic rules of CRN++require
that comparison is done in a step prior to the conditional
execution.

The grammar can be easily extended; e.g., new modules
can be added to the list of ModuleS nonterminals.

@ Springer

400

M. Vasic et al.

3.4 Error evaluation

Programming chemistry is inherently error-prone. We
identify three specific sources of error in CRN++. First,
CRNs converge asymptotically—only in the limit is the
correct value reached—thus leaving certain amount of
error in a finite time. Second, we cannot completely turn
off modules which are not supposed to be currently exe-
cuting, whether they belong to another sequential step, or
to another branch of execution. Third, comparison has to
take into account possible error in the compared values.

Our design decisions were based on minimizing the
error; however since error cannot be avoided altogether, we
provide a toolkit that helps in error analysis and guiding the
CRN (program) design. Using the tool, users can, for any
species of interest, track the difference between the correct
value, and the (simulated) value in chemistry. For example,
if operation add[a, b, c] is executed in a step, than ¢ =
a+ b is expected in the following step. CRN++-allows
measuring the difference between the expected ¢ = a + b,
and actual simulation value. To use the error evaluation, a
user simply runs a Mathematica function we provide,
called EvaluateError which accepts two inputs: (1)
CRN++program and (2) simulation duration. This helps
users analyze the error, and detect if the error builds up
over time.

We analyze the value of operand a from GCD example
Fig. 3, and plot the error in Fig. 5. In Fig. 5, the x-axis
represents time, while the y-axis shows the difference
between expected and actual value of a. Note that the error
is sufficiently small that the algorithm executes correctly
throughout the analyzed time. The error is not constant,
which opens interesting questions of correlating the error
with instructions in the program. To correlate error with
program instructions we examine the GCD simulation
(Fig. 3b). By looking at the time axis, it is easy to connect
the first two spikes of the error with the subtraction of a.

We provide the error evaluation framework with the
vision of it being a guiding element for programming in
CRN++. We found this technique particularly useful for
validation of programs, analyzing the error, understanding

0.00007
0.00006
0.00005
0.00004
0.00003
0.00002
0.00001

0.00000/0—0——0—90—0—90—90 o o & @ @
100 200 300 400

Fig. 5 Error evaluation of species a from GCD program

@ Springer

the sources of error, and redesigning the CRN for
correctness.

4 Evaluation

In this section, we evaluate CRN++on a set of discrete and
real-valued examples. Later in this section, we characterize
the error of basic modules.

4.1 Examples

We first show a set of discrete algorithms implemented in
CRN++—counter, factorial, integer division, integer
square root; followed by real-valued algorithms—approx-
imating Euler’s and 7 constants.

4.1.1 Discrete counter

We implement a discrete counter that counts from a pre-
defined value to zero, and repeats the process. Figure 6
shows both the CRN+-+program and the simulation results.
Variable c¢ stores value of the counter, clnitial stores the
initial value of the counter for later refills, while one and
zero store constants 0 and 1, respectively. Initial concen-
trations of the species are set in lines 2-3; where c0 is a
parameter of the program representing the initial value of
the counter. In step 1 (lines 4-7), one is subtracted from the
counter and stored into cnext, and at the same time the
counter is compared with zero. In step 2 (lines 8-11), if the
counter is zero, then its value is reset to the initial value;
otherwise, cnext is stored into the counter. Steps exhibit
looping behavior, thus described commands repeat.

4.1.2 Factorial

We implement a program in CRN+-+that computes the
factorial function. Figure 7 shows both the program and
simulation results. To compute the factorial of a positive
integer n, we store n in the iterator variable i, and repeat-
edly multiply f with i, decreasing i until it becomes zero.
Initial concentrations of the species are defined in line 2. In
step 1 (lines 3-7), the iterator i is compared with one to
check the termination condition, f is multiplied with
i storing the value in the temporary variable fnext, and
finally i is decremented storing the value in the temporary
inext. In step 2 (lines 8-13), if i > 1, the temporary vari-
ables are stored back to f, and i.

