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In the paper [5, Section 6], we quoted a crucial lemma in [7, Proposition 4.1] for the
proof of the main L> decay estimates [5, Theorem 13]. Unfortunately, an omission
was recently discovered in its proof. We now present an alternative proof for [35,
Theorem 13] based on the methodology in [3,4] without using the method of [7,
Proposition 4.1].

We consider the following linearized Landau equation

O f+v-Vof +Lf =T, f). ey
The initial-boundary condition of f is given by

f@O,x,v) = fo(x,v), ifx e Qand v € R3,
ft,x,v)= ft,x,v—2W-ny)ny), ifx €dQandv-n, <0 2)

Il folloo,9+m < €

for some small € > 0, > 0and m > % We say that the domain €2 is rotationally
symmetric if there exist vectors xo and w such that

((x —x0) xw) -ny =0

for all x € 0S2. Without loss of generality, we assume that the conservation laws of
total mass and energy for ¢ > 0 terms of the perturbation f apply:

/ ft,x,v)/wdxdv =0, /
QxR3

Qx

. |v|2f(t,x,v)ﬁdxdv:0. 3)

In addition, we assume that the conservation of total angular momentum if €2 is
rotationally symmetric:

/ ((x — x0) x w) - £(t, x, v)v/idx dv = 0. 4)
QxR3
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Define the energy

Es(f() =

t
F@l, + /0 [F&)2, ds. 5)

In order to prove the main L? decay theorem (Theorem 3), we first intend to
prove the following positivity of L:

Proposition 1. Let f be a weak solution of (1)—(4) with Ey(f(0)) bounded for

some V' > 0. Then there exists a sufficiently small positive constant € > 0 such that

if
llglloo,m < € (6)

for some m > % then we have 6. > 0 such that

1 1
/ (Lf. f)ds = 6. / 1£12 ds.
0 0

In order to prove the positivity of L, it suffices to prove the following proposition
as we have Lemma 5 of [2]:

Proposition 2. Let [ be a weak solution of (1)—(4) with Ey(f(0)) bounded for
some U > 0. Then there exists a sufficiently small € > 0 such that if ||g|lco.m < €
for some m > % we have C¢ > 0 such that

1 1
/O IPf (D2 ds < Ce /0 I(I — P)f()|2 ds.

Proof. If the proposition is not true, then there exist a sequence of family g, and
a sequence of solutions f, to (1)—(4) with g = g, and f = f,, such that

1
gnlloom = — (N

for some m > %, but

1 1 1
/ I = P) fu(0)[12 ds < —/ 1P fu(T)1Z ds ®)
0 nJo
for any n.

We first prove the weak compactness of f;,,. We first reformulate the Equation
(1) as

fitv-Vof =Agf + Kqf, )
Agf =10 [{d)” * [ +M”2g]} 3jf]
— o7 s tuin' 21} o, — {¢7 w1 2001} ar (O
= V- 06V f) +ag - V.
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Kof =Kf+d0'f —olvvf

o fo it 20y) £+ {00 s R0y}
where G = u + /118,
Kf == o [0 {101 + 0 11} (12)
and o'/ = 0,7, ol = oijvj, with
o)L ol xy = [1.@ ¢V (v — v u@)dv'.
Note that the eigenvalues A (v) of o (v) satisfy [2, Lemma 3]
A+ )7 Sa@ S A+ (13)

For any fixed / < 0, we multiply (1) for f = f, and g = g, by (1 + |[v))? f,, and
integrate both sides of the resulting equation and obtain

1
//Q 3 ((1 D2 2 x,v) — (A + 2 o, x. v)) dx dv

t
+/ // (A + )X (Lfy) fn dx dvds
to QxR3

t
:/ // (1+|U|)21F(g’ fn)fndXdUdS
fo QxR3

t
2
< / lgalooll ful2, ds.
4]

by Theorem 2.8 of [6]. Also, since < 0, we deduce by Lemma 6 of [2] that

t
//[ (1 + [vD?(Lfy) fn dx dv ds
to QxR3
! 1 2 [ 2
2/ ds Ellfn(S)IIg,z—C1|I(1+|v|) fn(S)IILz)-
0]

Thus, we have

1 i 2 ! 1 2 I 2
Ell(l + D' fu Il + t ds Z”fn(s)”gJ = 1A+ ) fuo)l;2
0

t
+C/ ds[[(1+ [v))! fu )7
I

0

Thus, by (7) and Gronwall’s inequality, we obtain that

t
I+ D fu 72 + / I fuZ, ds < Ce' (1 + [v]) fulto)[17,. (14)
fo
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On the other hand, we note that

I£lle = ClIA 4+ [wD™ V2 f 12,

by (13). Thus we have
d [f _
5/ I fuIZEds = [ fuOllZ = CIA+ )™ f(0)]17,
0]
t
> CIA+ 1D fu o) 12 —26/ // (14 1)~ (Lfy) f dr dvds
to QxR3
t
~2C [ Ngnllool ull, 120
fo

