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The meta-Allee effect: A generalization from intermittent metapopulations 
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A B S T R A C T   

Intermittent population trajectories are likely to emerge in almost any population that faces a predator yet has a 
refuge from that predator. Using the well-known model of Pomeau and Manneville for intermittent populations, 
a collection of a group of inherently unstable subpopulations can survive through the balance of extinction and 
migration rates, which is a metapopulation. This formulation also generates a meta-Allee point, which is to say a 
minimal number of subpopulations that must exist to sustain the population over the long term.   

There are two key issues of common knowledge about natural pop
ulations: 1) all are visited by both predators and diseases, and 2) many 
are constrained in heterogeneous space, part of which offers refuge from 
the predator. The pattern can be referred to as the predator/refuge/ 
disease (PRD) pattern, and is arguably a common situation in the natural 
world, as discussed later. Two generalizations emerge from these 
seemingly common ecological facts: First, many populations will exhibit 
intermittent dynamical behavior, as pictured in Fig. 1; Second, a suc
cessful metapopulation arises only when a critical number of sub
populations exist, a phenomenon I call a meta-Allee effect. Both 
generalizations, intermittency and the meta-Allee effect, emerge natu
rally from these key issues of common knowledge, the PRD pattern. 

The inevitability of intermittency can be argued for almost any 
population that faces a predator in some sites in its habitat yet en
counters a refuge from that predator in other sites(i.e., the PRD pattern). 
When not in the refuge, the prey is consumed sometimes to local 
extinction, as observed in many classic laboratory studies (Gause et al., 
1936; Luckinbill, 1973; Huffaker, 1958). When in the refuge and thus 
released from control by the predator, it may increase its population 
dramatically (Vandermeer and Perfecto, 2019). That dramatic increase 
in population density creates a target for the inevitable disease that visits 
it (Burdon and Chilvers, 1982) resulting in, ironically, a population 
crash within that refuge, due to the disease. The combination of two 
natural enemies (predator and disease) along with this particular form of 
a spatially heterogenous landscape (i.e., the PRD pattern), results in 
persistence at a large scale, extinction at a small scale, and a pattern that 
is best described by the word intermittency (Fig. 1). 

While the idea of intermittency is intuitively obvious when assuming 
the PRD pattern (Fig. 1), the potential emergence of the meta-Allee ef
fect requires some theoretical machinery to understand. With a focus on 

intermittency a convenient way of dealing with such populations is with 
the model of Pomeau and Manneville (1980), hereafter PM, 

Xi(t + 1) = rXi(t) + aXi(t)b Mod 1 (1)  

(presuming r > 0, a > 0 and b > 2), which effectively allocates the result 
of an overpopulation to a new reflection of the same basic rules. The first 
term in the model (Eq. (1)) reflects a simple exponential growth 
behavior and the second term (aXi(t)b) represents an accelerated 
growth, reflecting the basic ideas illustrated in Fig. 1, and following the 
same logic as presented elsewhere (Vandermeer and Perfecto, 2019). 
Illustrations of Eq. (1) are presented in Fig. 2, whence it is clear both why 
the model is frequently used as a model of intermittent behavior as well 
as the qualitatively distinct behavior for very similar initiation points, a 
characteristic normally associated with chaos. As has been noted else
where (Klages, 2013; Nee, 2018), the Lyapunov exponent is zero, even 
though the behavior is chaos-like, leading to the descriptor, “weak 
chaos.” 

While other framings exist, the PM map is an elegant model that 
captures the essence of intermittency and produces time series that are 
familiar to most ecologists. The term rXi(t) is the exponential growth 
part of the equation, making the parameter “a” correspond to an addi
tional growth factor, dependent on a power of X. Although not usually 
expressed in this way, the idea of niche construction is clearly reflected 
in this parameter (Vandermeer, 2019). Note that if r < 1, regardless the 
value of a, the population is destined to extinction, as is made clear in  
Fig. 3. 

It is thus always true that in an intermittent population (modeled 
with the PM map), the intrinsic rate of increase, r, must be greater than 
1.0 for the population to survive in perpetuity. However, this necessity 
disappears in a metapopulation (i.e., the overall population is divided 
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into a group of subpopulations, each of which is a sink [r < 1.0], but 
individuals migrate among the subpopulations). The question here is, 
what is the effect of putting a series of subpopulations with intermittent 
dynamics and r < 1.0, into a metapopulational framework, with the 
parameter (“a”) non-zero? 

