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Abstract. Superspace is an algebra Ωn with n commuting generators x1, . . . , xn and
n anticommuting generators θ1, . . . , θn. We present an extension δn,k of the Vander-
monde determinant to Ωn which depends on positive integers k ≤ n. We use super-
space Vandermondes to build representations of the symmetric group Sn. In particu-
lar, we construct a doubly graded Sn-module Vn,k whose bigraded Frobenius image
grFrob(Vn,k; q, t) conjecturally equals the symmetric function ∆′ek−1

en appearing in the
Haglund-Remmel-Wilson Delta Conjecture. We prove the specialization of our con-
jecture at t = 0. We use a differentiation action of Ωn on itself to build bigraded
quotients Wn,k of Ωn which extend the Delta Conjecture coinvariant rings Rn,k defined
by Haglund-Rhoades-Shimozono and studied geometrically by Pawlowski-Rhoades.
Despite the fact that the Hilbert polynomials of the Rn,k are not palindromic, we show
that Wn,k exhibits a superspace version of Poincaré Duality.
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1 Introduction

The symmetric group Sn acts on the polynomial ring Q[x1, . . . , xn] by subscript permu-
tation. Polynomials in the invariant subring

Q[x1, . . . , xn]
Sn := { f ∈ Q[x1, . . . , xn] : w. f = f for all w ∈ Sn} (1.1)

are called symmetric polynomials. The Q-algebra Q[x1, . . . , xn]Sn is generated by the n
elementary symmetric polynomials e1, e2, . . . , en.

Let Q[x1, . . . , xn]
Sn
+ be the space of symmetric polynomials with vanishing constant

term. The invariant ideal In ⊆ Q[x1, . . . , xn] is given by

In := 〈Q[x1, . . . , xn]
Sn
+ 〉 = 〈e1, e2, . . . , en〉, (1.2)
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and the coinvariant ring is the corresponding quotient

Rn := Q[x1, . . . , xn]/In. (1.3)

The quotient Rn is simultaneously a graded ring and a graded Sn-module. The module
Rn is among the most important in algebraic combinatorics, with representation theory
tied to permutation combinatorics and a geometric realization as the cohomology of the
flag variety [1, 3].

The symmetric group Sn acts diagonally on the polynomial ringQ[x1, . . . , xn, y1, . . . , yn]
in 2n variables, viz. w.xi = xw(i) and w.yi := yw(i) for all w ∈ Sn and 1 ≤ i ≤ n. Garsia
and Haiman [4] initiated the study of the the diagonal coinvariant ring DRn defined by
modding out by those Sn-invariants with vanishing constant term:

DRn := Q[x1, . . . , xn, y1, . . . , yn]/〈Q[x1, . . . , xn, y1, . . . , yn]
Sn
+ 〉. (1.4)

Considering x-degree and y-degree separately, the ring DRn is a doubly graded Sn-
module which specializes to Rn when the y-variables are set to zero.

Haiman proved [8] that as ungraded Sn-modules we have DRn ∼= Q[Parkn] ⊗ sign
where Parkn is the permutation action of Sn on size n parking functions and sign is
the 1-dimensional sign representation of Sn. Haiman also proved more refined results
on the bigraded Sn-module structure of DRn; to state these we recall some facts about
Sn-modules.

The irreducible representations of Sn over Q are indexed by partitions of n; if λ ` n
is a partition, let Sλ be the corresponding Sn-irreducible. If V is any finite-dimensional
Sn-module, there exist unique multiplicities cλ ≥ 0 so that V ∼=

⊕
λ`n cλSλ. Let Λ denote

the ring of symmetric functions over the ground field Q(q, t) in the infinite variable set
x = (x1, x2, . . . ). The Frobenius image of V is the symmetric function Frob(V) ∈ Λ given
by Frob(V) := ∑λ`n cλsλ, where sλ is the Schur function.

