Séminaire Lotharingien de Combinatoire XX (2020) Article #YY, 12 pp.

Vandermondes, Superspace, and Delta Conjecture modules

Brendon Rhoades^{*1} and Andrew Timothy Wilson^{† 2}

¹Department of Mathematics, University of California - San Diego, La Jolla, CA, 92093, USA ²Department of Mathematics and Statistics, Portland State University, Portland, OR, 97201, USA

Abstract. Superspace is an algebra Ω_n with *n* commuting generators x_1, \ldots, x_n and *n* anticommuting generators $\theta_1, \ldots, \theta_n$. We present an extension $\delta_{n,k}$ of the Vandermonde determinant to Ω_n which depends on positive integers $k \leq n$. We use superspace Vandermondes to build representations of the symmetric group S_n . In particular, we construct a doubly graded S_n -module $\mathbb{V}_{n,k}$ whose bigraded Frobenius image grFrob($\mathbb{V}_{n,k}; q, t$) conjecturally equals the symmetric function $\Delta'_{e_{k-1}}e_n$ appearing in the Haglund-Remmel-Wilson Delta Conjecture. We prove the specialization of our conjecture at t = 0. We use a differentiation action of Ω_n on itself to build bigraded quotients $\mathbb{W}_{n,k}$ of Ω_n which extend the Delta Conjecture coinvariant rings $R_{n,k}$ defined by Haglund-Rhoades-Shimozono and studied geometrically by Pawlowski-Rhoades. Despite the fact that the Hilbert polynomials of the $R_{n,k}$ are not palindromic, we show that $\mathbb{W}_{n,k}$ exhibits a superspace version of Poincaré Duality.

Keywords: Vandermonde, superspace, *S_n*-module

1 Introduction

The symmetric group S_n acts on the polynomial ring $\mathbb{Q}[x_1, \ldots, x_n]$ by subscript permutation. Polynomials in the invariant subring

$$\mathbb{Q}[x_1, \dots, x_n]^{S_n} := \{ f \in \mathbb{Q}[x_1, \dots, x_n] : w.f = f \text{ for all } w \in S_n \}$$
(1.1)

are called *symmetric polynomials*. The Q-algebra $Q[x_1,...,x_n]^{S_n}$ is generated by the *n* elementary symmetric polynomials $e_1, e_2, ..., e_n$.

Let $\mathbb{Q}[x_1, \ldots, x_n]^{S_n}_+$ be the space of symmetric polynomials with vanishing constant term. The *invariant ideal* $I_n \subseteq \mathbb{Q}[x_1, \ldots, x_n]$ is given by

$$I_n := \langle \mathbb{Q}[x_1, \dots, x_n]^{S_n}_+ \rangle = \langle e_1, e_2, \dots, e_n \rangle, \qquad (1.2)$$

^{*}bprhoades@math.ucsd.edu. B. Rhoades was partially supported by NSF Grant DMS-1500838. †andwils2@pdx.edu.

and the *coinvariant ring* is the corresponding quotient

$$R_n := \mathbb{Q}[x_1, \dots, x_n] / I_n. \tag{1.3}$$

The quotient R_n is simultaneously a graded ring and a graded S_n -module. The module R_n is among the most important in algebraic combinatorics, with representation theory tied to permutation combinatorics and a geometric realization as the cohomology of the flag variety [1, 3].

The symmetric group S_n acts diagonally on the polynomial ring $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ in 2n variables, viz. $w.x_i = x_{w(i)}$ and $w.y_i := y_{w(i)}$ for all $w \in S_n$ and $1 \le i \le n$. Garsia and Haiman [4] initiated the study of the the *diagonal coinvariant ring* DR_n defined by modding out by those S_n -invariants with vanishing constant term:

$$DR_n := \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n] / \langle \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]_+^{S_n} \rangle.$$
(1.4)

Considering *x*-degree and *y*-degree separately, the ring DR_n is a doubly graded S_n -module which specializes to R_n when the *y*-variables are set to zero.

Haiman proved [8] that as ungraded S_n -modules we have $DR_n \cong \mathbb{Q}[\operatorname{Park}_n] \otimes \operatorname{sign}$ where Park_n is the permutation action of S_n on size n parking functions and sign is the 1-dimensional sign representation of S_n . Haiman also proved more refined results on the bigraded S_n -module structure of DR_n ; to state these we recall some facts about S_n -modules.

The irreducible representations of S_n over \mathbb{Q} are indexed by partitions of n; if $\lambda \vdash n$ is a partition, let S^{λ} be the corresponding S_n -irreducible. If V is any finite-dimensional S_n -module, there exist unique multiplicities $c_{\lambda} \geq 0$ so that $V \cong \bigoplus_{\lambda \vdash n} c_{\lambda}S^{\lambda}$. Let Λ denote the ring of symmetric functions over the ground field $\mathbb{Q}(q, t)$ in the infinite variable set $\mathbf{x} = (x_1, x_2, ...)$. The *Frobenius image* of V is the symmetric function $\operatorname{Frob}(V) \in \Lambda$ given by $\operatorname{Frob}(V) := \sum_{\lambda \vdash n} c_{\lambda}s_{\lambda}$, where s_{λ} is the Schur function.