Presuming there are S subpopulations in the system and a density- 
dependent rate of migration among them of m, and migration is uni
versal, we modify Eq. (1) to read, 

Xi(t + 1) = rXi(t) + aXi(t)b
+ m

∑S

j∕=i

Xj(t) − mXi(t) Mod 1. (2) 

It is clear from inspection that the oscillations of each of the sub
populations will remain intermittent. It is also clear that even if the 
inevitability of extinction criterion (r <1) is not met, setting an arbitrary 
lower critical level of extinction can force an inevitable extinction. Yet 
the timing of that extinction is not fixed, but rather can be viewed as a 
probability within a fixed time frame. Central to the general argument of 
this paper, the probability of descending to some critical extinction level 

Fig. 1. Cartoon version of the underlying structure of intermittency in a population subject to predation and a disease, distributed in both space and time. Beginning 
from time 1, the system proceeds through time 7 and then cycles back to time 1, generating the time series 2, 3, 6, 9, 16, 17, 0, 2, 3, 6, 9, . . ., illustrating the boom and 
bust dynamics of the prey population as expected from the basic natural history of this relationship. At each time frame the total number of individuals in either the 
“conducive to predator” or “hostile to preditor” is counted separately, with the individuals outside of those categories meant to imply in the process of migration and 
thus not counted. 
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may be curtailed by the migration parameter. In simple simulations (and 
by simple examination of Eq. (2)) it is evident that falling below any 
stipulated threshold for any individual population is a virtual certainty 
and that any level of migration reduces that certainty (Fig. 4). In clas
sical metapopulation language, the probability of extinction for each 
individual population is a measure of the inherent probability of falling 
below the extinction threshold and is a measure of the inherent dy
namics within individual subpopulations, independent of their inter
population migrations. Migration, a function of the quality of the matrix 
within which the subpopulations are located, reduces that inherent 
probability (Fig. 4). Not surprisingly, changing the migration rate (m) 
has the effect of raising the number of subpopulations surviving. 
Furthermore, the change in surviving populations over time stabilizes 
after about 100 iterations for a variety of parameter settings and initial 
values. 

With this metapopulation framing, there is an important relationship 
between the number of subpopulations at an initial time period and the 
survival of the overall metapopulation. Fig. 5 illustrates this effect, 
wherein initiating the metapopulation with 60 subpopulations results in 
a long term average of 3.25 subpopulations surviving, initiating with 55 
sub populations (same parameter values) results in a long term average 
of 1.25 surviving populations. Generalizing, we see a critical transition 
phenomenon, wherein there is a critical number of subpopulations that 
must exist for the metapopulation to survive in the long term, what 
might be referred to as a “meta-Allee “ point, as shown in Fig. 6. 

The pattern, arguably common in nature, of a population visited by 

both predator and prey in a heterogenous environment can easily lead to 
the circumstances of intermittent population behavior, as illustrated 
qualitatively in Fig. 1 and quantitatively in Eq. (1). With less than 
replacement intrinsic growth rate (r<1, in Eq. (1)) such an intermittent 
pattern cannot be maintained (Fig. 3) and the population becomes 
locally extinct. However, populations of this sort are the equivalent of 
sink populations and a collection of sink populations may be connected 
through migration into a classic metapopulation. Such a structure takes 
on special meaning when populations are intermittent, here modelled 
with the Pomeau/Manneville map. 

Fig. 2. The Pomeau–Manneville map (equation 1). a. the recursion map 
(equation 1) with the switch from 1 to 0 connected with a vertical line for 
clarity and the 45 degree line representing the X(t+1) = X(t) state. b. time series 
illustrating the dramatically different patterns for trajectories initiated at 
similar starting points. Parameters are r = a =1.0, b = 3. Black dashed line 
initiated at x(0) = 0.4001, red solid line initiated at x(0) = 0.4000. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 3. The apparent inevitability of extinction in an intermittent population 
with r < 1 (parameter settings are r = 0.75, a=0.99, b=3). With r<1 the initial 
rise of the function, (i.e., near zero), is less than needed for population increase. 
Any population below a critical point (where the function crosses the 45 degree 
line, in this case at X = 0.5025) will descend to zero, and any point above that 
critical point ultimately projects to the basin of the zero equilibrium, from 
extensive simulations. The only possible viable population would appear to 
require r > 1. 