In this extended abstract we will consider (multi)graded Sn-modules. If V =
⊕

i≥0 Vi
is a graded Sn-module with each graded piece Vi finite-dimensional, the graded Frobenius
image of V is grFrob(V; q) := ∑i≥0 qi · Frob(Vi). Even more generally, if V =

⊕
i,j≥0 Vi,j

or V =
⊕

i,j,k≥0 Vi,j,k is a doubly or triply graded Sn-module, we have the associated
bigraded and trigraded Frobenius images

grFrob(V; q, t) := ∑
i,j≥0

qitj · Frob(Vi,j) or grFrob(V; q, t, z) := ∑
i,j,k≥0

qitjzk · Frob(Vi,j,k),

respectively.
Haiman proved [8] that grFrob(DRn; q, t) = ∇en, where en is the degree n elementary

symmetric function and ∇ is the Bergeron-Garsia nabla operator. Therefore, describing
the bigraded Sn-isomorphism type of DRn is equivalent to finding the Schur expansion
of ∇en, but there is not even a conjecture in this direction. The monomial expansion of
∇en is given by the Shuffle Theorem [2].
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The Delta Conjecture is a conjectural extension of the Shuffle Theorem due to Haglund,
Remmel, and Wilson [6]. It depends on two positive integers k ≤ n and reads

∆′ek−1
en = Risen,k(x; q, t) = Valn,k(x; q, t). (1.5)

Here ∆′ek−1
is a certain symmetric function operator and Rise and Val are formal power

series defined using the combinatorics of lattice paths; see [6] for details. When k = n,
the Delta Conjecture reduces to the Shuffle Theorem.

The Delta Conjecture is open as of this writing, but combining the work of [5, 7, 11,
14] it is known at q = 0. More precisely, we have

∆′ek−1
en |t=0= Risen,k(x; q, 0) = Risen,k(x; 0, q) = Valn,k(x; q, 0) = Valn,k(x; 0, q). (1.6)

In this paper we define a doubly graded Sn-module Vn,k for any positive integers
k ≤ n and conjecture that grFrob(Vn,k; q, t) = ∆′ek−1

en (see Conjecture 1). That is, we
conjecture that Vn,k is a module for the Delta Conjecture. We prove this conjecture at
t = 0. In order to describeVn,k, we introduce new combinatorial objects called superspace
Vandermondes.

Superspace of rank n is the unital associative Q-algebra Ωn generated by 2n symbols
x1, . . . , xn, θ1, . . . , θn subject to the relations

xixj = xjxi xiθj = θjxi θiθj = −θjθi

for all 1 ≤ i, j ≤ n.1 Setting the θ-variables to zero recovers the classical polynomial
ring Q[x1, . . . , xn]. By considering x-degree and θ-degree separately, Ωn is a doubly
graded algebra. The ring Ωn carries a diagonal action of Sn given by w.xi := xw(i) and
w.θi := θw(i) for w ∈ Sn and 1 ≤ i ≤ n.

Defintion 1. Let k ≤ n be positive integers. The superspace Vandermonde δn,k is the follow-
ing element of Ωn:

δn,k := εn.(xk−1
1 xk−1

2 · · · xk−1
n−k+1xk−2

n−k+2 · · · x
1
n−1x0

nθ1θ2 · · · θn−k). (1.7)

Here εn := ∑w∈Sn sign(w) ·w ∈ Q[Sn] is the antisymmetrizing element in the symmetric group
algebra.

For example, when n = 3 and k = 2 we have

δ3,2 = ε3.(x1x2θ1) = x1x2θ1 − x1x2θ2 − x1x3θ1 + x1x3θ3 + x2x3θ2 − x2x3θ3.

1The ‘super’ in superspace comes from supersymmetry in physics: the x-variables index bosons and
the θ-variables index fermions. Extending coefficients to the reals, Ωn is the ring of polynomial-valued
differential forms on Euclidean n-space – this is why we write Ω.
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The superpolynomial δn,k is always a nonzero element of Ωn, thanks to the θ-variables.
When k = n, the superspace Vandermonde δn,k reduces to the classical Vandermonde
determinant εn.(xn−1

1 xn−2
2 · · · x1

n−1x0
n).

The δn,k are seeds we use to grow modules. By starting with δn,k and closing under
various differential operators and linearity we will construct:

• A singly graded subspace Vn,k of Ωn which satisfies grFrob(Vn,k; q) = ∆′ek−1
en |t=0

(see Section 2).

• A doubly graded extension Vn,k of Vn,k with grFrob(Vn,k; q, t) conjecturally given
by ∆′ek−1

en (see Section 2).

