Vandermondes, Superspace, and Delta Conjecture modules

Brendon Rhoades ${ }^{* 1}$ and Andrew Timothy Wilson ${ }^{\dagger}{ }^{2}$
${ }^{1}$ Department of Mathematics, University of California - San Diego, La Jolla, CA, 92093, USA
${ }^{2}$ Department of Mathematics and Statistics, Portland State University, Portland, OR, 97201, USA

Abstract

Superspace is an algebra Ω_{n} with n commuting generators x_{1}, \ldots, x_{n} and n anticommuting generators $\theta_{1}, \ldots, \theta_{n}$. We present an extension $\delta_{n, k}$ of the Vandermonde determinant to Ω_{n} which depends on positive integers $k \leq n$. We use superspace Vandermondes to build representations of the symmetric group S_{n}. In particular, we construct a doubly graded S_{n}-module $\mathbb{V}_{n, k}$ whose bigraded Frobenius image $\operatorname{grFrob}\left(\mathbb{V}_{n, k} ; q, t\right)$ conjecturally equals the symmetric function $\Delta_{e_{k-1}}^{\prime} e_{n}$ appearing in the Haglund-Remmel-Wilson Delta Conjecture. We prove the specialization of our conjecture at $t=0$. We use a differentiation action of Ω_{n} on itself to build bigraded quotients $\mathbb{W}_{n, k}$ of Ω_{n} which extend the Delta Conjecture coinvariant rings $R_{n, k}$ defined by Haglund-Rhoades-Shimozono and studied geometrically by Pawlowski-Rhoades. Despite the fact that the Hilbert polynomials of the $R_{n, k}$ are not palindromic, we show that $\mathbb{W}_{n, k}$ exhibits a superspace version of Poincaré Duality.

Keywords: Vandermonde, superspace, S_{n}-module

1 Introduction

The symmetric group S_{n} acts on the polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by subscript permutation. Polynomials in the invariant subring

$$
\begin{equation*}
\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}:=\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]: w \cdot f=f \text { for all } w \in S_{n}\right\} \tag{1.1}
\end{equation*}
$$

are called symmetric polynomials. The \mathbb{Q}-algebra $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ is generated by the n elementary symmetric polynomials $e_{1}, e_{2}, \ldots, e_{n}$.

Let $\mathrm{Q}\left[x_{1}, \ldots, x_{n}\right]_{+}^{S_{n}}$ be the space of symmetric polynomials with vanishing constant term. The invariant ideal $I_{n} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is given by

$$
\begin{equation*}
I_{n}:=\left\langle\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]_{+}^{S_{n}}\right\rangle=\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle \tag{1.2}
\end{equation*}
$$

[^0]and the coinvariant ring is the corresponding quotient
\[

$$
\begin{equation*}
R_{n}:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I_{n} \tag{1.3}
\end{equation*}
$$

\]

The quotient R_{n} is simultaneously a graded ring and a graded S_{n}-module. The module R_{n} is among the most important in algebraic combinatorics, with representation theory tied to permutation combinatorics and a geometric realization as the cohomology of the flag variety $[1,3]$.

The symmetric group S_{n} acts diagonally on the polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ in $2 n$ variables, viz. $w \cdot x_{i}=x_{w(i)}$ and $w \cdot y_{i}:=y_{w(i)}$ for all $w \in S_{n}$ and $1 \leq i \leq n$. Garsia and Haiman [4] initiated the study of the the diagonal coinvariant ring $D R_{n}$ defined by modding out by those S_{n}-invariants with vanishing constant term:

$$
\begin{equation*}
D R_{n}:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] /\left\langle\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]_{+}^{S_{n}}\right\rangle \tag{1.4}
\end{equation*}
$$

Considering x-degree and y-degree separately, the ring $D R_{n}$ is a doubly graded $S_{n^{-}}$ module which specializes to R_{n} when the y-variables are set to zero.

Haiman proved [8] that as ungraded S_{n}-modules we have $D R_{n} \cong \mathbb{Q}\left[\operatorname{Park}_{n}\right] \otimes \operatorname{sign}$ where Park_{n} is the permutation action of S_{n} on size n parking functions and sign is the 1-dimensional sign representation of S_{n}. Haiman also proved more refined results on the bigraded S_{n}-module structure of $D R_{n}$; to state these we recall some facts about S_{n}-modules.

The irreducible representations of S_{n} over \mathbb{Q} are indexed by partitions of n; if $\lambda \vdash n$ is a partition, let S^{λ} be the corresponding S_{n}-irreducible. If V is any finite-dimensional S_{n}-module, there exist unique multiplicities $c_{\lambda} \geq 0$ so that $V \cong \bigoplus_{\lambda \vdash n} c_{\lambda} S^{\lambda}$. Let Λ denote the ring of symmetric functions over the ground field $\mathbb{Q}(q, t)$ in the infinite variable set $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$. The Frobenius image of V is the symmetric function $\operatorname{Frob}(V) \in \Lambda$ given by $\operatorname{Frob}(V):=\sum_{\lambda \vdash n} c_{\lambda} s_{\lambda}$, where s_{λ} is the Schur function.