In this extended abstract we will consider (multi)graded S_n -modules. If $V = \bigoplus_{i\geq 0} V_i$ is a graded S_n -module with each graded piece V_i finite-dimensional, the graded Frobenius image of V is grFrob $(V;q) := \sum_{i\geq 0} q^i \cdot \operatorname{Frob}(V_i)$. Even more generally, if $V = \bigoplus_{i,j\geq 0} V_{i,j}$ or $V = \bigoplus_{i,j,k\geq 0} V_{i,j,k}$ is a doubly or triply graded S_n -module, we have the associated bigraded and trigraded Frobenius images

$$\operatorname{grFrob}(V;q,t) := \sum_{i,j \ge 0} q^i t^j \cdot \operatorname{Frob}(V_{i,j}) \quad \text{or} \quad \operatorname{grFrob}(V;q,t,z) := \sum_{i,j,k \ge 0} q^i t^j z^k \cdot \operatorname{Frob}(V_{i,j,k}),$$

respectively.

Haiman proved [8] that grFrob(DR_n ; q, t) = ∇e_n , where e_n is the degree n elementary symmetric function and ∇ is the Bergeron-Garsia *nabla operator*. Therefore, describing the bigraded S_n -isomorphism type of DR_n is equivalent to finding the Schur expansion of ∇e_n , but there is not even a conjecture in this direction. The monomial expansion of ∇e_n is given by the *Shuffle Theorem* [2]. The *Delta Conjecture* is a conjectural extension of the Shuffle Theorem due to Haglund, Remmel, and Wilson [6]. It depends on two positive integers $k \leq n$ and reads

$$\Delta_{e_{k-1}}' e_n = \operatorname{Rise}_{n,k}(\mathbf{x}; q, t) = \operatorname{Val}_{n,k}(\mathbf{x}; q, t).$$
(1.5)

Here $\Delta'_{e_{k-1}}$ is a certain symmetric function operator and Rise and Val are formal power series defined using the combinatorics of lattice paths; see [6] for details. When k = n, the Delta Conjecture reduces to the Shuffle Theorem.

The Delta Conjecture is open as of this writing, but combining the work of [5, 7, 11, 14] it is known at q = 0. More precisely, we have

$$\Delta_{e_{k-1}}' e_n \mid_{t=0} = \operatorname{Rise}_{n,k}(\mathbf{x}; q, 0) = \operatorname{Rise}_{n,k}(\mathbf{x}; 0, q) = \operatorname{Val}_{n,k}(\mathbf{x}; q, 0) = \operatorname{Val}_{n,k}(\mathbf{x}; 0, q).$$
(1.6)

In this paper we define a doubly graded S_n -module $\mathbb{V}_{n,k}$ for any positive integers $k \leq n$ and conjecture that $\operatorname{grFrob}(\mathbb{V}_{n,k};q,t) = \Delta'_{e_{k-1}}e_n$ (see Conjecture 1). That is, we conjecture that $\mathbb{V}_{n,k}$ is a module for the Delta Conjecture. We prove this conjecture at t = 0. In order to describe $\mathbb{V}_{n,k}$, we introduce new combinatorial objects called *superspace Vandermondes*.

Superspace of rank *n* is the unital associative Q-algebra Ω_n generated by 2*n* symbols $x_1, \ldots, x_n, \theta_1, \ldots, \theta_n$ subject to the relations

$$x_i x_j = x_j x_i$$
 $x_i \theta_j = \theta_j x_i$ $\theta_i \theta_j = -\theta_j \theta_i$

for all $1 \le i, j \le n$.¹ Setting the θ -variables to zero recovers the classical polynomial ring $\mathbb{Q}[x_1, \ldots, x_n]$. By considering *x*-degree and θ -degree separately, Ω_n is a doubly graded algebra. The ring Ω_n carries a diagonal action of S_n given by $w.x_i := x_{w(i)}$ and $w.\theta_i := \theta_{w(i)}$ for $w \in S_n$ and $1 \le i \le n$.

Definiton 1. Let $k \leq n$ be positive integers. The superspace Vandermonde $\delta_{n,k}$ is the following element of Ω_n :

$$\delta_{n,k} := \varepsilon_n \cdot (x_1^{k-1} x_2^{k-1} \cdots x_{n-k+1}^{k-1} x_{n-k+2}^{k-2} \cdots x_{n-1}^1 x_n^0 \theta_1 \theta_2 \cdots \theta_{n-k}).$$
(1.7)

Here $\varepsilon_n := \sum_{w \in S_n} \operatorname{sign}(w) \cdot w \in \mathbb{Q}[S_n]$ *is the antisymmetrizing element in the symmetric group algebra.*

For example, when n = 3 and k = 2 we have

$$\delta_{3,2} = \varepsilon_3 \cdot (x_1 x_2 \theta_1) = x_1 x_2 \theta_1 - x_1 x_2 \theta_2 - x_1 x_3 \theta_1 + x_1 x_3 \theta_3 + x_2 x_3 \theta_2 - x_2 x_3 \theta_3$$

¹The 'super' in superspace comes from supersymmetry in physics: the *x*-variables index bosons and the θ -variables index fermions. Extending coefficients to the reals, Ω_n is the ring of polynomial-valued differential forms on Euclidean *n*-space – this is why we write Ω .