• A doubly graded Sn-stable quotient Wn,k of Ωn which extends Vn,k and exhibits a
number of symmetries including a superspace variant of Poincaré Duality (see Sec-
tion 4). Wn,k extends the cohomology of the space of spanning line configurations
studied by Pawlowski and Rhoades [10].

This paper is not the first to propose connections between the Delta Conjecture and
superspace. The Fields Institute Combinatorics Group in general, and Mike Zabrocki
in particular, conjectured [15] that representation-theoretic models for the Delta Conjec-
ture can be obtained by looking at coinvariant-type quotients defined using superspace
Ωn and an extension Ωn[y1, . . . , yn] of superspace involving n new commuting variables
y1, . . . , yn. We discuss the connection between our work and their conjectures in Sec-
tion 3. In a nutshell, we are able to prove that our proposed Delta model Vn,k is valid at
t = 0, but the corresponding case of their conjecture remains open.

2 The Sn-modules Vn,k and Vn,k and the Delta Conjecture

For 1 ≤ i ≤ n, the partial derivative operator ∂/∂xi acts naturally on the polynomial ring
Q[x1, . . . , xn]. Superspace admits the tensor product decomposition

Ωn = Q[x1, . . . , xn]⊗∧{θ1, . . . , θn} (2.1)

where ∧{θ1, . . . , θn} is the exterior algebra on the generators θ1, . . . , θn. The operator
∂/∂xi therefore acts on Ωn by acting on the first tensor factor.

Our first new Sn-module is defined as follows. Starting with the superspace Vander-
monde δn,k, we close under the operators ∂/∂x1, . . . , ∂/∂xn and linearity.

Defintion 2. Let k ≤ n be positive integers. The vector space Vn,k is the smallest Q-linear
subspace of Ωn which

• contains the superspace Vandermonde δn,k, and
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• is closed under the n partial derivatives ∂/∂x1, . . . , ∂/∂xn.

The subspace Vn,k ⊆ Ωn is closed under the action of Sn. Furthermore, Vn,k a doubly
graded subspace of Ωn. If we ignore the θ-grading (which is constant of degree n− k)
and focus on the x-grading, we see that Vn,k is a singly-graded Sn-module.

To describe the Schur expansion of grFrob(Vn,k; q), we need some notation. Let T
be a standard Young tableau with n boxes. A number 1 ≤ i ≤ n − 1 is a descent of T
if i appears in a row above i + 1. The descent number des(T) is the number of descents
and the major index maj(T) is the sum of the descents in T. We write shape(T) ` n
for the partition of n obtained by erasing the numbers in T. We also use the standard
q-numbers, q-factorials, and q-binomials:

[n]q := 1 + q + · · ·+ qn−1 [n]!q := [n]q[n− 1]q · · · [1]q
[

n
k

]
q

:=
[n]!q

[k]!q[n− k]!q
. (2.2)

Theorem 1. Let k ≤ n be positive integers. The graded Frobenius image of Vn,k is given by
either of the expressions

grFrob(Vn,k; q) = ∑
T∈SYT(n)

qmaj(T)+(n−k
2 )−(n−k)·des(T)

[
des(T)
n− k

]
q
sshape(T) (2.3)

= ∆′ek−1
en |t=0 (2.4)

where the sum is over all standard Young tableaux T with n boxes.

Equation (1.6) allows us to replace the ∆′ek−1
en |t=0 in Theorem 1 with any of the

symmetric functions Risen,k(x; q, 0), Risen,k(x; 0, q), Valn,k(x; q, 0), or Valn,k(x; 0, q). Thanks
to Theorem 1, it is easy to describe the ungraded Sn-isomorphism type of Vn,k.

Corollary 1. Let k ≤ n be positive integers and consider the permutation action of Sn on the
family OPn,k of k-block ordered set partitions (B1, B2, . . . , Bk) of {1, 2, . . . , n}. As ungraded
Sn-modules we have

Vn,k
∼= Q[OPn,k]⊗ sign (2.5)

where sign is the 1-dimensional sign representation of Sn.

The (signless) Stirling number of the second kind Stir(n, k) counts (unordered) k-block
set partitions of {1, 2, . . . , n}. Corollary 1 implies dim Vn,k = k! · Stir(n, k). The graded
dimension of Vn,k is given by a suitable q-analog of this formula.