Fig. 4. Probability of falling below critical extinction threshold of 0.05 (lower 
open circles) and 0.2 (upper closed circles) as a function of the migration rate 
(m in equation 2). Simulated probabilities (proportion of 100 populations that 
go extinct) after a time frame of 10,000. Dashed lines connect means (param
eters as in Fig. 2). All populations initiated with a random number, 0 < ε < 1. 
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While the idea of metapopulation stability is similar to classic no
tions, the framework herein leads to a distinct idea, that of a “meta- 
Allee” point. As implied in Fig. 5 and made more explicit in Fig. 6, there 
is a critical minimal number of subpopulations that must exist to begin 
with, if the overall intermittent metapopulation is to be sustained over 
the long term. Thus, it is not simply that a metapopulation emerges from 
connecting unstable subpopulations through migration, as is the case in 
a classic metapopulation, but it takes a minimal number of sub
populations for the metapopulation to form. The parallel with the classic 
notion of an Allee point is evident. 

A variety of qualifiers need to be added to the assumption that all 
subpopulations are the same. Indeed, there is substantial literature on 
the heterogeneity of ecological background states, whether exogenous 
(e.g., Alemu, et al., 2021; Xue et al., 2021) or self-organized through 
genetic our behavioral structure (Huang et al. 2021; Garnier and 
Lafontaine, 2021). For example, the Allee effect for an individual pop
ulation in a spatially explicit context can lead to either an expanding or 
contracting range, but also to a range that is “pinned” between expan
sion and contraction (Keitt et al., 2001), a phenomenon that warrants 
further study in the context of meta-Allee points. Surendran and col
leagues (2020), using an individual based model show that a population 

may survive even though its mean field approximation predicts extinc
tion, similar to the meta-Allee effect reported here. Metapopulation 
biology coupled with the Allee effect has also been clearly implicated, 
theoretically, in the spatial structure of intraspecific population density 
(Osorio-Olvera et al, 2019). Adding such spatially explicit components 
to the present analysis will be of considerable interest for future studies. 

The implications of these results may apply to diverse subfields of 
ecology, such as conservation and pest control. For example, the con
servation of a species when examined through the lens of the traditional 
metapopulation model suggests that even very small numbers of habitat 
patches might be sufficient for conservation as long as the migration rate 
exceeds the local extinction rate. In the intermittent metapopulation 
context the idea of a meta/Allee point emerges, suggesting that there is a 
critical lower number of patches that must contain subpopulations if the 
population is to survive in perpetuity. That critical number represents an 
“extinction threshold,” (Bascompte and Solé,1996) in the sense that if 
the subpopulation count goes below it, the overall population will 
disappear. In pest control applications if the population of concern is a 
pest and the potential subpopulations are agricultural fields, the model 
suggests that there is a critical number of agricultural fields housing the 
pest that could lead to its emergence as a problem (Sylvén, 1968), below 
which it would remain at very low levels, or become extinct. Concom
itantly, of course, is the possibility of pest control over a large region by 
management on fewer than all of the farms. 

Author statement 

John Vandermeer is Asa Gray Distinguished University Professor of 
Ecology and Evolutionary Biology at the University of Michigan, Ann 
Arbor, Michigan, USA 

Declaration of Competing Interest 

The author has no conflicting interests to declare. 

References 

Alemu, J.B., Richards, D.R., Gaw, L.Y.F., Masoudi, M., Nathan, Y., Friess, D.A., 2021. 
Identifying spatial patterns and interactions among multiple ecosystem services in an 
urban mangrove landscape. Ecol. Indic. 121, 107042. 
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Fig. 5. Examples of time series for two initial subpopulation numbers in a 
locally unstable scenario (parameters same as in Fig. 3, with migration coeffi
cient = 0.001). For an initial number of 60 the average number of sub
populations over the last 100 iterations (from 400 to 500) is 3.25 (for a p* of 
0.054). For an initial number of 55, the average number of subpopulations over 
the last 100 iterations is 1.25 (for a p* of 0.023). 

Fig. 6. Long term equilibrium proportion of subpopulations surviving as a 
function of the initial number, illustrating the existence of a meta-Allee point 
(parameters as in Fig. 5). The initial number of subpopulations is the number of 
subpopulations that are initiated at the beginning of a run, for example, 60 and 
55 as displayed in Fig. 5. 
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