/3
> CI(1+ )™ fa )13 —20/ (znf(s)u?,,_l/z - Cllf(s)llff) ds

fo

t
-2C / Ignllooll fullz 1 /2 ds
0]
t
> ClI(1+ o)™ o) 17, — c’/ £ ()2 ds,
to

for some C’ > 0 by Lemma 2.7 of [6]. By (7) and Gronwall’s inequality, we obtain
that

t
/ I3 ds = C(1—e ) A+ ) 2 f(0)l7.. (15)
fo

Now we define the normalized term Z,, of f;, as

def fn

Zy = 1—
Y, j() ”an”(z; ds

For s € [0, 1], we have

1A+ o)™ fu ()13,

VS IPAI2 de

_ Cella 412 £ 017,
Jo IPfall2 dz

by (14) for I = —1/2. On the other hand, by the assumption (8) we have

I+ D™ Zu(s)117, =

1 1 1
<n+1>f0 ||an||?,drzn/0 ||an||?,dr+n/0 I = P) £, )12 dr

1
> ”/o 1 ful2 d.
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Thus,
I+ )™ fu )13,
Vo IPf]12 dT
_nH1CeIA+ D2 HOIG ,ENa+ )2 £, (0117,
Toon Jo I full2 dz B Jo 1 /a2 dz
for any n > 1. Now, by (15), we have

I+ o) 2 Zu )13, =

N
/O I £ (OIZ dT = C(1 = e )|+ [v) 2 £, (017
Thus, we obtain the uniform bound

sup [[(1+ )2 Z, ()7, < C

0<s<l -

for some C > 0. Also, by the normalization we already had fol 1Z,(s) ||<27 ds = 1.
Note that this will also imply that there is no concentration in time. Therefore, there
exists the weak limit Z of Z,, in fol |- 112 ds.

Also, by (8), we have

1
1
/ I(I = P)Zyl|2ds < — — 0. (16)
0 n

By the triangle inequality, we also have that fol | PZ,(s)||2 ds is uniformly bounded
from above. In addition, the norm || - ||, is an anisotropic Sobolev norm with
respect to direction of the velocity v by definition. Since the eigenvalues A(v) of
the matrix o (v) satisfies the bound (13), the normed vector space with the norm
| - llo can be understood as a weighted L> Sobolev space and is reflexive. Then
by Alaoglu’s theorem and Eberlein—-Smulian’s theorem, P Z,, converges weakly to
PZin fol Il - ||(2, ds up to a subsequence. Thus, we conclude that (/ — P)Z = 0 and
Z = PZ. Thus, we can write Z(¢t, x, v) as

Z(t,x,v) = (a(t,x) + b(t,x) - v+ c(t, ) [v|) /1.
Also, by taking the limit n — oo, we note that the limit Z satisfies
Z+v-ViZ=T(g0,2Z)=0 (17)

in the sense of distribution, as the condition (7) makes goo = 0 a.e. outside a null
set that results in the vanishing integral [ I'(goo, Z)¢ via an integration by parts
and we also have [ LZ¢ vanishes as Z = P Z, for a test function ¢ € CCI.

Now our main strategy is to show that Z has to be zero by (16), the specular
reflection boundary conditions, (17), and the conservation laws (3) and (4). On the
other hand, we will show the strong convergence of Z, to Z in fol I - ||§ ds by
proving the compactness. This will lead us to a contradiction.

We first introduce the following lemma, which provides more information on
the form of Z:
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Lemma 1. (Lemma 6 of [4]) There exist constants ay, c1, ¢, and constant vectors
bo, b1 and wsuch that Z(t, x, v) takes the form

((%O|x|2—b0~x+a0)+(—cotx—clx+u_) X X + bot + by)

2
cot
xXv + (OT +cqt +62> |v|2)ﬁ.

Moreover, these constants are finite.

Our case also shares the same transport equation (17) for Z that deduces the
same macroscopic equations as (72)—(76) of [4] with Z = PZ and the lemma
holds. Moreover, a better bound (14) provides that the coefficients are finite.

0.1. Plan for the proof of the strong convergence

We first show the strong convergence of Z,, to Z in fol Il - ||(2I ds. First of all, we
note that we have seen already that there is no concentration in time-boundary at s =
Oors = 1 by (14). Then regarding the remainder of the domain (g, 1 —g) x 2 x R3
for some ¢ > 0, we split it into three parts; we define the interior Dfm, the non-
grazing set D} > and the singular grazing set Dﬁg so that

(6,1—e) x Q xR} = D¢

int

U Dj, U Dy, U Dg,.
More precisely, we define the interior D7, , as

def

D, = (e, 1—¢) xS,

where
3 4 4
Se=3(x,v) e QxR :¢(x) < —¢"and |v| < —¢.
&

Then we define sets of the compliment. Firstly, define the set of large velocity Dy,
as

def

g def 4 c
Dy, =(s,1 —&) x 2 x |v|>g :(e,l—s)xS&O.