The superpolynomial $\delta_{n,k}$ is always a nonzero element of Ω_n , thanks to the θ -variables. When k = n, the superspace Vandermonde $\delta_{n,k}$ reduces to the classical Vandermonde determinant $\varepsilon_n (x_1^{n-1} x_2^{n-2} \cdots x_{n-1}^1 x_n^0)$.

The $\delta_{n,k}$ are seeds we use to grow modules. By starting with $\delta_{n,k}$ and closing under various differential operators and linearity we will construct:

- A singly graded subspace $V_{n,k}$ of Ω_n which satisfies $\operatorname{grFrob}(V_{n,k};q) = \Delta'_{e_{k-1}}e_n \mid_{t=0}$ (see Section 2).
- A doubly graded extension $\mathbb{V}_{n,k}$ of $V_{n,k}$ with grFrob $(\mathbb{V}_{n,k}; q, t)$ conjecturally given by $\Delta'_{e_{k-1}}e_n$ (see Section 2).
- A doubly graded S_n-stable quotient W_{n,k} of Ω_n which extends V_{n,k} and exhibits a number of symmetries including a superspace variant of Poincaré Duality (see Section 4). W_{n,k} extends the cohomology of the space of spanning line configurations studied by Pawlowski and Rhoades [10].

This paper is not the first to propose connections between the Delta Conjecture and superspace. The Fields Institute Combinatorics Group in general, and Mike Zabrocki in particular, conjectured [15] that representation-theoretic models for the Delta Conjecture can be obtained by looking at coinvariant-type quotients defined using superspace Ω_n and an extension $\Omega_n[y_1, \ldots, y_n]$ of superspace involving *n* new commuting variables y_1, \ldots, y_n . We discuss the connection between our work and their conjectures in **Section 3**. In a nutshell, we are able to prove that our proposed Delta model $\mathbb{V}_{n,k}$ is valid at t = 0, but the corresponding case of their conjecture remains open.

2 The S_n -modules $V_{n,k}$ and $\mathbb{V}_{n,k}$ and the Delta Conjecture

For $1 \le i \le n$, the partial derivative operator $\partial/\partial x_i$ acts naturally on the polynomial ring $\mathbb{Q}[x_1, \ldots, x_n]$. Superspace admits the tensor product decomposition

$$\Omega_n = \mathbb{Q}[x_1, \dots, x_n] \otimes \wedge \{\theta_1, \dots, \theta_n\}$$
(2.1)

where \wedge { θ_1 ,..., θ_n } is the exterior algebra on the generators θ_1 ,..., θ_n . The operator $\partial/\partial x_i$ therefore acts on Ω_n by acting on the first tensor factor.

Our first new S_n -module is defined as follows. Starting with the superspace Vandermonde $\delta_{n,k}$, we close under the operators $\partial/\partial x_1, \ldots, \partial/\partial x_n$ and linearity.

Definiton 2. Let $k \leq n$ be positive integers. The vector space $V_{n,k}$ is the smallest Q-linear subspace of Ω_n which

• contains the superspace Vandermonde $\delta_{n,k}$, and

• *is closed under the n partial derivatives* $\partial/\partial x_1, \ldots, \partial/\partial x_n$.

The subspace $V_{n,k} \subseteq \Omega_n$ is closed under the action of S_n . Furthermore, $V_{n,k}$ a doubly graded subspace of Ω_n . If we ignore the θ -grading (which is constant of degree n - k) and focus on the *x*-grading, we see that $V_{n,k}$ is a singly-graded S_n -module.

To describe the Schur expansion of grFrob($V_{n,k}$; q), we need some notation. Let T be a standard Young tableau with n boxes. A number $1 \le i \le n-1$ is a *descent* of T if i appears in a row above i + 1. The *descent number* des(T) is the number of descents and the *major index* maj(T) is the sum of the descents in T. We write shape(T) $\vdash n$ for the partition of n obtained by erasing the numbers in T. We also use the standard q-numbers, q-factorials, and q-binomials:

$$[n]_q := 1 + q + \dots + q^{n-1} \quad [n]!_q := [n]_q [n-1]_q \dots [1]_q \quad \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]!_q}{[k]!_q [n-k]!_q}.$$
 (2.2)

Theorem 1. Let $k \leq n$ be positive integers. The graded Frobenius image of $V_{n,k}$ is given by either of the expressions

$$\operatorname{grFrob}(V_{n,k};q) = \sum_{T \in \operatorname{SYT}(n)} q^{\operatorname{maj}(T) + \binom{n-k}{2} - (n-k) \cdot \operatorname{des}(T)} \begin{bmatrix} \operatorname{des}(T) \\ n-k \end{bmatrix}_q^{s_{\operatorname{shape}(T)}}$$
(2.3)

$$=\Delta'_{e_{k-1}}e_n \mid_{t=0}$$
(2.4)

where the sum is over all standard Young tableaux T with n boxes.

Equation (1.6) allows us to replace the $\Delta'_{e_{k-1}}e_n |_{t=0}$ in Theorem 1 with any of the symmetric functions $\operatorname{Rise}_{n,k}(\mathbf{x};q,0)$, $\operatorname{Rise}_{n,k}(\mathbf{x};0,q)$, $\operatorname{Val}_{n,k}(\mathbf{x};q,0)$, or $\operatorname{Val}_{n,k}(\mathbf{x};0,q)$. Thanks to Theorem 1, it is easy to describe the ungraded S_n -isomorphism type of $V_{n,k}$.

