### VANDERMONDES IN SUPERSPACE

#### BRENDON RHOADES AND ANDREW TIMOTHY WILSON

ABSTRACT. Superspace of rank n is a  $\mathbb{Q}$ -algebra with n commuting generators  $x_1,\ldots,x_n$  and n anticommuting generators  $\theta_1,\ldots,\theta_n$ . We present an extension of the Vandermonde determinant to superspace which depends on a sequence  $\mathbf{a}=(a_1,\ldots,a_r)$  of nonnegative integers of length  $r\leq n$ . We use superspace Vandermondes to construct graded representations of the symmetric group. This construction recovers hook-shaped Tanisaki quotients, the coinvariant ring for the Delta Conjecture constructed by Haglund, Rhoades, and Shimozono, and a superspace quotient related to positroids and Chern plethysm constructed by Billey, Rhoades, and Tewari. We define a notion of partial differentiation with respect to anticommuting variables to construct doubly graded modules from superspace Vandermondes. These doubly graded modules carry a natural ring structure which satisfies a 2-dimensional version of Poincaré duality. The application of polarization operators gives rise to other bigraded modules which give a conjectural module for the symmetric function  $\Delta'_{e_{k-1}}e_n$  appearing in the Delta Conjecture of Haglund, Remmel, and Wilson.

## 1. Introduction

In this paper we extend the Vandermonde from the classical polynomial ring in n variables to a noncommutative deformation of this ring called *superspace*. We use superspace Vandermondes to generate interesting graded symmetric group modules including

- a family  $R_{n,k}$  of quotient rings introduced by Haglund, Rhoades, and Shimozono [11] with connections to the cohomology of Pawlowski-Rhoades moduli spaces of spanning line configurations [14, 18] (Theorems 3.6 and 4.2),
- a class of quotient rings studied by Billey, Rhoades, and Tewari [5] related to positroids and Chern plethysm (Proposition 4.5),
- the Tanisaki quotients  $R_{\lambda}$  corresponding to hook-shaped partitions  $\lambda \vdash n$  which present the cohomology of the corresponding Springer fiber  $\mathcal{B}_{\lambda}$  [20] (Proposition 4.3) and conjecturally other Tanisaki quotients  $R_{\lambda}$  (Conjecture 6.1),
- a class of *doubly* graded modules with a bigraded multiplication which exhibit a kind of rotational symmetry (Corollary 5.6) and a 2-dimensional version of Poincaré duality (Corollary 5.9), and
- a class of doubly graded modules whose bigraded Frobenius image is conjecturally given by the expression  $\Delta'_{e_{k-1}}e_n$  appearing in the Delta Conjecture of Haglund, Remmel, and Wilson [10] (Conjecture 6.3).

Let  $\mathbb{Q}[\mathbf{x}_n] := \mathbb{Q}[x_1, \dots, x_n]$  be the polynomial ring in n variables equipped with the action of the symmetric group  $\mathfrak{S}_n$  by subscript permutation. The  $Vandermonde\ \Delta_n$  is an important element of  $\mathbb{Q}[\mathbf{x}_n]$  with several equivalent definitions. If we let  $\varepsilon_n \in \mathbb{Q}[\mathfrak{S}_n]$  be the group algebra element

(1.1) 
$$\varepsilon_n := \sum_{w \in \mathfrak{S}_n} \operatorname{sign}(w) \cdot w,$$

Key words and phrases. Vandermonde, harmonic space, delta operator, superspace.

we have

$$(1.2) \quad \Delta_n := \prod_{1 \le i < j \le n} (x_i - x_j) = \det \begin{pmatrix} x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ & & \vdots & \\ x_1 & x_2 & \cdots & x_n \\ 1 & 1 & \cdots & 1 \end{pmatrix} = \varepsilon_n \cdot (x_1^{n-1} x_2^{n-2} \cdots x_{n-1}^1 x_n^0).$$

For a positive integer n, superspace of rank n is the unital associative  $\mathbb{Q}$ -algebra with generators  $x_1, x_2, \ldots, x_n$  and  $\theta_1, \theta_2, \ldots, \theta_n$  subject to the relations

$$(1.3) x_i x_j = x_i x_i, \quad x_i \theta_i = \theta_i x_i, \quad \theta_i \theta_i = -\theta_i \theta_i$$

for all  $1 \leq i, j \leq n$ . Abusing notation, we use  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  to denote superspace of rank n, with the understanding that the  $\theta$ -variables anticommute. The 'super' refers to supersymmetry in physics; the x-variables correspond to bosons whereas the  $\theta$ -variables correspond to fermions (see e.g. [15]). Extending coefficients to  $\mathbb{R}$ , superspace is the ring of polynomial-valued differential forms on Euclidean n-space; in this setting the variable  $\theta_i$  would be more commonly written  $dx_i$ . We also have the tensor product model  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] = \operatorname{Sym}(V^*) \otimes \bigwedge(V^*)$ , where V is an n-dimensional vector space and  $V^*$  is its dual space. Superspace carries a natural bigrading by considering x-degree and  $\theta$ -degree separately.

We endow  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  with the diagonal action of  $\mathfrak{S}_n$ :

(1.4) 
$$w \cdot x_i := x_{w(i)}, \quad w \cdot \theta_i := \theta_{w(i)} \quad \text{for } w \in \mathfrak{S}_n \text{ and } 1 \le i \le n.$$

This action of  $\mathfrak{S}_n$  on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  has been used in [5, 22] to build interesting graded  $\mathfrak{S}_n$ -modules connected to Chern plethysm and delta operators. We use the last formulation in (1.2) of the Vandermonde determinant to extend Vandermondes to superspace and construct graded  $\mathfrak{S}_n$ -modules of our own. The following superspace elements will be our object of study.

**Definition 1.1.** Let  $k, r \ge 0$  with n = k + r and let  $\mathbf{a} = (a_1, \dots, a_r)$  be a list of r nonnegative integers. The **a**-superspace Vandermonde is the following element of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ :

$$\Delta_n(\mathbf{a}) := \varepsilon_n \cdot (x_1^{a_1} x_2^{a_2} \cdots x_r^{a_r} x_{r+1}^{k-1} x_{r+2}^{k-2} \cdots x_{n-1}^1 x_n^0 \cdot \theta_1 \theta_2 \cdots \theta_r).$$

**Example 1.2.** Let n = 3. Using the anticommutativity of the  $\theta$ -variables,

$$\Delta_3(1,1) = 2x_1x_2\theta_1\theta_2 - 2x_1x_3\theta_1\theta_3 + 2x_2x_3\theta_2\theta_3$$

$$\Delta_3(2,0) = x_1^2\theta_1\theta_2 + x_2^2\theta_1\theta_2 - x_1^2\theta_1\theta_3 - x_3^2\theta_1\theta_3 + x_2^2\theta_2\theta_3 + x_3^2\theta_2\theta_3$$

$$\Delta_3(1) = x_1x_2\theta_1 - x_1x_2\theta_2 - x_1x_3\theta_1 - x_2x_3\theta_3 + x_2x_3\theta_2 + x_1x_3\theta_3.$$

Example 1.2 illustrates that  $\Delta_n(\mathbf{a}) \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  is nonzero even when the sequence  $\mathbf{a}$  has repeated entries. Indeed, the case where  $\mathbf{a}$  is a constant sequence will be the primary focus of this paper.

Definition 1.1 specializes to the classical Vandermonde  $\Delta_n$  when  $\mathbf{a} = \emptyset$  is the empty sequence of length zero. If  $\mathbf{a} = (a_1, \dots, a_r)$  is a rearrangement of  $\mathbf{b} = (b_1, \dots, b_r)$ , the anticommutativity of the  $\theta$ -variables implies  $\Delta_n(\mathbf{a}) = \Delta_n(\mathbf{b})$ .

The superpolynomial  $\Delta_n(\mathbf{a})$  can be viewed as a (noncommutative) determinant. If  $A = (A_{i,j})_{1 \leq i,j \leq n}$  is a matrix whose elements lie in  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ , we define  $\det(A) \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  by

(1.5) 
$$\det(A) := \sum_{w \in \mathfrak{S}_n} \operatorname{sign}(w) A_{1,w(1)} A_{2,w(2)} \cdots A_{n,w(n)},$$

where the terms are multiplied in the specified order. For  $\mathbf{a} = (a_1, \dots, a_r)$  with n = k + r we have

(1.6) 
$$\Delta_{n}(\mathbf{a}) = \det \begin{pmatrix} x_{1}^{a_{1}}\theta_{1} & x_{2}^{a_{1}}\theta_{2} & \cdots & x_{n}^{a_{1}}\theta_{n} \\ x_{1}^{a_{2}}\theta_{1} & x_{2}^{a_{2}}\theta_{2} & \cdots & x_{n}^{a_{2}}\theta_{n} \\ & & \ddots & \\ x_{1}^{a_{r}}\theta_{1} & x_{2}^{a_{r}}\theta_{2} & \cdots & x_{n}^{a_{r}}\theta_{n} \\ & & & \ddots & \\ x_{1}^{a_{r}}\theta_{1} & x_{2}^{a_{r}}\theta_{2} & \cdots & x_{n}^{a_{r}}\theta_{n} \\ & & & \ddots & \\ x_{1}^{k-1} & x_{2}^{k-1} & \cdots & x_{n}^{k-1} \\ x_{1}^{k-2} & x_{2}^{k-2} & \cdots & x_{n}^{k-2} \\ & & & \ddots & \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

The authors are unaware of a superspace extension of the factorization  $\Delta_n = \prod_{1 \leq i < j \leq n} (x_i - x_j)$ . We use an action of partial derivatives on superspace to build  $\mathfrak{S}_n$ -modules. For  $1 \leq i \leq n$ , let  $\partial_i : \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] \to \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  be the unique linear operator which satisfies

(1.7) 
$$\partial_i(\theta_j) = 0 \text{ and } \partial_i(x_j) = \delta_{i,j}$$

for all  $1 \leq j \leq n$  (where  $\delta_{i,j}$  is the Kronecker delta) together with the Leibniz Rule

(1.8) 
$$\partial_i(fg) = f\partial_i(g) + \partial_i(f)g \text{ for all } f, g \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n].$$

The operator  $\partial_i$  is partial differentiation with respect to  $x_i$  where the  $\theta$ -variables are regarded as constants.

**Definition 1.3.** Suppose n = k + r for  $k, r \ge 0$  and let  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z}_{\ge 0})^r$ . Let  $V_n(\mathbf{a})$  be the smallest  $\mathbb{Q}$ -linear subspace of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  containing  $\Delta_n(\mathbf{a})$  which is closed under the n partial derivative operators  $\partial_1, \dots, \partial_n$ .

Since the superpolynomial  $\Delta_n(\mathbf{a})$  is alternating:

(1.9) 
$$w \cdot \Delta_n(\mathbf{a}) = \operatorname{sign}(w) \Delta_n(\mathbf{a})$$
 for all  $w \in \mathfrak{S}_n$ 

it will follow that  $V_n(\mathbf{a})$  is closed under the action of  $\mathfrak{S}_n$ . The space  $V_n(\mathbf{a})$  is concentrated in  $\theta$ -degree r and is a graded vector space with respect to x-degree. Ignoring the (constant)  $\theta$ -degree, we regard  $V_n(\mathbf{a})$  as a singly graded  $\mathfrak{S}_n$ -module by considering x-degree.

The classical Vandermonde  $\Delta_n$  gives a model for the coinvariant ring of  $\mathfrak{S}_n$ . For  $1 \leq i \leq n$ , let  $e_d = e_d(\mathbf{x}_n)$  be the degree d elementary symmetric polynomial:

(1.10) 
$$e_d := \sum_{1 \le i_1 \le \dots \le i_d \le n} x_{i_1} \cdots x_{i_d}.$$

The invariant ideal  $I_n \subseteq \mathbb{Q}[\mathbf{x}_n]$  is the ideal  $I_n := \langle e_1, e_2, \dots, e_n \rangle$  generated by these polynomials. Equivalently, the ideal  $I_n$  is generated by the vector space  $\mathbb{Q}[\mathbf{x}_n]_+^{\mathfrak{S}_n}$  of  $\mathfrak{S}_n$ -invariant polynomials with vanishing constant term. The coinvariant ring is the quotient  $R_n := \mathbb{Q}[\mathbf{x}_n]/I_n$ . The ring  $R_n$  has the structure of a graded  $\mathfrak{S}_n$ -module.

The coinvariant ring is one of the most important representations in algebraic combinatorics. Chevalley proved [6] that  $R_n \cong \mathbb{Q}[\mathfrak{S}_n]$  as ungraded  $\mathfrak{S}_n$ -modules, so that  $R_n$  gives a graded refinement of the regular representation of  $\mathfrak{S}_n$ . Borel showed [4] that  $R_n$  presents the cohomology of the variety  $\mathcal{F}\ell_n$  of complete flags in  $\mathbb{C}^n$ . If  $\mathbf{a} = \emptyset$  is the empty sequence so that  $\Delta_n(\mathbf{a}) = \Delta_n$  is the classical Vandermonde, we have an isomorphism (see [1]) of graded  $\mathfrak{S}_n$ -modules

$$(1.11) R_n \cong V_n(\varnothing) = \operatorname{span}_{\mathbb{Q}} \{ \partial_1^{b_1} \cdots \partial_n^{b_n} \Delta_n : b_1, \dots, b_n \ge 0 \}.$$

The isomorphism (1.11) gives two ways of viewing the coinvariant algebra, each with virtues and defects. The space  $R_n = \mathbb{Q}[\mathbf{x}_n]/I_n$  has a natural multiplication structure, but as a quotient

space, deciding whether two polynomials  $f, g \in \mathbb{Q}[\mathbf{x}_n]$  are equal in  $R_n$  can be difficult. The graded vector space  $V_n(\emptyset)$  is not closed under multiplication, but its elements are honest polynomials (not cosets), so calculating invariants like dimension is more conceptually straightforward. In this paper we use the spaces  $V_n(\mathbf{a})$  to extend (1.11) to a wider class of graded  $\mathfrak{S}_n$ -modules.

- If n = k + r and  $\mathbf{a} = (k 1, \dots, k 1)$  is a length r sequence of (k 1)'s, then  $V_n(\mathbf{a})$  is isomorphic as a graded  $\mathfrak{S}_n$ -module (up to sign twist and grading reversal) to the quotient  $R_{n,k} := \mathbb{Q}[\mathbf{x}_n]/I_{n,k}$  where  $I_{n,k} \subseteq \mathbb{Q}[x_1, \dots, x_n]$  is the ideal generated by  $x_1^k, x_2^k, \dots, x_n^k$  together with the top k elementary symmetric polynomials  $e_n, e_{n-1}, \dots, e_{n-k+1}$  (Theorem 3.6). The ring  $R_{n,k}$  was defined by Haglund, Rhoades, and Shimozono [11] in connection with the Delta Conjecture [10] of Macdonald theory.
- If n = k + r,  $k \le s$ , and  $\mathbf{a} = (s 1, \dots, s 1)$  is a length r sequence of (s 1)'s, then  $V_n(\mathbf{a})$  is isomorphic (up to sign twist and grading reversal) to a two-parameter family  $R_{n,k,s}$  of quotient rings defined in [11] and further studied from a geometric perspective in [14] (Theorem 4.2).
- If  $r \leq n$  and  $\mathbf{a} = (0, ..., 0)$  is a length r sequence of zeros, then  $V_n(\mathbf{a})$  is isomorphic (up to sign twist and grading reversal) to the Tanisaki quotient  $R_{\lambda}$  corresponding to the hook-shaped partition  $\lambda = (r+1, 1, ..., 1) \vdash n$  (Proposition 4.3).

The modules  $V_n(\mathbf{a})$  of Definition 1.3 are defined using classical partial derivative operators acting on the commuting x-variables. We introduce the following partial differentiation operators which act on the anticommuting  $\theta$ -variables. Given  $1 \leq i \leq n$ , we define a  $\mathbb{Q}[\mathbf{x}_n]$ -endomorphism of superspace by

(1.12) 
$$\partial_i^{\theta}(\theta_{j_1}\cdots\theta_{j_r}) := \begin{cases} (-1)^{s-1}\theta_{j_1}\cdots\widehat{\theta_{j_s}}\cdots\theta_{j_r} & \text{if } j_s = i, \\ 0 & \text{if } i \notin \{j_1,\dots,j_r\}, \end{cases}$$

for any  $1 \leq j_1 < \dots < j_r \leq n$ , where  $\hat{}$  denotes omission. The operator  $\partial_i^{\theta}$  lowers  $\theta$ -degree by 1 while leaving x-degree unchanged. We use these operators to build the following class of doubly-graded vector spaces.

**Definition 1.4.** Suppose n = k + r for  $k, r \ge 0$  and let  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z}_{\ge 0})^r$ . Let  $W_n(\mathbf{a})$  be the smallest  $\mathbb{Q}$ -linear subspace of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  containing  $\Delta_n(\mathbf{a})$  which is closed under the n partial derivative operators  $\partial_1, \dots, \partial_n$  as well as the n operators  $\partial_1^{\theta}, \dots, \partial_n^{\theta}$ .

The space  $W_n(\mathbf{a})$  has the structure of a doubly graded  $\mathfrak{S}_n$ -module. By restricting  $W_n(\mathbf{a})$  to the top  $\theta$ -degree component, we recover the singly graded module  $V_n(\mathbf{a})$ . In contrast to the spaces  $V_n(\mathbf{a})$ , there is a natural way to put a ring structure on  $W_n(\mathbf{a})$ .

It will be shown in Lemma 5.1 that the operators  $\partial_i$  and  $\partial_i^{\theta}$  satisfy the same relations as the generators  $x_i$  and  $\theta_i$  of superspace:

(1.13) 
$$\partial_i \partial_j = \partial_j \partial_i, \quad \partial_i \partial_j^{\theta} = \partial_j^{\theta} \partial_i, \quad \partial_i^{\theta} \partial_j^{\theta} = -\partial_j^{\theta} \partial_i^{\theta}$$

for all  $1 \leq i, j \leq n$ . Given  $f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ , we therefore have a well-defined operator  $\partial(f)$  obtained by replacing each  $x_i$  in f with a  $\partial_i$  and each  $\theta_i$  in f with a  $\partial_i^{\theta}$ . For example, we have

$$\partial(x_1^2\theta_1\theta_2 - x_1x_3\theta_1) = \partial_1^2\partial_1^\theta\partial_2^\theta - \partial_1\partial_3\partial_1^\theta.$$

We have an action of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  on itself given by  $f \cdot g := \partial(f)(g)$ . We use this action to define the following family of bigraded quotient rings.