4.1.3 Integer division

We implement integer division of two numbers, computing
the quotient and the remainder of the operation. Figure 8

CRN++: Molecular programming language

401

Fig. 6 Discrete counter. (Color

figure online) Lem ={

2

3 conc[one,1], conc[zero 0],
4 step[{

5 sub[c,one,cnext],

6 cmplc,zero]

7 3

8 step[{

9 ifGT[{ Id[cnext,c] }],
0 ifLE[{ Id[clInitial ,c] }]

conc[c,c0], conc| clnitial ,c0],

3.0

25

2.0

0 200 400 600 800 1000 1200

(a) CRN++ code.

(b) Simulation results for c0 = 3; value
of ¢ is shown (green line).

Fig. 7 Factorial. (Color

- crn={
figure online)

step|[{
cmpli,one],
mul[f, i, fnext],
sub[i,one, inext]
3,
step[{
ifGT[{
10 Id [inext ,i],
11 Id [fnext, f]

© 0O Uk WN -

conc[f 1], conc[one, 1], conc[i,f0],

120
100
80
60
40

20

0 100 200 300 400 500

(a) CRN++ code.

(b) Simulation results for f0 = 5; value
of f is shown (green line).

Fig. 8 Division. (Color

) crn={
figure online)

1
2
3 step[{
4 cmpla,b]
5 1
6 step[{
7 IFGE[{
8 sub[a,b,anext],
9 add[q,one,qnext]
0]
oy
12 step[{
13 IfGE[{
14 Id [anext,a],
15 Id [gnext,q]
16
17
18

H,
ifLT[{1d[a,r]}]
]

concla,a0], conc[b,b0], conclone, 1],

20~

e

0 200 400 600 800 1000 1200

(b) Simulation results for a0 = 20,

(a) CRN++ code.

shows both the program and simulation results. Variable
a stores the dividend, b the divisor, g the quotient, and r the
remainder. The divisor is subtracted from the dividend until
the dividend becomes smaller than the divisor. In step 1
(lines 3-5), the dividend and divisor are compared to detect
if the termination condition is satisfied. In step 2 (lines

b0 = 3; values of a (green), b (orange),
q (red), and of r (blue) are shown.

6-11), if a > b, the divisor is subtracted from the dividend,
and the quotient is incremented. In step 3, if a > b, the new
values for the dividend and quotient are restored from the
temporary variables into the original ones. Also, in step 3,
if a<b, the dividend is stored into the remainder (line 17).

@ Springer

402

M. Vasic et al.

4.1.4 Integer square root

Algorithm 1 Integer square root.

1: procedure INT SQRT(n)
2: z+—0
while (z +1)? < n do
z+—z+1
end while
return z
end procedure

We implement a program that finds the integer square
root of a number. Algorithm 1 shows the pseudo-code
algorithm: the square root of a number # is found by iter-
ating through positive integer numbers: 0, 1, 2, etc, until
square of the number overshoots n. We map this algorithm
to a CRN++program, and show the code and simulation
results in Fig. 9. In step 1 (lines 3-7), z is incremented
(znext :==z+ 1), and the square of z+ 1 is computed
(zpow := znext x znext) and compared with n. In step 2
(lines 8-11), if zpow <n, znext is stored into z; otherwise,
the result is computed and stored in out.

4.1.5 Euler's number approximation

So far we presented discrete algorithms, however chem-
istry naturally allows for real-valued (analog) computa-
tions. For programming with real values we make use of
CRN++module for performing division. The div module
follows the same design principles and characteristics as
other arithmetic modules we presented (see Table 1).

We implement a program that approximates Euler’s
number. Euler’s number can be computed using the fol-
lowing infinite series:

=1 1 1 1 1

D D e e e O R T P A

We map this program into CRN-++code, as shown in
Fig. 10. Variable e stores the current approximation of the
constant, while element stores the current element of the
series. In step 1 (lines 5-9), element is divided by the di-
visor, divisor is incremented for the next iteration, and e is
incremented by the current element of the series. In step 2
(lines 10-14), the temporary variables elementNext, eNext,
and divisorNext, are restored into the original variables.
The precision achieved at the end of simulation is up to 5
decimal digits—2.71828.