Recall that the Hilbert series of a graded vector space V =
⊕

i≥0 Vi is the formal power
series Hilb(V; q) := ∑i≥0 qi · dim Vi. The q-Stirling number Stirq(n, k) is defined by the
recursion

Stirq(n, k) = Stirq(n− 1, k− 1) + [k]q · Stirq(n− 1, k) (2.6)

together with the initial conditions Stirq(0, 0) = 1 and Stirq(0, k) = 0 for any k > 0.
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Corollary 2. The Hilbert series of Vn,k is Hilb(Vn,k; q) = [k]!q · Stirq(n, k).

In order to describe our proposed model for the Delta Conjecture, we need more
variables. Let y1, . . . , yn be n new commuting variables and consider the extension
Ωn[y1, . . . , yn] of superspace defined formally by the tensor product

Ωn[y1, . . . , yn] := Q[x1, . . . , xn]⊗Q[y1, . . . , yn]⊗∧{θ1, . . . , θn}. (2.7)

This is a triply graded Sn-module with action w.xi := xw(i), w.yi := yw(i), w.θi := θw(i).
This ring admits an action of partial derivatives ∂/∂xi and ∂/∂yi in both the x-variables
and y-variables.

Defintion 3. For k ≤ n, let Vn,k be the smallest Q-linear subspace of Ωn[y1, . . . , yn] which

• contains the superspace Vandermonde δn,k (in the x-variables and θ-variables alone),

• is closed under the polarization operator ∑n
s=1 ys(∂/∂xs)j for each j ≥ 1, and

• is closed under the 2n partial derivatives ∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn.

The Sn-module Vn,k is concentrated in θ-degree n− k. By considering x-degree and
y-degree, the space Vn,k attains the structure of a doubly graded Sn-module.

Conjecture 1. Let k ≤ n be positive integers. The doubly graded Frobenius image of Vn,k is
given by

grFrob(Vn,k; q, t) = ∆′ek−1
en. (2.8)

Conjecture 1 is true at t = 0 by Theorem 1. Conjecture 1 is true when k = n by
the work of Haiman [8]. Conjecture 1 has been checked on computer for n ≤ 4 (and at
n = 5 on the level of bigraded Hilbert series). Since every increase n → n + 1 adds two
new commuting variables and one new anticommuting variable, studying Conjecture 1
involves considerable computational challenges as n grows.

3 The Fields and Zabrocki Conjectures

In this section we describe alternative conjectural representation-theoretic models for
the Delta Conjecture arising from quotients of Ωn and Ωn[y1, . . . , yn]. Recall that the
symmetric group Sn acts diagonally on superspace Ωn. Solomon proved [12] that the
ring (Ωn)Sn ⊆ Ωn of Sn-invariants is a free Q[x1, . . . , xn]Sn-module on the generating set
{dei1 · · · deir : 1 ≤ i1 < · · · < ir ≤ n} where d := ∑n

j=1 θj · (∂/∂xj) is the total derivative
operator.

Let 〈(Ωn)
Sn
+ 〉 ⊆ Ωn be the two-sided ideal of Ωn generated by Sn-invariants with van-

ishing constant term. By considering x-degree and θ-degree, the quotient Ωn/〈(Ωn)
Sn
+ 〉
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is a doubly graded Sn-module. We view this quotient as a ‘superspace coinvariant ring’.
The following conjecture about its doubly graded Frobenius image was made by the
Combinatorics Group at the Fields Institute.

Fields Conjecture. (see [15]) Let n be a positive integer. The doubly graded Frobenius image of
Ωn/〈(Ωn)

Sn
+ 〉 is given by

grFrob(Ωn/〈(Ωn)
Sn
+ 〉; q, z) =

n

∑
k=1

zn−k · ∆′ek−1
en |t=0, (3.1)

where q tracks x-degree and z tracks θ-degree.

If the Fields Conjecture is true, the bigraded Hilbert series of Ωn/〈(Ωn)
Sn
+ 〉 would be

given by

Hilb(Ωn/〈(Ωn)
Sn
+ 〉; q, z) =

n

∑
k=1

zn−k · [k]!q · Stirq(n, k) (3.2)

where q tracks x-degree and z tracks θ-degree. The Fields Combinatorics Group proved
(personal communication) the inequality

Hilb(Ωn/〈(Ωn)
Sn
+ 〉; q, z) ≥

n

∑
k=1

zn−k · [k]!q · Stirq(n, k) (3.3)

where f (q, z) ≥ g(q, z) means that the difference f (q, z)− g(q, z) is a polynomial in q, z
with nonnegative coefficients.