Corollary 1. Let $k \le n$ be positive integers and consider the permutation action of S_n on the family $\mathcal{OP}_{n,k}$ of k-block ordered set partitions (B_1, B_2, \ldots, B_k) of $\{1, 2, \ldots, n\}$. As ungraded S_n -modules we have

$$V_{n,k} \cong \mathbb{Q}[\mathcal{OP}_{n,k}] \otimes \text{sign}$$
(2.5)

where sign is the 1-dimensional sign representation of S_n .

The (*signless*) *Stirling number of the second kind* Stir(n,k) counts (unordered) *k*-block set partitions of $\{1, 2, ..., n\}$. Corollary 1 implies dim $V_{n,k} = k! \cdot Stir(n,k)$. The graded dimension of $V_{n,k}$ is given by a suitable *q*-analog of this formula.

Recall that the *Hilbert series* of a graded vector space $V = \bigoplus_{i \ge 0} V_i$ is the formal power series Hilb(*V*; *q*) := $\sum_{i \ge 0} q^i \cdot \dim V_i$. The *q*-Stirling number Stir_{*q*}(*n*,*k*) is defined by the recursion

$$\operatorname{Stir}_{q}(n,k) = \operatorname{Stir}_{q}(n-1,k-1) + [k]_{q} \cdot \operatorname{Stir}_{q}(n-1,k)$$
(2.6)

together with the initial conditions $\text{Stir}_q(0,0) = 1$ and $\text{Stir}_q(0,k) = 0$ for any k > 0.

Corollary 2. The Hilbert series of $V_{n,k}$ is $\text{Hilb}(V_{n,k};q) = [k]!_q \cdot \text{Stir}_q(n,k)$.

In order to describe our proposed model for the Delta Conjecture, we need more variables. Let y_1, \ldots, y_n be *n* new commuting variables and consider the extension $\Omega_n[y_1, \ldots, y_n]$ of superspace defined formally by the tensor product

$$\Omega_n[y_1,\ldots,y_n] := \mathbb{Q}[x_1,\ldots,x_n] \otimes \mathbb{Q}[y_1,\ldots,y_n] \otimes \wedge \{\theta_1,\ldots,\theta_n\}.$$
(2.7)

This is a *triply* graded S_n -module with action $w.x_i := x_{w(i)}, w.y_i := y_{w(i)}, w.\theta_i := \theta_{w(i)}$. This ring admits an action of partial derivatives $\partial/\partial x_i$ and $\partial/\partial y_i$ in both the *x*-variables and *y*-variables.

Definition 3. For $k \leq n$, let $\mathbb{V}_{n,k}$ be the smallest Q-linear subspace of $\Omega_n[y_1, \ldots, y_n]$ which

- contains the superspace Vandermonde $\delta_{n,k}$ (in the x-variables and θ -variables alone),
- *is closed under the* polarization operator $\sum_{s=1}^{n} y_s (\partial/\partial x_s)^j$ for each $j \ge 1$, and
- *is closed under the 2n partial derivatives* $\partial/\partial x_1, \ldots, \partial/\partial x_n, \partial/\partial y_1, \ldots, \partial/\partial y_n$.

The S_n -module $\mathbb{V}_{n,k}$ is concentrated in θ -degree n - k. By considering *x*-degree and *y*-degree, the space $\mathbb{V}_{n,k}$ attains the structure of a doubly graded S_n -module.

Conjecture 1. Let $k \leq n$ be positive integers. The doubly graded Frobenius image of $\mathbb{V}_{n,k}$ is given by

$$\operatorname{grFrob}(\mathbb{V}_{n,k};q,t) = \Delta'_{e_{k-1}}e_n. \tag{2.8}$$

Conjecture 1 is true at t = 0 by Theorem 1. Conjecture 1 is true when k = n by the work of Haiman [8]. Conjecture 1 has been checked on computer for $n \le 4$ (and at n = 5 on the level of bigraded Hilbert series). Since every increase $n \rightarrow n + 1$ adds two new commuting variables and one new anticommuting variable, studying Conjecture 1 involves considerable computational challenges as n grows.

3 The Fields and Zabrocki Conjectures

In this section we describe alternative conjectural representation-theoretic models for the Delta Conjecture arising from quotients of Ω_n and $\Omega_n[y_1, \ldots, y_n]$. Recall that the symmetric group S_n acts diagonally on superspace Ω_n . Solomon proved [12] that the ring $(\Omega_n)^{S_n} \subseteq \Omega_n$ of S_n -invariants is a free $\mathbb{Q}[x_1, \ldots, x_n]^{S_n}$ -module on the generating set $\{de_{i_1} \cdots de_{i_r} : 1 \leq i_1 < \cdots < i_r \leq n\}$ where $d := \sum_{j=1}^n \theta_j \cdot (\partial/\partial x_j)$ is the total derivative operator.