**Definition 1.5.** Suppose n = k + r for  $k, r \ge 0$  and let  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z}_{\ge 0})^r$ . Let  $I_n(\mathbf{a}) \subseteq \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  be the ideal

(1.14) 
$$I_n(\mathbf{a}) := \{ f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] : f \cdot \Delta_n(\mathbf{a}) = 0 \}$$

and let

(1.15) 
$$R_n(\mathbf{a}) := \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] / I_n(\mathbf{a})$$

be the corresponding quotient ring.

We will show (Corollary 5.7) that  $R_n(\mathbf{a})$  is isomorphic to  $W_n(\mathbf{a})$  as bigraded  $\mathfrak{S}_n$ -modules. The ring  $R_n(\mathbf{a})$  enjoys a 2-dimensional kind of duality (Theorem 5.5, Corollary 5.6) which states that twisting  $R_n(\mathbf{a})$  by the sign representation is equivalent to 'rotating' its bigrading. We prove that  $R_n(\mathbf{a})$  satisfies a 2-dimensional version of Poincaré duality (Corollary 5.9) which is implied in the case  $\mathbf{a} = \emptyset$  by the fact that  $\mathcal{F}\ell_n$  is a compact smooth projective complex variety. We propose the problem of finding a geometric interpretation of the 2-dimensional duality satisfied by the rings  $R_n(\mathbf{a})$ . We further conjecture a 2-dimensional unimodality property of the bigraded Hilbert series of  $R_n(\mathbf{a})$  (Conjecture 6.5) which is implied by the Hard Lefschetz Theorem when  $\mathbf{a} = \emptyset$ .

For  $k \leq n$ , Pawlowski and Rhoades [14] defined the moduli space  $X_{n,k}$  of n-tuples  $(\ell_1, \ldots, \ell_n)$  of lines in  $\mathbb{C}^k$  such that  $\ell_1 + \cdots + \ell_n = \mathbb{C}^k$ . This space is homotopy equivalent to  $\mathcal{F}\ell_n$  when k = n and is a Zariski open subset of the n-fold product  $(\mathbb{P}^{k-1})^n$  of (k-1)-dimensional complex projective space with itself. Although  $X_{n,k}$  is a smooth complex manifold, it is almost never compact and so does not satisfy the hypotheses of Poincaré duality; correspondingly, the Hilbert series of the cohomology ring  $H^{\bullet}(X_{n,k})$  is not palindromic. When  $\mathbf{a} = (k-1,\ldots,k-1)$  is a length n-k sequence of (k-1)'s, the  $\theta$ -degree zero piece of  $R_n(\mathbf{a})$  presents the cohomology  $H^{\bullet}(X_{n,k})$ . The results and conjectures of the previous paragraph suggest that although  $H^{\bullet}(X_{n,k})$  does not satisfy desired properties such as Poincaré duality and Hard Lefschetz, it is a 1-dimensional slice of a 2-dimensional object that does.

The paper is structured as follows. In **Section 2** we give background material related to combinatorics and the representation theory of  $\mathfrak{S}_n$ . In **Section 3** we calculate the graded isomorphism type of  $V_n(\mathbf{a})$  for certain constant sequences  $\mathbf{a}$  to give a new model for the coinvariant algebra for the Delta Conjecture introduced in [11]. In **Section 4** we generalize the results in Section 3 to other constant sequences  $\mathbf{a}$ , giving a Vandermonde model for the hook-shaped Tanisaki quotients in the process. We also describe a subspace model for a quotient of superspace introduced in [5] which gives a bigraded refinement of a symmetric group action on positroids. In **Section 5** we define partial differentiation operators on superspace with respect to antisymmetric variables, prove the relevant duality result, and discuss a possible connection to the superspace coinvariant ring. We close in **Section 6** with some open problems, including an extension of the module  $V_n(\mathbf{a})$  to two sets of commuting variables (with one set of skew-commuting variables) with conjectural doubly graded Frobenius image equal the symmetric function  $\Delta'_{e_{k-1}}e_n$  appearing in the Delta Conjecture.

### 2. Background

2.1. Combinatorics. It will often be convenient for us to assert identities up to a nonzero scalar. To this end, suppose f and g are elements of the polynomial ring  $\mathbb{Q}[\mathbf{x}_n]$  or of superspace  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ . We use the notation  $f \doteq g$  to indicate that there is a nonzero rational number  $a \in \mathbb{Q} - \{0\}$  such that f = ag.

Let R be a ring and let R[q] be the ring of polynomials in q with coefficients in R. Given a polynomial  $f = r_d q^d + r_{d-1} q^{d-1} + \cdots + r_1 q + r_0 \in R[q]$  with the  $r_i \in R$  and  $r_d \neq 0$ , the q-reversal of f is given by

(2.1) 
$$\operatorname{rev}_{q} f := r_{0} q^{d} + r_{1} q^{d-1} \cdots + r_{d-1} q^{1} + r_{d} \in R[q].$$

Let  $n \geq 0$ . A partition  $\lambda$  of n is a weakly decreasing sequence  $\lambda = (\lambda_1 \geq \cdots \geq \lambda_k)$  of positive integers with  $\lambda_1 + \cdots + \lambda_k = n$ . We write  $\ell(\lambda) = k$  to indicate the number of parts of  $\lambda$  and  $\lambda \vdash n$  to indicate that  $\lambda$  is a partition of n. For  $1 \leq i \leq n$ , we write  $m_i(\lambda)$  for the multiplicity of i as a part of  $\lambda$ .

We identify a partition  $\lambda = (\lambda_1, \dots, \lambda_k)$  with its *Ferrers diagram* consisting of  $\lambda_i$  left justified boxes in row i. The Ferrers diagram of  $(3,3,1) \vdash 7$  is shown below.



Given  $\lambda \vdash n$ , the *conjugate*  $\lambda'$  is the partition whose Ferrers diagram is obtained from that of  $\lambda$  by reflection across the main diagonal y = x. For example, we have (3, 3, 1)' = (3, 2, 2).

We will make use of the following standard q-analog notation. For  $n \ge k \ge 0$  we have the q-number, q-factorial, and q-binomial coefficient:

$$(2.2) [n]_q := 1 + q + \dots + q^{n-1}, [n]!_q := [n]_q[n-1]_q \dots [1]_q, \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]!_q}{[k]!_q \cdot [n-k]!_q}.$$

If  $k_1 + \cdots + k_r = n$ , we also have the q-multinomial coefficient

For  $n \ge k \ge 0$ , let Stir(n, k) be the (signless) Stirling number of the second kind counting k-block set partitions of  $[n] := \{1, 2, ..., n\}$ . The q-Stirling number  $Stir_q(n, k)$  is defined by the recursion

$$\operatorname{Stir}_{q}(n,k) = \operatorname{Stir}_{q}(n-1,k-1) + [k]_{q} \cdot \operatorname{Stir}_{q}(n-1,k)$$

together with the initial condition  $Stir_q(0,k) = \delta_{k,0}$  (Kronecker delta).

An ordered set partition of [n] is a sequence  $(B_1, \ldots, B_k)$  of nonempty subsets of [n] such that we have the disjoint union  $[n] := B_1 \sqcup \cdots \sqcup B_k$ . The number of k-block ordered set partitions of [n] is  $k! \cdot \operatorname{Stir}(n, k)$ .

2.2. **Representation theory.** A supermonomial in  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  is a product  $x_1^{a_1} \cdots x_n^{a_n} \theta_{i_1} \cdots \theta_{i_r}$  for some  $a_1, \ldots, a_n \geq 0$  and  $1 \leq i_1 < \cdots < i_r \leq n$ . The x-degree of this supermonomial is  $a_1 + \cdots + a_n$  and the  $\theta$ -degree is r.

The family of supermonomials forms a basis for  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ ; we call elements of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  superpolynomials. If f is a superpolynomial, the x-degree of f is the largest x-degree of the terms appearing in f. We say f is x-homogeneous if all of its terms have the same x-degree. The terms  $\theta$ -degree and  $\theta$ -homogeneous have analogous meanings. If f is simultaneously x-homogeneous and  $\theta$ -homogeneous, we call f homogeneous.

Let M be a  $\mathbb{Q}[\mathbf{x}_n]$ -module. For  $m \in M$ , the annihilator of m is the subset

(2.5) 
$$\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}(m) := \{ r \in \mathbb{Q}[\mathbf{x}_n] : r \cdot m = 0 \} \subseteq \mathbb{Q}[\mathbf{x}_n].$$

The subset  $\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}(m) \subseteq \mathbb{Q}[\mathbf{x}_n]$  is an ideal.

Let  $V = \bigoplus_{d \geq 0} V_d$  be a graded vector space with each graded piece  $V_d$  finite-dimensional. The Hilbert series of V is the power series

(2.6) 
$$\operatorname{Hilb}(V;q) := \sum_{d>0} \dim(V_d) q^d.$$

Let  $\Lambda$  be the algebra of symmetric functions over the ground field  $\mathbb{Q}(q,t)$  in an infinite variable set  $\mathbf{x} = (x_1, x_2, \dots)$ . The ring  $\Lambda$  is graded by degree; we let  $\Lambda_n$  be the homogeneous piece of degree n.

For any  $\lambda \vdash n$ , we have the Schur function  $s_{\lambda} = s_{\lambda}(\mathbf{x}) \in \Lambda_n$ . The family  $\{s_{\lambda} : \lambda \vdash n\}$  of all such symmetric functions forms a basis for  $\Lambda_n$ . The omega involution is the linear map  $\omega : \Lambda \to \Lambda$  defined on the Schur basis by  $\omega(s_{\lambda}) := s_{\lambda'}$ . It can be shown that  $\omega$  is a ring homomorphism.

The irreducible representations of  $\mathfrak{S}_n$  over the field  $\mathbb{Q}$  are indexed by partitions of n. If  $\lambda \vdash n$ , let  $S^{\lambda}$  be the corresponding irreducible representation of  $\mathfrak{S}_n$ . For example, the trivial representation of  $\mathfrak{S}_n$  is  $S^{(n)}$  and the sign representation of  $\mathfrak{S}_n$  is  $S^{(1^n)}$ .

The Frobenius map gives a relationship between the Schur basis and the representation theory of  $\mathfrak{S}_n$ . Given any finite-dimensional  $\mathfrak{S}_n$ -module V, there are unique multiplicities  $m_{\lambda} \geq 0$  such that

$$(2.7) V \cong_{\mathfrak{S}_n} \bigoplus_{\lambda \vdash n} m_{\lambda} S^{\lambda}.$$

The Frobenius image  $Frob(V) \in \Lambda_n$  is the symmetric function

(2.8) 
$$\operatorname{Frob}(V) := \sum_{\lambda \vdash n} m_{\lambda} s_{\lambda}.$$

If V is a finite-dimensional  $\mathfrak{S}_n$ -module and sign denotes the 1-dimensional sign representation of  $\mathfrak{S}_n$ , the tensor product sign  $\otimes V$  is another  $\mathfrak{S}_n$ -module. The effect of tensoring with the sign representation on Frobenius image is the application of the omega involution, that is

(2.9) 
$$\operatorname{Frob}(\operatorname{sign} \otimes V) = \omega(\operatorname{Frob}(V)).$$

Most of the modules we consider in this paper will be graded. If  $V = \bigoplus_{i \geq 0} V_i$  is a graded  $\mathfrak{S}_n$ -module with each piece  $V_i$  finite-dimensional, the graded Frobenius image of  $\overline{V}$  is the series

(2.10) 
$$\operatorname{grFrob}(V;q) := \sum_{i>0} \operatorname{Frob}(V_i) \cdot q^i.$$

Similarly, if  $V = \bigoplus_{i,j \geq 0} V_{i,j}$  is a bigraded  $\mathfrak{S}_n$ -module with each bigraded piece  $V_{i,j}$  finite-dimensional, we set

(2.11) 
$$\operatorname{grFrob}(V; q, t) := \sum_{i,j \ge 0} \operatorname{Frob}(V_{i,j}) \cdot q^i t^j.$$

The bigraded Frobenius image (2.11) can be extended to define multigraded Frobenius images  $grFrob(V; q_1, q_2, q_3, ...)$  in the obvious way.

We will need the induction product of symmetric group modules. Let G be a group and let H be a subgroup of G. If V is a representation of H, let  $V \uparrow_H^G$  be the induction of V from H to G. If V is a  $\mathfrak{S}_n$ -module and W is a  $\mathfrak{S}_m$ -module, the tensor product  $V \otimes W$  is naturally a  $\mathfrak{S}_n \times \mathfrak{S}_m$ -module. Viewing  $\mathfrak{S}_n \times \mathfrak{S}_m$  as a subgroup of  $\mathfrak{S}_{n+m}$  where  $\mathfrak{S}_n$  acts on the first n letters and  $\mathfrak{S}_m$  acts on the last m letters, the *induction product* of V and W is the  $\mathfrak{S}_{n+m}$ -module

$$(2.12) V \circ W := (V \otimes W) \uparrow_{\mathfrak{S}_n \times \mathfrak{S}_m}^{\mathfrak{S}_{n+m}}.$$

The corresponding effect on Frobenius images is

(2.13) 
$$\operatorname{Frob}(V \circ W) = \operatorname{Frob}(V) \cdot \operatorname{Frob}(W).$$

For  $\lambda \vdash n$ , let  $\widetilde{H}_{\lambda} = \widetilde{H}_{\lambda}(\mathbf{x}; q, t) \in \Lambda_n$  be the associated modified Macdonald symmetric function. As with Schur functions, the set  $\{\widetilde{H}_{\lambda} : \lambda \vdash n\}$  forms a basis for  $\Lambda_n$ .

Given any symmetric function F, the (primed and unprimed) delta operators  $\Delta_F, \Delta_F' : \Lambda \to \Lambda$  are the Macdonald eigenoperators defined by

(2.14) 
$$\Delta_F: \widetilde{H}_{\lambda} \mapsto F[B_{\lambda}(q, t)] \cdot \widetilde{H}_{\lambda}$$

(2.15) 
$$\Delta_F' : \widetilde{H}_{\lambda} \mapsto F[B_{\lambda}(q, t) - 1] \cdot \widetilde{H}_{\lambda}$$

The eigenvalue  $F[B_{\lambda}(q,t)] \in \mathbb{Q}(q,t)$  involved in  $\Delta_F$  is the plethystic shorthand

(2.16) 
$$F[B_{\lambda}(q,t)] := F(\ldots, q^{i}t^{j}, \ldots),$$

where (i, j) range over all pairs of nonnegative integers such that  $i < \lambda_{j+1}$ ; all remaining arguments of F are set to 0. The eigenvalue  $F[B_{\lambda}(q, t) - 1] \in \mathbb{Q}(q, t)$  involved in  $\Delta'_F$  has the same definiton

as  $F[B_{\lambda}(q,t)]$  except that  $1=q^0t^0$  does not appear as an argument.<sup>1</sup> By linearity, the operators  $\Delta_F$  and  $\Delta_F'$  extend to operators on the full vector space  $\Lambda$  of symmetric functions.

Let  $e_n$  be the degree n elementary symmetric function. For  $k \leq n$ , the *Delta Conjecture* of Haglund, Remmel, and Wilson [10] predicts the monomial expansion of the symmetric function  $\Delta'_{e_{k-1}}e_n$ . It reads

(2.17) 
$$\Delta'_{e_{k-1}}e_n = \operatorname{Rise}_{n,k}(\mathbf{x}; q, t) = \operatorname{Val}_{n,k}(\mathbf{x}; q, t),$$

where Rise and Val are certain formal power series involving the combinatorics of lattice paths. For more details, see [10].

The Delta Conjecture asserts the equality of three formal power series involving the infinite set of variables  $\mathbf{x}$  together with the two additional parameters q and t. This conjecture remains open, but is known to be true when one of these parameters is set to zero. Combining results of [8, 10, 11, 16, 21] we have

(2.18) 
$$\Delta'_{e_{k-1}} e_n \mid_{t=0} = \operatorname{Rise}_{n,k}(\mathbf{x}; q, 0) = \operatorname{Rise}_{n,k}(\mathbf{x}; 0, q) = \operatorname{Val}_{n,k}(\mathbf{x}; q, 0) = \operatorname{Val}_{n,k}(\mathbf{x}; 0, q).$$

Let  $C_{n,k}(\mathbf{x};q)$  be the common symmetric function of Equation (2.18).

For  $\lambda \vdash n$ , we will need the Hall-Littlewood Q'-function  $Q'_{\lambda}(\mathbf{x};q)$ . This may be defined in terms of the modified Macdonald polynomials by

(2.19) 
$$Q'_{\lambda}(\mathbf{x};q) := \operatorname{rev}_{q} \widetilde{H}_{\lambda}(\mathbf{x};q,0).$$

In the special case  $\lambda = (1^n)$ , the Hall-Littlewood function gives the graded isomorphism type of the coinvariant ring  $R_n$  attached to  $\mathfrak{S}_n$ , up to grading reversal:

(2.20) 
$$\operatorname{grFrob}(R_n;q) = \operatorname{rev}_q Q'_{(1^n)}(\mathbf{x};q).$$

### 3. Vandermondes and the Delta Conjecture

3.1. Vandermondes and annihilators. In this paper we study the graded Frobenius images grFrob( $V_n(\mathbf{a}); q$ ) for various sequences  $\mathbf{a} \in (\mathbb{Z}_{\geq 0})^r$ . In order to do this, we use the following action of the polynomial ring  $\mathbb{Q}[\mathbf{x}_n]$  on superspace  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ .

Recall from Section 1 that we have an action of the partial derivative operator  $\partial_i$  on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  for each  $1 \leq i \leq n$ . Since  $\partial_i \partial_j = \partial_j \partial_i$  for all  $1 \leq i, j \leq n$ , given any polynomial  $f \in \mathbb{Q}[\mathbf{x}_n]$  we may define  $\partial(f)$  to be the differential operator on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  obtained from f by replacing each  $x_i$  by  $\partial_i$ . The action of  $\mathbb{Q}[\mathbf{x}_n]$  on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  is given by

(3.1) 
$$f \cdot g := \partial(f)(g) \text{ for all } f \in \mathbb{Q}[\mathbf{x}_n] \text{ and } g \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n].$$

This is related to the action of  $\mathfrak{S}_n$  in that

$$(3.2) w \cdot (f \cdot g) = (w \cdot f) \cdot (w \cdot g)$$

for all  $w \in \mathfrak{S}_n$ ,  $f \in \mathbb{Q}[\mathbf{x}_n]$ , and  $g \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ .

For any  $r \leq n$  and any sequence  $\mathbf{a} \in (\mathbb{Z}_{\geq 0})^r$ , the annihilator

(3.3) 
$$\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a}) = \{ f \in \mathbb{Q}[\mathbf{x}_n] : f \cdot \Delta_n(\mathbf{a}) = 0 \}$$

in  $\mathbb{Q}[\mathbf{x}_n]$  of the **a**-superspace Vandermonde is an ideal in  $\mathbb{Q}[\mathbf{x}_n]$ . Since  $\Delta_n(\mathbf{a})$  is homogeneous in the x-variables, the annihilator  $\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})$  is homogeneous. Equation (3.2) and the fact that  $\Delta_n(\mathbf{a})$  is alternating imply that  $\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})$  is closed under the action of  $\mathfrak{S}_n$ . The quotient  $\mathbb{Q}[\mathbf{x}_n]/\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})$  therefore has the structure of a graded  $\mathfrak{S}_n$ -module. The graded  $\mathfrak{S}_n$ -modules  $V_n(\mathbf{a})$  and  $\mathbb{Q}[\mathbf{x}_n]/\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})$  are related as follows.

<sup>&</sup>lt;sup>1</sup>The Macdonald eigenoperators  $\Delta_F$  and  $\Delta_F'$  are not to be confused with the Vandermonde  $\Delta_n$  and its superspace extension  $\Delta_n(\mathbf{a})$ .

**Proposition 3.1.** Let  $r, k \ge 0$  with n = r + k and let  $\mathbf{a} \in (\mathbb{Z}_{>0})^r$ . We have

(3.4) 
$$\operatorname{grFrob}(\mathbb{Q}[\mathbf{x}_n]/\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a});q) = (\operatorname{rev}_q \circ \omega)\operatorname{grFrob}(V_n(\mathbf{a});q).$$

Proposition 3.1 is standard, but we include a proof for completeness.

*Proof.* The action of  $\mathbb{Q}[\mathbf{x}_n]$  on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  gives a canonical map  $\varphi : \mathbb{Q}[\mathbf{x}_n] / \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a}) \to V_n(\mathbf{a})$ :

(3.5) 
$$\varphi: f \mapsto f \cdot \Delta_n(\mathbf{a}) = \partial(f)(\Delta_n(\mathbf{a})).$$

The definitions of  $V_n(\mathbf{a})$  and  $\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})$  guarantee that  $\varphi$  is well-defined and bijective. Since  $\Delta_n(\mathbf{a})$  is an alternant, for  $w \in \mathfrak{S}_n$  we have

(3.6) 
$$\varphi(w \cdot f) = (w \cdot f) \cdot \Delta_n(\mathbf{a}) = \operatorname{sign}(w)(w \cdot f) \cdot (w \cdot \Delta_n(\mathbf{a})) = \operatorname{sign}(w)w \cdot \varphi(f),$$

so that  $\varphi$  twists by the sign representation. The degree reversal comes from the fact that  $\varphi$  is defined using an action of partial derivatives.

3.2. A vanishing lemma. Proposition 3.1 is our basic tool for identifying the graded modules  $V_n(\mathbf{a})$ . Our first example is inspired by the Delta Conjecture.

For positive integers  $k \leq n$ , following [11] we define an ideal  $I_{n,k} \subseteq \mathbb{Q}[\mathbf{x}_n]$  by

(3.7) 
$$I_{n,k} := \langle x_1^k, x_2^k, \dots, x_n^k, e_n, e_{n-1}, \dots, e_{n-k+1} \rangle$$

and let

$$(3.8) R_{n,k} := \mathbb{Q}[\mathbf{x}_n]/I_{n,k}$$

be the corresponding quotient. The ring  $R_{n,k}$  specializes to the classical coinvariant ring  $R_n = \mathbb{Q}[\mathbf{x}_n]/I_n$  when k = n and plays the role of the coinvariant ring for the Delta Conjecture. Haglund, Rhoades, and Shimozono proved [11, 12] that

(3.9) 
$$\operatorname{grFrob}(R_{n,k};q) = (\operatorname{rev}_q \circ \omega) C_{n,k}(\mathbf{x};q) = (\operatorname{rev}_q \circ \omega) \Delta'_{e_{k-1}} e_n \mid_{t=0}.$$

On the geometric side, Pawlowski and Rhoades [14] showed that  $R_{n,k}$  presents the cohomology of the space

$$(3.10) X_{n,k} := \{(\ell_1, \dots, \ell_n) : \ell_i \text{ is a 1-dimensional subspace of } \mathbb{C}^k \text{ and } \ell_1 + \dots + \ell_n = \mathbb{C}^k\}.$$

of spanning configurations of n lines in  $\mathbb{C}^k$ .

Equation (3.9) says that  $R_{n,k}$  has graded Frobenius characteristic equal to the t=0 Delta Conjecture **upon applying the twist**  $\operatorname{rev}_q \circ \omega$ . Our first main result (Theorem 3.6 below) uses superspace Vandermondes to remove this twist. If  $\mathbf{a} = (k-1, \ldots, k-1)$  is a length r sequence of (k-1)'s and k+r=n we will show that

(3.11) 
$$\operatorname{grFrob}(V_n(\mathbf{a});q) = C_{n,k}(\mathbf{x};q) = \Delta'_{e_{k-1}} e_n \mid_{t=0}.$$

Thanks to Proposition 3.1, Equation (3.9), and the definition of  $I_{n,k}$ , Equation (3.11) follows from

$$(3.12) I_{n,k} = \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a})$$

when  $\mathbf{a} = (k-1, \dots, k-1) \in (\mathbb{Z}_{\geq 0})^r$ . Our basic tool in proving (3.12) is the following lemma, which gives elements in  $I_n(\mathbf{a})$  for any sequence  $\mathbf{a} \in (\mathbb{Z}_{\geq 0})^r$ .

**Lemma 3.2.** Let k, r be nonnegative integers with k+r=n and let  $\mathbf{a}=(a_1,\ldots,a_r)\in(\mathbb{Z}_{\geq 0})^r$  be an arbitrary length r sequence of nonnegative integers. The top k elementary symmetric polynomials  $e_n, e_{n-1}, \ldots, e_{n-k+1} \in \mathbb{Q}[\mathbf{x}_n]$  lie in the annihilator  $\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})$ .

*Proof.* We need to check that  $e_d \cdot \Delta_n(\mathbf{a}) = \partial(e_d)\Delta_n(\mathbf{a}) = 0$  for  $n - k < d \leq n$ . We describe a combinatorial procedure for applying the differential operator  $\partial(e_d)$  to  $\Delta_n(\mathbf{a})$  for any  $1 \leq d \leq n$ .

Given  $w \in \mathfrak{S}_n$  and  $1 \le i \le n$ , we have the following identity of operators on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ :

$$\partial_{w(i)} \cdot w = w \cdot \partial_i$$

For  $1 \leq d \leq n$ , since  $e_d \in \mathbb{Q}[\mathbf{x}_n]$  is a symmetric polynomial we have

(3.14) 
$$\partial(e_d) \cdot w = w \cdot \partial(e_d)$$

which implies

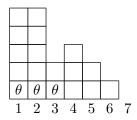
(3.15) 
$$\partial(e_d) \cdot \varepsilon_n = \varepsilon_n \cdot \partial(e_d)$$

and therefore

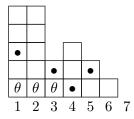
(3.16) 
$$\partial(e_d) \cdot \Delta_n(\mathbf{a}) = \partial(e_d) \cdot \varepsilon_n \cdot (x_1^{a_1} \cdots x_r^{a_r} x_{r+1}^{k-1} \cdots x_{n-1}^1 x_n^0 \theta_1 \cdots \theta_r)$$

$$(3.17) \qquad = \varepsilon_n \cdot \partial(e_d) \cdot (x_1^{a_1} \cdots x_r^{a_r} x_{r+1}^{k-1} \cdots x_{n-1}^1 x_n^0 \theta_1 \cdots \theta_r).$$

We describe the application of  $\partial(e_d)$  to  $(x_1^{a_1}\cdots x_r^{a_r}x_{r+1}^{k-1}\cdots x_{n-1}^1x_n^0\theta_1\cdots\theta_r)$  combinatorially. The supermonomial  $x_1^{a_1}\cdots x_r^{a_r}x_{r+1}^{k-1}\cdots x_{n-1}^1x_n^0\theta_1\cdots\theta_r$  is modeled by a diagram with n columns of boxes. For  $1 \le i \le r$ , the  $i^{th}$  column (from left to right) contains a box with a  $\theta$  at the bottom, with  $a_i$  empty boxes on top. For  $r+1 \leq i \leq n$ , the  $i^{th}$  column consists of n-i empty boxes. The case  $n = 7, r = 3, \mathbf{a} = (4, 4, 1)$  is shown below. We refer to this diagram as the **a**-staircase.



For  $d \geq 0$ , a d-dotted **a**-staircase is an **a**-staircase in which d of the boxes are marked with a  $\bullet$ , with no two marked boxes in the same column. An example with d=4 is shown below.



Let  $\sigma$  be a d-dotted **a**-staircase. The weight  $\operatorname{wt}(\sigma) \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  of  $\sigma$  is the supermonomial  $x_1^{b_1}\cdots x_n^{b_n}\theta_1\cdots\theta_r$ , where  $b_i$  is the number of empty boxes in column i. In the above example, we have  $\operatorname{wt}(\sigma) = x_1^3 x_2^4 x_2^2 x_5 x_6 \theta_1 \theta_2 \theta_3$ . It should be clear that

(3.18) 
$$\partial(e_d) \cdot x_1^{a_1} \cdots x_r^{a_r} x_{r+1}^{k-1} \cdots x_{n-1}^1 x_n^0 \theta_1 \cdots \theta_r = \sum_{\sigma} \operatorname{wt}(\sigma),$$

where the sum is over all d-dotted a-staircases  $\sigma$ .

In order to calculate  $\partial(e_d) \cdot \Delta_n(\mathbf{a})$ , we apply  $\varepsilon_n$  to both sides of Equation (3.18). By Equation (3.15), this yields

(3.19) 
$$e_d \cdot \Delta_n(\mathbf{a}) = \partial(e_d) \cdot \Delta_n(\mathbf{a}) = \sum_{\sigma} \varepsilon_n \cdot \operatorname{wt}(\sigma).$$

Let  $\sigma$  be a d-dotted **a**-staircase. If any column of  $\sigma$  contains a  $\bullet$  but no  $\theta$ , there will be two  $\theta$ -free columns of  $\sigma$  with the same number of empty boxes so that  $\varepsilon_n \cdot \text{wt}(\sigma) = 0$ . If d > n - k, any d-dotted **a**-staircase  $\sigma$  has a  $\bullet$  in a  $\theta$ -free column so that  $e_d \cdot \Delta_n(\mathbf{a}) = 0$ .

Remark 3.3. If we let  $X_{n,k}$  be the variety (3.10) of spanning configurations of n lines  $(\ell_1, \ldots, \ell_n)$  in  $\mathbb{C}^k$  and let  $\ell_i^* \to X_{n,k}$  be the i<sup>th</sup> tautological line bundle for  $1 \leq i \leq n$ , we can identify the variable  $x_i$  with the Chern class  $x_i := c_1(\ell_i^*) \in H^2(X_{n,k})$ . The Whitney Sum Formula can be used (see [14]) to deduce that the top k elementary symmetric polynomials  $e_n, e_{n-1}, \ldots, e_{n-k+1}$  in the  $x_i$  vanish in  $H^{\bullet}(X_{n,k};\mathbb{Q})$ . Since we have the identification  $H^{\bullet}(X_{n,k};\mathbb{Q}) = R_{n,k}$  (see [14]), this gives geometric intuition for why  $e_n, e_{n-1}, \ldots, e_{n-k+1}$  'should' lie in the ideal  $I_{n,k}$ .

Assuming Equation (3.9), Lemma 3.2 gives algebraic and combinatorial intuition coming from superspace for why the elementary symmetric polynomials  $e_n, e_{n-1}, \ldots, e_{n-k+1}$  'should' lie in the ideal  $I_{n,k}$  whose corresponding quotient models the Delta Conjecture at t=0.

3.3. A Vandermonde model for  $C_{n,k}$ . Our goal is the equality of ideals (3.12). Lemma 3.2 gives one of the containments right away.

**Lemma 3.4.** Let k, r be nonnegative integers with k + r = n. Let  $\mathbf{a} = (k - 1, \dots, k - 1) \in (\mathbb{Z}_{\geq 0})^r$ . Then  $I_{n,k} \subseteq \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a})$ .

*Proof.* It suffices to show that the generators of the ideal  $I_{n,k} \subseteq \mathbb{Q}[\mathbf{x}_n]$  annihilate the **a**-superspace Vandermonde

(3.20) 
$$\Delta_n(\mathbf{a}) = \varepsilon_n \cdot (x_1^{k-1} \cdots x_r^{k-1} x_{r+1}^{k-1} \cdots x_{n-1}^1 x_n^0 \cdot \theta_1 \cdots \theta_r).$$

Since no x-variable appearing in  $\Delta_n(\mathbf{a})$  has exponent  $\geq k$ , we see immediately that

(3.21) 
$$x_i^k \cdot \Delta_n(\mathbf{a}) = \partial_i^k \Delta_n(\mathbf{a}) = 0$$

for all  $1 \leq i \leq n$ . The remaining generators of  $I_{n,k}$  are handled by Lemma 3.2.

Lemma 3.4 proves that the module  $V_n(\mathbf{a})$  is not too large; it yields a surjection of vector spaces  $R_{n,k} = \mathbb{Q}[\mathbf{x}_n]/I_{n,k} \to \mathbb{Q}[\mathbf{x}_n]/\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a}) \cong V_n(\mathbf{a})$ . Our next task is to show that  $V_n(\mathbf{a})$  is not too small. To do this, we need some facts about  $R_{n,k}$ .

Haglund, Rhoades, and Shimozono [11] proved that  $\dim(R_{n,k}) = k! \cdot \operatorname{Stir}(n,k)$ , the number of k-block ordered set partitions of [n]. There are a number of vector space bases of  $R_{n,k}$  which are indexed by ordered set partitions [11, 14]. We describe the *substaircase monomial basis* here.

Recall that a *shuffle* of two sequences  $(a_1, \ldots, a_r)$  and  $(b_1, \ldots, b_s)$  is an interleaving  $(c_1, \ldots, c_{r+s})$  which preserves the relative orders of the a's and the b's. If k+r=n, an (n,k)-staircase is a shuffle of the sequences  $(k-1,k-1,\ldots,k-1)$  (r times) and  $(k-1,k-2,\ldots,1,0)$ . For example, the (5,3)-staircases are the shuffles of (2,2) and (2,1,0):

$$(2, 2, 2, 1, 0), (2, 2, 1, 2, 0), (2, 2, 1, 0, 2), (2, 1, 2, 2, 0), (2, 1, 2, 0, 2), and (2, 1, 0, 2, 2).$$

A sequence  $(c_1, \ldots, c_n)$  of nonnegative integers is called (n, k)-substaircase if it is componentwise  $\leq$  at lease one (n, k)-staircase. For example, the sequence (2, 0, 2, 1, 0) is (5, 3)-substaircase since we have the componentwise inequality  $(2, 0, 2, 1, 0) \leq (2, 2, 1, 0, 2)$ . It is shown in [11, Thm. 4.13] that

(3.22) 
$$\{x_1^{c_1} \cdots x_n^{c_n} : (c_1, \dots, c_n) \text{ is } (n, k)\text{-substaircase}\}$$

descends to a vector space basis  $^{2}$  of  $R_{n,k}$ . In particular,

(3.23) number of 
$$(n, k)$$
-substaircase sequences  $= k! \cdot \text{Stir}(n, k)$ .

<sup>&</sup>lt;sup>2</sup>Strictly speaking, [11, Thm. 4.13] states that the set  $\{x_n^{c_1} \cdots x_1^{c_n} : (c_1, \dots, c_n) \text{ is } (n, k)\text{-substaircase}\}$  of 'reversed' monomials descends to a basis of  $R_{n,k}$ , but since  $R_{n,k}$  is an  $\mathfrak{S}_n$ -module this is equivalent.

The proof of (3.23) in [11] was recursive and rather involved. A bijective proof of (3.23) involving an extension of Lehmer code from permutations to ordered set partitions was given in [18]. We use substaircase monomials to bound dim  $V_n(\mathbf{a})$  from below.

**Lemma 3.5.** Let  $k, r \geq 0$  with k + r = n and let  $\mathbf{a} = (k - 1, \dots, k - 1) \in (\mathbb{Z}_{\geq 0})^r$ . We have  $\dim V_n(\mathbf{a}) \geq k! \cdot \operatorname{Stir}(n, k)$ .

*Proof.* It is enough to exhibit  $k! \cdot \text{Stir}(n, k)$  linearly independent elements of the vector space  $V_n(\mathbf{a})$ . Thanks to (3.23) it is enough to show that

(3.24) 
$$\{\partial_1^{c_1} \cdots \partial_n^{c_n} \Delta_n(\mathbf{a}) : (c_1, \dots, c_n) \text{ is } (n, k)\text{-substaircase}\} \subseteq V_n(\mathbf{a})$$

is linearly independent. We begin with the following seemingly weaker claim.

Claim: The family of  $\binom{n-1}{r}$  superpolynomials

$$(3.25) \qquad \left\{ \theta_{i_1} \theta_{i_2} \cdots \theta_{i_r} + \sum_{j=1}^r (-1)^j \theta_1 \theta_{i_1} \cdots \widehat{\theta_{i_j}} \cdots \theta_{i_r} : \begin{cases} i_1 < \cdots < i_r \} \text{ is an} \\ r\text{-element subset of } \{2, 3, \dots, n\} \end{cases} \right\}$$

is linearly independent.

To see why the Claim is true, observe that  $\theta_{i_1}\theta_{i_2}\cdots\theta_{i_r}$  only appears in the element corresponding to  $\{i_1 < \cdots < i_r\}$ . This completes the proof of the Claim.

We use our Claim to finish the proof. Suppose there were numbers  $\gamma_{(c_1,\dots,c_n)} \in \mathbb{Q}$  not all zero so that

(3.26) 
$$\sum_{(c_1,\dots,c_n)} \gamma_{(c_1,\dots,c_n)} \partial_1^{c_1} \cdots \partial_n^{c_n} \Delta_n(\mathbf{a}) = 0,$$

where the sum is over all (n, k)-substaircases  $(c_1, \ldots, c_n)$ . Choose an (n, k)-substaircase  $(d_1, \ldots, d_n)$  so that

- (1) we have  $\gamma_{(d_1,\ldots,d_n)} \neq 0$ , and
- (2) subject to (1) the number  $d_1 + \cdots + d_n$  is minimal, and
- (3) subject to (1) and (2) the sequence  $(d_1, \ldots, d_n)$  is lexicographically least.