We define the singular grazing set D§g as

def

Di, = (e, 1 —¢) x ¢y,
where
1
<= {(x,v) GSZXIR{3:§(x) > —¢* and [lnx-v| < §0r|v| > —:H
' e
Lastly, we define the non-grazing set Dﬁg as

ef

Dy, = (e, 1—g) x Se.2
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where
. 1
C, = {(x,v) eQxR: Z(x) > —¢* and |:|nx-v| > %and|v| < —“
' e

Here recall that ¢ (x) is the smooth function such that Q = {x : {(x) < 0}.
To prove the strong convergence in fol I| - ||§ ds, it suffices to show

1
3 /0 AsI{Zns ej)e; — (Z, ejhe 2 — 0,

1<j<5

where ¢ are an orthonormal basis for

span{/jz, v/1, [v]* /1),

as we have (16). Since ¢;(v) is smooth and the 0" and the 1% derivatives are
exponentially decaying for large |v], it suffices to prove

1
/ dS/ dx|(Zn7ej>_<Z»ej>|2_)O'
0 Q

We establish this by considering the decomposition of the domain as above.

&

0.2. Interior compactness on D;,

Suppose x1 is a smooth cutoff function that is supported on D;,  and consider
Zn=0=xD)Zn+ x1Zn.

In this subsection, we will consider the contribution x1 Z, via the averaging lemma.
We define another smooth cutoff function x; such that x; = 1 on D{, and X1 =0

outside Dfrff . Then x has a larger support than x| and x; = 1 on D;, . The reason
that we additionally define x; with a larger support than x; is in order to make
(1 = x1)Z, = Z, outside D;,, and to make x1Z, = Z, on D;, .
We first observe that x| Z, satisfies the following equation:

@ +v- VoA +v)™2Z,) = A+ wh~'/2
(=X1LIZu] + Zu10: +v - Vilx1 + 1T (gns Z0)) -
We claim that the right-hand side is uniformly bounded in Lz([O, 1] x @ x R3).
We observe that the second term is easily uniformly bounded by the L? norm of
(1+ |v])~'/2Z,, which is uniformly bounded by (14). We also observe that the L?

norms of the first and the third terms are bounded as follows. By Lemma 1 of [2],
X1LZ, can be written as

I+ Y2512z, = ( — 80V, Zu 1) + 08, Zadi 11 — 80 ZuJn

+oviv; Zegn + 8 (W (@Y % (W0 Zy +v; Z)) F)
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— 2@ (WD Zn A v 20 K1 — vipn P (g

* (W28, 2, + v,,zn)))xl)a + 1)V = g1 + g, (18)

where yx; has a compact support and g1, g2 € Lz([O, 1] x 2 x R3) as

lgtllz2 + llg2llz2 S U — P)Zyllo-

Also, we apply Lemma 7 at (56) of [2] to estimate x1I'(g,, Z,) with g there is
our g, and g» = Z, to see that

(1 + )™V (g0, Zy) = 8ij&"7 + 0i8" + g,
where

g2+ g 2 + lgle S lgnll 21 Zulle S lgnlloom | Zalle

asm > % by the assumption (7). Therefore, we have

@ +v- VoG + )%z, =h,

where h € L2([0, 1] x Q; H‘z(R3)). Then by the averaging lemma [1, Theorem
5], we have

X1+ 1D ™"22Zy, e5) € HYO([0, 1] x Q)
which holds uniformly in n. Thus, up to a subsequence, we have the convergence

G4+ WD) 22Zy,e5) — (L +w)7Y2Z, ej) in L2([0, 1] x ). (19)

0.3. Near the time-boundary and the grazing set D§g

Now, note that the leftover from the previous section is now

1
/ ds/ dx|<(1—X1)(Zn—Z),ej)|2.
0 Q

Regarding the contribution, we note that

1
/ dsf dx[((1 — x| Zy — Zl, ¢j)?
0 Q

1
5/ ds/ dx/ dv(1 — x1)*|1Zy — Ze;
0 Q R3
€ 1 2 el
:([ +/ )ds/ dxdv+Z/ ds/ dx dv (20)
0 l—¢ QxR3 =070 e i

In this subsection, we only consider the contribution

£ 1 L
(/ +/ )ds/ dxdv—l—Z/ ds/ dx dv Q1)
0 1—s QxR3 =070 <
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near the time-boundary and the grazing set Dj?g.
The first integral of (21) is bounded as

& 1
<f +/ ) dsf dxdv (1 — x1)*|Z, — Ze;
0 1—e QxR3

<2e sup (I(1+ w2 Zu ()13 + 11+ D2 Z()113).