Let $\langle (\Omega_n)_+^{S_n} \rangle \subseteq \Omega_n$ be the two-sided ideal of Ω_n generated by S_n -invariants with vanishing constant term. By considering *x*-degree and θ -degree, the quotient $\Omega_n / \langle (\Omega_n)_+^{S_n} \rangle$ is a doubly graded S_n -module. We view this quotient as a 'superspace coinvariant ring'. The following conjecture about its doubly graded Frobenius image was made by the Combinatorics Group at the Fields Institute.

Fields Conjecture. (see [15]) Let *n* be a positive integer. The doubly graded Frobenius image of $\Omega_n / \langle (\Omega_n)_+^{S_n} \rangle$ is given by

$$\operatorname{grFrob}(\Omega_n/\langle (\Omega_n)^{S_n}_+\rangle;q,z) = \sum_{k=1}^n z^{n-k} \cdot \Delta'_{e_{k-1}} e_n \mid_{t=0},$$
(3.1)

where q tracks x-degree and z tracks θ -degree.

If the Fields Conjecture is true, the bigraded Hilbert series of $\Omega_n / \langle (\Omega_n)^{S_n}_+ \rangle$ would be given by

$$\operatorname{Hilb}(\Omega_n / \langle (\Omega_n)^{S_n}_+ \rangle; q, z) = \sum_{k=1}^n z^{n-k} \cdot [k]!_q \cdot \operatorname{Stir}_q(n, k)$$
(3.2)

where *q* tracks *x*-degree and *z* tracks θ -degree. The Fields Combinatorics Group proved (personal communication) the inequality

$$\operatorname{Hilb}(\Omega_n / \langle (\Omega_n)^{S_n}_+ \rangle; q, z) \ge \sum_{k=1}^n z^{n-k} \cdot [k]!_q \cdot \operatorname{Stir}_q(n, k)$$
(3.3)

where $f(q,z) \ge g(q,z)$ means that the difference f(q,z) - g(q,z) is a polynomial in q, z with nonnegative coefficients.

Recall that the *alternating subspace* of an S_n -module V is given by

 $\{v \in V : w.v = \operatorname{sign}(w) \cdot v \text{ for all } w \in S_n\}.$

Let A_n be the alternating subspace of $\Omega_n / \langle (\Omega_n)^{S_n} \rangle$. The alternant space A_n is a doubly graded vector space. The Fields Conjecture would imply that

$$\operatorname{Hilb}(A_n; q, z) = \sum_{k=1}^n z^{n-k} \cdot q^{\binom{k}{2}} \cdot {\binom{n-1}{k-1}}_q.$$
(3.4)

Equation (3.4) has been verified by Swanson and Wallach [13], giving further evidence for the Fields Conjecture.

If the Fields Conjecture is true, we would have an isomorphism of ungraded S_n -modules $\Omega_n / \langle (\Omega_n)_+^{S_n} \rangle \cong \bigoplus_{k=1}^n (\mathbb{Q}[\mathcal{OP}_{n,k}] \otimes \text{sign})$. At present, it is unknown whether either of these S_n -modules injects into the other.

The symmetric functions appearing in the Fields Conjecture and Theorem 1 are closely related. We propose the following 'bridge conjecture' whose truth would yield the Fields Conjecture. Let φ be the composite linear map

$$\varphi: V_{n,1} \oplus \cdots \oplus V_{n,n} \hookrightarrow \Omega_n \twoheadrightarrow \Omega_n / \langle (\Omega_n)^{S_n}_+ \rangle$$
(3.5)

obtained by including the direct sum $V_{n,1} \oplus \cdots \oplus V_{n,n}$ into superspace and then projecting onto the superspace coinvariant ring.

Conjecture 2. *The linear map* φ *is bijective.*

Mike Zabrocki studied the triply diagonal action of S_n on the ring $\Omega_n[y_1, \ldots, y_n]$ and the associated space $\Omega_n[y_1, \ldots, y_n]^{S_n}_+$ of S_n -invariants with vanishing constant term. He checked the following conjecture by computer for $n \le 6$.

Zabrocki Conjecture. ([15]) Let *n* be a positive integer. We have

$$\operatorname{grFrob}(\Omega_n[y_1,\ldots,y_n]/\langle\Omega_n[y_1,\ldots,y_n]^{S_n}_+\rangle;q,t,z) = \sum_{k=1}^n z^{n-k} \cdot \Delta'_{e_{k-1}}e_n \tag{3.6}$$

where q tracks x-degree, t tracks y-degree, and z tracks θ -degree.

The Zabrocki Conjecture is related to Conjecture 1 in the same way as the Fields Conjecture is related to Theorem 1. Since Theorem 1 is proven whereas the Fields Conjecture remains open, superspace Vandermondes might prove an easier road to Delta Conjecture modules than quotient rings.

4 The ring $W_{n,k}$ and Super Poincaré Duality

So far we have built S_n -modules $V_{n,k}$ and $\mathbb{V}_{n,k}$ by starting with the superspace Vandermonde $\delta_{n,k}$ and closing under partial derivatives in the commuting variables x_i, y_i (and potentially polarization operators). The modules $V_{n,k}$ and $\mathbb{V}_{n,k}$ have the defect of not being closed under multiplication and not admitting a natural ring structure. In this section we build a new bigraded S_n -module $\mathbb{W}_{n,k}$ from $\delta_{n,k}$. The module $\mathbb{W}_{n,k}$ is naturally a bigraded quotient of Ω_n . The module $\mathbb{W}_{n,k}$ turns out to extend both $V_{n,k}$ and the cohomology ring $H^{\bullet}(X_{n,k}; \mathbb{Q})$ of a variety $X_{n,k}$ of line configurations studied by Pawlowski and Rhoades. In order to define $\mathbb{W}_{n,k}$, we need operators $\partial/\partial \theta_i$ on Ω_n which differentiate with respect to anticommuting variables.