4.1.6 Approximating n
We approximate the constant 7 via a CRN++-program. We

rely on the following infinite series to do so:

@ Springer

ity
9 11

T=—-—=+

4 4 4 4
1 35 7
Figure 11 shows both the code and simulation. In step 1
(lines 6-13) following instructions are executed: (a) 4 is
divided by the current divisor divisor! and stored into
factorl, (b) 4 is divided by the divisor2 and stored into
factor2, (c) factorl subtracted by factor2 is added to the pi,
(d) divisorl and divisor2 increased by 2 are stored into
divisorlNext and divisor2Next, respectively. In step 2 (li-
nes 14-18), the temporary variables divisorlNext, divi-
sor2Next, and piNext are restored to the original variables.
At the end of simulation we measure the output value
3.20185. Error evaluation shows that the error is greater in
computing 7 compared to Euler’s number due to using
subtraction (of close values), which is the most error-prone

out of all arithmetic operations we present [see (4.2)].
4.1.7 Size of CRNs

Table 2 shows the sizes of CRNSs, in terms of the number of
reactions and species, that result from compilation of cor-
responding CRN++programs.

4.2 Error characterization
In this section we evaluate error of the CRN-+-+modules.
4.2.1 Error of arithmetic modules

Using our error evaluation mechanisms (Sect. 3.4) we
analyze the error of the modules. We evaluate each module
separately, on different inputs, to characterize its behavior.
Figure 12 shows the error evaluation results, where a and
b axes reflect the values of the first and second operand,
respectively, and the height shows the magnitude of the
error. The plots provide useful information such as: (a) The
error of the mul and add modules increases as the value
being computed increases; (b) Since these CRNs are
symmetric with respect to the inputs, the error does not
depend on the order of the arguments; (c) The sub module
exhibits the largest error when the inputs are close to each

CRN++: Molecular programming language

403

Fig. 9 Integer square root.
(Color figure online)

lemn = {
2 concfone, 1], conc[n,n0],
3 step[{
4 add[z,one,znext],
5 mul[znext, znext, zpow],
6 cmp(zpow,n]
)
8 step[{
9 ifLT [{Id [znext,z]}],
10 ifGE[{Id [z,out]}]
11
12 }
(a) CRN++ code.
Fig. 10 Approximating Euler’s —
number through infinite series. 2 concle, 1], conclelement, 1],
(Color figure online) 3 conc[divisor , 1], conc[one, 1],
4 conc[divisorMultiplier , 1],
5 step[{
6 div[element, divisor , elementNext],
7 add[divisor , one, divisorNext],
8 add[e, elementNext, eNext]
9 3}
10 step[{
11 Id [elementNext, element],
12 Id [divisorNext , divisor],
13 Id [eNext, €]
11
15 };
(a) CRN++ code.
Fig. 11 Approximating Pi 1 crn={
constant through infinite series. 2 conc[four, 4],
(Color figure online) 3 conc[divisorl , 1],
4 conc[divisor2 , 3],
5 conc[pi, 0],
6 step[{
7 div[four, divisorl , factorl],
8 add| divisorl , four, divisorlNext],
9 div[four, divisor2 , factor2],
10 add| divisor2 , four, divisor2Next],
11 sub|factorl, factor2, factor],
12 add[pi, factor, piNext]
13 3],
14 step[{
15 Id[divisor1Next , divisorl],
16 Id[divisor2Next , divisor2],
17 Id[piNext, pi]
18)
19 };

(a) CRN++ code.

—

0 100 200 300 400 500

(b) Simulation results for n0 = 10. Val-
ues of z (green), zpow (orange), and out
(red) are shown.

25

2.0

0 200 400 600

(b) Simulation results. Approximation
of Euler’s number is shown in green
line, while dashed orange line shows the
correct value as a reference.

3.0
25

2.0

0 100 200 300 400 500

(b) Simulation results. Approximation
of m constant is shown in green line,
while dashed orange line shows the cor-
rect value as a reference.

other, and in general, has a higher error than the other
arithmetic modules. This information is useful when
designing CRN++-programs: error-prone subtraction of
inputs close to each other is the reason why the error in the
program approximating 7 (4.1.6) is higher than in the one
approximating Euler’s number (4.1.5). Having this in mind,
a user can optimize a program; for example, the subtraction

of close operands can often be done in alternative, less
error-prone ways (see below, Fig. 13b). We plan to add
runtime assertions to CRN-++4-programs that alert for pos-
sible issues in the program; for example, when values being
subtracted are closer than € to each other.