In this extended abstract we will consider (multi)graded S_{n}-modules. If $V=\bigoplus_{i \geq 0} V_{i}$ is a graded S_{n}-module with each graded piece V_{i} finite-dimensional, the graded Frobenius image of V is $\operatorname{grFrob}(V ; q):=\sum_{i \geq 0} q^{i} \cdot \operatorname{Frob}\left(V_{i}\right)$. Even more generally, if $V=\bigoplus_{i, j \geq 0} V_{i, j}$ or $V=\bigoplus_{i, j, k \geq 0} V_{i, j, k}$ is a doubly or triply graded S_{n}-module, we have the associated bigraded and trigraded Frobenius images

$$
\operatorname{grFrob}(V ; q, t):=\sum_{i, j \geq 0} q^{i} t^{j} \cdot \operatorname{Frob}\left(V_{i, j}\right) \quad \text { or } \quad \operatorname{grFrob}(V ; q, t, z):=\sum_{i, j, k \geq 0} q^{i} t^{j} z^{k} \cdot \operatorname{Frob}\left(V_{i, j, k}\right),
$$

respectively.
Haiman proved [8] that $\operatorname{grFrob}\left(D R_{n} ; q, t\right)=\nabla e_{n}$, where e_{n} is the degree n elementary symmetric function and ∇ is the Bergeron-Garsia nabla operator. Therefore, describing the bigraded S_{n}-isomorphism type of $D R_{n}$ is equivalent to finding the Schur expansion of ∇e_{n}, but there is not even a conjecture in this direction. The monomial expansion of ∇e_{n} is given by the Shuffle Theorem [2].

The Delta Conjecture is a conjectural extension of the Shuffle Theorem due to Haglund, Remmel, and Wilson [6]. It depends on two positive integers $k \leq n$ and reads

$$
\begin{equation*}
\Delta_{e_{k-1}}^{\prime} e_{n}=\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; q, t) \tag{1.5}
\end{equation*}
$$

Here $\Delta_{e_{k-1}}^{\prime}$ is a certain symmetric function operator and Rise and Val are formal power series defined using the combinatorics of lattice paths; see [6] for details. When $k=n$, the Delta Conjecture reduces to the Shuffle Theorem.

The Delta Conjecture is open as of this writing, but combining the work of $[5,7,11$, 14] it is known at $q=0$. More precisely, we have

$$
\begin{equation*}
\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}=\operatorname{Rise}_{n, k}(\mathbf{x} ; q, 0)=\operatorname{Rise}_{n, k}(\mathbf{x} ; 0, q)=\operatorname{Val}_{n, k}(\mathbf{x} ; q, 0)=\operatorname{Val}_{n, k}(\mathbf{x} ; 0, q) \tag{1.6}
\end{equation*}
$$

In this paper we define a doubly graded S_{n}-module $\mathbb{V}_{n, k}$ for any positive integers $k \leq n$ and conjecture that $\operatorname{grFrob}\left(\mathbb{V}_{n, k} ; q, t\right)=\Delta_{e_{k-1}}^{\prime} e_{n}$ (see Conjecture 1). That is, we conjecture that $\mathbb{V}_{n, k}$ is a module for the Delta Conjecture. We prove this conjecture at $t=0$. In order to describe $\mathbb{V}_{n, k}$, we introduce new combinatorial objects called superspace Vandermondes.

Superspace of rank n is the unital associative \mathbb{Q}-algebra Ω_{n} generated by $2 n$ symbols $x_{1}, \ldots, x_{n}, \theta_{1}, \ldots, \theta_{n}$ subject to the relations

$$
x_{i} x_{j}=x_{j} x_{i} \quad x_{i} \theta_{j}=\theta_{j} x_{i} \quad \theta_{i} \theta_{j}=-\theta_{j} \theta_{i}
$$

for all $1 \leq i, j \leq n .^{1}$ Setting the θ-variables to zero recovers the classical polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. By considering x-degree and θ-degree separately, Ω_{n} is a doubly graded algebra. The ring Ω_{n} carries a diagonal action of S_{n} given by $w \cdot x_{i}:=x_{w(i)}$ and $w . \theta_{i}:=\theta_{w(i)}$ for $w \in S_{n}$ and $1 \leq i \leq n$.

Defintion 1. Let $k \leq n$ be positive integers. The superspace Vandermonde $\delta_{n, k}$ is the following element of Ω_{n} :

$$
\begin{equation*}
\delta_{n, k}:=\varepsilon_{n} \cdot\left(x_{1}^{k-1} x_{2}^{k-1} \cdots x_{n-k+1}^{k-1} x_{n-k+2}^{k-2} \cdots x_{n-1}^{1} x_{n}^{0} \theta_{1} \theta_{2} \cdots \theta_{n-k}\right) . \tag{1.7}
\end{equation*}
$$

Here $\varepsilon_{n}:=\sum_{w \in S_{n}} \operatorname{sign}(w) \cdot w \in \mathbb{Q}\left[S_{n}\right]$ is the antisymmetrizing element in the symmetric group algebra.

For example, when $n=3$ and $k=2$ we have

$$
\delta_{3,2}=\varepsilon_{3} .\left(x_{1} x_{2} \theta_{1}\right)=x_{1} x_{2} \theta_{1}-x_{1} x_{2} \theta_{2}-x_{1} x_{3} \theta_{1}+x_{1} x_{3} \theta_{3}+x_{2} x_{3} \theta_{2}-x_{2} x_{3} \theta_{3} .
$$

[^1]The superpolynomial $\delta_{n, k}$ is always a nonzero element of Ω_{n}, thanks to the θ-variables. When $k=n$, the superspace Vandermonde $\delta_{n, k}$ reduces to the classical Vandermonde determinant $\varepsilon_{n} \cdot\left(x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}^{1} x_{n}^{0}\right)$.