0<s<l1

Note that we have the uniform boundedness

sup  [I(1+ )2 Zu ()13, < C,

0<s<l1, n>1

by (14) and that [|(1 + [v)~12Z(s)|13 = 11 + [v)~/2Z(0) |3, by the transport
equation (17). Then this rules out the possible concentration at = Qor ¢t = 1.
Regarding another term in (21), we observe that

1
f ds/ dxdv (1 — x1)*Zy — Z|e;
0 50

1
S/O ds/ dx/ L A+ T2AZaP + 121+ )P
Q vl=3

Then for a sufficiently small ¢ < 1, we have

(1 + D*2 /e ~ (1 + ) 2 exp(—[v]?/2) < exp(—c|v]?)
16
< exp <——2C> S e,
&

for some uniform constant 0 < ¢ < % Therefore, we have
1
f ds/ dxdv (1 — x1)*|1Zy — Z|%e;
0 £0

1
S/(; ds‘/;2 dX/ . dv (1+|U|)_1/2(|Zn|2+|2|2)(1+|v|)2+1/2ﬂ
=%

Se sup (114 )Y Zu )13 + 1L+ )~ Z()113).

0<s<l

Note that we have the uniform boundedness

sup  [I(1+ ) 2Zu(9)3, < C,

0<s<Il, n>1

by (14) and that [|(1 + [v)~12Z(s)|13 = 11 + [v)~2Z(0) |3, by the transport
equation (17).
On the other hand, for the other remainder term in (21), we observe that

1
/ ds/ dx dv(l — X1)2|Zn — Z|2ej
0 e
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1
< [ o [ aaut =02 (10 - PYZu = P 4 1PZ, - P2F) e
o s,
_ / dx du(l — x1)? (|(1 — PYZu > +|PZy — PZ|2) e, (22)
s,

as (I — P)Z = 0. Note that by the additional exponential decay e; with respect to
|v], we have

1
/ dxdv(1 — x)*(I — P)Zyle; SIUT = P)Zullo S —.
SE,

n
In addition, we define
PZ, =a,(t,x)+ b,(t,x) - (e2,e3,ea) + c,(t, x)es,
and
PZ =a(t,x)+b(t,x) - (e2,e3,esq) + c(t, x)es,

for {e;}j=1,...5 is the orthonormal basis of span{,/u, v/, |v|2ﬂ}. Note that a,,,
by, ¢, a, b, and c are functions of ¢+ and x. Then, we observe that the remainder
term satisfies

/ dx dv(l — x1)?|PZ, — PZ|%e;
Sen

1
5/ ds/ dx (|an —al® + |by — b]> + |ca —c|2>
0 \Q.

/ dv (1 + o) /72
lv-nyg|<5 or |v\>%

5/ dv (1+ v /i (23)
[v-nyg|<5 or \v|>%

for some [ > 2 by

1 1
[ 122002 05 % [ (a0, 05+ 00013 + e, 013) s S 1.
and

1 1
[ 1222 a5 & [ (1t 0+ 1060, 1 + e 91B) ds 5 1.

from the linear independency of e;. Then, if |[v] > 1 then (1 + |v|)lﬁ <

8’
Ce, for |v| > %, if & is sufficiently smnall. On the other hand, if v - n,| < 5,
we have

£
2

/ dv (1+ )i < de/ dvpe /8 < ¢
[v-ny|<5 R2

—_£
2
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where v = (ny -v)ny,and vy = v — v for |n, -v| < % Then the (LHS) of (22)
is bounded from above by

1
/ ds/ dxdv(l—X1)2|Zn—Z|2€j§5~
0 ol

0.4. On the non-grazing set ng

Finally, we are now left with the L2 norm for the non-grazing set Dy, from
(20)

1
/ ds/ dxdv (1 — x1)*1Z, — Z|e;.
0 52

In this subsection, we will prove that there is no concentration at the boundary,
so that we can conclude that Z,, converges strongly to Z in [0, 1] x Q x R, The
main strategy in this section is to show that the non-grazing set part x+Z, can be
controlled by the inner boundary part Z,|,,, which will be further controlled by

the interior compactness. Here the inner boundary is defined as y*® Sxicx) =
—&*} x R3. Now we fix (s, x, v) € D! g Then we define backward/forward in time
characteristic trajectories x4+ as

X+, x,v) = IQ\QS (x —v( - S))l{lvlfl/a, nx,u(,,x)-v>8}(v)v forO0 <t <s,

x=(t,x,v) = lavQ, (x — v — ) L{|<i/e, ny_yo_yyv<—e}(V), for0 <s <1,
(24)

where Q, = {x € Q : ¢(x) < —&*}. Note that x4 solves the transport equation
(0 + v- Vy)x+ = 0 with

X+ (Sa X, U) = 19\95 (-x)l{|u|§]/g, nX~U§:t6} (v)7
and that it satisfies the following lemma:

Lemma 2. (Lemma 10 of [4]) x4 satisfies the followings:

(1) For 0 gs—82 <t <s,if xo.(t,x,v) #OQthenny -v > % > 0. Moreover,

x4+ (s — e, x,v) =0, for £ (x) > —&*.