Recall that the alternating subspace of an Sn-module V is given by

{v ∈ V : w.v = sign(w) · v for all w ∈ Sn}.

Let An be the alternating subspace of Ωn/〈(Ωn)
Sn
+ 〉. The alternant space An is a doubly

graded vector space. The Fields Conjecture would imply that

Hilb(An; q, z) =
n

∑
k=1

zn−k · q(
k
2) ·
[

n− 1
k− 1

]
q
. (3.4)

Equation (3.4) has been verified by Swanson and Wallach [13], giving further evidence
for the Fields Conjecture.

If the Fields Conjecture is true, we would have an isomorphism of ungraded Sn-
modules Ωn/〈(Ωn)

Sn
+ 〉 ∼=

⊕n
k=1(Q[OPn,k] ⊗ sign). At present, it is unknown whether

either of these Sn-modules injects into the other.
The symmetric functions appearing in the Fields Conjecture and Theorem 1 are

closely related. We propose the following ‘bridge conjecture’ whose truth would yield
the Fields Conjecture. Let ϕ be the composite linear map

ϕ : Vn,1 ⊕ · · · ⊕Vn,n ↪→ Ωn � Ωn/〈(Ωn)
Sn
+ 〉 (3.5)
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obtained by including the direct sum Vn,1 ⊕ · · · ⊕Vn,n into superspace and then project-
ing onto the superspace coinvariant ring.

Conjecture 2. The linear map ϕ is bijective.

Mike Zabrocki studied the triply diagonal action of Sn on the ring Ωn[y1, . . . , yn] and
the associated space Ωn[y1, . . . , yn]

Sn
+ of Sn-invariants with vanishing constant term. He

checked the following conjecture by computer for n ≤ 6.

Zabrocki Conjecture. ([15]) Let n be a positive integer. We have

grFrob(Ωn[y1, . . . , yn]/〈Ωn[y1, . . . , yn]
Sn
+ 〉; q, t, z) =

n

∑
k=1

zn−k · ∆′ek−1
en (3.6)

where q tracks x-degree, t tracks y-degree, and z tracks θ-degree.

The Zabrocki Conjecture is related to Conjecture 1 in the same way as the Fields
Conjecture is related to Theorem 1. Since Theorem 1 is proven whereas the Fields Con-
jecture remains open, superspace Vandermondes might prove an easier road to Delta
Conjecture modules than quotient rings.

4 The ring Wn,k and Super Poincaré Duality

So far we have built Sn-modules Vn,k and Vn,k by starting with the superspace Van-
dermonde δn,k and closing under partial derivatives in the commuting variables xi, yi
(and potentially polarization operators). The modules Vn,k and Vn,k have the defect of
not being closed under multiplication and not admitting a natural ring structure. In
this section we build a new bigraded Sn-module Wn,k from δn,k. The module Wn,k is
naturally a bigraded quotient of Ωn. The module Wn,k turns out to extend both Vn,k
and the cohomology ring H•(Xn,k;Q) of a variety Xn,k of line configurations studied by
Pawlowski and Rhoades. In order to define Wn,k, we need operators ∂/∂θi on Ωn which
differentiate with respect to anticommuting variables.

For 1 ≤ i ≤ n, let ∂/∂θi : Ωn → Ωn be the Q[x1, . . . , xn]-module endomorphism
characterized by

∂/∂θi : θj1 · · · θjr 7→
{
(−1)s−1θj1 · · · θ̂js · · · θjr if js = i
0 if i 6= j1, . . . , jr

(4.1)

where 1 ≤ j1, . . . , jr ≤ n are distinct indices and ·̂ means omission. The sign (−1)s−1 is
necessary to ensure that ∂/∂θi is well-defined.

Defintion 4. For positive integers k ≤ n, let Wn,k be the smallest linear subspace of Ωn which
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• contains the superspace Vandermonde δn,k, and

• is closed under the 2n operators ∂/∂x1, . . . , ∂/∂xn, ∂/∂θ1, . . . , ∂/∂θn.