For $1 \leq i \leq n$, let $\partial/\partial \theta_i : \Omega_n \to \Omega_n$ be the $\mathbb{Q}[x_1, \ldots, x_n]$ -module endomorphism characterized by

$$\partial/\partial\theta_{i}:\theta_{j_{1}}\cdots\theta_{j_{r}}\mapsto\begin{cases}(-1)^{s-1}\theta_{j_{1}}\cdots\widehat{\theta_{j_{s}}}\cdots\theta_{j_{r}} & \text{if } j_{s}=i\\0 & \text{if } i\neq j_{1},\ldots,j_{r}\end{cases}$$
(4.1)

where $1 \le j_1, \ldots, j_r \le n$ are distinct indices and $\widehat{\cdot}$ means omission. The sign $(-1)^{s-1}$ is necessary to ensure that $\partial/\partial \theta_i$ is well-defined.

Definiton 4. For positive integers $k \leq n$, let $W_{n,k}$ be the smallest linear subspace of Ω_n which

- contains the superspace Vandermonde $\delta_{n,k}$, and
- *is closed under the* 2*n* operators $\partial/\partial x_1, \ldots, \partial/\partial x_n, \partial/\partial \theta_1, \ldots, \partial/\partial \theta_n$.

The vector space $W_{n,k}$ is a bigraded S_n -module. We use an action of superspace on itself to show that $W_{n,k}$ is naturally a bigraded quotient of Ω_n .

The operators $\partial/\partial \theta_i$ and $\partial/\partial x_i$ on Ω_n satisfy the relations

$$(\partial/\partial x_i)(\partial/\partial x_j) = (\partial/\partial x_j)(\partial/\partial x_i) \quad (\partial/\partial x_i)(\partial/\partial \theta_j) = (\partial/\partial \theta_j)(\partial/\partial x_i)$$
$$(\partial/\partial \theta_i)(\partial/\partial \theta_j) = -(\partial/\partial \theta_j)(\partial/\partial \theta_i)$$

for all $1 \le i, j \le n$. These are the defining relations of Ω_n , so for any superpolynomial $f = f(x_1, ..., x_n, \theta_1, ..., \theta_n)$ we have an unambiguous operator ∂f on Ω_n obtained by replacing each x_i in f with $\partial/\partial x_i$ and each θ_i in f by $\partial/\partial \theta_i$. This gives rise to an action $\odot: \Omega_n \times \Omega_n \to \Omega_n$ of superspace on itself by the rule

$$f \odot g := \partial f(g). \tag{4.2}$$

Proposition 1. Let $\operatorname{ann}(\delta_{n,k}) := \{f \in \Omega_n : f \odot \delta_{n,k} = 0\}$ be the annihilator in Ω_n of the superspace Vandermonde $\delta_{n,k}$. Then $\operatorname{ann}(\delta_{n,k})$ is a two-sided ideal in Ω_n which is S_n -stable and bigraded. The canonical composition

$$\mathbb{W}_{n,k} \hookrightarrow \Omega_n \twoheadrightarrow \Omega_n / \operatorname{ann}(\delta_{n,k}) \tag{4.3}$$

is an isomorphism of bigraded S_n -modules.

Thanks to Proposition 1, there is a natural multiplication operation on $W_{n,k}$, so that the anticommuting differentiation operators $\partial/\partial \theta_i$ give rise to a ring structure which $V_{n,k}$ and $V_{n,k}$ lack.

What do the bigraded S_n -modules $W_{n,k}$ look like? We display grFrob($W_{4,2}; q, z$) in matrix format, with rows labeling θ -degree and columns labeling *x*-degree.

$$\operatorname{grFrob}(\mathbb{W}_{4,2};q,z) = \begin{pmatrix} s_4 & s_4 + s_{31} & s_4 + s_{31} + s_{22} & s_{31} \\ s_{31} & 2s_{31} + s_{22} + s_{211} & s_{31} + s_{22} + 2s_{211} & s_{211} \\ s_{211} & s_{22} + s_{211} + s_{1111} & s_{211} + s_{1111} & s_{1111} \end{pmatrix}$$
(4.4)

The matrices grFrob($W_{n,k}; q, z$) enjoy the following properties. Let $U_n = S^{(n-1,1)}$ be the (n-1)-dimensional reflection representation of S_n .

Theorem 2. There hold the following facts about the bigraded S_n -module $W_{n,k}$.

- 1. (Special k) We have $W_{n,n} \cong R_n$ (coinvariant ring) and $W_{n,1} \cong \wedge U_n$ (exterior algebra).
- 2. (Bottom x-degree) The x-degree 0 piece of $\mathbb{W}_{n,k}$ is isomorphic to $\bigoplus_{i=0}^{n-k} \wedge^{j} U_{n}$.