) Fors <t <s +e2 <1, if x—(t,x,v) #0, thenny -v < —% < 0. Moreover,
x—(s + &%, x,v) =0, for {(x) > —&*.

We now observe that x4 Z, satisfies the following equation

0 + v - V) (xxZn)
= —x+L[Z,] + x+T (gn, Zn).

We claim that

/ |Z,|? dx dv <e,
Sen
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if n is sufficiently large. To see this, we first observe the L? estimate for x, part
over [s — &2, 5] x S¢ , that for the inner boundary y* = (x:c(x) = —e%) x R3,

N N
I Zu gy + [ szl de = [ bz, ar
&2 s—g? s—g2 +
24112 * 2 g 2
e Zals = s, [ 0z dr= [ ezl
£,2 s—g2 s—g2

N N
= / GG LIZal. x4 Za) di 42 /
s—e? s—

s—¢&

2(X+F(gnv Zn)’ X+Zn) dt,

where (-, -) is the L2 inner product on Sg,z- By Lemma?2, x4+ Z,(s — £2) = 0. Also,
X+Z, = 0 on y_ and Y by the support condition of x4. On the other hand, by
(16) and Lemma 6 of [2], we have

s N
/ (X+LIZy], x+Zn) dt = / (LLZn). X3 Zn) dt
s—g2 s—g2
: 2 2 2 : 2 2
:/ Z(L[(l _X++X+)Zn]aX+Zn)dt :/ Z(L[X+Zn]»X+Zn)dta
§—& §—¢&
by the support condition of x.. Thus,
N S 2 )
| ownzazos= [ audzidza
s—g2 s—g2
! 2 2 ! 2 C
SCf ||(I_P)X+Zn"adtSC/ ||(I—P)Z,,||(,dt=;.
0 0
Finally, we observe that, by Theorem 2.8 at (2.16) of [6], (7), and (14), we have

S N
| ootz za= [ 0@z iz
s—¢& s—&

S s
c
< cngnnoof 1 Zula X2 Zallo df < cngnuoo/ 1Zal2dr < <.
s—e2 s—e2 n
Altogether, we have
2 y 2 g 2 C
I x+Zn(s)I72 +f lx+Zn (DI, dt —/ Ix+Zn (@5 dt < —. (25)
L > Y+ > Y+ n
S—& S—&

Here, we note that by definition

X+Zn(s, x,v) = 1oy, (X) 1{ju|<1/e, nyv>e} (V) Z (s, X, V).

Similarly, we obtain for the part x_Z,

» s+e? 5 542 N C
Ix-Zu()I2 + / Ix_Zu(I2. dr - / - ZaOI dr < - 26)
N s
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Altogether, we have

) s 5 s+e2 5 C
1Zu )25, < / s Za0l, dr + / 1X-Zu () dt + = 2)

Now we will prove that the right-hand side of (27) can be arbitrarily small by
showing that the right-hand side can further be bounded via the interior compactness
inside S;. In order to control the trace norm on the non-grazing set, we are going
to derive a trace theorem for the Landau equation to 1 (ol<) }(Zn — Z) over the

domain S,. We first consider the estimate for € (s — 2, s5). Recall that x4 from
(24) indeed satisfies

i x++v-Vixy =0,

) . (28)
X+(s —&°, x,v) = 0 for dist(x, 902,) < ¢,
where ©, = {x € Q: ¢(x) = —&*}. We choose a smooth cutoff function yx, =
4
X, (X) near 99, such that x, = 1if dist(x, 0Q,) < &, xp = 0if dist(x, Q) >

¢4, and the growth is up to |V, xp| < e73/2. We also choose a smooth cutoff
function x» = x2(v) such that xo = 1 for |v| < é and = 0O for |v| > ‘g—‘ and

V]

e x2l + Vo) 4+ Ve G )| S (T) . (29)

Note that x»(v) has a larger support than 1, ,_1. We then take x = x2xp X+, such

|”|§g

that x (s — &2, x, v) = 0 for dist(x, 02,) < € and
0 +v- VX = x4x2V - Vi Xp-
Now consider the following rearranged Equation (9) for this argument:
0 Zn +v - VxZy = Vy (06, VoZy) +ag, - Vo Zu + Ky, Zn,
where G, = u + /1tgn. Then, note that x Z,, satisfies the equation

(0 +v-V)(XZn) = xox+Znv - Vixp + Vy - (UG,lvv(XZil))
_GG,,ZnAvX - 2O‘Gnvvzn . Vv)_( - vav(UG,l) . VUX
+)Zag,l -VZ, + Kgn (XZn). (30)

We multiply x Z, and integrate on (s — g2, s) x S, to obtain that

1 2 24112 * 2
5 (1RZ0@ 25, = 1720t — ¢ )||L2(SS))+/ UPEAC
§—&

N
z_/ dt// dx dv oG, Vo (X Zn)I?
s—g? Se
)
+/ , dt// dx dv |:)_(Zn<X2X+ZnU -V Xb
§—& &