Since  $(d_1, \ldots, d_n)$  is (n, k)-substaircase, there exists an (n, k)-staircase  $(d'_1, \ldots, d'_n)$  with  $d_i \leq d'_i$  for all i. Let  $1 < i_1 < \cdots < i_r$  be the indices such that  $d'_1 = d'_{i_1} = \cdots = d'_{i_r} = k - 1$ . Write  $p_i := d'_i - d_i$ . We apply the operator  $\partial_1^{p_1} \cdots \partial_n^{p_n}$  to both sides of Equation (3.26); this will force  $\gamma_{(d_1,\ldots,d_n)} = 0$ , contradicting Assumption (1) on  $(d_1,\ldots,d_n)$ .

The application of  $\partial_1^{p_1} \cdots \partial_n^{p_n}$  to the term  $\gamma_{(c_1,\dots,c_n)} \partial_1^{c_1} \cdots \partial_n^{c_n} \Delta_n(\mathbf{a})$  in Equation (3.26) has the following effect.

- If  $(c_1 + p_1, \ldots, c_n + p_n)$  is not a rearrangement of  $(k 1, \ldots, k 1, k 2, \ldots, 1, 0)$  then  $\gamma_{(c_1, \ldots, c_n)} \partial_1^{c_1 + p_1} \cdots \partial_n^{c_n + p_n} \Delta_n(\mathbf{a}) = 0$  by Assumption (2) on  $(d_1, \ldots, d_n)$ .
- If  $c_1 + p_1 < k 1$ , Assumption (3) on  $(d_1, \ldots, d_n)$  forces  $\gamma_{(c_1, \ldots, c_n)} = 0$ .
- Otherwise, let  $1 < s_1 < \cdots < s_r$  be the unique indices such that

$$c_1 + p_1 = c_{s_1} + p_{s_1} = \dots = c_{s_r} + p_{s_r} = k - 1.$$

Directly computing the application of partial derivatives to  $\Delta_n(\mathbf{a})$  yields

$$(3.27) \quad \partial_1^{c_1+p_1} \cdots \partial_n^{c_n+p_n} \gamma_{(c_1,\dots,c_n)} \Delta_n(\mathbf{a}) \doteq \gamma_{(c_1,\dots,c_n)} \left[ \theta_{s_1} \theta_{s_2} \cdots \theta_{s_r} + \sum_{j=1}^r (-1)^j \theta_1 \theta_{s_1} \cdots \widehat{\theta_{s_j}} \cdots \theta_{s_r} \right].$$

Observe that (3.27) is a superpolynomial appearing in the Claim. If  $(s_1, \ldots, s_r) = (i_1, \ldots, i_r)$  in (3.27), Assumption (3) on  $(d_1, \ldots, d_n)$  forces  $(c_1, \ldots, c_n) = (d_1, \ldots, d_n)$ .

Putting everything together, we apply  $\partial_1^{p_1} \cdots \partial_n^{p_n}$  to both sides of (3.26), yielding

(3.28) 
$$\sum_{(c_1,\ldots,c_n)} \gamma_{(c_1,\ldots,c_n)} \partial_1^{c_1+p_1} \cdots \partial_n^{c_n+p_n} \Delta_n(\mathbf{a}) = 0.$$

The term on the left-hand side corresponding to  $(c_1, \ldots, c_n)$  is either zero, or a nonzero scalar multiple of some element appearing in the linearly independent set described in the Claim. Furthermore, the unique term yielding the element in the Claim corresponding to  $(i_1, \ldots, i_r)$  occurs when  $(c_1, \ldots, c_n) = (d_1, \ldots, d_n)$ . In particular, the left-hand side of (3.28) has no cancellation involving the element in the Claim corresponding to  $(i_1, \ldots, i_r)$ . Linear independence forces the contradiction  $\gamma_{(d_1, \ldots, d_n)} = 0$ .

By combining Lemmas 3.4 and 3.5, we prove Equation (3.9) and obtain our new model for the Delta coinvariants.

**Theorem 3.6.** Let k, r be nonnegative integers with k + r = n. Let  $\mathbf{a} = (k - 1, k - 1, \dots, k - 1)$  where there are r copies of k - 1. We have

(3.29) 
$$\operatorname{grFrob}(V_n(\mathbf{a}); q) = C_{n,k}(\mathbf{x}; q) = \Delta'_{e_{k-1}} e_n \mid_{t=0}.$$

*Proof.* By Proposition 3.1, Equation (3.9), and Lemma 3.4, it is enough to show that

(3.30) 
$$\dim V_n(\mathbf{a}) \ge \dim \mathbb{Q}[\mathbf{x}_n]/I_{n,k} = \dim R_{n,k} = k! \cdot \operatorname{Stir}(n,k).$$

This is a consequence of Lemma 3.5.

**Remark 3.7.** The irreducible representation  $S^{(n-1,1)}$  corresponding to the partition  $(n-1,1) \vdash n$  is the (n-1)-dimensional reflection representation of  $\mathfrak{S}_n$ . This is the coordinate-permuting action of  $\mathfrak{S}_n$  on the subspace of  $\mathbb{Q}^n$  of vectors which sum to 0.

The span of the  $\binom{n-1}{r}$  polynomials in the  $\theta$ -variables described in (3.25) in the proof of Lemma 3.5 is closed under the action of  $\mathfrak{S}_n$ . This span is isomorphic to the exterior power  $\wedge^r S^{(n-1,1)}$  as an  $\mathfrak{S}_n$ -module. If  $\lambda = (n-r,1,\ldots,1) \vdash n$  (where there are r copies of 1), it is well-known that  $\wedge^r S^{(n-1,1)} \cong S^{\lambda}$ . Lemma 3.5 and Theorem 3.6 therefore explain the presence of hook-shaped Schur functions as the coefficient of  $q^0 t^0$  in the Schur expansion of  $\Delta'_{e_{k-1}} e_n$ .

The symmetric function  $\operatorname{grFrob}(V_n(\mathbf{a});q)$  of Theorem 3.6 can also be expressed in the Schur basis. Applying [21, Thm. 5.0.1] (with m=0 after taking the coefficient of  $u^{n-k}$ ) and [11, Cor. 6.13] we see that

(3.31) 
$$\operatorname{grFrob}(V_n(\mathbf{a});q) = \sum_{T \in \operatorname{SYT}(n)} q^{\operatorname{maj}(T) + \binom{n-k}{2} - (n-k) \cdot \operatorname{des}(T)} \begin{bmatrix} \operatorname{des}(T) \\ n-k \end{bmatrix}_q s_{\operatorname{shape}(T)}.$$

Here  $\operatorname{SYT}(n)$  is the set of standard Young tableaux with n boxes,  $\operatorname{maj}(T)$  is the major index of T,  $\operatorname{des}(T)$  is the number of descents in T, and  $\operatorname{shape}(T) \vdash n$  is the shape of T; see [11] or [21] for definitions of these terms. We can describe the Hilbert series of the module in Theorem 3.6 in terms of q-Stirling numbers.

**Corollary 3.8.** Let k, r be nonnegative integers with k + r = n. Let  $\mathbf{a} = (k - 1, k - 1, \dots, k - 1)$  where there are r copies of k - 1. We have

(3.32) 
$$\operatorname{Hilb}(V_n(\mathbf{a}); q) = [k]!_q \cdot \operatorname{Stir}_q(n, k).$$

*Proof.* The asserted formula is the q-reversal of the formula for  $Hilb(R_{n,k};q)$  given in [11].

#### 4. Vandermondes and Other Graded Modules

In this section we extend Theorem 3.6 to calculate  $\operatorname{grFrob}(V_n(\mathbf{a});q)$  for other constant vectors  $\mathbf{a}$ . The first result involves uniformly increasing the entries of  $\mathbf{a}$ .

4.1. Vandermondes and the quotient ring  $R_{n,k,s}$ . Let k, s, and n be nonnegative integers with  $k \leq s$ . We define the ideal  $I_{n,k,s} \subseteq \mathbb{Q}[\mathbf{x}_n]$  by

$$I_{n,k,s} := \langle x_1^s, x_2^s, \dots, x_n^s, e_n, e_{n-1}, \dots, e_{n-k+1} \rangle$$

and let  $R_{n,k,s} := \mathbb{Q}[\mathbf{x}_n]/I_{n,k,s}$  be the corresponding quotient ring. When k = s we have  $I_{n,k,k} = I_{n,k}$  and  $R_{n,k,k} = R_{n,k}$ . The rings  $R_{n,k,s}$  are graded  $\mathfrak{S}_n$ -modules which were used in [11] to inductively understand the rings  $R_{n,k}$ . Pawlowski and Rhoades proved [14] that  $R_{n,k,s}$  presents the cohomology of a certain space  $X_{n,k,s}$  of line configurations.

We extend (n, k)-staircases to include the parameter s as follows. An (n, k, s)-staircase is a shuffle of the sequences  $(s - 1, s - 1, \ldots, s - 1)$  (with n - k copies of s - 1) and  $(k - 1, \ldots, 1, 0)$ . For example, the (4, 2, 6)-staircases are the shuffles of (5, 5) and (1, 0):

$$(5,5,1,0), (5,1,5,0), (5,1,0,5), (1,5,5,0), (1,5,0,5),$$
and  $(1,0,5,5).$ 

A sequence  $(c_1, \ldots, c_n)$  is (n, k, s)-substaircase if it is componentwise  $\leq$  at least one (n, k, s)-staircase. The (n, k, s)-substaircases parameterize a monomial basis of  $R_{n,k,s}$ .

**Proposition 4.1.** Let k, s, and n be nonnegative integers with  $k \leq s$ . The set of monomials

$$\{x_1^{c_1}\cdots x_n^{c_n}:(c_1,\ldots,c_n) \text{ is an } (n,k,s)\text{-substaircase}\}$$

descends to a basis of  $R_{n,k,s}$ .

*Proof.* In the case  $k \leq s \leq n$ , Haglund, Rhoades, and Shimozono computed [11, Sec. 6] the standard monomial basis of  $R_{n,k,s}$  in terms of '(n,k,s)-nonskip monomials'. The arguments of [11, Sec. 6] go through without change to the case n < s. We show that this monomial basis coincides with the set of (n,k,s)-substaircase monomials.

Let  $S = \{i_1 < \dots < i_{n-k+1}\} \subseteq [n]$  have size n - k + 1. The skip sequence  $\gamma(S) = (\gamma_1, \dots, \gamma_n)$  corresponding to S is defined by

(4.2) 
$$\gamma_i = \begin{cases} i - j + 1 & \text{if } i = i_j \in S, \\ 0 & \text{if } i \notin S. \end{cases}$$

We also let  $\gamma(S)^* := (\gamma_n, \dots, \gamma_1)$  be the reverse of the sequence  $\gamma(S)$ . A sequence  $(c_1, \dots, c_n)$  of nonnegative integers is (n, k, s)-nonskip if

- $c_i < s$  for all  $1 \le i \le n$  and
- the coordinatewise inequality  $\gamma(S)^* \leq (c_1, \ldots, c_n)$  does not hold for any  $S \subseteq [n]$  with |S| = n k + 1.

The arguments of [11, Sec. 6] show that the set  $\{x_1^{c_1} \cdots x_n^{c_n} : (c_1, \dots, c) \text{ is } (n, k, s)\text{-nonskip}\}$  descends to a basis of  $R_{n,k,s}$ . The proposition therefore reduces to the following Claim.

**Claim:** Let  $(c_1, ..., c_n)$  be a sequence of nonnegative integers. Then  $(c_1, ..., c_n)$  is (n, k, s)-nonskip if and only if  $(c_1, ..., c_n)$  is (n, k, s)-substaircase.

When k = s this claim is proven in [11], so we assume that k < s. The reverse implication reduces to showing that any (n, k, s)-staircase is (n, k, s)-nonskip, which we leave to the reader. For the forward implication, let  $(c_1, \ldots, c_n)$  be an (n, k, s)-nonskip sequence. We produce an (n, k, s)-staircase  $(b_1, \ldots, b_n)$  such that we have the componentwise inequality  $(c_1, \ldots, c_n) \leq (b_1, \ldots, b_n)$ .

Since we are assuming k < s, an (n, k, s)-staircase  $(b_1, \ldots, b_n)$  is determined by the set

$$T := \{1 \le i \le n : b_i < k\} = \{t_1 < t_2 < \dots < t_k\}$$

of positions of entries < k. We describe how to form T from  $(c_1, \ldots, c_n)$ .

We claim that there exists  $1 \le t_k \le n$  such that  $c_{t_k} < 1$ . If not, we would have the componentwise inequality  $(1,1,\ldots,1) \le (c_1,c_2,\ldots,c_n)$ . If  $S=\{1,2,\ldots,n-k+1\}$ , we would have  $\gamma(S)^* \le (1,1,\ldots,1) \le (c_1,c_2,\ldots,c_n)$ , contradicting the assumption that  $(c_1,c_2,\ldots,c_n)$  is (n,k,s)-nonskip. Let  $1 \le t_k \le n$  be maximal such that  $c_{t_k} < 1$ .

With  $t_k$  as in the last paragraph, we claim that there exists  $1 \le t_{k-1} < t_k$  with  $c_{t_{k-1}} < 2$ . If not, we would have the componentwise inequality

$$(2,2,\ldots,2,0,1,1,\ldots,1) \leq (c_1,c_2,\ldots,c_n)$$

where the 0 is in position  $t_k$ . If we take  $S \subseteq [n]$  to be

$$S = \{1, 2, \dots, n - t_k, n - t_k + 2, n - t_k + 3, \dots, n - k + 2\},\$$

we would have  $\gamma(S)^* \leq (c_1, c_2, \dots, c_n)$ , contradicting the assumption that  $(c_1, c_2, \dots, c_n)$  is (n, k, s)-nonskip. Let  $1 \leq t_{k-1} < t_k$  be maximal such that  $c_{t_{k-1}} < 2$ .

Given  $t_{k-1} < t_k$  as above, we claim that there exists  $1 \le t_{k-2} < t_{k-1}$  with  $c_{t_{k-2}} < 3$ . If not, the componentwise inequality

$$(3,3,\ldots,3,0,2,2,\ldots,2,0,1,1,\ldots,1) \le (c_1,c_2,\ldots,c_n)$$

with the 0's in positions  $t_{k-1}$  and  $t_k$  would contradict  $(c_1, \ldots, c_n)$  being (n, k, s)-nonskip. Choose  $1 \le t_{k-2} < t_{k-1}$  minimal such that  $c_{t_{k-2}} < 3$ .

Since  $(c_1, \ldots, c_n)$  is (n, k, s)-nonskip, we can iterate this procedure to obtain a k-element subset  $T = \{t_1 < \cdots < t_k\} \subseteq [n]$ . Let  $(b_1, \ldots, b_n)$  be the unique (n, k, s)-staircase whose entries which are < k are in the positions indexed by T. By the construction of T we have  $(c_1, \ldots, c_n) \leq (b_1, \ldots, b_n)$  so that  $(c_1, \ldots, c_n)$  is (n, k, s)-substaircase.

Proposition 4.1 can be used to extend Theorem 3.6 to constant vectors with larger entries.

**Theorem 4.2.** Let k, s, and n with  $k \le s$  be nonnegative integers and let r = n - k. Let  $\mathbf{a} = (s - 1, s - 1, \dots, s - 1)$  be the constant vector of length r with entries s - 1. We have

(4.3) 
$$\operatorname{grFrob}(V_n(\mathbf{a});q) = (\operatorname{rev}_q \circ \omega)\operatorname{grFrob}(R_{n,k,s};q).$$

*Proof.* When k = s, this is Theorem 3.6 so we assume k < s.

It is enough to demonstrate the equality of ideals  $I_{n,k,s} = \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a})$ . The containment  $I_{n,k,s} \subseteq \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a})$  follows from Lemma 3.2 and the fact that no x-variable in  $\Delta_n(\mathbf{a})$  has exponent  $\geq s$ . The desired equality of ideals will follow if we can show

(4.4) 
$$\dim V_n(\mathbf{a}) = \dim(\mathbb{Q}[\mathbf{x}_n]/\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})) \ge \dim(\mathbb{Q}[\mathbf{x}_n]/I_{n,k,s}) = \dim R_{n,k,s}.$$

By Proposition 4.1, we know that  $\dim(R_{n,k,s})$  equals the number of (n,k,s)-staircases. It is therefore enough to prove the following Claim.

Claim: The subset

$$\{\partial_1^{c_1} \cdots \partial_n^{c_n} \Delta_n(\mathbf{a}) : (c_1, \dots, c_n) \text{ is } (n, k, s)\text{-substaircase}\} \subseteq V_n(\mathbf{a})$$

is linearly independent.

Since k < s, the Claim is an easier version of Lemma 3.5. The set of  $\binom{n}{r}$  supermonomials

$$\{\theta_{i_1} \cdots \theta_{i_r} : 1 \le i_1 < \cdots < i_r \le n\}$$

is certainly linearly independent. If the Claim were false, there would be scalars  $\gamma_{(c_1,\dots,c_n)}$  not all zero so that

(4.7) 
$$\sum_{(c_1,\dots,c_n)} \gamma_{(c_1,\dots,c_n)} \partial_1^{c_1} \cdots \partial_n^{c_n} \Delta_n(\mathbf{a}) = 0,$$

where the sum is over all (n, k, s)-substaircase sequences  $(c_1, \ldots, c_n)$ .

Let  $(d_1, \ldots, d_n)$  be the unique (n, k, s)-substaircase such that

- (1) we have  $\gamma_{(d_1,...,d_n)} \neq 0$ ,
- (2) subject to (1) the number  $d_1 + \cdots + d_n$  is minimal, and
- (3) subject to (1) and (2) the sequence  $(d_1, \ldots, d_n)$  is lexicographically least.

Let  $(d'_1, \ldots, d'_n)$  be a (n, k, s)-staircase such that  $d_i \leq d'_i$  for all i and set  $p_i := d'_i - d_i$ . Let  $1 \leq i_1 < \cdots < i_r \leq n$  be the indices such that  $d'_{i_1} = \cdots = d'_{i_r} = s - 1$ .

Consider applying the operator  $\partial_1^{p_1} \cdots \partial_n^{p_n}$  to both sides of Equation (4.7). This operator has the following effect on  $\gamma_{(c_1,\ldots,c_n)}\partial_1^{c_1}\cdots\partial_n^{c_n}\Delta_n(\mathbf{a})$ .