The $\delta_{n, k}$ are seeds we use to grow modules. By starting with $\delta_{n, k}$ and closing under various differential operators and linearity we will construct:

- A singly graded subspace $V_{n, k}$ of Ω_{n} which satisfies $\operatorname{grFrob}\left(V_{n, k} ; q\right)=\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}$ (see Section 2).
- A doubly graded extension $\mathbb{V}_{n, k}$ of $V_{n, k}$ with $\operatorname{grFrob}\left(\mathbb{V}_{n, k} ; q, t\right)$ conjecturally given by $\Delta_{e_{k-1}}^{\prime} e_{n}$ (see Section 2).
- A doubly graded S_{n}-stable quotient $\mathbb{W}_{n, k}$ of Ω_{n} which extends $V_{n, k}$ and exhibits a number of symmetries including a superspace variant of Poincaré Duality (see Section 4). $\mathbb{W}_{n, k}$ extends the cohomology of the space of spanning line configurations studied by Pawlowski and Rhoades [10].

This paper is not the first to propose connections between the Delta Conjecture and superspace. The Fields Institute Combinatorics Group in general, and Mike Zabrocki in particular, conjectured [15] that representation-theoretic models for the Delta Conjecture can be obtained by looking at coinvariant-type quotients defined using superspace Ω_{n} and an extension $\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]$ of superspace involving n new commuting variables y_{1}, \ldots, y_{n}. We discuss the connection between our work and their conjectures in Section 3. In a nutshell, we are able to prove that our proposed Delta model $\mathbb{V}_{n, k}$ is valid at $t=0$, but the corresponding case of their conjecture remains open.

2 The S_{n}-modules $V_{n, k}$ and $\mathbb{V}_{n, k}$ and the Delta Conjecture

For $1 \leq i \leq n$, the partial derivative operator $\partial / \partial x_{i}$ acts naturally on the polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. Superspace admits the tensor product decomposition

$$
\begin{equation*}
\Omega_{n}=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] \otimes \wedge\left\{\theta_{1}, \ldots, \theta_{n}\right\} \tag{2.1}
\end{equation*}
$$

where $\wedge\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ is the exterior algebra on the generators $\theta_{1}, \ldots, \theta_{n}$. The operator $\partial / \partial x_{i}$ therefore acts on Ω_{n} by acting on the first tensor factor.

Our first new S_{n}-module is defined as follows. Starting with the superspace Vandermonde $\delta_{n, k}$, we close under the operators $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$ and linearity.

Defintion 2. Let $k \leq n$ be positive integers. The vector space $V_{n, k}$ is the smallest \mathbb{Q}-linear subspace of Ω_{n} which

- contains the superspace Vandermonde $\delta_{n, k}$, and
- is closed under the n partial derivatives $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$.

The subspace $V_{n, k} \subseteq \Omega_{n}$ is closed under the action of S_{n}. Furthermore, $V_{n, k}$ a doubly graded subspace of Ω_{n}. If we ignore the θ-grading (which is constant of degree $n-k$) and focus on the x-grading, we see that $V_{n, k}$ is a singly-graded S_{n}-module.

To describe the Schur expansion of $\operatorname{grFrob}\left(V_{n, k} ; q\right)$, we need some notation. Let T be a standard Young tableau with n boxes. A number $1 \leq i \leq n-1$ is a descent of T if i appears in a row above $i+1$. The descent number $\operatorname{des}(T)$ is the number of descents and the major index $\operatorname{maj}(T)$ is the sum of the descents in T. We write shape $(T) \vdash n$ for the partition of n obtained by erasing the numbers in T. We also use the standard q-numbers, q-factorials, and q-binomials:

$$
[n]_{q}:=1+q+\cdots+q^{n-1} \quad[n]!_{q}:=[n]_{q}[n-1]_{q} \cdots[1]_{q} \quad\left[\begin{array}{l}
n \tag{2.2}\\
k
\end{array}\right]_{q}:=\frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}}
$$

Theorem 1. Let $k \leq n$ be positive integers. The graded Frobenius image of $V_{n, k}$ is given by either of the expressions

$$
\begin{align*}
\operatorname{grFrob}\left(V_{n, k} ; q\right) & =\sum_{T \in \operatorname{SYT}(n)} q^{\operatorname{maj}(T)+\left({ }_{2}^{n-k}\right)-(n-k) \cdot \operatorname{des}(T)}\left[\begin{array}{c}
\operatorname{des}(T) \\
n-k
\end{array}\right]_{q} s_{\text {shape }(T)} \tag{2.3}\\
& =\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0} \tag{2.4}
\end{align*}
$$

where the sum is over all standard Young tableaux T with n boxes.
Equation (1.6) allows us to replace the $\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}$ in Theorem 1 with any of the symmetric functions $\operatorname{Rise}_{n, k}(\mathbf{x} ; q, 0)$, $\operatorname{Rise}_{n, k}(\mathbf{x} ; 0, q), \operatorname{Val}_{n, k}(\mathbf{x} ; q, 0)$, or $\operatorname{Val}_{n, k}(\mathbf{x} ; 0, q)$. Thanks to Theorem 1, it is easy to describe the ungraded S_{n}-isomorphism type of $V_{n, k}$.

Corollary 1. Let $k \leq n$ be positive integers and consider the permutation action of S_{n} on the family $\mathcal{O} \mathcal{P}_{n, k}$ of k-block ordered set partitions $\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ of $\{1,2, \ldots, n\}$. As ungraded S_{n}-modules we have

$$
\begin{equation*}
V_{n, k} \cong \mathbb{Q}\left[\mathcal{O} \mathcal{P}_{n, k}\right] \otimes \operatorname{sign} \tag{2.5}
\end{equation*}
$$

where sign is the 1-dimensional sign representation of S_{n}.
The (signless) Stirling number of the second kind $\operatorname{Stir}(n, k)$ counts (unordered) k-block set partitions of $\{1,2, \ldots, n\}$. Corollary 1 implies $\operatorname{dim} V_{n, k}=k!\cdot \operatorname{Stir}(n, k)$. The graded dimension of $V_{n, k}$ is given by a suitable q-analog of this formula.