_OGilZnAU)_( - ZoGnVUZVl : VU)_( - ZnVU(UG,,) : VU)Z
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+Xag, - VoZy + Ko, (;zzn))} @31

by the integration by parts. Note that x Z,, = 0 on y? by the support condition of
X+- By (28) and the support condition of y;, we also have x Z,, (s — &%) = 0. Thus,
we have

1 _ N B N _
A2, + [ angzil+ [ o [[ avavos,wuizoP
s—¢& s—& Se

s
= / 5 dr /:/ dx dv |:)_(Zn <X2X+va “Vixp _UGnZnAv)_(
s—¢& Se

—206,VoZn - Vit — ZnVy(06,) - VoX + Xag, - VoZn + Ko, (xzn))].
(32)

We estimate the upper bound of each term of the right-hand side. We first observe
that

dr dx dv X Znx2X+Znv - Vi xp

€

s

< § [v] 2

S dr dxdv | — ) I1Zu|"I Vi xp]
s—g2 e 4

S
S 6*3/2/ A+ DT Zy s,
§—&
by the assumption of xj. Also, by (11), Lemma 3 and Lemma 6 of [2], we have

dt

ntgn n

&

s
S/ L 4 @lx Zalle + Coll X Znll2¢s )N (X Zn)llo
§—¢&

N
< f LA @ Zallg + Cyll L+ 0D T2 Za s, ) (33)
§—&

for a sufficiently small n’ by Young’s inequality. We also note that by Lemma 3 of
[2], we have o/ vjv; = A |v|?, where A1 &~ (1 + |v|)~>. Therefore,

(XZ)
//& dxdv|0 v,v]()(Z,,) |<// dx dv 1+| B

Here, note that by Lemma 3 of [2] and Lemma 2.4 of [6], if n is sufficiently large
so that ||g, ||z~ < 1, then

”az(XZn)aj(XZ )’\’U al(XZ )8J(XZ ),
where G, = u + ,/itgs- Then, by (29), Lemma 2.4 of [6] and Lemma 3 of [2], we

have
N
dr < / dr
s—g2

dxdv (X Zn)og, ZnAvX

Se
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7 2
o on(2) 2
C<—g*and |v|<2 4 /14 v

€

N
5/ i dr |(1 + Ivl)_l/zzn”iasg)'
§S—&

Similarly, we have

dt

dx dv 2(x Zn)oG, Vv Zy - Vv)?‘

/ dt// dxdv,u(' |)0Gn|Z Vo Znl
r<— e4and|v\<4 4
< n/ dr // dx dv oG, |V Z,|?
+Cy / dt// dxdv,u( )UG,,|Zn|
s—g2 .
< n/ dt// dx dv oG, |VyZ, |2
_ 2 .
|v| 1Za*
+C, dt | dxdv
s—g2 . 1+|U|
< r;/ dr // dx dv a(;nlv,,Z,,|2
s—g2 Se

N
—1/25 2
+c, /Hz dr 11+ 1) 22,12

for any small n > 0, by Young’s inequality. In addition, we have

s
dt
2

dx dv (xZn)ZyVyoa, - Vv)z‘

&

s —

I\ [(XZn)I|Zn]

§/ zdt/ ’ 4dXd”“<T I+ w)?
s—¢& ¢{<—¢*and [v|<7

S
—1/2 2
Sf 2 dt |I(1+|U|) anle(Sg)'
s§—&
Also, by (29) and the definition of ag, from (10), we observe that

dt

dxdv (xZp) xae, - VoZn

s
5/ zdr// A dv 1 Zl1Vo Zal (167 5 i )| + 167 5 (120,01
s—€ Se

S
5[ zdr// dx dv |Z,1190Zal (21675 1 gl + 10,97 5 (1" 2g0)1)
s Se

' Zu| IV Z
S ”gn“LOO/ dr /f dxdv pn (M> M
s—g2 §<754 and |U|§g 4 (1 + |v|)
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N C N
< n/ dr 1ZallZ + —;7/ de |1+ 10D ™2 Zu 070 s,
s—g2 n= Js—g? ¢

for a sufficiently small > 0, by Young’s inequality.
Altogether, we have

s
f X+ Za @2 dr < (Cy +27%/2)
S—S

N
/ - dt+n/ dr | Z, 112
L2(S) s—e

< (@, +£_3/2)/ 1/22‘

+(Cy + 8—3/2)f
§—&

S
+n/ a1 12,2
s—g?