- If  $(c_1 + p_1, ..., c_n + p_n)$  is not a rearrangement of (s 1, ..., s 1, k 1, k 2, ..., 1, 0) then  $\gamma_{(c_1,...,c_n)}\partial_1^{c_1+p_1} \cdots \partial_n^{c_n+p_n}\Delta_n(\mathbf{a}) = 0.$
- If  $(c_1 + p_1, \ldots, c_n + p_n)$  is a rearrangement of  $(s 1, \ldots, s 1, k 1, k 2, \ldots, 1, 0)$  let  $1 \le t_1 < \cdots < t_r \le n$  be the indices with  $c_{t_1} + p_{t_1} = \cdots = c_{t_r} + p_{t_r} = s 1$ . We have

$$\partial_1^{c_1+p_1}\cdots\partial_n^{c_n+p_n}\Delta_n(\mathbf{a}) \doteq \theta_{t_1}\cdots\theta_{t_r}.$$

If  $(c_1 + p_1, \ldots, c_n + p_n)$  is as in the second bullet point and we have  $(t_1, \ldots, t_r) = (i_1, \ldots, i_r)$ , the lexicographical minimality of  $(d_1, \ldots, d_n)$  forces  $(c_1, \ldots, c_n) = (d_1, \ldots, d_n)$ . The linear independence of (4.6) implies that  $\gamma_{(d_1, \ldots, d_n)} = 0$ , which is a contradiction.

4.2. Vandermondes and Tanisaki ideals. The authors are unaware of a representation theoretic description of  $V_n(\mathbf{a})$  when 0 < s < r and  $\mathbf{a} = (s - 1, \dots, s - 1)$  is a constant sequence of length r. However, we can describe  $V_n(\mathbf{a})$  when  $\mathbf{a} = (0, \dots, 0)$  is the length r zero sequence. In order to state this result, we will need a couple more definitions.

For any subset  $S \subseteq [n]$  and any  $d \ge 0$ , let  $e_d(S) \in \mathbb{Q}[\mathbf{x}_n]$  be the degree d elementary symmetric polynomial in the variable set  $\{x_i : i \in S\}$ . We adopt the convention  $e_d(S) = 0$  whenever d > |S|. Let  $\lambda \vdash n$ . The Tanisaki ideal  $I_\lambda \subseteq \mathbb{Q}[\mathbf{x}_n]$  is defined as follows. Write the conjugate partition to  $\lambda$  as  $\lambda' = (\lambda'_1 \ge \lambda'_2 \ge \cdots \ge \lambda'_n)$ , where we will have trailing zeros unless  $\lambda = (n)$ . The ideal  $I_\lambda$  has generating set

(4.8) 
$$\bigcup_{i=1}^{n} \{e_d(S) : |S| = i \text{ and } d > i - (\lambda'_{n-i+1} + \lambda'_{n-i+2} + \dots + \lambda'_n)\}.$$

This ideal was used by Tanisaki [20] to present the cohomology of the *Springer fiber*  $\mathcal{B}_{\lambda}$ . We let  $R_{\lambda} := \mathbb{Q}[\mathbf{x}_n]/I_{\lambda}$  be the corresponding quotient ring, which is a graded  $\mathfrak{S}_n$ -module.

**Proposition 4.3.** Let r < n be positive integers and let  $\mathbf{a} = (0, \dots, 0)$  be the length r zero sequence. Then

(4.9) 
$$\operatorname{grFrob}(V_n(\mathbf{a});q) = (\operatorname{rev}_q \circ \omega)\operatorname{grFrob}(R_\lambda;q)$$

where  $\lambda$  is the hook-shaped partition  $(r+1,1,1,\ldots,1) \vdash n$ .

*Proof.* Write k = n - r. We begin by showing that  $I_{\lambda} \subseteq \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a})$ .

The ideal  $I_{\lambda}$  is generated by:

- (1) the elementary symmetric polynomials  $e_1, e_2, \ldots, e_n$  in the full set of variables  $\{x_1, \ldots, x_n\}$  and
- (2) products of k distinct variables  $x_{i_1} \cdots x_{i_k}$ .

(The other generators of  $I_{\lambda}$  are redundant.) We show that each of these generators annihilates  $\Delta_n(\mathbf{a})$ . To do this, we adopt the notation in the proof of Lemma 3.2.

The generators of type (1) annihilate  $\Delta_n(\mathbf{a})$  by an argument similar to that in the proof of Lemma 3.2. The key observation is that, since  $\mathbf{a}$  is the zero sequence, all of the  $\bullet$ 's in any d-dotted  $\mathbf{a}$ -staircase must be in columns which do not contain a  $\theta$ . The generators of type (2) annihilate  $\Delta_n(\mathbf{a})$  because in any monomial appearing in  $\Delta_n(\mathbf{a})$  there are only k-1 many x-variables with positive exponents. This completes the proof that  $I_{\lambda} \subseteq \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a})$ .

We must show that

(4.10) 
$$\dim V_n(\mathbf{a}) = \dim(\mathbb{Q}[\mathbf{x}_n]/\operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]}\Delta_n(\mathbf{a})) \ge \dim(\mathbb{Q}[\mathbf{x}_n]/I_{\lambda}) = \dim R_{\lambda}.$$

The quantity dim  $R_{\lambda}$  has the following combinatorial description. An (n, k)-hook staircase is a shuffle of (k - 1, k - 2, ..., 1, 0) and the length r zero sequence (0, 0, ..., 0). For example, the (5, 3)-hook staircases are the shuffles of (2, 1, 0) and (0, 0):

$$(2,1,0,0,0), (2,0,1,0,0), (2,0,0,1,0), (0,2,1,0,0), (0,2,0,1,0), and (0,0,2,1,0).$$

A sequence  $(c_1, \ldots, c_n)$  is (n, k)-hook-substaircase if it is componentwise  $\leq$  some (n, k)-hook staircase

It is known [9] that the set

$$(4.11) \{x_1^{c_1} \cdots x_n^{c_n} : (c_1, \dots, c_n) \text{ is } (n, k)\text{-hook-substaircase}\}$$

descends to a basis for  $R_{\lambda}$ . As in Theorems 3.6 and 4.2, we start with a family of linearly independent superpolynomials.

**Observation:** The subset

$$(4.12) \qquad \left\{ \left( \sum_{j=1}^{r} (-1)^{j-1} \theta_{i_1} \cdots \widehat{\theta_{i_j}} \cdots \theta_{i_r} \theta_n \right) + (-1)^r \theta_{i_1} \cdots \theta_{i_r} : 1 \le i_1 < \dots < i_r \le n-1 \right\}$$

is linearly independent.

We show that the set

(4.13) 
$$\{\partial_1^{c_1} \cdots \partial_n^{c_n} \Delta_n(\mathbf{a}) : (c_1, \dots, c_n) \text{ is } (n, k)\text{-hook-substaircase}\} \subseteq V_n(\mathbf{a})$$

is linearly independent. Indeed, suppose we had a dependence relation

(4.14) 
$$\sum_{(c_1,\dots,c_n)} \gamma_{(c_1,\dots,c_n)} \partial_1^{c_1} \cdots \partial_n^{c_n} \Delta_n(\mathbf{a}) = 0$$

where the sum is over (n, k)-hook-substaircases  $(c_1, \ldots, c_n)$  and the numbers  $\gamma_{(c_1, \ldots, c_n)}$  are not all zero. As before, let  $(d_1, \ldots, d_n)$  be the unique (n, k)-hook-substaircase such that

- (1) we have  $\gamma_{(d_1,...,d_n)} \neq 0$ ,
- (2) subject to (1) the number  $d_1 + \cdots + d_n$  is minimal, and
- (3) subject to (1) and (2) the sequence  $(d_1, \ldots, d_n)$  is lexicographically least.

Let  $(d'_1, \ldots, d'_n)$  be any (n, k)-hook staircase with  $d_i \leq d'_i$  for all i and set  $p_i := d'_i - d_i$ . An argument similar to that of Lemma 3.5 yields the contradiction  $\gamma_{(d_1, \ldots, d_n)} = 0$  upon application of  $\partial_1^{p_1} \cdots \partial_n^{p_n}$  to both sides of Equation (4.14); we leave the details to the reader.

4.3. A positroid superspace quotient. In recent work related to an operation on symmetric functions and vector bundles called 'Chern plethysm', Billey, Rhoades, and Tewari [5] defined a quotient of superspace which gives a bigraded refinement of an action of  $\mathfrak{S}_n$  on size n positroids. In this subsection we use superpolynomials similar to **a**-superspace Vandermondes to give an alternative model for their module.

Following [5], we let  $J_n \subseteq \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  be the bihomogeneous ideal

$$(4.15) J_n := \langle x_1 \theta_1, x_2 \theta_2, \dots, x_n \theta_n, e_1, e_2, \dots, e_n \rangle,$$

where the elementary symmetric polynomials  $e_d = e_d(\mathbf{x}_n)$  are in the x-variables. Let  $S_n := \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]/J_n$  be the corresponding superspace quotient. The ring  $S_n$  is a bigraded  $\mathfrak{S}_n$ -module. By [5, Thm. 5.3], we have

(4.16) 
$$\operatorname{grFrob}(S_n; q, z) = \sum_{r=0}^n z^r \cdot e_r(\mathbf{x}) \cdot \operatorname{rev}_q Q'_{(1^{n-r})}(\mathbf{x}; q),$$

where q tracks x-degree and z tracks  $\theta$ -degree. Recall that  $\operatorname{rev}_q Q'_{(1^{n-r})}(\mathbf{x};q)$  is the graded Frobenius image of the coinvariant ring  $R_{n-r}$  attached to  $\mathfrak{S}_{n-r}$ .

The module  $S_n$  is related to positroids. A positroid <sup>3</sup> of size n is a length n sequence  $p_1 
ldots p_n$  of nonnegative integers which contains r copies of 0 (for some  $0 \le r \le n$ ) and a single copy of  $1, 2, \ldots, n-r$ . Let  $P_n$  be the family of positroids of size n. For example,

$$P_3 = \{123, 213, 132, 231, 312, 321, 120, 210, 102, 201, 012, 021, 001, 010, 100, 000\}.$$

By [5, Prop. 5.2, Thm. 5.3] the dimension of  $S_n$  counts size n positroids:

(4.17) 
$$\dim(S_n) = |P_n| = \sum_{r=0}^n \frac{n!}{r!}.$$

The  $\mathbb{Q}$ -vector space  $\mathbb{Q}[P_n]$  with basis  $P_n$  carries an action of  $\mathfrak{S}_n$  defined on adjacent transpositions by

$$(4.18) (i, i+1).p_1 \dots p_i p_{i+1} \dots p_n := \pm (p_1 \dots p_{i+1} p_i \dots p_n), \quad 1 \le i \le n-1$$

where the sign is – if  $p_i = p_{i+1}$  and + if  $p_i \neq p_{i+1}$ . By [5, Prop. 5.2, Thm. 5.3] we have

so that  $S_n$  gives a bigraded refinement of this  $\mathfrak{S}_n$ -action on positroids.

We will give an alternative model for  $S_n$  as a bigraded subspace of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  rather than as a quotient ring. For  $0 \le k \le n$  we define  $\rho_{n,k} \in \mathbb{Q}[\mathbf{x}_n, \theta_n]$  to be the superpolynomial

Here  $\varepsilon_k = \sum_{w \in \mathfrak{S}_k} \operatorname{sign}(w) \cdot w$  acts on the subscripts of the first k variables. In particular, the element  $\rho_{n,n} = \Delta_n$  is the classical Vandermonde.

**Definition 4.4.** Let  $M_n$  be the smallest linear subspace of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  which

- contains each of the superpolynomials  $\rho_{n,0}, \rho_{n,1}, \ldots, \rho_{n,n}$ ,
- is closed under the action of  $\mathfrak{S}_n$ , and
- is closed under the partial derivatives  $\partial_1, \partial_2, \dots, \partial_n$  acting on the x-variables.

The vector space  $M_n$  is a bigraded  $\mathfrak{S}_n$ -module.

**Proposition 4.5.** The bigraded  $\mathfrak{S}_n$ -modules  $S_n$  and  $M_n$  are isomorphic. Equivalently, we have

(4.21) 
$$\operatorname{grFrob}(M_n; q, z) = \sum_{r=0}^{n} z^r \cdot e_r(\mathbf{x}) \cdot \operatorname{rev}_q Q'_{(1^{n-r})}(\mathbf{x}; q).$$

*Proof.* For  $0 \le r \le n$  let  $M_{n,r}$  be the smallest subspace of  $M_n$  containing  $\rho_{n,n-r}$  which is closed under the action of  $\mathfrak{S}_n$  and the partial derivatives  $\partial_1, \ldots, \partial_n$ . Then  $M_{n,r}$  is the  $\theta$ -homogeneous piece of  $M_n$  of degree r, so that

(4.22) 
$$\operatorname{grFrob}(M_n; q, z) = \sum_{r=0}^{n} z^r \cdot \operatorname{grFrob}(M_{n-r}; q),$$

so it suffices to verify

(4.23) 
$$\operatorname{grFrob}(M_{n,r};q) = e_r(\mathbf{x}) \cdot \operatorname{rev}_q Q'_{(1^{n-r})}(\mathbf{x};q),$$

where q tracks x-degree.

Equation (4.23) states that  $M_{n,r}$  is the induction product of the sign representation of  $\mathfrak{S}_r$  with the coinvariant algebra attached to  $\mathfrak{S}_{n-r}$ . Indeed, for any  $I = \{i_1 < \cdots < i_r\} \subseteq [n]$  with |I| = r and complement  $J = [n] - I = \{j_1 < \cdots < j_{n-r}\}$ , let  $M_I \subseteq M_{n,r}$  be the smallest linear subspace such that

 $<sup>^3</sup>$ A size n positroid is more typically defined as a permutation in  $\mathfrak{S}_n$  whose fixed points are colored either black or white, but these objects are in bijection with  $P_n$ .

• we have 
$$\left[\left(\sum_{w\in\mathfrak{S}_J}\operatorname{sign}(w)\cdot w\right)\cdot x_{j_1}^{k-1}\cdots x_{j_{n-r-1}}^1x_{j_{n-r}}^0\right]\cdot\theta_{i_1}\cdots\theta_{i_r}\in M_I$$
, and

•  $M_I$  is closed under the partial derivatives  $\partial_1, \ldots, \partial_n$ .

We have the vector space direct sum decomposition

$$(4.24) M_{n,r} = \bigoplus_{\substack{I \subseteq [n] \\ |I| = r}} M_I.$$

Taking  $I = [r] = \{1, 2, ..., r\}$ , the space  $M_{[r]}$  is a graded  $\mathfrak{S}_r \times \mathfrak{S}_{n-r}$ -module isomorphic to  $\operatorname{sign}_r \otimes R_{n-r}$ , where  $\operatorname{sign}_r$  is the 1-dimensional sign representation of  $\mathfrak{S}_r$  and  $R_{n-r}$  is the coinvariant ring attached to  $\mathfrak{S}_{n-r}$ . Equation (4.24) leads to the identification of  $M_{n,r}$  as the induction product

$$(4.25) M_{n,r} \cong \operatorname{sign}_r \circ R_{n-r},$$

which implies Equation (4.23).

#### 5. Antisymmetric differentiation

The singly graded modules  $V_n(\mathbf{a})$  are based on an action of the partial derivative operators  $\partial_i$  acting on the x-variables in  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ . The goal of this section is to describe how new operators  $\partial_i^{\theta}$  acting on the  $\theta$ -variables can be used to build new doubly graded modules  $W_n(\mathbf{a})$ . The modules  $W_n(\mathbf{a})$  will contain the  $V_n(\mathbf{a})$  as their top antisymmetric components and will exhibit a new kind of duality which is invisible at the level of  $V_n(\mathbf{a})$ .

5.1. **The operators**  $\partial_i^{\theta}$ . How can we differentiate with respect to a skew-commuting variable? Recall from Section 1 that  $\partial_i^{\theta} : \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] \to \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  is the  $\mathbb{Q}[\mathbf{x}_n]$ -linear operator determined on  $\theta$ -monomials by the rule

(5.1) 
$$\partial_i^{\theta}: \theta_{j_1} \cdots \theta_{j_r} \mapsto \begin{cases} (-1)^{k-1} \theta_{j_1} \cdots \widehat{\theta_{j_k}} \cdots \theta_{j_r} & \text{if } j_k = i, \\ 0 & \text{if } i \notin \{j_1 < \cdots < j_k\} \end{cases}$$

for all  $1 \leq j_1 < \cdots < j_r \leq n$ . The sign  $(-1)^{k-1}$  ensures that  $\partial_i^{\theta}$  is a well-defined  $\mathbb{Q}[\mathbf{x}_n]$ -endomorphism of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ . For another characterization of these operators, see Remark 5.2. We begin with some basic identities satisfied by the  $\partial_i^{\theta}$ .

**Lemma 5.1.** Let  $1 \le i, j \le n$ . We have the following identities of operators on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ .

(5.2) 
$$\partial_i \partial_j = \partial_j \partial_i, \quad \partial_i \partial_j^{\theta} = \partial_j^{\theta} \partial_i, \quad \partial_i^{\theta} \partial_j^{\theta} = -\partial_j^{\theta} \partial_i^{\theta}.$$

Furthermore, if  $w \in \mathfrak{S}_n$  we have the operator identities

(5.3) 
$$w \cdot \partial_i \cdot w^{-1} = \partial_{w(i)}, \quad w \cdot \partial_i^{\theta} \cdot w^{-1} = \partial_{w(i)}^{\theta}.$$

Finally, if  $f, g \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  and f is concentrated in  $\theta$ -degree r we have

(5.4) 
$$\partial_i^{\theta}(fg) = \partial_i^{\theta}(f)g + (-1)^r f \partial_i^{\theta}(g).$$

*Proof.* We begin with (5.2). The first assertion is the standard commutativity of mixed partials. The second follows because  $\partial_i$  acts on x-variables and  $\partial_i^{\theta}$  acts on  $\theta$ -variables. The third can be verified directly on any  $\theta$ -monomial  $\theta_{k_1} \cdots \theta_{k_r}$  for  $1 \leq k_1 < \cdots < k_r \leq n$ . There are two cases depending on whether  $i, j \in \{k_1, \ldots, k_r\}$ ; we leave the details to the reader.

