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Intermittent population trajectories are likely to emerge in almost any population that faces a predator yet has a
refuge from that predator. Using the well-known model of Pomeau and Manneville for intermittent populations,
a collection of a group of inherently unstable subpopulations can survive through the balance of extinction and
migration rates, which is a metapopulation. This formulation also generates a meta-Allee point, which is to say a

minimal number of subpopulations that must exist to sustain the population over the long term.

There are two key issues of common knowledge about natural pop-
ulations: 1) all are visited by both predators and diseases, and 2) many
are constrained in heterogeneous space, part of which offers refuge from
the predator. The pattern can be referred to as the predator/refuge/
disease (PRD) pattern, and is arguably a common situation in the natural
world, as discussed later. Two generalizations emerge from these
seemingly common ecological facts: First, many populations will exhibit
intermittent dynamical behavior, as pictured in Fig. 1; Second, a suc-
cessful metapopulation arises only when a critical number of sub-
populations exist, a phenomenon I call a meta-Allee effect. Both
generalizations, intermittency and the meta-Allee effect, emerge natu-
rally from these key issues of common knowledge, the PRD pattern.

The inevitability of intermittency can be argued for almost any
population that faces a predator in some sites in its habitat yet en-
counters a refuge from that predator in other sites(i.e., the PRD pattern).
When not in the refuge, the prey is consumed sometimes to local
extinction, as observed in many classic laboratory studies (Gause et al.,
1936; Luckinbill, 1973; Huffaker, 1958). When in the refuge and thus
released from control by the predator, it may increase its population
dramatically (Vandermeer and Perfecto, 2019). That dramatic increase
in population density creates a target for the inevitable disease that visits
it (Burdon and Chilvers, 1982) resulting in, ironically, a population
crash within that refuge, due to the disease. The combination of two
natural enemies (predator and disease) along with this particular form of
a spatially heterogenous landscape (i.e., the PRD pattern), results in
persistence at a large scale, extinction at a small scale, and a pattern that
is best described by the word intermittency (Fig. 1).

While the idea of intermittency is intuitively obvious when assuming
the PRD pattern (Fig. 1), the potential emergence of the meta-Allee ef-
fect requires some theoretical machinery to understand. With a focus on
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intermittency a convenient way of dealing with such populations is with
the model of Pomeau and Manneville (1980), hereafter PM,

Xi(t+1) = rX;(t) + aXi(t)" Mod 1 1)

(presuming r > 0, a > 0 and b > 2), which effectively allocates the result
of an overpopulation to a new reflection of the same basic rules. The first
term in the model (Eq. (1)) reflects a simple exponential growth
behavior and the second term (aXi(t)b) represents an accelerated
growth, reflecting the basic ideas illustrated in Fig. 1, and following the
same logic as presented elsewhere (Vandermeer and Perfecto, 2019).
Ilustrations of Eq. (1) are presented in Fig. 2, whence it is clear both why
the model is frequently used as a model of intermittent behavior as well
as the qualitatively distinct behavior for very similar initiation points, a
characteristic normally associated with chaos. As has been noted else-
where (Klages, 2013; Nee, 2018), the Lyapunov exponent is zero, even
though the behavior is chaos-like, leading to the descriptor, “weak
chaos.”

While other framings exist, the PM map is an elegant model that
captures the essence of intermittency and produces time series that are
familiar to most ecologists. The term rX;j(t) is the exponential growth
part of the equation, making the parameter “a” correspond to an addi-
tional growth factor, dependent on a power of X. Although not usually
expressed in this way, the idea of niche construction is clearly reflected
in this parameter (Vandermeer, 2019). Note that if r < 1, regardless the
value of a, the population is destined to extinction, as is made clear in
Fig. 3.

It is thus always true that in an intermittent population (modeled
with the PM map), the intrinsic rate of increase, r, must be greater than
1.0 for the population to survive in perpetuity. However, this necessity
disappears in a metapopulation (i.e., the overall population is divided
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into a group of subpopulations, each of which is a sink [r < 1.0], but
individuals migrate among the subpopulations). The question here is,
what is the effect of putting a series of subpopulations with intermittent
dynamics and r < 1.0, into a metapopulational framework, with the
parameter (“a”’) non-zero?