Recall that the Hilbert series of a graded vector space $V=\bigoplus_{i \geq 0} V_{i}$ is the formal power series $\operatorname{Hilb}(V ; q):=\sum_{i \geq 0} q^{i} \cdot \operatorname{dim} V_{i}$. The q-Stirling number $\operatorname{Stir}_{q}(n, k)$ is defined by the recursion

$$
\begin{equation*}
\operatorname{Stir}_{q}(n, k)=\operatorname{Stir}_{q}(n-1, k-1)+[k]_{q} \cdot \operatorname{Stir}_{q}(n-1, k) \tag{2.6}
\end{equation*}
$$

together with the initial conditions $\operatorname{Stir}_{q}(0,0)=1$ and $\operatorname{Stir}_{q}(0, k)=0$ for any $k>0$.

Corollary 2. The Hilbert series of $V_{n, k}$ is $\operatorname{Hilb}\left(V_{n, k ; q)}=[k]!_{q} \cdot \operatorname{Stir}_{q}(n, k)\right.$.
In order to describe our proposed model for the Delta Conjecture, we need more variables. Let y_{1}, \ldots, y_{n} be n new commuting variables and consider the extension $\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]$ of superspace defined formally by the tensor product

$$
\begin{equation*}
\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] \otimes \mathbb{Q}\left[y_{1}, \ldots, y_{n}\right] \otimes \wedge\left\{\theta_{1}, \ldots, \theta_{n}\right\} \tag{2.7}
\end{equation*}
$$

This is a triply graded S_{n}-module with action $w \cdot x_{i}:=x_{w(i)}, w \cdot y_{i}:=y_{w(i)}, w \cdot \theta_{i}:=\theta_{w(i)}$. This ring admits an action of partial derivatives $\partial / \partial x_{i}$ and $\partial / \partial y_{i}$ in both the x-variables and y-variables.

Defintion 3. For $k \leq n$, let $\mathbb{V}_{n, k}$ be the smallest \mathbb{Q}-linear subspace of $\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]$ which

- contains the superspace Vandermonde $\delta_{n, k}$ (in the x-variables and θ-variables alone),
- is closed under the polarization operator $\sum_{s=1}^{n} y_{s}\left(\partial / \partial x_{s}\right)^{j}$ for each $j \geq 1$, and
- is closed under the $2 n$ partial derivatives $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}, \partial / \partial y_{1}, \ldots, \partial / \partial y_{n}$.

The S_{n}-module $\mathbb{V}_{n, k}$ is concentrated in θ-degree $n-k$. By considering x-degree and y-degree, the space $\mathbb{V}_{n, k}$ attains the structure of a doubly graded S_{n}-module.

Conjecture 1. Let $k \leq n$ be positive integers. The doubly graded Frobenius image of $\mathbb{V}_{n, k}$ is given by

$$
\begin{equation*}
\operatorname{grFrob}\left(\mathbb{V}_{n, k} ; q, t\right)=\Delta_{e_{k-1}}^{\prime} e_{n} \tag{2.8}
\end{equation*}
$$

Conjecture 1 is true at $t=0$ by Theorem 1. Conjecture 1 is true when $k=n$ by the work of Haiman [8]. Conjecture 1 has been checked on computer for $n \leq 4$ (and at $n=5$ on the level of bigraded Hilbert series). Since every increase $n \rightarrow n+1$ adds two new commuting variables and one new anticommuting variable, studying Conjecture 1 involves considerable computational challenges as n grows.

3 The Fields and Zabrocki Conjectures

In this section we describe alternative conjectural representation-theoretic models for the Delta Conjecture arising from quotients of Ω_{n} and $\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]$. Recall that the symmetric group S_{n} acts diagonally on superspace Ω_{n}. Solomon proved [12] that the ring $\left(\Omega_{n}\right)^{S_{n}} \subseteq \Omega_{n}$ of S_{n}-invariants is a free $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$-module on the generating set $\left\{d e_{i_{1}} \cdots d e_{i_{r}}: 1 \leq i_{1}<\cdots<i_{r} \leq n\right\}$ where $d:=\sum_{j=1}^{n} \theta_{j} \cdot\left(\partial / \partial x_{j}\right)$ is the total derivative operator.

Let $\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle \subseteq \Omega_{n}$ be the two-sided ideal of Ω_{n} generated by S_{n}-invariants with vanishing constant term. By considering x-degree and θ-degree, the quotient $\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle$
is a doubly graded S_{n}-module. We view this quotient as a 'superspace coinvariant ring'. The following conjecture about its doubly graded Frobenius image was made by the Combinatorics Group at the Fields Institute.

