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Abstract—As the number of processing cores and associated
threads in chip multiprocessors (CMPs) continues to scale out,
on-chip memory access latency dominates application execution
time due to increased data movement. Although tiled CMP
architectures with distributed shared caches provide a scalable
design, increased physical distance between requesting and re-
sponding cores has led to both increased on-chip memory access
latency and excess energy consumption. Near data processing is
a promising approach that can migrate threads closer to data,
however prior hand-engineered rules for fine-grained hardware-
level thread migration are either too slow to react to changes
in data access patterns, or unable to exploit the large variety of
data access patterns.

In this paper, we propose to use reinforcement learning (RL)
to learn relatively complex data access patterns to improve
on hardware-level thread migration techniques. By utilizing
the recent history of memory access locations as input, each
thread learns to recognize the relationship between prior access
patterns and future memory access locations. This leads to the
unique ability of the proposed technique to make fewer, more
effective migrations to intermediate cores that minimize distance
to multiple distinct memory access locations. By allowing a low-
overhead RL agent to learn a policy from real interaction with
parallel programming benchmarks in a parallel simulator, we
show that a migration policy which recognizes more complex data
access patterns can be learned. The proposed approach reduces
on-chip data movement and energy consumption by an average
of 41%, while reducing execution time by 43% when compared to
a simple baseline with no thread migration; furthermore, energy
consumption and execution time are reduced by an additional
10% when compared to a hand-engineered fine-grained migration
policy.

Index Terms—Chip Multiprocessors, Thread Migration, Rein-
forcement Learning, Data Movement.

I. INTRODUCTION

M anycore architectures suffer from both energy and
performance penalties that exacerbate with the increase

in the number of processing cores and associated threads
[1]. As on-chip and off-chip memory access points become
increasingly scattered around the on-chip interconnect fabric,
memory access latency and energy consumption will increase
as a result of longer round-trip request and response distances
for data traversal. As technology scales into the sub-nanometer
regime and provides opportunities to integrate hundreds of
processing cores on a single chip, the cost of moving data
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in terms of energy and performance is currently dominating
overall chip costs [1].

Near Data Processing is a powerful technique for reducing
on-chip data movement during task execution [2]. Rather than
repeatedly moving data from its on-chip storage location to the
locus of computation, threads are moved closer to the locus of
the data they require; if the cost (latency, energy) of moving
the thread is lesser than the cost of moving the data, then the
overall on-chip data movement is significantly reduced [3], [4],
[5], [6], [7], [8], [9], [10], [11], [2]. By reducing the distance
data travels on the chip, both energy consumed by the on-chip
network and memory access latency can be reduced.

Prior work advanced a deadlock free, fine-grain thread mi-
gration scheme that can take advantage of local memory access
patterns to migrate threads at the granularity of a few cycles
[6], [12], [8], [13], [9], [11]. Such a model used a distributed
non-uniform memory architecture (NUMA) where each core
has a slice of shared cache, and every cache line corresponds to
a unique core where the data is located on chip. By enforcing
a single copy of the data to be present on-chip, prior work
avoids the complexity and performance drawbacks of cache
coherence protocols. However, the performance benefits come
at a cost of increased memory access latency since the data
must be repeatedly requested from the remote core every time
it is required because the data cannot be cached locally. To
mitigate the loss in performance, prior work used simple hand-
engineered rules which recognize one type of data access
pattern to migrate the threads. However, prior thread migration
techniques are either too slow to react to changes in data access
patterns or too simple to exploit the large variety of data access
patterns.

In this paper, we propose to use reinforcement learning
(RL) to learn data access patterns to improve hardware-level,
deadlock-free thread migration techniques. In the proposed
scheme, we use a history of recent memory accesses and their
on-chip location to train a low-overhead RL policy to make
migration decisions. By using the recent history of memory
access locations as input, each thread learns to recognize the
relationship between prior access patterns and future memory
access locations. This enables the proposed technique to make
fewer, more effective migrations to intermediate cores that
minimize distance to multiple remote memory locations simul-
taneously. By training RL agents on real interactions within
parallel programming benchmarks in a parallel simulator, we
show that a migration policy based on more complex data
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access patterns can be learned. The main contributions of the
paper are as follows:

Recognition of complex access patterns: In [11], [13], simple
manually engineered rules trigger thread migration whenever
a fixed number of consecutive accesses to remote data is
observed. In this paper, we show that a more intelligent, RL-
trained policy can further reduce on-chip data movement. The
proposed RL formulation relaxes constraints on where the
threads can migrate and this allows the threads to move to
intermediate cores that place the thread closer to multiple
remote data locations. In Section III-A we illustrate how the
proposed RL policy learns to combine many local memory
access statistics in a more sophisticated way to improve both
energy and execution time.
Low-overhead RL to make migration decisions: As each
thread can theoretically make a decision on whether or not
to migrate on every memory access, it was crucial to design
a RL solution that had minimal overhead. While tabular RL
algorithms would be the quickest to determine the optimal
core to migrate, the size of the state-action table can be
prohibitively large to store in memory. Therefore, we use the
six most recent memory accesses and the current location of
the thread on chip as features for approximate Q-Learning
[14], [15], as well as other approximations to reduce the cost
of computing migrations.
RL as an improvement operator for existing solutions:
In the proposed formulation, there are approximately 1.76 ×
1016 possible states. We use the simple policy from [9], [11]
to collect experience for pre-training the RL agent. Effectively,
this forces the RL agent to first learn the value of a known,
good policy, and then fine tune it to form a better, more
complex policy. In this sense, the proposed algorithm can be
thought of as a policy improvement operator on the previous
policy. This step proved crucial to good performance.
Less on-chip traffic than existing methods: We compared
the performance of our proposed algorithm to a baseline that
never migrates, as well as against our implementation of the
NUMA architecture described in [9], [11], [13] using the
Snipersim simulator [16]. Relative to the baseline, the RL
approach was able to save 41.1% energy and reduce execution
time by 43.1% on a set of Splash2 [17] and Parsec [18]
benchmarks. Likewise, when compared the to prior work from
[9], the proposed RL algorithm saved an additional 10.2%
energy and reduced execution time by an additional 9.6% on
the same set of benchmarks.