- 3. (Top *x*-degree) The top *x*-degree of $\mathbb{W}_{n,k}$ is $\binom{k}{2} + (n-k) \cdot (k-1)$; this piece of $\mathbb{W}_{n,k}$ is isomorphic to $\bigoplus_{i=0}^{n-k} \wedge^{j} U_{n} \otimes$ sign.
- 4. (Top θ -degree) The top (= n k) θ -degree piece of $W_{n,k}$ is isomorphic to $V_{n,k}$.
- 5. (Bottom θ -degree) Let $I_{n,k} \subseteq \mathbb{Q}[x_1, \ldots, x_n]$ be $I_{n,k} := \langle x_1^k, \ldots, x_n^k, e_n, e_{n-1}, \ldots, e_{n-k+1} \rangle$ and let

$$R_{n,k} := \mathbb{Q}[x_1, \dots, x_n] / I_{n,k}. \tag{4.5}$$

The θ -degree 0 piece of $\mathbb{W}_{n,k}$ is isomorphic to $R_{n,k}$.

The quotient rings $R_{n,k}$ displayed in Item 5 of Theorem 2 were introduced by Haglund, Rhoades, and Shimozono [7]. They proved that

$$\operatorname{grFrob}(R_{n,k};q) = (\operatorname{rev}_q \circ \omega) \Delta'_{e_{k-1}} e_n \mid_{t=0},$$
(4.6)

where ω is the symmetric function involution which trades s_{λ} and $s_{\lambda'}$ and rev_q reverses the coefficient sequences of polynomials in *q*. The ring $R_{n,k}$ was the first model for a coinvariant ring attached to the Delta Conjecture.

The rings $R_{n,k}$ have a geometric interpretation. A *line* in the *k*-dimensional complex vector space \mathbb{C}^k is a 1-dimensional linear subspace. Pawlowski and Rhoades defined [10] the variety $X_{n,k}$ of spanning configurations of *n* lines in \mathbb{C}^k :

$$X_{n,k} := \{ (\ell_1, \dots, \ell_n) : \ell_i \subseteq \mathbb{C}^k \text{ a line and } \ell_1 + \dots + \ell_n = \mathbb{C}^k \}.$$

$$(4.7)$$

The space $X_{n,k}$ and its cohomology ring $H^{\bullet}(X_{n,k};\mathbb{Q})$ admit S_n -actions by line permutation. Pawlowski and Rhoades presented [10] the cohomology $H^{\bullet}(X_{n,k};\mathbb{Q})$ as

$$H^{\bullet}(X_{n,k};\mathbb{Q}) = \mathbb{Q}[x_1, \dots, x_n] / I_{n,k} = R_{n,k}.$$
(4.8)

We may therefore interpret the θ -degree 0 piece of $W_{n,k}$ as the cohomology of $X_{n,k}$.

The 'twist' (rev_{*q*} $\circ \omega$) involved in Equation (4.6) can be visualized in the matrix representing grFrob($W_{4,2}; q, z$) in (4.4). Namely, the top row can be obtained from the bottom row by reversal together with applying the operator ω . The reader may notice that the middle row of grFrob($W_{4,2}; q, z$) is invariant under reversal followed by ω . This observation generalizes as follows.

Theorem 3. The matrix representing grFrob($W_{n,k}; q, z$) is invariant under 180° rotation followed by the application of ω to each entry.

Recall that a sequence of numbers $(a_0, a_1, ..., a_d)$ is *palindromic* if $a_i = a_{d-i}$ for all i and *unimodal* if $a_0 \le a_1 \le \cdots \le a_r \ge a_{r+1} \ge \cdots \ge a_d$ for some r. A famous example of a polynomial in $\mathbb{Q}[q]$ with a palindromic and unimodal coefficient sequence is the q-factorial $[n]!_q = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$. While these facts about

 $[n]!_q$ follow from showing that if f(q) and g(q) have palindromic unimodal coefficient sequences, so does $f(q) \cdot g(q)$, there is a deeper derivation coming from geometry.

A finite-dimensional graded Q-algebra $A = \bigoplus_{i=0}^{d} A_i$ is a *Poincaré Duality Algebra* if $A_d \cong \mathbb{Q}$ is 1-dimensional and if for all $0 \le i \le d$ the map $A_i \otimes A_{d-i} \to A_d \cong \mathbb{Q}$ is a perfect pairing. This forces dim $A_i = \dim A_{d-i}$.

Let $\mathcal{F}\ell_n$ be the variety of complete flags in \mathbb{C}^n . Borel proved [1] that the cohomology of $\mathcal{F}\ell_n$ has presentation $H^{\bullet}(\mathcal{F}\ell_n;\mathbb{Q}) = R_n$ given by the coinvariant ring. Since $\mathcal{F}\ell_n$ is a compact complex manifold, the ring $H^{\bullet}(\mathcal{F}\ell_n;\mathbb{Q})$ is a Poincaré Duality Algebra and the palindromicity of its Hilbert polynomial $[n]!_a$ follows.

The complex variety $X_{n,k}$ is smooth, but usually not compact. Indeed, the cohomology ring $H^{\bullet}(X_{n,k};\mathbb{Q}) = R_{n,k}$ does not usually have a palindromic Hilbert series, e.g. $\operatorname{Hilb}(R_{3,2};q) = 1 + 3q + 2q^2$. However, the extension $W_{n,k} \supseteq R_{n,k}$ exhibits a superspace version of Poincaré Duality.