Fields Conjecture. (see [15]) Let n be a positive integer. The doubly graded Frobenius image of $\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle$ is given by

$$
\begin{equation*}
\operatorname{grFrob}\left(\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle ; q, z\right)=\left.\sum_{k=1}^{n} z^{n-k} \cdot \Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0} \tag{3.1}
\end{equation*}
$$

where q tracks x-degree and z tracks θ-degree.
If the Fields Conjecture is true, the bigraded Hilbert series of $\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle$ would be given by

$$
\begin{equation*}
\operatorname{Hilb}\left(\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle ; q, z\right)=\sum_{k=1}^{n} z^{n-k} \cdot[k]!_{q} \cdot \operatorname{Stir}_{q}(n, k) \tag{3.2}
\end{equation*}
$$

where q tracks x-degree and z tracks θ-degree. The Fields Combinatorics Group proved (personal communication) the inequality

$$
\begin{equation*}
\operatorname{Hilb}\left(\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle ; q, z\right) \geq \sum_{k=1}^{n} z^{n-k} \cdot[k]!_{q} \cdot \operatorname{Stir}_{q}(n, k) \tag{3.3}
\end{equation*}
$$

where $f(q, z) \geq g(q, z)$ means that the difference $f(q, z)-g(q, z)$ is a polynomial in q, z with nonnegative coefficients.

Recall that the alternating subspace of an S_{n}-module V is given by

$$
\left\{v \in V: w . v=\operatorname{sign}(w) \cdot v \text { for all } w \in S_{n}\right\}
$$

Let A_{n} be the alternating subspace of $\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle$. The alternant space A_{n} is a doubly graded vector space. The Fields Conjecture would imply that

$$
\operatorname{Hilb}\left(A_{n} ; q, z\right)=\sum_{k=1}^{n} z^{n-k} \cdot q^{\left(\frac{k}{2}\right)} \cdot\left[\begin{array}{l}
n-1 \tag{3.4}\\
k-1
\end{array}\right]_{q}
$$

Equation (3.4) has been verified by Swanson and Wallach [13], giving further evidence for the Fields Conjecture.

If the Fields Conjecture is true, we would have an isomorphism of ungraded $S_{n^{-}}$ modules $\Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle \cong \bigoplus_{k=1}^{n}\left(\mathbb{Q}\left[\mathcal{O} \mathcal{P}_{n, k}\right] \otimes\right.$ sign $)$. At present, it is unknown whether either of these S_{n}-modules injects into the other.

The symmetric functions appearing in the Fields Conjecture and Theorem 1 are closely related. We propose the following 'bridge conjecture' whose truth would yield the Fields Conjecture. Let φ be the composite linear map

$$
\begin{equation*}
\varphi: V_{n, 1} \oplus \cdots \oplus V_{n, n} \hookrightarrow \Omega_{n} \rightarrow \Omega_{n} /\left\langle\left(\Omega_{n}\right)_{+}^{S_{n}}\right\rangle \tag{3.5}
\end{equation*}
$$

obtained by including the direct sum $V_{n, 1} \oplus \cdots \oplus V_{n, n}$ into superspace and then projecting onto the superspace coinvariant ring.

Conjecture 2. The linear map φ is bijective.
Mike Zabrocki studied the triply diagonal action of S_{n} on the ring $\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]$ and the associated space $\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]_{+}^{S_{n}}$ of S_{n}-invariants with vanishing constant term. He checked the following conjecture by computer for $n \leq 6$.

Zabrocki Conjecture. ([15]) Let n be a positive integer. We have

$$
\begin{equation*}
\operatorname{grFrob}\left(\Omega_{n}\left[y_{1}, \ldots, y_{n}\right] /\left\langle\Omega_{n}\left[y_{1}, \ldots, y_{n}\right]_{+}^{S_{n}}\right\rangle ; q, t, z\right)=\sum_{k=1}^{n} z^{n-k} \cdot \Delta_{e_{k-1}}^{\prime} e_{n} \tag{3.6}
\end{equation*}
$$

where q tracks x-degree, t tracks y-degree, and z tracks θ-degree.
The Zabrocki Conjecture is related to Conjecture 1 in the same way as the Fields Conjecture is related to Theorem 1. Since Theorem 1 is proven whereas the Fields Conjecture remains open, superspace Vandermondes might prove an easier road to Delta Conjecture modules than quotient rings.

4 The ring $\mathbb{W}_{n, k}$ and Super Poincaré Duality

So far we have built S_{n}-modules $V_{n, k}$ and $\mathbb{V}_{n, k}$ by starting with the superspace Vandermonde $\delta_{n, k}$ and closing under partial derivatives in the commuting variables x_{i}, y_{i} (and potentially polarization operators). The modules $V_{n, k}$ and $\mathbb{V}_{n, k}$ have the defect of not being closed under multiplication and not admitting a natural ring structure. In this section we build a new bigraded S_{n}-module $\mathbb{W}_{n, k}$ from $\delta_{n, k}$. The module $\mathbb{W}_{n, k}$ is naturally a bigraded quotient of Ω_{n}. The module $\mathbb{W}_{n, k}$ turns out to extend both $V_{n, k}$ and the cohomology ring $H^{\bullet}\left(X_{n, k} ; \mathbb{Q}\right)$ of a variety $X_{n, k}$ of line configurations studied by Pawlowski and Rhoades. In order to define $\mathbb{W}_{n, k}$, we need operators $\partial / \partial \theta_{i}$ on Ω_{n} which differentiate with respect to anticommuting variables.

For $1 \leq i \leq n$, let $\partial / \partial \theta_{i}: \Omega_{n} \rightarrow \Omega_{n}$ be the $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$-module endomorphism characterized by

$$
\partial / \partial \theta_{i}: \theta_{j_{1}} \cdots \theta_{j_{r}} \mapsto \begin{cases}(-1)^{s-1} \theta_{j_{1}} \cdots \widehat{\theta_{j_{s}}} \cdots \theta_{j_{r}} & \text { if } j_{s}=i \tag{4.1}\\ 0 & \text { if } i \neq j_{1}, \ldots, j_{r}\end{cases}
$$

where $1 \leq j_{1}, \ldots, j_{r} \leq n$ are distinct indices and $\widehat{\cdot}$ means omission. The sign $(-1)^{s-1}$ is necessary to ensure that $\partial / \partial \theta_{i}$ is well-defined.