The vector space Wn,k is a bigraded Sn-module. We use an action of superspace on
itself to show that Wn,k is naturally a bigraded quotient of Ωn.

The operators ∂/∂θi and ∂/∂xi on Ωn satisfy the relations

(∂/∂xi)(∂/∂xj) = (∂/∂xj)(∂/∂xi) (∂/∂xi)(∂/∂θj) = (∂/∂θj)(∂/∂xi)

(∂/∂θi)(∂/∂θj) = −(∂/∂θj)(∂/∂θi)

for all 1 ≤ i, j ≤ n. These are the defining relations of Ωn, so for any superpolynomial
f = f (x1, . . . , xn, θ1, . . . , θn) we have an unambiguous operator ∂ f on Ωn obtained by
replacing each xi in f with ∂/∂xi and each θi in f by ∂/∂θi. This gives rise to an action
� : Ωn ×Ωn → Ωn of superspace on itself by the rule

f � g := ∂ f (g). (4.2)

Proposition 1. Let ann(δn,k) := { f ∈ Ωn : f � δn,k = 0} be the annihilator in Ωn of the
superspace Vandermonde δn,k. Then ann(δn,k) is a two-sided ideal in Ωn which is Sn-stable and
bigraded. The canonical composition

Wn,k ↪→ Ωn � Ωn/ann(δn,k) (4.3)

is an isomorphism of bigraded Sn-modules.

Thanks to Proposition 1, there is a natural multiplication operation on Wn,k, so that
the anticommuting differentiation operators ∂/∂θi give rise to a ring structure which Vn,k
and Vn,k lack.

What do the bigraded Sn-modules Wn,k look like? We display grFrob(W4,2; q, z) in
matrix format, with rows labeling θ-degree and columns labeling x-degree.

grFrob(W4,2; q, z) =

 s4 s4 + s31 s4 + s31 + s22 s31
s31 2s31 + s22 + s211 s31 + s22 + 2s211 s211
s211 s22 + s211 + s1111 s211 + s1111 s1111

 (4.4)

The matrices grFrob(Wn,k; q, z) enjoy the following properties. Let Un = S(n−1,1) be the
(n− 1)-dimensional reflection representation of Sn.

Theorem 2. There hold the following facts about the bigraded Sn-module Wn,k.

1. (Special k) We have Wn,n ∼= Rn (coinvariant ring) and Wn,1
∼= ∧Un (exterior algebra).

2. (Bottom x-degree) The x-degree 0 piece of Wn,k is isomorphic to
⊕n−k

j=0 ∧jUn.
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3. (Top x-degree) The top x-degree of Wn,k is (k
2) + (n− k) · (k− 1); this piece of Wn,k is

isomorphic to
⊕n−k

j=0 ∧jUn ⊗ sign.

4. (Top θ-degree) The top (= n− k) θ-degree piece of Wn,k is isomorphic to Vn,k.

5. (Bottom θ-degree) Let In,k ⊆ Q[x1, . . . , xn] be In,k := 〈xk
1, . . . , xk

n, en, en−1, . . . , en−k+1〉
and let

Rn,k := Q[x1, . . . , xn]/In,k. (4.5)

The θ-degree 0 piece of Wn,k is isomorphic to Rn,k.

The quotient rings Rn,k displayed in Item 5 of Theorem 2 were introduced by Haglund,
Rhoades, and Shimozono [7]. They proved that

grFrob(Rn,k; q) = (revq ◦ω)∆′ek−1
en |t=0, (4.6)

where ω is the symmetric function involution which trades sλ and sλ′ and revq reverses
the coefficient sequences of polynomials in q. The ring Rn,k was the first model for a
coinvariant ring attached to the Delta Conjecture.

The rings Rn,k have a geometric interpretation. A line in the k-dimensional complex
vector space Ck is a 1-dimensional linear subspace. Pawlowski and Rhoades defined [10]
the variety Xn,k of spanning configurations of n lines in Ck:

Xn,k := {(`1, . . . , `n) : `i ⊆ Ck a line and `1 + · · ·+ `n = Ck}. (4.7)

The space Xn,k and its cohomology ring H•(Xn,k;Q) admit Sn-actions by line permu-
tation. Pawlowski and Rhoades presented [10] the cohomology H•(Xn,k;Q) as

H•(Xn,k;Q) = Q[x1, . . . , xn]/In,k = Rn,k. (4.8)

We may therefore interpret the θ-degree 0 piece of Wn,k as the cohomology of Xn,k.
The ‘twist’ (revq ◦ω) involved in Equation (4.6) can be visualized in the matrix repre-

senting grFrob(W4,2; q, z) in (4.4). Namely, the top row can be obtained from the bottom
row by reversal together with applying the operator ω. The reader may notice that the
middle row of grFrob(W4,2; q, z) is invariant under reversal followed by ω. This obser-
vation generalizes as follows.