Presuming there are S subpopulations in the system and a density-
dependent rate of migration among them of m, and migration is uni-
versal, we modify Eq. (1) to read,

1 2
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S
Xi(t+1) = rXi(t) + aX,(t) +m > _X;(t) —mXi(t)  Mod 1. )
J#

It is clear from inspection that the oscillations of each of the sub-
populations will remain intermittent. It is also clear that even if the
inevitability of extinction criterion (r <1) is not met, setting an arbitrary
lower critical level of extinction can force an inevitable extinction. Yet
the timing of that extinction is not fixed, but rather can be viewed as a
probability within a fixed time frame. Central to the general argument of
this paper, the probability of descending to some critical extinction level
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Fig. 1. Cartoon version of the underlying structure of intermittency in a population subject to predation and a disease, distributed in both space and time. Beginning
from time 1, the system proceeds through time 7 and then cycles back to time 1, generating the time series 2, 3, 6,9, 16,17, 0, 2, 3, 6, 9, . . ., illustrating the boom and
bust dynamics of the prey population as expected from the basic natural history of this relationship. At each time frame the total number of individuals in either the
“conducive to predator” or “hostile to preditor” is counted separately, with the individuals outside of those categories meant to imply in the process of migration and

thus not counted.
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Fig. 2. The Pomeau-Manneville map (equation 1). a. the recursion map
(equation 1) with the switch from 1 to O connected with a vertical line for
clarity and the 45 degree line representing the X(t+1) = X(t) state. b. time series
illustrating the dramatically different patterns for trajectories initiated at
similar starting points. Parameters are r = a =1.0, b = 3. Black dashed line
initiated at x(0) = 0.4001, red solid line initiated at x(0) = 0.4000. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

may be curtailed by the migration parameter. In simple simulations (and
by simple examination of Eq. (2)) it is evident that falling below any
stipulated threshold for any individual population is a virtual certainty
and that any level of migration reduces that certainty (Fig. 4). In clas-
sical metapopulation language, the probability of extinction for each
individual population is a measure of the inherent probability of falling
below the extinction threshold and is a measure of the inherent dy-
namics within individual subpopulations, independent of their inter-
population migrations. Migration, a function of the quality of the matrix
within which the subpopulations are located, reduces that inherent
probability (Fig. 4). Not surprisingly, changing the migration rate (m)
has the effect of raising the number of subpopulations surviving.
Furthermore, the change in surviving populations over time stabilizes
after about 100 iterations for a variety of parameter settings and initial
values.

With this metapopulation framing, there is an important relationship
between the number of subpopulations at an initial time period and the
survival of the overall metapopulation. Fig. 5 illustrates this effect,
wherein initiating the metapopulation with 60 subpopulations results in
a long term average of 3.25 subpopulations surviving, initiating with 55
sub populations (same parameter values) results in a long term average
of 1.25 surviving populations. Generalizing, we see a critical transition
phenomenon, wherein there is a critical number of subpopulations that
must exist for the metapopulation to survive in the long term, what
might be referred to as a “meta-Allee “ point, as shown in Fig. 6.

The pattern, arguably common in nature, of a population visited by
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Fig. 3. The apparent inevitability of extinction in an intermittent population
with r < 1 (parameter settings are r = 0.75, a=0.99, b=3). With r<1 the initial
rise of the function, (i.e., near zero), is less than needed for population increase.
Any population below a critical point (where the function crosses the 45 degree
line, in this case at X = 0.5025) will descend to zero, and any point above that
critical point ultimately projects to the basin of the zero equilibrium, from
extensive simulations. The only possible viable population would appear to
require r > 1.
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Fig. 4. Probability of falling below critical extinction threshold of 0.05 (lower
open circles) and 0.2 (upper closed circles) as a function of the migration rate
(m in equation 2). Simulated probabilities (proportion of 100 populations that
go extinct) after a time frame of 10,000. Dashed lines connect means (param-
eters as in Fig. 2). All populations initiated with a random number, 0 < & < 1.