Defintion 4. For positive integers $k \leq n$, let $\mathbb{W}_{n, k}$ be the smallest linear subspace of Ω_{n} which

- contains the superspace Vandermonde $\delta_{n, k}$, and
- is closed under the $2 n$ operators $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}, \partial / \partial \theta_{1}, \ldots, \partial / \partial \theta_{n}$.

The vector space $\mathbb{W}_{n, k}$ is a bigraded S_{n}-module. We use an action of superspace on itself to show that $\mathbb{W}_{n, k}$ is naturally a bigraded quotient of Ω_{n}.

The operators $\partial / \partial \theta_{i}$ and $\partial / \partial x_{i}$ on Ω_{n} satisfy the relations

$$
\begin{gathered}
\left(\partial / \partial x_{i}\right)\left(\partial / \partial x_{j}\right)=\left(\partial / \partial x_{j}\right)\left(\partial / \partial x_{i}\right) \quad\left(\partial / \partial x_{i}\right)\left(\partial / \partial \theta_{j}\right)=\left(\partial / \partial \theta_{j}\right)\left(\partial / \partial x_{i}\right) \\
\left(\partial / \partial \theta_{i}\right)\left(\partial / \partial \theta_{j}\right)=-\left(\partial / \partial \theta_{j}\right)\left(\partial / \partial \theta_{i}\right)
\end{gathered}
$$

for all $1 \leq i, j \leq n$. These are the defining relations of Ω_{n}, so for any superpolynomial $f=f\left(x_{1}, \ldots, x_{n}, \theta_{1}, \ldots, \theta_{n}\right)$ we have an unambiguous operator ∂f on Ω_{n} obtained by replacing each x_{i} in f with $\partial / \partial x_{i}$ and each θ_{i} in f by $\partial / \partial \theta_{i}$. This gives rise to an action $\odot: \Omega_{n} \times \Omega_{n} \rightarrow \Omega_{n}$ of superspace on itself by the rule

$$
\begin{equation*}
f \odot g:=\partial f(g) \tag{4.2}
\end{equation*}
$$

Proposition 1. Let $\operatorname{ann}\left(\delta_{n, k}\right):=\left\{f \in \Omega_{n}: f \odot \delta_{n, k}=0\right\}$ be the annihilator in Ω_{n} of the superspace Vandermonde $\delta_{n, k}$. Then ann $\left(\delta_{n, k}\right)$ is a two-sided ideal in Ω_{n} which is S_{n}-stable and bigraded. The canonical composition

$$
\begin{equation*}
\mathbb{W}_{n, k} \hookrightarrow \Omega_{n} \rightarrow \Omega_{n} / \operatorname{ann}\left(\delta_{n, k}\right) \tag{4.3}
\end{equation*}
$$

is an isomorphism of bigraded S_{n}-modules.
Thanks to Proposition 1, there is a natural multiplication operation on $\mathbb{W}_{n, k}$, so that the anticommuting differentiation operators $\partial / \partial \theta_{i}$ give rise to a ring structure which $V_{n, k}$ and $\mathbb{V}_{n, k}$ lack.

What do the bigraded S_{n}-modules $\mathbb{W}_{n, k}$ look like? We display $\operatorname{grFrob}\left(\mathbb{W}_{4,2} ; q, z\right)$ in matrix format, with rows labeling θ-degree and columns labeling x-degree.

$$
\operatorname{grFrob}\left(\mathbb{W}_{4,2} ; q, z\right)=\left(\begin{array}{cccc}
s_{4} & s_{4}+s_{31} & s_{4}+s_{31}+s_{22} & s_{31} \tag{4.4}\\
s_{31} & 2 s_{31}+s_{22}+s_{211} & s_{31}+s_{22}+2 s_{211} & s_{211} \\
s_{211} & s_{22}+s_{211}+s_{1111} & s_{211}+s_{1111} & s_{1111}
\end{array}\right)
$$

The matrices $\operatorname{grFrob}\left(\mathbb{W}_{n, k} ; q, z\right)$ enjoy the following properties. Let $U_{n}=S^{(n-1,1)}$ be the ($n-1$)-dimensional reflection representation of S_{n}.

Theorem 2. There hold the following facts about the bigraded S_{n}-module $\mathbb{W}_{n, k}$.

1. (Special k) We have $\mathbb{W}_{n, n} \cong R_{n}$ (coinvariant ring) and $\mathbb{W}_{n, 1} \cong \wedge U_{n}$ (exterior algebra).
2. (Bottom x-degree) The x-degree 0 piece of $\mathbb{W}_{n, k}$ is isomorphic to $\bigoplus_{j=0}^{n-k} \wedge^{j} U_{n}$.
3. (Top x-degree) The top x-degree of $\mathbb{W}_{n, k}$ is $\binom{k}{2}+(n-k) \cdot(k-1)$; this piece of $\mathbb{W}_{n, k}$ is isomorphic to $\bigoplus_{j=0}^{n-k} \wedge^{j} U_{n} \otimes$ sign.
4. (Top θ-degree) The top $(=n-k) \theta$-degree piece of $\mathbb{W}_{n, k}$ is isomorphic to $V_{n, k}$.
5. (Bottom θ-degree) Let $I_{n, k} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be $I_{n, k}:=\left\langle x_{1}^{k}, \ldots, x_{n}^{k}, e_{n}, e_{n-1}, \ldots, e_{n-k+1}\right\rangle$ and let

$$
\begin{equation*}
R_{n, k}:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I_{n, k} . \tag{4.5}
\end{equation*}
$$