Let $A = \bigoplus_{i=0}^{d} \bigoplus_{j=0}^{e} A_{i,j}$ be a finite-dimensional bigraded Q-algebra. We say that A is a *Super Poincaré Duality Algebra* if $A_{d,e} \cong \mathbb{Q}$ and $A_{i,j} \otimes A_{d-i,e-j} \to A_{d,e}$ is a perfect pairing for all $0 \le i \le d$ and $0 \le j \le e$.

Theorem 4. The bigraded algebra $W_{n,k}$ is a Super Poincaré Duality Algebra.

Does Theorem 4 have geometric meaning? Is there a 'superspace version' of cohomology which yields $W_{n,k}$ when applied to $X_{n,k}$?

The unimodality of $[n]!_q$ also has geometric meaning. A Poincaré Duality Algebra $A = \bigoplus_{i=0}^{d} A_i$ satisfies the *Hard Lefschetz Property* if there exists an element $\ell \in A_1$ (called a *Lefschetz element*) such that for any $i \leq d/2$ the map $A_i \xrightarrow{\times \ell^{d-2i}} A_{d-i}$ of multiplication by ℓ^{d-2i} is bijective.

Since $\mathcal{F}\ell_n$ is a compact complex manifold and $H^{\bullet}(\mathcal{F}\ell_n; \mathbb{Q}) = R_n$, the ring R_n satisfies the Hard Lefschetz Property. Maneo, Numata, and Wachi proved [9] that a linear form $\ell = c_1 x_1 + \cdots + c_n x_n$ is a Lefschetz element if and only if $c_1, \ldots, c_n \in \mathbb{Q}$ are distinct.

As a closing example, we display the bigraded Hilbert series $Hilb(W_{4,2}; q, z)$ as a matrix where rows index θ -degree and columns index *x*-degree.

$$\operatorname{Hilb}(\mathbb{W}_{4,2}; q, z) = \begin{pmatrix} 1 & 4 & 6 & 3\\ 3 & 11 & 11 & 3\\ 3 & 6 & 4 & 1 \end{pmatrix}$$
(4.9)

Either Theorem 3 or Theorem 4 imply that the matrix $\text{Hilb}(\mathbb{W}_{n,k}; q, z)$ is always invariant under 180° rotation.

Conjecture 3. *Each row and column in the matrix representing* Hilb($W_{n,k}$; q, z) *is unimodal.*

Conjecture 3 would be best proven by showing that $W_{n,k}$ satisfies an as-yet-undefined 'Super Hard Lefschetz Property'.

Acknowledgements

The authors are grateful to Josh Swanson and Mike Zabrocki for helpful conversations.

References

- [1] A. Borel. "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compass." In: *Ann. of Math.* 57 (1953), pp. 115–207.
- [2] E. Carlsson and A. Mellit. "A proof of the shuffle conjecture". In: J. Amer. Math. Soc. 31 (2018), pp. 661–697.
- [3] C. Chevalley. "Invariants of finite groups generated by reflections". In: *Amer. J. Math.* 77 (4) (1955), pp. 778–782.
- [4] A. Garsia and M. Haiman. "Conjectures on the quotient ring by diagonal invariants". In: *J. Algebraic. Combin.* 3 (1) (1994), pp. 17–76.
- [5] A. Garsia et al. "A proof of the Delta Conjecture when q = 0". In: *Ann. Combin.* (2019), pp. 317–333.
- [6] J. Haglund, J. Remmel, and A. T. Wilson. "The Delta Conjecture". In: Trans. Amer. Math. Soc. 370 (2018), pp. 4029–4057.
- [7] J. Haglund, B. Rhoades, and M. Shimozono. "Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture". In: *Adv. Math.* 329 (2018), pp. 851– 915.
- [8] M. Haiman. "Vanishing theorems and character formulas for the Hilbert scheme of points in the plane". In: *Invent. Math.* 149 (2002), pp. 371–407.
- [9] T. Maeno, Y. Numata, and A. Wachi. "Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups". In: *Algebr. Reprent. Th.* 14 (4) (2007), pp. 625–638.
- [10] B. Pawlowski and B. Rhoades. "A flag variety for the Delta Conjecture". In: *Trans. Amer. Math. Soc.* 374 (2019), pp. 8195–8248.
- [11] B. Rhoades. "Ordered set partition statistics and the Delta Conjecture". In: *J. Combin. Theory Ser. A* 154 (2018), pp. 172–217.
- [12] L. Solomon. "Invariants of finite reflection groups". In: Nagoya Math. J. 22 (1963), pp. 57–64.
- [13] J. Swanson and N. Wallach. "Harmonic differential forms for pseudo-reflection groups I. Semi-invariants." Preprint, 2020. arXiv:2001.06076.
- [14] A. T. Wilson. "An extension of MacMahon's Equidistribution Theorem to ordered multiset partitions". In: *Electron. J. Combin.* 23.1 (2016), P1.5.
- [15] M. Zabrocki. "A module for the Delta conjeture." Preprint, 2019. arXiv:1902.08966.