We turn our attention to (5.3). The first assertion of (5.3) is (3.13). For the second assertion, it suffices to consider the case w = (p, p+1) is an adjacent transposition in  $\mathfrak{S}_n$  for some  $1 \le p \le n-1$ . Given  $1 \le k_1 < \cdots < k_r \le n$ , it is enough to show that

$$(5.5) w \cdot \partial_i^{\theta} \cdot w^{-1}(\theta_{k_1} \cdots \theta_{k_r}) = \partial_{w(i)}^{\theta}(\theta_{k_1} \cdots \theta_{k_r}), \text{ where } w = (p, p+1).$$

We have

(5.6) 
$$w(i) \in \{k_1, \dots, k_r\}$$
 if and only if  $i \in \{w^{-1}(k_1), \dots w^{-1}(k_r)\}.$ 

If (5.6) does not hold, then both sides of (5.5) equal 0, so assume (5.6) does hold. If  $i \notin \{p, p+1\}$  then w(i) = i and both sides of (5.5) equal  $(-1)^{s-1}\theta_{k_1}\cdots\widehat{\theta_{k_s}}\cdots\theta_{k_r}$  where  $i = k_s$ . If i = p then w(i) = i+1; we leave it for the reader to check that both sides of (5.5) equal  $(-1)^{s-1}\theta_{k_1}\cdots\widehat{\theta_{k_s}}\cdots\theta_{k_r}$  where  $i+1=k_s$  (there are two cases depending on whether  $i \in \{k_1,\ldots,k_r\}$ ). The case i=p+1 is similar to the case i=p and left to the reader.

Since  $\partial_i^{\theta}$  is a map of  $\mathbb{Q}[\mathbf{x}_n]$ -modules, (5.4) need only be verified in the case where  $f = \theta_{k_1} \cdots \theta_{k_r}$  and  $g = \theta_{\ell_1} \cdots \theta_{\ell_s}$  are monomials in the  $\theta$ -variables and the indices appearing in f and g are distinct. One observes that (5.1) still applies when the indices of the  $\theta$ 's are merely distinct (as opposed to increasing). The proof is casework depending on whether  $\theta_i$  appears in f, g, both, or neither; the details are left for the reader.

**Remark 5.2.** We will not use the Leibniz relation (5.4) in this paper, but the operator  $\partial_i^{\theta}$  can be characterized as the unique  $\mathbb{Q}$ -linear endomorphism of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  which satisfies

(5.7) 
$$\partial_i^{\theta}(x_j) = 0 \quad and \quad \partial_i^{\theta}(\theta_j) = \delta_{i,j}$$

(where  $1 \le j \le n$  and  $\delta_{i,j}$  is the Kronecker delta) together with (5.4).

By (5.2), superspace  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  acts on itself by the rule

(5.8) 
$$f \cdot g := \partial(f)(g) \quad \text{for } f, g \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n],$$

where  $\partial(f)$  is obtained from f by replacing every  $x_i$  by  $\partial_i$  and every  $\theta_i$  by  $\partial_i^{\theta}$ . This extends the action of  $\mathbb{Q}[\mathbf{x}_n]$  on superspace discussed earlier. We repeat Definition 1.4, which introduces the bigraded modules of study.

**Definition 1.4.** Suppose n = k + r for  $k, r \ge 0$  and let  $\mathbf{a} \in (\mathbb{Z}_{\ge 0})^r$ . Let  $W_n(\mathbf{a})$  to be the smallest  $\mathbb{Q}$ -linear subspace of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  containing  $\Delta_n(\mathbf{a})$  which is closed under the n partial derivative operators  $\partial_1, \ldots, \partial_n$  as well as the n operators  $\partial_1^{\theta}, \ldots, \partial_n^{\theta}$ .

Definition 1.4 can also be interpreted as saying that  $W_n(\mathbf{a})$  is the cyclic  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ -submodule of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  generated by  $\Delta_n(\mathbf{a})$ . Since  $\Delta_n(\mathbf{a})$  is alternating, the relations (5.3) imply that  $W_n(\mathbf{a})$  is closed under the action of  $\mathfrak{S}_n$ . The  $\mathfrak{S}_n$ -module  $W_n(\mathbf{a})$  is bigraded. We have  $V_n(\mathbf{a}) \subseteq W_n(\mathbf{a})$ ; in fact,  $V_n(\mathbf{a})$  is the  $\theta$ -homogeneous piece of  $W_n(\mathbf{a})$  of  $\theta$ -degree r.

The spaces  $W_n(\mathbf{a})$  have nicer algebraic properties than the  $V_n(\mathbf{a})$ . For example, we will see that  $W_n(\mathbf{a})$  may be presented as a bigraded quotient of superspace. We repeat the relevant Definition 1.5.

**Definition 1.5.** Suppose n = k + r for  $k, r \ge 0$  and let  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z}_{\ge 0})^r$ . Let  $I_n(\mathbf{a}) \subseteq \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  be the ideal  $I_n(\mathbf{a}) := \{f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] : f \cdot \Delta_n(\mathbf{a}) = 0\}$  and let  $R_n(\mathbf{a}) := \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] / I_n(\mathbf{a})$  be the corresponding quotient ring.

The bigraded vector space  $W_n(\mathbf{a})$  and the bigraded ring  $R_n(\mathbf{a})$  posses a duality which is invisible at the level of  $V_n(\mathbf{a})$ . Establishing this duality – as well as the equivalence of  $W_n(\mathbf{a})$  and  $R_n(\mathbf{a})$  as doubly graded  $\mathfrak{S}_n$ -modules – is our next goal.

5.2. A duality of  $W_n(\mathbf{a})$ . To better understand the duality enjoyed by the  $W_n(\mathbf{a})$ , let us look at some examples of their bigraded Frobenius images. The symmetric function  $\operatorname{grFrob}(W_3(1);q,z)$  is displayed in a matrix below, where the entry in row i and column j gives the coefficient of  $z^iq^j$  in the Schur basis.

$$\begin{pmatrix} s_3 & s_3 + s_{21} & s_{21} \\ s_{21} & s_{21} + s_{111} & s_{111} \end{pmatrix}$$

The symmetric function  $\operatorname{grFrob}(W_4(1,1);q,z)$  is similarly displayed below.

$$\begin{pmatrix} s_4 & s_4 + s_{31} & s_4 + s_{31} + s_{22} & s_{31} \\ s_{31} & 2s_{31} + s_{22} + s_{211} & s_{31} + s_{22} + 2s_{211} & s_{211} \\ s_{211} & s_{22} + s_{211} + s_{1111} & s_{211} + s_{1111} & s_{1111} \end{pmatrix}$$

Finally, we display the symmetric function  $grFrob(W_4(2,1);q,z)$ .

$$\begin{pmatrix} s_4 & s_4 + s_{31} & s_4 + 2s_{31} + s_{22} & s_4 + 2s_{31} + s_{22} + s_{211} & s_{31} + s_{211} \\ s_4 + s_{31} & s_4 + 3s_{31} + s_{22} + s_{211} & 3s_{31} + 3s_{22} + 3s_{211} & s_{31} + s_{22} + 3s_{211} + s_{1111} & s_{211} + s_{1111} \\ s_{31} + s_{211} & s_{31} + s_{22} + 2s_{211} + s_{1111} & s_{22} + 2s_{211} + s_{1111} & s_{211} + s_{1111} & s_{1111} \end{pmatrix}$$

These tables have the property that if they are rotated  $180^{\circ}$ , the effect is the same as if the  $\omega$  involution were applied to each entry. The goal of this section is to prove (Corollary 5.6) that this is a general phenomenon.

The action  $f \cdot g := \partial(f)(g)$  of superspace on itself yields a bilinear form on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ . More precisely, given  $f, g \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  we define a rational number  $\langle f, g \rangle \in \mathbb{Q}$  by

(5.9) 
$$\langle f, g \rangle := \text{constant term of } f \cdot g = \text{constant term of } \partial(f)(g).$$

In particular, if f and g are homogeneous superpolynomials we have  $\langle f, g \rangle = 0$  unless f and g have the same x-degree and the same  $\theta$ -degree.

As an example of the form  $\langle -, - \rangle$  we calculate  $\langle x_1^3 x_2^2 \theta_1 \theta_2, x_1^3 x_2^2 \theta_1 \theta_2 \rangle = -3!2!$ , where the minus sign comes from the action of the operator  $\partial_2^{\theta}$ . In particular, the form  $\langle -, - \rangle$  is not positive definite. However, the form  $\langle -, - \rangle$  enjoys a graded version of positive definiteness.

**Lemma 5.3.** The bilinear form  $\langle -, - \rangle$  defined above is symmetric. Furthermore we have:

(1) Let  $f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  be a  $\theta$ -homogeneous superpolynomial of  $\theta$ -degree r. Then

$$\begin{cases} \langle f,f\rangle \geq 0 & \text{if } r \equiv 0,1 \pmod{4}, \\ \langle f,f\rangle \leq 0 & \text{if } r \equiv 2,3 \pmod{4}, \end{cases}$$

with equality if and only if f = 0.

(2) For any  $\theta$ -homogeneous  $f, g, f', g' \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  we have

$$\langle f, (f' \cdot g') \cdot g \rangle = \pm \langle f \cdot g, f' \cdot g' \rangle.$$

where the sign is determined by the  $\theta$ -degrees of f, g, f', g'.

The proof of Lemma 5.3 (2) is notationally cumbersome, but worth it. This fact will be crucial for our duality result (Theorem 5.5) below.

*Proof.* Let  $m = x_1^{a_1} \cdots x_n^{a_n} \theta_{i_1} \cdots \theta_{i_r}$  and  $m' = x_1^{a'_1} \cdots x_n^{a'_n} \theta_{i'_1} \cdots \theta_{i'_s}$  be two supermonomials (so that  $i_1 < \cdots < i_r$  and  $i'_1 < \cdots < i'_s$ ). A direct computation gives

(5.10) 
$$\langle m, m' \rangle = \begin{cases} (-1)^{\binom{r}{2}} a_1! \cdots a_n! & \text{if } m = m', \\ 0 & \text{otherwise.} \end{cases}$$

This shows that  $\langle -, - \rangle$  is symmetric. The supermonomials are orthogonal with respect to  $\langle -, - \rangle$ . Since  $\binom{r}{2}$  is even when  $r \equiv 0, 1 \pmod{4}$  and odd when  $r \equiv 2, 3 \pmod{4}$ , Assertion (1) of the lemma is true.

Assertion (2) can be verified by direct computation when f, g, f', g' are supermonomials and applying the bilinearity of  $\langle -, - \rangle$ . A faster proof can be given as follows. The authors thank Josh Swanson for pointing out this argument.

Let  $\epsilon \in \{1, -1\}$  be the sign determined by the equation

(5.11) 
$$f(f' \cdot g') = \epsilon(f' \cdot g')f.$$

The sign  $\epsilon$  only depends on the  $\theta$ -degrees of f, f', and g. We calculate

$$(5.12) f \cdot ((f' \cdot g') \cdot g) = (f \cdot (f' \cdot g')) \cdot g = \epsilon ((f' \cdot g') \cdot f) \cdot g = \epsilon (f' \cdot g') \cdot (f \cdot g).$$

Now we have

(5.13) 
$$\langle f, ((f' \cdot g') \cdot g) \rangle = \text{constant coefficient of } f \cdot ((f' \cdot g') \cdot g)$$

(5.14) = constant coefficient of 
$$\epsilon(f' \cdot g') \cdot (f \cdot g)$$

$$(5.15) = \epsilon \langle f' \cdot g', f \cdot g \rangle$$

$$(5.16) = \epsilon \langle f \cdot g, f' \cdot g' \rangle,$$

where the last equality used the fact that  $\langle -, - \rangle$  is symmetric.

For  $0 \leq j \leq n$ , let  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j$  be the (infinite-dimensional) subspace of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  consisting of superpolynomials which are  $\theta$ -homogeneous of  $\theta$ -degree j. We have a direct sum decomposition

(5.17) 
$$\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] = \bigoplus_{j=0}^n \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j.$$

The bilinear form  $\langle -, - \rangle$  on  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  may be restricted to  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j$  for any j. Lemma 5.3 (1) states that this restriction will be positive definite if  $\binom{j}{2}$  is even and negative definite if  $\binom{j}{2}$  is odd.

**Lemma 5.4.** Suppose  $V \subseteq \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j$  is a linear subspace (for some fixed  $0 \le j \le n$ ) which is x-homogeneous (i.e. for any  $f \in V$ , all of the x-homogeneous components of f are contained in V). Define a new subspace  $V^{\perp} \subseteq \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j$  by

$$(5.18) V^{\perp} = \{ f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j : \langle f, g \rangle = 0 \text{ for all } g \in V \}.$$

We have the direct sum of vector spaces  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j = V \oplus V^{\perp}$ .

*Proof.* For  $j \geq 0$ , let  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_{i,j}$  be the finite-dimensional subspace of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_i$  which is x-homogeneous of x-degree i and let  $V_i := V \cap \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_{i,j}$ . By the assumption on V we have  $V = \bigoplus_{i>0} V_i$ . If we set

(5.19) 
$$V_i^{\perp} = \{ f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_{i,j} : \langle f, g \rangle = 0 \text{ for all } g \in V_i \},$$

Lemma 5.3 (1) implies  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_{i,j} = V_i \oplus V_i^{\perp}$ . Taking a direct sum over  $j \geq 0$  gives the result.  $\square$ 

Informally, Lemma 5.4 says that we can take orthogonal complements in superspace as long as the subspaces in question are concentrated in a single  $\theta$ -degree. This will play a key role in proving the following result.

**Theorem 5.5.** Let  $0 \le r \le n$  and let  $\mathbf{a} = (a_1, \dots, a_r) \in \mathbb{Z}_{>0}^r$ . Define a map

$$(5.20) \iota: W_n(\mathbf{a}) \to W_n(\mathbf{a})$$

by the rule  $\iota(f) := f \cdot \Delta_n(\mathbf{a}) = \partial(f)(\Delta_n(\mathbf{a})).$ 

The map  $\iota$  is a linear automorphism of  $W_n(\mathbf{a})$  which complements both x-degree and  $\theta$ -degree simultaneously. Furthermore, the map  $\iota$  satisfies

(5.21) 
$$\iota(w \cdot f) = \operatorname{sign}(w)w \cdot \iota(f) \quad \text{for all } w \in \mathfrak{S}_n \text{ and } f \in W_n(\mathbf{a}).$$

*Proof.* The remaining statements of the theorem will follow immediately if we can show that  $\iota$  is bijective. Since  $\iota$  is  $\mathbb{Q}$ -linear and  $W_n(\mathbf{a})$  is finite-dimensional, it is enough to check that  $\iota$  is surjective.

For  $0 \le j \le r$ , let  $W_n(\mathbf{a})_j$  be the  $\theta$ -homogeneous piece of  $W_n(\mathbf{a})$  of  $\theta$ -degree j. Similarly, let  $I_n(\mathbf{a})_j$  for the  $\theta$ -homogeneous piece of  $I_n(\mathbf{a})$  of  $\theta$ -degree j. We have the direct sum decompositions

(5.22) 
$$W_n(\mathbf{a}) = \bigoplus_{j=0}^r W_n(\mathbf{a})_j \quad \text{and} \quad I_n(\mathbf{a}) = \bigoplus_{j=0}^r I_n(\mathbf{a})_j.$$

Fix  $0 \le j \le r$ . Let  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j$  be the space of superpolynomials which are  $\theta$ -homogeneous of  $\theta$ -degree j. Consider the orthogonal complement

$$(5.23) W_n(\mathbf{a})_j^{\perp} = \{ f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j : \langle f, g \rangle = 0 \text{ for all } g \in W_n(\mathbf{a})_j \}.$$

Claim: We have  $I_n(\mathbf{a})_j = W_n(\mathbf{a})_i^{\perp}$ .

To prove the Claim, we consider both containments separately. For the containment  $\subseteq$ , let  $f \in I_n(\mathbf{a})_j$  and  $g \in W_n(\mathbf{a})_j$ . There exists  $h \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  such that  $g = h \cdot \Delta_n(\mathbf{a})$ . After discarding redundant terms if necessary, we may assume that h is  $\theta$ -homogeneous. We have

$$(5.24) f \cdot g = f \cdot (h \cdot \Delta_n(\mathbf{a})) = \partial(fh)(\Delta_n(\mathbf{a})) = \pm \partial(hf)(\Delta_n(\mathbf{a})) = \pm \partial(h)(f \cdot \Delta_n(\mathbf{a})) = 0,$$

where the third equality used the  $\theta$ -homogeneity of f and h. Taking the constant term gives  $\langle f, g \rangle = 0$  so that  $f \in W_n(\mathbf{a})_j^{\perp}$ .

Now we prove the containment  $\supseteq$ . Let  $f \in W_n(\mathbf{a})_j^{\perp}$ . We want to show that  $f \cdot \Delta_n(\mathbf{a}) = 0$ . Since both f and  $\Delta_n(\mathbf{a})$  are  $\theta$ -homogeneous, Lemma 5.3 (1) implies that

(5.25) 
$$f \cdot \Delta_n(\mathbf{a}) = 0 \text{ if and only if } \langle f \cdot \Delta_n(\mathbf{a}), f \cdot \Delta_n(\mathbf{a}) \rangle = 0$$

On the other hand, Lemma 5.3 (2) implies that

(5.26) 
$$\langle f \cdot \Delta_n(\mathbf{a}), f \cdot \Delta_n(\mathbf{a}) \rangle = \pm \langle f, (f \cdot \Delta_n(\mathbf{a})) \cdot \Delta_n(\mathbf{a}) \rangle = 0,$$

where the second equality used  $f \in W_n(\mathbf{a})_i^{\perp}$ . This completes the proof of the Claim.

We prove that the map  $\iota$  is surjective, which will prove the Theorem. Fix  $0 \le j \le r$ . We prove that  $W_n(\mathbf{a})_{r-j}$  is contained in the image Image( $\iota$ ) of  $\iota$ . By the definition of  $W_n(\mathbf{a})$ , we have

$$(5.27) W_n(\mathbf{a})_{r-j} = \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j \cdot \Delta_n(\mathbf{a}) = \{ f \cdot \Delta_n(\mathbf{a}) : f \in \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j \}.$$

The desired containment  $W_n(\mathbf{a})_{r-i} \subseteq \text{Image}(\iota)$  is equivalent to the seemingly stronger statement

$$(5.28) W_n(\mathbf{a})_{r-j} = W_n(\mathbf{a})_j \cdot \Delta_n(\mathbf{a}) = \{ f \cdot \Delta_n(\mathbf{a}) : f \in W_n(\mathbf{a})_j \}.$$

However, Lemma 5.4 and our Claim give the direct sum decomposition

(5.29) 
$$\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_j = W_n(\mathbf{a})_j \oplus W_n(\mathbf{a})_j^{\perp} = W_n(\mathbf{a})_j \oplus I_n(\mathbf{a})_j.$$

Since  $I_n(\mathbf{a})_j$  annihilates  $\Delta_n(\mathbf{a})$ , (5.27) and (5.28) are equivalent.

The map  $\iota$  gives our desired duality immediately.