The θ-degree 0 piece of $\mathbb{W}_{n, k}$ is isomorphic to $R_{n, k}$.
The quotient rings $R_{n, k}$ displayed in Item 5 of Theorem 2 were introduced by Haglund, Rhoades, and Shimozono [7]. They proved that

$$
\begin{equation*}
\operatorname{grFrob}\left(R_{n, k} ; q\right)=\left.\left(\operatorname{rev}_{q} \circ \omega\right) \Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}, \tag{4.6}
\end{equation*}
$$

where ω is the symmetric function involution which trades s_{λ} and $s_{\lambda^{\prime}}$ and rev_{q} reverses the coefficient sequences of polynomials in q. The ring $R_{n, k}$ was the first model for a coinvariant ring attached to the Delta Conjecture.

The rings $R_{n, k}$ have a geometric interpretation. A line in the k-dimensional complex vector space \mathbb{C}^{k} is a 1-dimensional linear subspace. Pawlowski and Rhoades defined [10] the variety $X_{n, k}$ of spanning configurations of n lines in C^{k} :

$$
\begin{equation*}
X_{n, k}:=\left\{\left(\ell_{1}, \ldots, \ell_{n}\right): \ell_{i} \subseteq \mathbb{C}^{k} \text { a line and } \ell_{1}+\cdots+\ell_{n}=\mathbb{C}^{k}\right\} . \tag{4.7}
\end{equation*}
$$

The space $X_{n, k}$ and its cohomology ring $H^{\bullet}\left(X_{n, k} ; \mathbf{Q}\right)$ admit S_{n}-actions by line permutation. Pawlowski and Rhoades presented [10] the cohomology $H^{\bullet}\left(X_{n, k} ; Q\right)$ as

$$
\begin{equation*}
H^{\bullet}\left(X_{n, k} ; \mathbb{Q}\right)=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I_{n, k}=R_{n, k} . \tag{4.8}
\end{equation*}
$$

We may therefore interpret the θ-degree 0 piece of $\mathbb{W}_{n, k}$ as the cohomology of $X_{n, k}$.
The 'twist' $\left(\mathrm{rev}_{q} \circ \omega\right)$ involved in Equation (4.6) can be visualized in the matrix representing $\operatorname{grFrob}\left(\mathbb{W}_{4,2} ; q, z\right)$ in (4.4). Namely, the top row can be obtained from the bottom row by reversal together with applying the operator ω. The reader may notice that the middle row of $\operatorname{grFrob}\left(\mathbb{W}_{4,2} ; q, z\right)$ is invariant under reversal followed by ω. This observation generalizes as follows.

Theorem 3. The matrix representing $\operatorname{grFrob}\left(\mathbb{W}_{n, k} ; q, z\right)$ is invariant under 180° rotation followed by the application of ω to each entry.

Recall that a sequence of numbers $\left(a_{0}, a_{1}, \ldots, a_{d}\right)$ is palindromic if $a_{i}=a_{d-i}$ for all i and unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{r} \geq a_{r+1} \geq \cdots \geq a_{d}$ for some r. A famous example of a polynomial in $\mathrm{Q}[q]$ with a palindromic and unimodal coefficient sequence is the q-factorial $[n]!_{q}=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)$. While these facts about
$[n]!_{q}$ follow from showing that if $f(q)$ and $g(q)$ have palindromic unimodal coefficient sequences, so does $f(q) \cdot g(q)$, there is a deeper derivation coming from geometry.

A finite-dimensional graded Q-algebra $A=\bigoplus_{i=0}^{d} A_{i}$ is a Poincaré Duality Algebra if $A_{d} \cong \mathbb{Q}$ is 1-dimensional and if for all $0 \leq i \leq d$ the map $A_{i} \otimes A_{d-i} \rightarrow A_{d} \cong \mathbb{Q}$ is a perfect pairing. This forces $\operatorname{dim} A_{i}=\operatorname{dim} A_{d-i}$.

Let $\mathcal{F} \ell_{n}$ be the variety of complete flags in \mathbb{C}^{n}. Borel proved [1] that the cohomology of $\mathcal{F} \ell_{n}$ has presentation $H^{\bullet}\left(\mathcal{F} \ell_{n} ; \mathbb{Q}\right)=R_{n}$ given by the coinvariant ring. Since $\mathcal{F} \ell_{n}$ is a compact complex manifold, the ring $H^{\bullet}\left(\mathcal{F} \ell_{n} ; \mathbb{Q}\right)$ is a Poincaré Duality Algebra and the palindromicity of its Hilbert polynomial $[n]!_{q}$ follows.

The complex variety $X_{n, k}$ is smooth, but usually not compact. Indeed, the cohomology ring $H^{\bullet}\left(X_{n, k} ; \mathbb{Q}\right)=R_{n, k}$ does not usually have a palindromic Hilbert series, e.g. $\operatorname{Hilb}\left(R_{3,2} ; q\right)=1+3 q+2 q^{2}$. However, the extension $\mathbb{W}_{n, k} \supseteq R_{n, k}$ exhibits a superspace version of Poincaré Duality.