@ Springer

404

M. Vasic et al.

Table 2 Size of CRNs

Program #Species #Reactions
Discrete counter 25 31
Factorial 26 33
Integer division 32 39
Integer square root 26 32
Euler 24 20
n 29 29

4.2.2 Reducing the error through program refactoring

The sub module has a high error when the operands are
close to each other. In this section we show an example

error

where the error can be reduced by replacing the sub module
with an alternative subtraction algorithm. Figure 13b
shows the alternative code for performing subtraction. The
value of b is subtracted from a, by repeatedly subtracting 1
from both a and b, until b reaches 0. This method ensures
smaller error which is also constant in time, however it is
less time efficient.

5 Related work

Computational power of chemical reaction networks Pre-
vious research demonstrated techniques of achieving
complex behaviors in mass-action chemistry, such as
computing algebraic functions and polynomials (Buisman
et al. 2009; Salehi et al. 2017, 2018), logarithms (Chou

error

(b) Mul evaluation.

error

(¢) Sub evaluation.

(d) Div evaluation.

Fig. 12 Error evaluation of arithmetic modules. Axes a and b show the values of the first and second operand, respectively; the height shows the
absolute value of the error (difference between the correct and actual value of the operation)

@ Springer

CRN++: Molecular programming language

405

Fig. 13 Comparing error of sub

lcrn =
with the alternative way of 2 conc[{a, a0], conc[b, b0],
subtracting (b). Error evaluation 3 concfone, 1], conc[zero, 0],
is shown (a) for the cases when error 4 step[{
the operands are equal (minuend L e 2 cmplb, zero]
and subtrahend same), since sub sl e o stép[{
exhibits the highest error in that | 7 s HGEL
case 9 sub[a, one, anext],
o 10 sub[b, one, bnext]
1y
' 12 3]
0 13 step[{
14 GE[{
15 Id [anext, a],
0 10 20 30 40 50 o 16 Id [bnext, b]
17 H
(a) Comparing error of Sub module 18 }]
19 }

(blue lines) and alternative way to sub-

tract (orange lines). X-axis show the

value of both minuend and subtrahend.

2017), implementing logic gates and finite state machi-
nes (Hjelmfelt et al. 1992; Magnasco 1997; Ge et al.
2016), and neural networks (Hjelmfelt et al. 1991; Salehi
et al. 2018). Moreover, the Turing completeness of
chemistry has been proven, using the strategy of imple-
menting polynomial ODEs (which have been previously
shown to be Turing universal) in mass-action chemical
kinetics (Fages et al. 2017). Even though Turing complete,
this translation to chemistry can result in infeasibly com-
plex chemical reaction networks, which motivates other,
more direct methods.

Modular reactions Adding even a single reaction to a
CRN can completely change its dynamics, which makes
the design process challenging. The idea of “composable”
reactions seeks a set of reactions that can be composed in a
well-defined manner to implement more complex behav-
iors. Buisman et al. (2009) computed algebraic expressions
by designing the core modules that implemented basic
arithmetic operations, which can be further composed to
achieve more complex tasks. Our goal is to make modular
designs, and we follow some of the proposed design
principles for achieving the goal, such as input-preserving
CRNE.

Synchronous computation Previous work utilized syn-
chronous logic to achieve complex tasks. Soloveichik et al.
implemented state machines in chemistry by relying on a
“rock-paper-scissors” type of chemical clock (oscilla-
tor) (Soloveichik et al. 2010). We use the same clock
module, with clock species acting catalytically to order
reactions. Jiang et al. (2011), also relying on clock species,
designed a model of memory in chemistry to support
sequential computation, demonstrating their technique on
examples of a binary counter and a fast Fourier transform
(FFT). Previous work shows the promise of programming
synchronous logic in reactions, which we advance by

(b) Alternative way to subtract.

providing an explicit programming language and frame-
work for designing and testing wide-range of programs.