Corollary 5.6. Let  $0 \le r \le n$  and let  $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{Z}_{\ge 0}^r$ . The module  $W_n(\mathbf{a})$  has the duality property

(5.30) 
$$\omega(\operatorname{grFrob}(W_n(\mathbf{a});q,z)) = (\operatorname{rev}_q \circ \operatorname{rev}_z)\operatorname{grFrob}(W_n(\mathbf{a});q,z).$$

*Proof.* The automorphism  $\iota$  of Theorem 5.5 reverses both x-degree and  $\theta$ -degree, as well as twisting by the sign representation.

In Corollary 5.6 the operator  $\operatorname{rev}_q$  acts on formal power series in  $\mathbb{Q}[[q, z, x_1, x_2, \dots]]$  with finite q-degree by regarding them as polynomials in  $\mathbb{Q}[[z, x_1, x_2, \dots]][q]$ . A similar remark applies to  $\operatorname{rev}_z$ . Corollary 5.6 immediately shows that  $W_n(\mathbf{a})$  and  $R_n(\mathbf{a})$  are isomorphic as bigraded  $\mathfrak{S}_n$ -modules.

Corollary 5.7. For any  $0 \le r \le n$  and any sequence  $\mathbf{a} \in (\mathbb{Z}_{>0})^r$  we have

(5.31) 
$$\operatorname{grFrob}(R_n(\mathbf{a}); q, z) = \operatorname{grFrob}(W_n(\mathbf{a}); q, z)$$

where q tracks x-degree and z tracks  $\theta$ -degree.

*Proof.* The same argument used to prove Proposition 3.1 shows that

(5.32) 
$$\operatorname{grFrob}(\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]/I_n(\mathbf{a}); q, z) = (\operatorname{rev}_q \circ \operatorname{rev}_z \circ \omega) \operatorname{grFrob}(W_n(\mathbf{a}); q, z).$$

By Corollary 5.6 the operator  $(\text{rev}_q \circ \text{rev}_z \circ \omega)$  leaves  $\text{grFrob}(W_n(\mathbf{a}); q, z)$  unchanged.

Our duality gives us another model for the quotient rings  $R_{n,k}$  of [11].

Corollary 5.8. Let  $r, k \geq 0$  with n = k + r. Let  $\mathbf{a} = (k - 1, ..., k - 1) \in (\mathbb{Z}_{\geq 0})^n$  be a length r sequence of (k - 1)'s. Let  $W_n(\mathbf{a})_0$  be the subspace of  $W_n(\mathbf{a})$  of  $\theta$ -degree zero. Then  $W_n(\mathbf{a})_0 \cong R_{n,k}$  as singly graded  $\mathfrak{S}_n$ -modules.

*Proof.* Combine Theorem 3.6 and Corollary 5.6.

5.3. Poincaré duality. In this subsection we prove that the bigraded rings  $R_n(\mathbf{a})$  exhibit an algebraic structure which is reminiscent of Poincaré duality and propose the problem of finding a geometric explanation for this fact.

Consider Corollaries 5.6 and 5.7 in the case r = 0, so that  $\mathbf{a} = \emptyset$  is the empty sequence and  $\Delta_n(\mathbf{a}) = \Delta_n$  is the classical Vandermonde. In this case  $R_{n,k} = R_n$  is the classical coinvariant algebra and these corollaries give the classical result

(5.33) 
$$\operatorname{grFrob}(R_n; q) = (\operatorname{rev}_q \circ \omega) \operatorname{grFrob}(R_n; q)$$

which implies the palindromicity of the Hilbert series

(5.34) 
$$\operatorname{Hilb}(R_n; q) = [n]!_q = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$$

The palindromicity of  $\operatorname{Hilb}(R_n;q) = [n]!_q$  has a geometric interpretation. Let  $\mathcal{F}\ell_n$  be the variety of complete flags in  $\mathbb{C}^n$ . Borel [4] proved that the rational cohomology ring  $H^{\bullet}(\mathcal{F}\ell_n)$  can be presented as the coinvariant ring  $R_n$ . Since  $\mathcal{F}\ell_n$  is a smooth compact complex projective variety, the top cohomology

(5.35) 
$$H^{\text{top}}(\mathcal{F}\ell_n) = H^{n(n-1)}(\mathcal{F}\ell_n) \cong \mathbb{Q}$$

is a 1-dimensional vector space and for any  $0 \le d \le n(n-1)$  the cup product

$$(5.36) H^d(\mathcal{F}\ell_n) \otimes H^{n(n-1)-d}(\mathcal{F}\ell_n) \to \mathbb{Q}$$

is a perfect pairing by Poincaré duality.

The variety

$$X_{n,k} = \{(\ell_1, \dots, \ell_n) : \ell_i \subseteq \mathbb{C}^k, \dim(\ell_i) = 1, \ell_1 + \dots + \ell_n = \mathbb{C}^k\}$$

of spanning configurations of n lines in  $\mathbb{C}^k$  introduced in [14] is not compact, and so does not satisfy the hypotheses of Poincaré duality. Indeed, the Hilbert series of its cohomology

(5.37) 
$$\operatorname{Hilb}(H^{\bullet}(X_{n,k}); \sqrt{q}) = \operatorname{Hilb}(R_{n,k}; q) = \operatorname{rev}_{q}([k]! \cdot \operatorname{Stir}_{q}(n,k))$$

is not palindromic. However,  $H^{\bullet}(X_{n,k}) = R_{n,k}$  is a 1-dimensional slice of a 2-dimensional self-dual object.

Corollary 5.9. Let  $0 \le r \le n$  and let  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z})_{\ge 0}^r$ . The top x-degree component of  $R_n(\mathbf{a})$  is  $s := a_1 + \dots + a_r + \binom{k}{2}$ , and the top  $\theta$ -degree component is r. Write  $R_n(\mathbf{a})_{i,j}$  for the component of  $R_n(\mathbf{a})$  of x-degree i and  $\theta$ -degree j. The component  $R_n(\mathbf{a})_{r,s} \cong \mathbb{Q}$  is a 1-dimensional vector space.

For any  $0 \le i \le s$  and any  $0 \le j \le r$  the multiplication map

$$(5.38) R_n(\mathbf{a})_{i,j} \otimes R_n(\mathbf{a})_{s-i,r-j} \to \mathbb{Q}$$

is a perfect pairing.

*Proof.* Let  $\{f_1, \ldots, f_m\}$  be a basis for  $W_n(\mathbf{a})_{i,j}$  and let  $\{g_1, \ldots, g_m\}$  be a basis for  $W_n(\mathbf{a})_{s-i,r-j}$  (by Theorem 5.5, these bases have the same size m). The direct sum decomposition (5.29) in the proof of Theorem 5.5 guarantees that  $\{f_1, \ldots, f_m\}$  descends to a basis of  $R_n(\mathbf{a})_{i,j}$  and  $\{g_1, \ldots, g_m\}$  descends to a basis of  $R_n(\mathbf{a})_{s-i,r-j}$ .

Let  $A = (a_{p,q})_{1 < p,q < m}$  be the  $m \times m$  rational matrix whose entries are

$$(5.39) a_{p,q} := (f_p g_q) \cdot \Delta_n(\mathbf{a}).$$

It is enough to verify that A is nonsingular. By Theorem 5.5, the set  $\{g_1 \cdot \Delta_n(\mathbf{a}), \dots, g_m \cdot \Delta_n(\mathbf{a})\}$  descends to a basis of  $R_n(\mathbf{a})_{i,j}$ . The matrix element  $a_{p,q}$  is equal to  $\langle f_p, g_q \cdot \Delta_n(\mathbf{a}) \rangle$ , so that A is the Gram matrix of a bilinear form on  $R_n(\mathbf{a})_{i,j}$  which (by Lemma 5.3 (1)) is either positive definite or negative definite, and hence nonsingular.

**Problem 5.10.** Find a geometric enhancement of  $X_{n,k}$  which explains Corollary 5.9.

5.4. Superspace coinvariants. It is well-known that the ring  $\mathbb{Q}[\mathbf{x}_n]^{\mathfrak{S}_n}$  of symmetric polynomials has algebraically independent generators given by the set  $\{e_1, e_2, \dots, e_n\}$  of symmetric polynomials. In general, a set of n algebraically independent symmetric polynomials  $\{f_1, f_2, \dots, f_n\}$  is a fundamental system of invariants if  $\mathbb{Q}[\mathbf{x}_n]^{\mathfrak{S}_n} = \mathbb{Q}[f_1, f_2, \dots, f_n]$ . A fundamental system of invariants other than  $\{e_1, e_2, \dots, e_n\}$  is the set of power sums  $p_1, p_2, \dots, p_n$  where  $p_d = p_d(\mathbf{x}_n) := x_1^d + \dots + x_n^d$ . Recall that  $\mathfrak{S}_n$  acts diagonally on superspace  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ . The collection of invariant superpoly-

Recall that  $\mathfrak{S}_n$  acts diagonally on superspace  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ . The collection of invariant superpolynomials  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]^{\mathfrak{S}_n}$  forms a subalgebra of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$ . Given a fundamental system of invariants  $\{f_1, f_2, \ldots, f_n\} \subseteq \mathbb{Q}[\mathbf{x}_n]$ , Solomon described a generating set of  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]^{\mathfrak{S}_n}$ . The differential map  $d: \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] \to \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  is defined by

(5.40) 
$$df := \sum_{i=1}^{n} \partial_{i} f \times \theta_{i}, \quad \text{for } f \in \mathbb{Q}[\mathbf{x}_{n}, \boldsymbol{\theta}_{n}].$$

Solomon proved [19] that  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]^{\mathfrak{S}_n}$  is generated as a  $\mathbb{Q}$ -algebra by  $\{f_1, f_2, \dots, f_n, df_1, df_2, \dots, df_n\}$ . Extensions of various symmetric polynomial bases to superspace were studied in [7].

Let  $\mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_+^{\mathfrak{S}_n}$  denote the space of  $\mathfrak{S}_n$ -invariant superpolynomials with vanishing constant term. The *superinvariant ideal* is the ideal

(5.41) 
$$SI_n := \langle \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_+^{\mathfrak{S}_n} \rangle = \langle e_1, e_2, \dots, e_n, dp_1, dp_2, \dots, dp_n \rangle,$$

where the second equality is justified by Solomon's result [19] and the equality  $\mathbb{Q}[e_1,\ldots,e_n] = \mathbb{Q}[p_1,\ldots,p_n]$ . The *supercoinvariant algebra* is the quotient

(5.42) 
$$SR_n := \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] / \langle \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_+^{\mathfrak{S}_n} \rangle.$$

The ring  $SR_n$  is a bigraded  $\mathfrak{S}_n$ -module.

The following conjectural expression for the bigraded Frobenius image of  $SR_n$  was obtained in the algebraic combinatorics seminar at the Fields Institute; it is a special case of the conjecture of Mike Zabrocki in [22]:

(5.43) 
$$\operatorname{grFrob}(SR_n; q, z) = \sum_{k=1}^{n} z^{n-k} \cdot \Delta'_{e_{k-1}} e_n \mid_{t=0}$$

where q tracks x-degree and z tracks  $\theta$ -degree. By Theorem 3.6, Equation (5.43) is equivalent to the statement that the  $\theta$ -homogeneous piece of  $SR_n$  of  $\theta$ -degree n-k is isomorphic to  $V_n(\mathbf{a})$  as a (singly) graded  $\mathfrak{S}_n$ -module, where  $\mathbf{a}=(k-1,\ldots,k-1)$  is a length n-k sequence of (k-1)'s. By Theorem 3.6 we have the following potential road to proving Equation (5.43).

Conjecture 5.11. Let  $1 \le k \le n$  and let  $\mathbf{a} = (k-1, \dots, k-1)$  be a length n-k sequence of (k-1)'s. The canonical projection from  $V_n(\mathbf{a}) \subseteq \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]$  to the  $\theta$ -homogeneous piece of  $SR_n$  of  $\theta$ -degree n-k is an isomorphism of vector spaces.

**Proposition 5.12.** Conjecture 5.11 implies Equation (5.43).

We have been unable to use Vandermondes to analyze the supercoinvariant algebra  $SR_n$  directly, but we have the following result describing elements of the annihilator of  $\Delta_n(\mathbf{a})$  in terms of the superinvariant ideal  $SI_n$  in the case where  $\mathbf{a} = (k-1, \ldots, k-1)$  is a constant sequence of (k-1)'s of length n-k.

**Proposition 5.13.** Let  $0 \le r \le n$  and let k = n - r. Let  $\mathbf{a} \in (\mathbb{Z}_{\ge 0})^r$  be the constant sequence  $\mathbf{a} = (k-1, k-1, \dots, k-1)$  of length r. Each of the superpolynomials

(5.44) 
$$x_1^k, x_2^k, \dots, x_n^k, \quad e_n, e_{n-1}, \dots, e_{n-k+1}, \quad dp_1, dp_2, \dots, dp_n$$
 annihilates  $\Delta_n(\mathbf{a})$ .

The ideal generated by the superpolynomials appearing in Proposition 5.13 has generators similar to the superinvariant ideal  $SI_n = \langle e_1, \dots, e_n, dp_1, \dots, dp_n \rangle$ , but without the low degree elementary symmetric polynomials  $e_1, e_2, \ldots, e_{n-k}$  and with the variable powers  $x_1^k, x_2^k, \ldots, x_n^k$ . Indeed, these ideals are not equal. Despite this, we hope that the similarity between these ideals will assist in the proof of Zabrocki's conjecture (5.43).

Proof. Lemma 3.4 implies  $x_1^k, \ldots, x_n^k, e_n, e_{n-1}, \ldots, e_{n-k+1} \in \operatorname{ann}_{\mathbb{Q}[\mathbf{x}_n]} \Delta_n(\mathbf{a})$ . Let  $1 \leq j \leq n$ . By (5.3)  $dp_j$  commutes with the action of  $\mathfrak{S}_n$ , and hence the action of  $\varepsilon_n$ . It follows that

$$(5.45) dp_j \cdot \Delta_n(\mathbf{a}) = \varepsilon_n \cdot dp_j \cdot \left[ x_1^{k-1} \cdots x_r^{k-1} x_{r+1}^{k-1} \cdots x_{n-1}^1 x_n^0 \cdot \theta_1 \theta_2 \cdots \theta_r \right].$$

A direct computation gives  $dp_j \cdot \left[ x_1^{k-1} \cdots x_r^{k-1} x_{r+1}^{k-1} \cdots x_{n-1}^1 x_n^0 \cdot \theta_1 \theta_2 \cdots \theta_r \right] = 0$  if j > k and

$$dp_{j} \cdot \left[ x_{1}^{k-1} \cdots x_{r}^{k-1} x_{r+1}^{k-1} \cdots x_{n}^{0} \cdot \theta_{1} \cdots \theta_{r} \right] \doteq \sum_{i=1}^{r} (-1)^{i-1} x_{1}^{k-1} \cdots x_{i}^{k-j} \cdots x_{r}^{k-1} x_{r+1}^{k-1} \cdots x_{n}^{0} \theta_{1} \cdots \widehat{\theta}_{i} \cdots \theta_{r}$$

if  $j \leq k$ . In term i in the sum on the right-hand-side of Equation (5.46), the exponents of  $x_i$ and  $x_{n-k+j}$  coincide. Since neither  $\theta_i$  nor  $\theta_{n-k+j}$  appear in this term, this term is annihilated by the application of  $\varepsilon_n$ . We conclude that Equation (5.46) itself is annihilated by  $\varepsilon_n$ , so that Equation (5.45) equals 0. 

## 6. Conclusion

6.1. A conjecture on Tanisaki quotients. In this paper we defined a graded  $\mathfrak{S}_n$ -module  $V_n(\mathbf{a})$ for any nonnegative integer sequence **a** of length  $\leq n$ . Theorem 3.6, Theorem 4.2, and Proposition 4.3 calculate the graded module structure of  $V_n(\mathbf{a})$  for certain constant sequences  $\mathbf{a}$ . It is natural to ask what  $V_n(\mathbf{a})$  looks like for general sequences  $\mathbf{a}$ . While we do not have a full conjecture in this direction, computational evidence suggests a relationship between  $V_n(\mathbf{a})$  and the Tanisaki quotients  $R_{\lambda}$ .

More precisely, let  $\leq$  be the componentwise partial order on length r sequences of nonnegative integers. Given a length r sequence  $\mathbf{a} \in (\mathbb{Z}_{>0})^r$  and  $n \geq r$ , define the graded  $\mathfrak{S}_n$ -modules

$$(6.1) V_n^{\leq}(\mathbf{a}) := \sum_{\mathbf{b} \leq \mathbf{a}} V_n(\mathbf{b}), V_n^{<}(\mathbf{a}) := \sum_{\mathbf{b} \leq \mathbf{a}} V_n(\mathbf{b}), \text{ and } V_n^{=}(\mathbf{a}) := V_n^{\leq}(\mathbf{a})/V_n^{<}(\mathbf{a}).$$

It can be checked that

$$\begin{cases} (\operatorname{rev}_q \circ \omega) \operatorname{grFrob}(V_4^{=}(0,0);q) = \operatorname{grFrob}(R_{(3,1)};q), \\ (\operatorname{rev}_q \circ \omega) \operatorname{grFrob}(V_4^{=}(1,0);q) = \operatorname{grFrob}(R_{(3,1)};q), \text{ and} \\ (\operatorname{rev}_q \circ \omega) \operatorname{grFrob}(V_4^{=}(1,1);q) = \operatorname{grFrob}(R_{(2,2)};q). \end{cases}$$

Conjecture 6.1. Let  $r \leq n$  be nonnegative integers with k = n - r and let  $\mathbf{a} \in (\mathbb{Z}_{\geq 0})^r$ . There exists a partition  $\lambda \vdash n$  with k parts such that

(6.2) 
$$(\operatorname{rev}_q \circ \omega) \operatorname{grFrob}(V_n^{=}(\mathbf{a}); q) = \operatorname{grFrob}(R_{\lambda}; q).$$

Equivalently, if  $Q'_{\lambda}(X;q)$  is the Hall-Littlewood Q'-function, we have

(6.3) 
$$\omega[\operatorname{grFrob}(V_n^{=}(\mathbf{a});q)] \propto Q_{\lambda}'(X;q),$$

where  $\propto$  denotes equality up to a power of q.

Proposition 4.3 proves Conjecture 6.1 when **a** is a zero sequence and  $\lambda = (r+1, 1, ..., 1) \vdash n$ . By Proposition 3.1 and [11, Thm. 6.14] if  $\mathbf{a} = (k-1, ..., k-1)$  is a length r sequence of (k-1)'s we have

(6.4) 
$$\operatorname{grFrob}(V_n(\mathbf{a});q) = \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) = k}} q^{\sum (i-1)(\lambda_i - 1)} \begin{bmatrix} k \\ m_1(\lambda), \dots, m_n(\lambda) \end{bmatrix}_q \omega Q'_{\lambda}(X;q).$$

Conjecture 6.1 can be thought of as giving a filtration on  $V_n(\mathbf{a})$  which is compatible with Equation (6.4). We do not have a conjecture for how to produce  $\lambda$  from  $\mathbf{a}$  in general. It should be noted that N. Bergeron and A. Garsia obtained a model for  $R_{\lambda}$  as a space of harmonics inside  $\mathbb{Q}[\mathbf{x}_n]$  [3].