2
forany small n > 0. We repeat the same argument for the part fs‘Hs Ix—Z, ()]l Jz/g dr

[CEa

dr
L2(Se)

2
1 -2z 7
2 -+ 1)z, - 2) s

of (27) using x_, instead of x.. Note that, by the interior compactness, we have
forafixed e > 0

Il
e

lim
n—oo

\(1 bz, - 2]

L2(Se)

Then, by (27), we have for a small  ~ /¢ such that Cy < £73/2 and for a
sufficiently large n > 0,

) 5 s+e
120 B ) S (Cp+672) /

[CEt 1/22\

L2(Se)

+(Cy +8_3/2)/

\(1+|v|> "2z, - 2|

L2(S)
S+82 5
+n/ dr | Zull; + —
s—g2
2
<2Cy + e ¥2)e? sup ”(1 + |v|)_1/22(t)’
1€[0,1] L2(Se)

S+82 C

+(Cp+e73He? + n/ e 1Za )12 + - < Ve,
§S—E&

by (14) where C’ > 0 depends on ay, co, c1, ¢2, bo, b1, and w of Lemma 1. There-
fore, for any small ¢ > 0, we have

1Z0 () 7ase,, S Ve, (34)

for large n.
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0.5. Strong convergence and the non-zero PZ

By (19)-(21), (14), (22), and (34), we obtain

1
/ dS/ dx|<Zn,ej>_<Z9ej>|2_)O’
0 Q

where ¢ are an orthonormal basis for span{,/u, v/u, |v|2ﬂ}. Since e;(v) is
smooth and the 0/ and the 1! derivatives are exponentially decaying for large |v|,
we obtain that

1
> / dsl(Zu, ej)ej — (Z.ej)e;lz — 0.
1<j=570

Finally, note that

Zn= Y (Zu.ejej+ (I~ P)Zy,
1<j<5

and we have (16). Therefore, we obtain the strong convergence of Z, to Z in
fol ds|| - |2, and we have

1
f ds |PZ|?> = 1.
0

Also, recall that the specular reflection condition for Z,, is Z, (¢, x, v) = Z,(t, x,
R, (v)). By taking n — oo, we can observe that Z satisfies the same condition for
|v - ny| > €/2. By continuity of Z, we obtain Z(t, x, v) = Z(t, x, R, (v)).

0.6. Z is indeed zero

On the other hand, we show below that P Z is indeed zero, which will lead us to
a contradiction. The proof will be done via the use of the specular boundary condi-
tions, (17), and the conservation laws (3) and (4). Recall that, by the conservation
laws (3), we first obtain

/z¢ﬁ=/zm%m=0

On the other hand, Lemma 1 implies that, for any s € [0, 1], we obtain the conser-
vation laws in the form of

t2
f<C§Mp—hyx+%)+<gr+wm+wghﬁ)¢ﬁ=0, (35)

and

2
/((%lxlz—bo-X-l-ao)|U|2+<COT+61S+C2>|U|4)\/ﬁ=0~ (36)
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Thisimplies ¢y = ¢1 = 0. Also, by the specular reflection condition that Z (s, x, v) =
Z(s,x, Ry (v)), we have for any x € 9€2 that

b-ny=00r (w x x + bys + by) -n, =0.
First of all, the coefficient by of the time-variable s is zero, which gives
b-ny=0o0r(wxx+by) -ny=0. (37

If w = 0, then by - n, = 0 on 32. Then we can choose a point x’ € 92 such that
by || ny via taking the minimizer of ming (v b1 - x. Then this gives by - n,» = 0 and
by = 0. If w # 0, then we decompose by as

w
by = B1— + Ban,
[w]

where |n| = 1 and n L w. Then

Therefore, we get

w w w w _
bhi=f—+h|—=—xn]|x —=»— —x0xXWw,
lw] [w] w

where xo = —f2 (i X 17) L Therefore, by (37) we have

[w] [w]*

,31in + ((x —x0) X w) -ny =0.
[w]

Now note that we can choose a point x” € 32 such that w || n,s. Then we deduce
w X (ny x (x' — xg) = 0 and obtain B; = 0. Therefore, we obtain

Z=wx (x —x0) v/t

and w X (x — xg) - n, = 0. If Q is not rotationally symmetric, then no nonzero
w and xq exist, which provides Z = 0 from the former case that w = 0. If Q is
indeed rotationally symmetric and there are nonzero w and x¢ such that

Z=w x (x —x0) - vy/pwand w x (x — xp) - ny = 0.

Now we use the conservation of total angular momentum (4) that

/ ((x — x0) x w) - Zv/pdx dv =0,
QxR3

which is equivalent to saying that

/Q Ra(lz) x (x — x0) - v)>pdx dv = 0.
AR’
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Therefore, w x (x — xg) - v = 0. Thus we conclude that Z = 0 and this leads to a
contradiction. O

This finishes the proof for the positivity on a fixed time interval [0, 1]. In the
next section, we prove the main L? decay theorem in the interval [0, ¢].

We are now ready to prove our main theorem on the L? decay estimates for the
solutions f to (1).