both predator and prey in a heterogenous environment can easily lead to
the circumstances of intermittent population behavior, as illustrated
qualitatively in Fig. 1 and quantitatively in Eq. (1). With less than
replacement intrinsic growth rate (r<1, in Eq. (1)) such an intermittent
pattern cannot be maintained (Fig. 3) and the population becomes
locally extinct. However, populations of this sort are the equivalent of
sink populations and a collection of sink populations may be connected
through migration into a classic metapopulation. Such a structure takes
on special meaning when populations are intermittent, here modelled
with the Pomeau/Manneville map.
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Fig. 5. Examples of time series for two initial subpopulation numbers in a
locally unstable scenario (parameters same as in Fig. 3, with migration coeffi-
cient = 0.001). For an initial number of 60 the average number of sub-
populations over the last 100 iterations (from 400 to 500) is 3.25 (for a p* of
0.054). For an initial number of 55, the average number of subpopulations over
the last 100 iterations is 1.25 (for a p* of 0.023).
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Fig. 6. Long term equilibrium proportion of subpopulations surviving as a
function of the initial number, illustrating the existence of a meta-Allee point
(parameters as in Fig. 5). The initial number of subpopulations is the number of
subpopulations that are initiated at the beginning of a run, for example, 60 and
55 as displayed in Fig. 5.

While the idea of metapopulation stability is similar to classic no-
tions, the framework herein leads to a distinct idea, that of a “meta-
Allee” point. As implied in Fig. 5 and made more explicit in Fig. 6, there
is a critical minimal number of subpopulations that must exist to begin
with, if the overall intermittent metapopulation is to be sustained over
the long term. Thus, it is not simply that a metapopulation emerges from
connecting unstable subpopulations through migration, as is the case in
a classic metapopulation, but it takes a minimal number of sub-
populations for the metapopulation to form. The parallel with the classic
notion of an Allee point is evident.

A variety of qualifiers need to be added to the assumption that all
subpopulations are the same. Indeed, there is substantial literature on
the heterogeneity of ecological background states, whether exogenous
(e.g., Alemu, et al., 2021; Xue et al., 2021) or self-organized through
genetic our behavioral structure (Huang et al. 2021; Garnier and
Lafontaine, 2021). For example, the Allee effect for an individual pop-
ulation in a spatially explicit context can lead to either an expanding or
contracting range, but also to a range that is “pinned” between expan-
sion and contraction (Keitt et al., 2001), a phenomenon that warrants
further study in the context of meta-Allee points. Surendran and col-
leagues (2020), using an individual based model show that a population
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may survive even though its mean field approximation predicts extinc-
tion, similar to the meta-Allee effect reported here. Metapopulation
biology coupled with the Allee effect has also been clearly implicated,
theoretically, in the spatial structure of intraspecific population density
(Osorio-Olvera et al, 2019). Adding such spatially explicit components
to the present analysis will be of considerable interest for future studies.

The implications of these results may apply to diverse subfields of
ecology, such as conservation and pest control. For example, the con-
servation of a species when examined through the lens of the traditional
metapopulation model suggests that even very small numbers of habitat
patches might be sufficient for conservation as long as the migration rate
exceeds the local extinction rate. In the intermittent metapopulation
context the idea of a meta/Allee point emerges, suggesting that there is a
critical lower number of patches that must contain subpopulations if the
population is to survive in perpetuity. That critical number represents an
“extinction threshold,” (Bascompte and Solé,1996) in the sense that if
the subpopulation count goes below it, the overall population will
disappear. In pest control applications if the population of concern is a
pest and the potential subpopulations are agricultural fields, the model
suggests that there is a critical number of agricultural fields housing the
pest that could lead to its emergence as a problem (Sylvén, 1968), below
which it would remain at very low levels, or become extinct. Concom-
itantly, of course, is the possibility of pest control over a large region by
management on fewer than all of the farms.
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