Asynchronous computation Huang et al. (2012) used
“absence indicators” to implement complex algorithms
such as integer division and GCD. An absence indicator is
a species that is present in high concentration when a target
species is present in low concentration (Senum and Riedel
2011). Absence indicators can be used to drive a reaction
when a particular reaction has finished, providing a method
for executing modules in desired order. Generally speak-
ing, the absence indicator for species A is produced at a
constant rate and gets degraded by A. The absence indi-
cator has to be produced slowly, or else it will be present in
non-negligible concentration even if A is present. The
absence indicators in the literature relied on a difference
between rate constants of several orders of magnitude;
e.g., Huang et al. (2012) uses two reaction rates, ‘fast’ and
‘slow’, where the fast rate needs to be orders (2-3) of
magnitude larger to ensure the proper function of the sys-
tem. Since, in practice, biochemical systems allow for a
restricted range of reaction rates, requiring a large differ-
ence in rates slows down the computation when the com-
putation speed is dictated by the slow rates. In contrast, we
allow all reactions to take the same (or comparable) rate
constants.

While the goal of our work is not to compare asyn-
chronous and synchronous computation, we mention a few
insights which we gained through empirical studies. First,
absence indicators are not robust, and typically require fine
tuning to get the system right. Second, error detection is
easier with synchronous logic. Since all operations follow
the clock signal, there is a direct mapping from a time
moment to a command that is executing, which provides a
way to check correctness of a system at any point of time.
We provide a framework for implementing molecular
programs which is easily extensible, and can be used to

@ Springer

406

M. Vasic et al.

compare synchronous and asynchronous logic. We include
support for absence indicators through the ifAbsent con-
struct, thus allowing easier comparison of the two
paradigms.

6 Discussion and conclusions

There are multiple ways in which we can further improve
CRN++. Note that currently every high-level module is
mapped to exactly one CRN implementing the operation.
Letting the tool decide which implementation to use in
different contexts could boost the performance. For
example, the described modules have a useful property of
preserving inputs, but that property might not be needed in
every case. If the input preserving property is redundant,
CRN++-could choose to use the more optimized version
(for example the more compact subtraction CRN discussed
above). Also, we could provide a more flexible program-
ming experience by (a) letting the compiler automatically
schedule instructions to different steps (instead of the
explicit step construct); (b) allowing the same species as
both input and output of a module and automatically gen-
erate the additional instructions.

We plan to further explore the support for nested loops
in CRN++. Currently nested loops can be mimicked
through conditional execution: the loop condition is com-
puted through comparison and the main loop conditionally
executes the instructions of the desired loop. Besides
explicit support for nested loops, future work will support
nested conditionals by adding multiple flag species for
multiple comparisons.

An important direction for future research concerns
reducing the error in our construction, and understanding
how it builds up over time. We noticed that different
algorithms, even computing the same function, accumulate
varying levels of error. For example, as seen in 4.2.1, the
error of the Sub module increases with the magnitude of
the operands, and also increases the closer they are.
However, we also found an alternative way to subtract, that
keeps the error constant and independent of the operands
(see Fig. 13b) at the cost of a slower run-time.

Our error analysis shows that for most examples we tried,
but not all, error builds up over the course of the computation.
For CRN+-+programs where the error builds up in this way,
there is some maximum input complexity beyond which the
error overwhelms the output. Can all CRN++4-programs be
refactored (preferably automatically) to bound the cumula-
tive error of every module such that it does not build up over
time? Note that if this were possible, we would obtain
another, more efficient, way to achieve Turing universality.

To the best of our knowledge we are the first to provide
an imperative programming language which compiles to

@ Springer

chemical reaction networks. Moreover, we build tools that
can help users get a better understanding of CRNs and
improve their design. Although absolutely correct compu-
tation is not achieved, we provide tools that help under-
stand why error occurs, and thus help improve the design of
CRNs. We release our toolkit as open-source, to encourage
new research and improvement of the CRN-++, with the
hope of advancing the engineering of information pro-
cessing molecular systems.

In this work we advance the state of imperative pro-
gramming with CRNs. It remains an important open
question, however, whether fundamentally new program-
ming paradigms are needed to fully and effectively utilize
the computational power of chemistry.

Acknowledgements We thank the fellow students of EE 381V (Pro-
gramming With Molecules) at The University of Texas at Austin for
constructive discussions on the material presented in this paper. We
also thank Keenan Breik, Cameron Chalk, Milos Gligoric, Aleksandar
Milicevic, Boya Wang and Kaiyuan Wang for their feedback on this
work. This research was partially supported by the US National
Science Foundation under Grants Nos. CCF-1618895, CCF-1718903,
CCF-1652824, and CCF-1704790.