The generalized coinvariant ring  $R_{n,k}$  of [11] and the positroid quotient  $S_n$  of [5] have graded Frobenius images which are (up to q-reversal) positive in the Q'-basis of symmetric functions. In [17] the authors defined a quotient of the polynomial ring  $\mathbb{Q}[\mathbf{x}_n]$  corresponding to hook Schurdelta operator images  $\Delta_{s_{(r,1^{n-1})}}e_n$   $|_{t=0}$  whose graded Frobenius image is also (up to q-reversal) Q'-positive. Haglund, Rhoades, and Shimozono [12] gave a manifestly positive Q'-expansion of  $\Delta'_{s_{\lambda}}e_n$   $|_{t=0}$ , where  $s_{\lambda}$  is any Schur function (up to  $\omega$ ). It may be interesting to use superspace to build modules for the symmetric functions appearing in [12] and [17].

6.2. Additional sets of variables,  $\Delta'_{e_{k-1}}e_n$ , and beyond. Zabrocki [22] conjectured an extension of (5.43) to more sets of variables. Let  $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n]$  be the  $\mathbb{Q}$ -algebra with 2n commuting variables  $x_1, \ldots, x_n, y_1, \ldots, y_n$  and n anticommuting variables  $\theta_1, \ldots, \theta_n$  (where any two variables of different species commute). Zabrocki [22] verified that

(6.5) 
$$\operatorname{grFrob}(\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n] / \langle \mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n]_+^{\mathfrak{S}_n} \rangle; q, t, z) = \sum_{k=1}^n z^{n-k} \cdot \Delta'_{e_{k-1}} e_n$$

for  $n \leq 6$ . Here q tracks x-degree, t tracks y-degree, and z tracks  $\theta$ -degree. Thus, the quotient  $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n] / \langle \mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n]_+^{\mathfrak{S}_n} \rangle$  gives a conjectural representation theoretic model for  $\Delta'_{e_{k-1}} e_n$  in antisymmetric degree n-k.

Superspace Vandermondes can be used to give another conjectural representation theoretic model for  $\Delta'_{e_{k-1}}e_n$ . To describe this, we need the *polarization operators* on  $\mathbb{Q}[\mathbf{x}_n,\mathbf{y}_n,\boldsymbol{\theta}_n]$ . For  $j \geq 1$ , the  $j^{th}$  polarization operator (from the x-variables to the y-variables) on  $\mathbb{Q}[\mathbf{x}_n,\mathbf{y}_n,\boldsymbol{\theta}_n]$  is the operator

(6.6) 
$$p_{x \to y}^{(j)} := y_1 \partial_{x_1}^j + y_2 \partial_{x_2}^j + \dots + y_n \partial_{x_n}^j.$$

**Definition 6.2.** Let n = k+r and let  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z}_{\geq 0})^r$ . Let  $\mathcal{V}_n(\mathbf{a})$  be the smallest subspace of  $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n]$  such that

•  $\mathcal{V}_n(\mathbf{a})$  contains the **a**-superspace Vandermonde

$$\Delta_n(\mathbf{a}) = \varepsilon_n \cdot (x_1^{a_1} \cdots x_r^{a_r} x_{r+1}^{k-1} \cdots x_{n-1}^1 x_n^0 \theta_1 \cdots \theta_r)$$

in the x-variables and  $\theta$ -variables,

- $V_n(\mathbf{a})$  is closed under all partial derivatives  $\partial_{x_i}$  and  $\partial_{y_i}$  in commuting variables, and
- $V_n(\mathbf{a})$  is closed under all polarization operators  $p_{x\to y}^{(j)}$  for  $j \geq 1$ .

The space  $V_n(\mathbf{a})$  has fixed  $\theta$ -degree r. By considering the x-degree and y-degree separately, we view  $V_n(\mathbf{a})$  as a doubly graded  $\mathfrak{S}_n$ -module. The space  $V_n(\mathbf{a})$  specializes to  $V_n(\mathbf{a})$  when the y-variables are set to zero.

**Conjecture 6.3.** Let n = k + r and let  $\mathbf{a} = (k - 1, k - 1, \dots, k - 1)$  be a length r sequence of (k - 1)'s. Then

(6.7) 
$$\operatorname{grFrob}(\mathcal{V}_n(\mathbf{a}); q, t) = \Delta'_{e_{k-1}} e_n.$$

Conjecture 6.3 has been checked by computer for  $n \leq 4$ . Theorem 3.6 proves Conjecture 6.3 in the case t = 0; Zabrocki's conjecture (6.5) is open even in the case t = 0. Just as we hope that  $V_n(\mathbf{a})$  will lead to a better understanding of the supercoinvariant algebra  $SR_n = \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n] / \langle \mathbb{Q}[\mathbf{x}_n, \boldsymbol{\theta}_n]_+^{\mathfrak{S}_n} \rangle$ , we hope that  $\mathcal{V}_n(\mathbf{a})$  will help in understanding the quotient  $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n] / \langle \mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n, \boldsymbol{\theta}_n]_+^{\mathfrak{S}_n} \rangle$  appearing in (6.5).

Given any vector  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z}_{\geq 0})^r$ , we have a symmetric function grFrob $(\mathcal{V}_n(\mathbf{a}); q, t)$ . It might be interesting to study the combinatorics of these symmetric functions when  $\mathbf{a}$  is a vector other than  $(k-1, \dots, k-1)$ .

There has been a significant amount of interest in extensions of the diagonal coinvariant ring to > 2 species of n commuting variables (see [2]). Let us remark that we may extend our modules  $\mathcal{V}_n(\mathbf{a})$  to any number of species of commuting and skew-commuting variables.

Let S(n,c,s) be the Q-algebra generated by  $c \times n$  commuting variables

$$x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)}, \quad x_1^{(2)}, x_2^{(2)}, \dots, x_n^{(2)}, \quad \dots \quad , \text{ and } x_1^{(c)}, x_2^{(c)}, \dots, x_n^{(c)},$$

and  $s \times n$  skew-commuting variables

$$\theta_1^{(1)}, \theta_2^{(1)}, \dots, \theta_n^{(1)}, \quad \theta_1^{(2)}, \theta_2^{(2)}, \dots, \theta_n^{(2)}, \quad \dots \quad , \text{ and } \theta_1^{(s)}, \theta_2^{(s)}, \dots, \theta_n^{(s)},$$

where any  $x_i^{(j)}$  and  $\theta_{i'}^{(j')}$  commute. The ring S(n,c,s) is a multigraded  $\mathbb{Q}$ -algebra with c kinds of commutative grading and s kinds of skew-commutative grading.

The ring S(n,c,s) carries a 'diagonal' action of  $\mathfrak{S}_n$  by simultaneous subscript permutation. We may also act on S(n,c,s) by any partial derivative  $\partial/\partial x_i^{(j)}$  or  $\partial/\partial \theta_i^{(j)}$  with respect to any commuting or skew-commuting variable. We may also polarize between any two species of commutating variables  $1 \leq i, i' \leq c$  (at polarization parameter j) by the operator

(6.8) 
$$p_{i \to i'}^{(j)} := x_1^{(i')} (\partial/\partial x_1^{(i)})^j + x_2^{(i')} (\partial/\partial x_2^{(i)})^j + \dots + x_n^{(i')} (\partial/\partial x_n^{(i)})^j$$

and between any two species of skew-commuting variables  $1 \le i, i' \le s$  by the operator

(6.9) 
$$q_{i \to i'}^{(j)} := \theta_1^{(i')} (\partial/\partial \theta_1^{(i)}) + \theta_2^{(i')} (\partial/\partial \theta_2^{(i)}) + \dots + \theta_n^{(i')} (\partial/\partial \theta_n^{(i)}).$$

Given  $r \leq n$  and sequence  $\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Z}_{\geq 0})^r$ , we may define  $\mathbb{V}_n(\mathbf{a}, c, s)$  to be the smallest  $\mathbb{Q}$ -linear subspace of S(n, c, s) containing the  $\mathbf{a}$ -superspace Vandermonde  $\Delta_n(\mathbf{a})$  in the  $x^{(1)}$  and  $\theta^{(1)}$ -variables which is closed under all possible partial differentiation and polarization operators. We have  $\mathbb{V}_n(\mathbf{a}, 1, 1) = V_n(\mathbf{a})$  and  $\mathbb{V}_n(\mathbf{a}, 2, 1) = \mathcal{V}_n(\mathbf{a})$ .

The vector space  $\mathbb{V}_n(\mathbf{a}, c, s)$  is a multigraded  $\mathfrak{S}_n$ -module. Its isomorphism type is encoded in a symmetric function

(6.10) 
$$\operatorname{grFrob}(\mathbb{V}_n(\mathbf{a}, c, s); q_1, q_2, \dots, q_c, z_1, z_2, \dots, z_s)$$

Following the work of F. Bergeron [1], it may be interesting to study this symmetric function as  $c, s \to \infty$ .

6.3. A conjectural Lefschetz property of  $W_n(\mathbf{a})$ . For  $r \leq n$  and  $\mathbf{a} \in (\mathbb{Z}_{\geq 0})^r$ , we defined a doubly graded  $\mathfrak{S}_n$ -module  $W_n(\mathbf{a})$ .

**Problem 6.4.** Find the doubly graded Frobenius image  $grFrob(W_n(\mathbf{a}); q, z)$ .

The  $z^0$ -coefficient of grFrob $(W_n(\mathbf{a}); q, z)$  gives the graded isomorphism type of  $R_{n,k}$ . The  $z^r$ -coefficient of grFrob $(W_n(\mathbf{a}); q, z)$  is the reversed and sign-twisted version of the  $z^0$ -coefficient. The authors do not have a conjecture for the intermediate powers of z. Indeed, we do not even know the vector space dimension dim  $W_n(\mathbf{a})$ .

Let  $r \leq n$  and  $\mathbf{a} \in (\mathbb{Z}_{\geq 0})^r$ . We close with a conjecture on the bigraded Hilbert series

(6.11) 
$$\operatorname{Hilb}(R_n(\mathbf{a}); q, z) := \sum_{i,j} \dim R_n(\mathbf{a})_{i,j} \cdot q^i z^j$$

of the doubly graded ring  $R_n(\mathbf{a})$ . Here  $R_n(\mathbf{a})_{i,j}$  is the homogeneous piece of  $R_n(\mathbf{a})$  of x-degree i and  $\theta$ -degree j. By Proposition 5.7 the polynomial (6.11) is unchanged if we replace  $R_n(\mathbf{a})$  by the doubly graded vector space  $W_n(\mathbf{a})$ .

We may display the bivariate polynomial (6.11) as a matrix of coefficients. The case n = 5,  $\mathbf{a} = (2, 2)$  is shown below, with column indices recording x-degree and row indices recording  $\theta$ -degree.

$$\begin{pmatrix} 1 & 5 & 15 & 29 & 39 & 35 & 20 & 6 \\ 4 & 19 & 50 & 77 & 77 & 50 & 19 & 4 \\ 6 & 20 & 35 & 39 & 29 & 15 & 5 & 1 \end{pmatrix}$$

As guaranteed by Theorem 5.5, this matrix is symmetric under 180° rotation. Recall that an integer sequence  $(c_1, c_2, \ldots, c_m)$  is unimodal if there is some i with  $c_1 \leq \cdots \leq c_i \geq c_{i+1} \geq \cdots \geq c_m$ .

**Conjecture 6.5.** For any  $r \leq n$  and  $\mathbf{a} \in (\mathbb{Z}_{\geq 0})^r$ , the matrix of coefficients of Hilb $(R_n(\mathbf{a}); q, z)$  has unimodal rows and columns.

When  $\mathbf{a} = \emptyset$ , Conjecture 6.5 follows from the Hard Lefschetz Theorem. In this case, we have the geometric interpretation  $R_n(\emptyset) = R_n = H^{\bullet}(\mathcal{F}\ell_n)$  of  $R_n(\emptyset)$  as the (singly-graded) cohomology of the Kähler manifold  $\mathcal{F}\ell_n$ . Recall that n(n-1) is the top degree of the cohomology ring  $H^{\bullet}(\mathcal{F}\ell_n)$ . The Hard Lefschetz Theorem states that there is an element  $\ell \in H^2(\mathcal{F}\ell_n)$  such that for all  $d \leq \binom{n}{2}/2$  the multiplication map

(6.12) 
$$\ell^{\binom{n}{2}-2d} \times (-) : H^{2d}(\mathcal{F}\ell_n) \to H^{n(n-1)-2d}(\mathcal{F}\ell_n)$$

is an isomorphism of vector spaces. Any element  $\ell \in H^2(\mathcal{F}\ell_n)$  with this property is called a *(strong) Lefschetz element*. In terms of the presentation  $H^{\bullet}(\mathcal{F}\ell_n) = R_n = \mathbb{Q}[x_1, \dots, x_n]/\langle e_1, \dots, e_n \rangle$ , we may represent any element  $\ell \in H^2(\mathcal{F}\ell_n)$  as a  $\mathbb{Q}$ -linear combination  $c_1x_1 + \dots + c_nx_n$  of the variables  $x_1, \dots, x_n$ . The element  $\ell$  is Lefschetz if and only if  $c_i \neq c_j$  for all  $i \neq j$  [13].

Conjecture 6.5 would be best proven by a doubly graded version of the Hard Lefschetz Theorem. For the symmetric grading, one could hope that multiplication by an appropriate linear form  $\ell = c_1 x_1 + \cdots + c_n x_n$  with  $c_i \neq c_j$  for  $i \neq j$  would be surjective or injective depending on the relative sizes of the entries in a row of Hilb $(R_n(\mathbf{a}); q, z)$ . On the other hand, if  $\tau = c_1 \theta_1 + \cdots + c_n \theta_n$  is any  $\mathbb{Q}$ -linear combination of the  $\theta$ -variables, we have  $\tau^2 = 0$ , so we would need a new model for the antisymmetric part of a Lefschetz element.

Ideally, the unimodality of Conjecture 6.5 would be explained by the geometry of objects with algebraic invariants given by superspace quotients. We leave this project for future work.

# 7. Acknowledgements

B. Rhoades is grateful to the organizers and hosts of 'Representation Theory Connections to (q,t)-Combinatorics' at BIRS in January 2019 where this project was initiated. B. Rhoades was partially supported by NSF Grant DMS-1500838. The authors are grateful to Nantel Bergeron, Sara Billey, Jeff Rabin, Josh Swanson, and Mike Zabrocki for helpful discussions. In particular, the authors thank Josh Swanson for a slick proof of Lemma 5.3 and Mike Zabrocki for suggesting the use of polarization operators. The authors thank an anonymous referee for their careful reading of the paper.

# References

- [1] F. Bergeron. Algebraic Combinatorics and Coinvariant Spaces. CMS Treatises in Mathematics. Boca Raton: Taylor and Francis, 2009.
- [2] F. Bergeron. Multivariate diagonal coinvariant spaces for complex reflection groups. Adv. Math., 239 (2013), 97–108.
- [3] N. Bergeron and A. Garsia. On certain spaces of harmonic polynomials. In: *Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991),* 51–86, Contemp. Math. **138**, *Amer. Math. Soc., Providence, RI*, 1992.

- [4] A. Borel. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compass. *Ann. of Math.*, **57** (1953), 115–207.
- [5] S. Billey, B. Rhoades, and V. Tewari. Boolean product polynomials, Schur positivity, and Chern plethysm. Preprint, 2019. arXiv:1902.11165.
- [6] C. Chevalley. Invariants of finite groups generated by reflections. Amer. J. Math., 77 (4) (1955), 778–782.
- [7] P. Desrosiers, L. Lapointe, and P. Mathieu. Classical symmetric functions in superspace. J. Algebraic Combin., 24 (2006), 209–238.
- [8] A. Garsia, J. Haglund, J. Remmel, and M. Yoo. A proof of the Delta Conjecture when q=0. To appear, Ann. Combin., 2019. arXiv:1710.07078.
- [9] A. M. Garsia and C. Procesi. On certain graded  $S_n$ -modules and the q-Kostka polynomials. Adv. Math., **94** (1) (1992), 82–138.
- [10] J. Haglund, J. Remmel, and A. T. Wilson. The Delta Conjecture. Trans. Amer. Math. Soc., 370 (2018), 4029–4057
- [11] J. Haglund, B. Rhoades, and M. Shimozono. Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. Adv. Math., 329 (2018), 851–915.
- [12] J. Haglund, B. Rhoades, and M. Shimozono. Hall-Littlewood expansions of Schur delta operators at t = 0. Sém. Loth. Combin., **B79c** (2019).
- [13] T. Maeno, Y. Numata, and A. Wachi. Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups. Algebr. Represent. Th., 14 (4) (2007), 625–638.
- [14] B. Pawlowski and B. Rhoades. A flag variety for the Delta Conjecture. Trans. Amer. Math. Soc., 374 (2019), 8195–8248.
- [15] M. Peskin and D. Schroeder. (1995) An introduction to quantum field theory. Reading, Mass.: Addison-Wesley.
- [16] B. Rhoades. Ordered set partition statistics and the Delta Conjecture. J. Combin. Theory Ser. A, 154 (2018), 172–217.
- [17] B. Rhoades and A. T. Wilson. Tail positive words and generalized coinvariant algebras. *Electron. J. Combin.*, **24** (3) (2017), P3.21.
- [18] B. Rhoades and A. T. Wilson. Line arrangements and r-Stirling partitions. J. Comb., 10 (3) (2019), 411–431.
- [19] L. Solomon. Invariants of finite reflection groups. Nagoya Math. J., 22 (1963), 57-64.
- [20] T. Tanisaki. Defining ideals of the closures of conjugacy classes and representations of the Weyl groups. Tohoku Math. J. 33 (4) (1982), 575–585.
- [21] A. T. Wilson. An extension of MacMahon's Equidistribution Theorem to ordered multiset partitions. *Electron. J. Combin.*, **23** (1) (2016), P1.5.
- [22] M. Zabrocki. A module for the Delta conjecture. Preprint, 2019. arXiv:1902.08966.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CA, 92093, USA E-mail address: bprhoades@ucsd.edu

DEPARTMENT OF MATHEMATICS PORTLAND STATE UNIVERSITY PORTLAND, OR, 97201, USA E-mail address: andwils2@pdx.edu