Let $A=\bigoplus_{i=0}^{d} \bigoplus_{j=0}^{e} A_{i, j}$ be a finite-dimensional bigraded \mathbb{Q}-algebra. We say that A is a Super Poincaré Duality Algebra if $A_{d, e} \cong \mathbb{Q}$ and $A_{i, j} \otimes A_{d-i, e-j} \rightarrow A_{d, e}$ is a perfect pairing for all $0 \leq i \leq d$ and $0 \leq j \leq e$.

Theorem 4. The bigraded algebra $\mathbb{W}_{n, k}$ is a Super Poincaré Duality Algebra.
Does Theorem 4 have geometric meaning? Is there a 'superspace version' of cohomology which yields $\mathbb{W}_{n, k}$ when applied to $X_{n, k}$?

The unimodality of $[n]!_{q}$ also has geometric meaning. A Poincaré Duality Algebra $A=\bigoplus_{i=0}^{d} A_{i}$ satisfies the Hard Lefschetz Property if there exists an element $\ell \in A_{1}$ (called a Lefschetz element) such that for any $i \leq d / 2$ the map $A_{i} \xrightarrow{x \ell^{d-2 i}} A_{d-i}$ of multiplication by $\ell^{d-2 i}$ is bijective.

Since $\mathcal{F} \ell_{n}$ is a compact complex manifold and $H^{\bullet}\left(\mathcal{F} \ell_{n} ; \mathbb{Q}\right)=R_{n}$, the ring R_{n} satisfies the Hard Lefschetz Property. Maneo, Numata, and Wachi proved [9] that a linear form $\ell=c_{1} x_{1}+\cdots+c_{n} x_{n}$ is a Lefschetz element if and only if $c_{1}, \ldots, c_{n} \in \mathbb{Q}$ are distinct.

As a closing example, we display the bigraded Hilbert series $\operatorname{Hilb}\left(\mathbb{W}_{4,2} ; q, z\right)$ as a matrix where rows index θ-degree and columns index x-degree.

$$
\operatorname{Hilb}\left(\mathbb{W}_{4,2} ; q, z\right)=\left(\begin{array}{cccc}
1 & 4 & 6 & 3 \tag{4.9}\\
3 & 11 & 11 & 3 \\
3 & 6 & 4 & 1
\end{array}\right)
$$

Either Theorem 3 or Theorem 4 imply that the matrix $\operatorname{Hilb}\left(\mathbb{W}_{n, k} ; q, z\right)$ is always invariant under 180° rotation.

Conjecture 3. Each row and column in the matrix representing $\operatorname{Hilb}\left(\mathbb{W}_{n, k} ; q, z\right)$ is unimodal.
Conjecture 3 would be best proven by showing that $\mathbb{W}_{n, k}$ satisfies an as-yet-undefined 'Super Hard Lefschetz Property'.

Acknowledgements

The authors are grateful to Josh Swanson and Mike Zabrocki for helpful conversations.

References

[1] A. Borel. "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compass." In: Ann. of Math. 57 (1953), pp. 115-207.
[2] E. Carlsson and A. Mellit. "A proof of the shuffle conjecture". In: J. Amer. Math. Soc. 31 (2018), pp. 661-697.
[3] C. Chevalley. "Invariants of finite groups generated by reflections". In: Amer. J. Math. 77 (4) (1955), pp. 778-782.
[4] A. Garsia and M. Haiman. "Conjectures on the quotient ring by diagonal invariants". In: J. Algebraic. Combin. 3 (1) (1994), pp. 17-76.
[5] A. Garsia et al. "A proof of the Delta Conjecture when $q=0$ ". In: Ann. Combin. (2019), pp. 317-333.
[6] J. Haglund, J. Remmel, and A. T. Wilson. "The Delta Conjecture". In: Trans. Amer. Math. Soc. 370 (2018), pp. 4029-4057.
[7] J. Haglund, B. Rhoades, and M. Shimozono. "Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture". In: Adv. Math. 329 (2018), pp. 851915.
[8] M. Haiman. "Vanishing theorems and character formulas for the Hilbert scheme of points in the plane". In: Invent. Math. 149 (2002), pp. 371-407.
[9] T. Maeno, Y. Numata, and A. Wachi. "Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups". In: Algebr. Reprent. Th. 14 (4) (2007), pp. 625-638.
[10] B. Pawlowski and B. Rhoades. "A flag variety for the Delta Conjecture". In: Trans. Amer. Math. Soc. 374 (2019), pp. 8195-8248.
[11] B. Rhoades. "Ordered set partition statistics and the Delta Conjecture". In: J. Combin. Theory Ser. A 154 (2018), pp. 172-217.
[12] L. Solomon. "Invariants of finite reflection groups". In: Nagoya Math. J. 22 (1963), pp. 57-64.
[13] J. Swanson and N. Wallach. "Harmonic differential forms for pseudo-reflection groups I. Semi-invariants." Preprint, 2020. arXiv:2001. 06076.
[14] A. T. Wilson. "An extension of MacMahon's Equidistribution Theorem to ordered multiset partitions". In: Electron. J. Combin. 23.1 (2016), P1.5.
[15] M. Zabrocki. "A module for the Delta conjeture." Preprint, 2019. arXiv:1902.08966.

[^0]: *bprhoades@math.ucsd.edu. B. Rhoades was partially supported by NSF Grant DMS-1500838.
 †andwils2@pdx.edu.

[^1]: ${ }^{1}$ The 'super' in superspace comes from supersymmetry in physics: the x-variables index bosons and the θ-variables index fermions. Extending coefficients to the reals, Ω_{n} is the ring of polynomial-valued differential forms on Euclidean n-space - this is why we write Ω.