References

Baccouche A, Montagne K, Padirac A, Fujii T, Rondelez Y (2014)
Dynamic DNA-toolbox reaction circuits: a walkthrough. Meth-
ods 67(2):234-249

Bournez O, Graga DS, Pouly A (2017) Polynomial time corresponds
to solutions of polynomial ordinary differential equations of
polynomial length.] ACM 64(6):38

Buisman HJ, ten Eikelder HMM, Hilbers PAJ, Liekens AML (2009)
Computing algebraic functions with biochemical reaction net-
works. Artif Life 15:5-19

Cardelli L, Csikdsz-Nagy A (2012) The cell cycle switch computes
approximate majority. Sci Rep 2:656

Chen YJ, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik
D, Seelig G (2013) Programmable chemical controllers made
from DNA. Nat Nanotechnol 8(10):755

Chou CT (2017) Chemical reaction networks for computing loga-
rithm. Synth Biol 2(1):ysx002

CRN++ Github page. https://github.com/marko-vasic/crnPlusPlus

CRNSimulator Mathematica package. http://users.ece.utexas.edu/
~ soloveichik/crnsimulator.html

Fages F, Le Guludec G, Bournez O, Pouly A (2017) Strong turing
completeness of continuous chemical reaction networks and
compilation of mixed analog-digital programs. In: International
conference on computational methods in systems biology,
pp 108-127

Ge L, Zhong Z, Wen D, You X, Zhang C (2016) A formal
combinational logic synthesis with chemical reaction networks.
IEEE Trans Mol Biol Multi-Scale Commun 3(1):33-47

Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementa-
tion of neural networks and Turing machines. Proc Nat Acad Sci
88(24):10983-10987

Hjelmfelt A, Weinberger ED, Ross J (1992) Chemical implementa-
tion of finite-state machines. Proc Nat Acad Sci 89(1):383-387

Huang DA, Jiang JHR, Huang RY, Cheng CY (2012) Compiling
program control flows into biochemical reactions. In:

https://github.com/marko-vasic/crnPlusPlus
http://users.ece.utexas.edu/%7esoloveichik/crnsimulator.html
http://users.ece.utexas.edu/%7esoloveichik/crnsimulator.html

CRN++: Molecular programming language

407

Proceedings of the international conference on computer-aided
design, pp 361-368

Jiang H, Riedel M, Parhi K (2011) Synchronous sequential compu-
tation with molecular reactions. In: 2011 48th ACM/EDAC/
IEEE design automation conference (DAC), pp 836841

Lachmann M, Sella G (1995) The computationally complete ant
colony: Global coordination in a system with no hierarchy. In:
European conference on artificial life. Springer, pp 784-800

Magnasco MO (1997) Chemical kinetics is Turing universal. Phys
Rev Lett 78(6):1190

Perron E, Vasudevan D, Vojnovic M (2009) Using three states for
binary consensus on complete graphs. In: IEEE INFOCOM
2009. IEEE, pp 2527-2535

Salehi SA, Liu X, Riedel MD, Parhi KK (2018) Computing
mathematical functions using DNA via fractional coding. Sci
Rep 8(1):8312

Salehi SA, Parhi KK, Riedel MD (2017) Chemical reaction networks
for computing polynomials. ACS Synth Biol 6(1):76-83

Senum P, Riedel M (2011) Rate-independent constructs for chemical
computation. PLoS ONE 6:e21414

Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal
substrate for chemical kinetics. Proc Nat Acad Sci
107(12):5393-5398

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

	CRN++: Molecular programming language
	Abstract
	Introduction
	Examples
	Technique
	Modules
	Convergence speed
	Composability
	Ld module
	Add module
	Sub module
	Mul module
	Cmp module

	Sequential execution
	Grammar
	Error evaluation

	Evaluation
	Examples
	Discrete counter
	Factorial
	Integer division
	Integer square root
	Euler’s number approximation
	Approximating \pi
	Size of CRNs

	Error characterization
	Error of arithmetic modules
	Reducing the error through program refactoring

	Related work
	Discussion and conclusions
	Acknowledgements
	References