Theorem 3. The matrix representing grFrob(Wn,k; q, z) is invariant under 180◦ rotation fol-
lowed by the application of ω to each entry.

Recall that a sequence of numbers (a0, a1, . . . , ad) is palindromic if ai = ad−i for all i
and unimodal if a0 ≤ a1 ≤ · · · ≤ ar ≥ ar+1 ≥ · · · ≥ ad for some r. A famous example
of a polynomial in Q[q] with a palindromic and unimodal coefficient sequence is the
q-factorial [n]!q = (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1). While these facts about
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[n]!q follow from showing that if f (q) and g(q) have palindromic unimodal coefficient
sequences, so does f (q) · g(q), there is a deeper derivation coming from geometry.

A finite-dimensional graded Q-algebra A =
⊕d

i=0 Ai is a Poincaré Duality Algebra if
Ad
∼= Q is 1-dimensional and if for all 0 ≤ i ≤ d the map Ai ⊗ Ad−i → Ad

∼= Q is a
perfect pairing. This forces dim Ai = dim Ad−i.

Let F`n be the variety of complete flags in Cn. Borel proved [1] that the cohomology
of F`n has presentation H•(F`n;Q) = Rn given by the coinvariant ring. Since F`n is a
compact complex manifold, the ring H•(F`n;Q) is a Poincaré Duality Algebra and the
palindromicity of its Hilbert polynomial [n]!q follows.

The complex variety Xn,k is smooth, but usually not compact. Indeed, the cohomol-
ogy ring H•(Xn,k;Q) = Rn,k does not usually have a palindromic Hilbert series, e.g.
Hilb(R3,2; q) = 1 + 3q + 2q2. However, the extension Wn,k ⊇ Rn,k exhibits a superspace
version of Poincaré Duality.

Let A =
⊕d

i=0
⊕e

j=0 Ai,j be a finite-dimensional bigraded Q-algebra. We say that A is
a Super Poincaré Duality Algebra if Ad,e

∼= Q and Ai,j⊗ Ad−i,e−j → Ad,e is a perfect pairing
for all 0 ≤ i ≤ d and 0 ≤ j ≤ e.

Theorem 4. The bigraded algebra Wn,k is a Super Poincaré Duality Algebra.

Does Theorem 4 have geometric meaning? Is there a ‘superspace version’ of coho-
mology which yields Wn,k when applied to Xn,k?

The unimodality of [n]!q also has geometric meaning. A Poincaré Duality Algebra
A =

⊕d
i=0 Ai satisfies the Hard Lefschetz Property if there exists an element ` ∈ A1 (called

a Lefschetz element) such that for any i ≤ d/2 the map Ai
×`d−2i
−−−→ Ad−i of multiplication

by `d−2i is bijective.
Since F`n is a compact complex manifold and H•(F`n;Q) = Rn, the ring Rn satisfies

the Hard Lefschetz Property. Maneo, Numata, and Wachi proved [9] that a linear form
` = c1x1 + · · ·+ cnxn is a Lefschetz element if and only if c1, . . . , cn ∈ Q are distinct.

As a closing example, we display the bigraded Hilbert series Hilb(W4,2; q, z) as a
matrix where rows index θ-degree and columns index x-degree.

Hilb(W4,2; q, z) =

1 4 6 3
3 11 11 3
3 6 4 1

 (4.9)

Either Theorem 3 or Theorem 4 imply that the matrix Hilb(Wn,k; q, z) is always invariant
under 180◦ rotation.

Conjecture 3. Each row and column in the matrix representing Hilb(Wn,k; q, z) is unimodal.

Conjecture 3 would be best proven by showing thatWn,k satisfies an as-yet-undefined
‘Super Hard Lefschetz Property’.
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