Theorem 3. (Theorem 13 of [5]) Let f be the weak solution of (1) with initial-
boundary value conditions (2), which satisfies the conservation laws (3), and (4)
if Q has a rotational symmetry. Suppose that || follcc,9+m < € and ||gllco.m < €
for some small ¢ > 0 and m > % For any 9 € 27'N U {0}, there exist C and
€ = e(v) > 0 such that

Sup Es (f(s)) < C2% E5(fo), (38)
and
1/2 —k/2
I f(Oll2.p < Cox (5,9+%<0)) (1 + %) (39)

foranyt > 0 and k € N, where Ey(f (1)) is defined as (5).

Proof. Define
T = sup (t cosup Ey(f(s)) < 1) >0 (40)
t 0<s<t

forsome ¥ > 0.For0 <7 <T,let0 < N <t < N + 1, for some non-negative
integer N. We split [0, 1] = (uj.V;O‘ U, j+ 1]) U[N, 1]. On each interval [, j + 1]

for j =0,1,...,N — 1, we define f/(s,x,v) = f(s + j, x, v). Then clearly
f J (s, x, v) is a weak solution of (1)—(4) on the time interval s € [0, 1] with the
new initial condition f J 0, x,v) = f(J, x, v). Note that since we only consider
t € [0, T] for T from (40), £y (f/(0)) is uniformly bounded from above. We take
the L2 energy estimate over 0 < s < N to obtain

N N
||f<N>||%+f0 ds (Lf. f) = ||f<0>||%+/0 ds (T8, ). /).

by the specular reflection boundary condition. Equivalently, we have

N—-1 .1
I+ Y [ as (el 1)
=0

Then we use Proposition 1 and obtain

N
||f<0>||%+/0 ds (Cg. ). /).

A

N-1 1 _ N
IIf(N)|I§+Z<3€,j/0 ds ||ff||?,_||f<0)||%+/0 ds (C(g., ). f).
j=0
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Thus,

.....

By Theorem 2.8 of [6], we obtain the energy inequality over [0, N]
2 N 2 2
If(N)IIz + — min ‘Se,j/ ds [ f®Ollz = 11 O)3
{j=0....N~1) 0

N
+Co/0 ds lg(®)llooll £ ()13 - (42)

This completes the derivation of the energy inequality for the base case ¥ = 0 in
the interval [0, N]. For 9 > 0, we multiply (1 + |v])?? (v) f (¢, x, v) and take the
L? energy estimate over 0 < s < N to obtain

N
IS+ [ ds (4 b Ls. f)
0

N
= 17O, +/0 ds (14 D> T(g, ), 1),

by the specular reflection boundary condition. By Lemma 2.7 and Theorem 2.8 of
[6], we have for some Cy > 0

N 1
If (N3, + /0 ds <5||f(s)||§,1, —cﬂnf(s)n?,) < I f O3,

N
+C19/0 ds g ool FS)3 5- (43)

This completes the derivation of the energy inequality for © > 0 in the interval
[0, N]. Therefore, by the ingredients (42) for the base case ¢+ = 0 and (43) for a
general ¥ > 0, we obtain (4.36) of [6] by the same proof via the induction on ¥
forn =0,s = 0 and t = N. Then by the same proof of Theorem 1.2 of [6], we
obtain (38) and (39) in the time interval s € [0, N]; for any 9 € 27N U {0} and
k € N, there exist C and € = €(1%) > 0 such that

o Es(f(5)) < C2% &y (fo),
<s<N

and

1/2 N k2
L) = Cok (£,,4©) (1+;) _

Now we consider the local interval [N, t] where wehave 0 <t— N < landr <T.
We recall that if || g||co,m < € for a sufficiently small €, we have

1t
I+ [D? FOI72 + /N IF N5 ds < Ce N+ [u])? FIN)IIF2. (44)
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by (14) for/ = ¥ on [N, ¢]. Note that (44) holds for a solution to (1) under (6) and
(2)—(4) by the local L? energy inequality and the Gronwall inequality as in (14)
and we do not need the additional assumption (8) for (14). Then we observe that

Es(f(1)) < Ce™NES(F(N)) < Ce! N2 €5 (fo) < C'e2* Ey(fo)
for some C’ > 0 and

12 N\ /2
1Ol = CENIFWlp = Ce N Co (€,,40) (1 + ;)

1/2 £\ K2
< CeCoi (£,,4@) T2 <1+E) ,

—k/2 —kJ2
N t
1+ — <2k (14 -
( + k) < ( +k>

for N <t < N+ 1and k > 1. Therefore, we obtain (38) and (39) for the time
interval [0, ¢] forany 0 < ¢ < T where T is defined as (40).
We finally choose initially

since

1
& < < —,
»(fo) = €0 =555

and we define

T, = sup (t: sup Ey(f(s)) < l) > 0.
t

0<s<t 2

Since 0 <t < T < T, we have, from (38), that

1
sup 9 (f(s)) < C22VE5(fo) < 5
0<s<T

Thus, we deduce that 75 = oo from the continuity of £y, and the theorem follows.
O
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