II. BACKGROUND

In this section, we provide background on the key aspects of
the prior thread-migration based framework described in [9];
this prior work is referred to as TM throughout this paper. We
also provide background on reinforcement learning (RL) and
the RL algorithm used to learn the migration policy.

A. Prior Hardware-Level Thread Migration

1) Remote Access Cache: In the NUMA architecture used
in [9], [11], [6], [8], [13], the address space is divided among

Fig. 1: Example 4 × 4 mesh architecture using NUMA design.
Each core is connected to its immediate neighbors by links.
Each core views all cache slices as a single, logical cache;
however, accessing data on non-local cache slice will require
the core to go on the network.

the cache slices such that each cache line is assigned a unique
home core. Suppose a thread T running on core C is reading
or writing data with address A whose home core is H. If
H = C, T behaves normally such that the value is read/written
without interacting with the on-chip interconnection network.
On the other hand, if H 6= C, T must issue a request on
the on-chip interconnection network and wait for a response
for the memory operation to be completed. When compared
to a directory-based cache coherence protocol, an important
difference is that the remote cache block is never cached
locally at C. Thus, accessing the cache line at H incurs round
trip costs every time it is accessed. An example of a 4 × 4
mesh-based NUMA architecture is shown in Figure 1.

2) Fine-grained Deadlock-free Thread Migration: Prior
work in [9] seeks to exploit data locality by moving threads
to the locus of data. Instead of remotely requesting memory
operations, T could choose to migrate within the on-chip
interconnection network to core H and execute the memory
operation locally. If T is able to execute a sufficient number
of memory operations on the remote core, the migration will
have been “worth it”. In [9], a thread T chooses to migrate if it
executes ζ = 3 consecutive memory accesses to a remote core.
After ζ consecutive accesses to the remote core, the hardware
interrupts the execution of the thread and sends it on the on-
chip interconnection network to the remote core.

If a Thread T1 is migrating to core H and a thread T ′ is
already executing there, T ′ must be evicted. As described thus
far, there are situations in which repeated evictions could lead
to deadlock scenarios. To prevent deadlock, each core is made
to have two thread contexts for which the core can multiplex
execution [6], [12], [9], [13]. One context on each core H is
marked as the native context H.nctxt for the thread initialized
to that core; the other context is marked as the guest context
H.gctxt. Only the thread initialized to a core can execute on
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Algorithm 1 Fine-Grained Thread Migration [9]

1: Input: a predetermined migration threshold ζ
2: Input: thread T executing on core C
3: Input: address A whose home core is H

4: procedure ONMEMORYACCESS(T,C,H, ζ)
5: if T.last == H then
6: T.d = T.d+ 1
7: else
8: T.d = 1
9: T.last = H

10: if T.d == ζ then
11: T.d = 0
12: if H 6= C then
13: if T.ncore == H then
14: Migrate T to H.nctxt
15: else
16: if T ′ occupies H.gctxt then
17: Evict T ′ to T ′.ncore.nctxt
18: Migrate T to H.gctxt
19: else
20: T stays at core C

Fig. 2: This shows the migration decision process in a 5-
stage pipeline. At the execution stage, migration policy (hand-
engineered or RL) identifies the home core of a memory
address for a memory access instruction (load/store). This
outputs a core, which can indicate either a migration or a
decision to stay.

its native context; we will use T.ncore to denote the core
that can run T in its native context. As a result, for every
thread T there exists a native context, on the core T.ncore,
which can only be occupied by T ; this guarantees that T can
always return to an unoccupied thread context where it can
resume execution after being evicted from a guest context.
Furthermore, to prevent livelock scenarios in which threads are
repeatedly migrated before making any progress, each thread
is required to execute at least one instruction upon migrating
to a new core. The migration policy implemented by TM is
shown in Algorithm 1. There, the depth counter attribute T.d
keeps track of the number of consecutive accesses made by
thread T to the same core, whereas T.last denotes the core at
which the most recently accessed memory address was located.

B. Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning
which attempts to maximize a cumulative reward signal that
an agent receives after performing actions in an environment.
The reward is a scalar value describing progress towards a goal
after being in a state and taking an action, and can be sparse
and noisy. The formal setting for RL is the Markov Descision
Process (MDP), represented as a tuple (S,A, P,R, γ) where:

1) S is the set of all states s.
2) A is the set of all actions a.
3) P : S × A → S is the model dynamics; it gives the

probability of transitioning from the current state s to
the next state s’ upon taking the action a.

4) R : (S×A)×S → IR yields rewards for state transitions.
5) γ is a discount factor that controls how far into the future

the agent will optimize the reward.
The goal of the agent is to learn an optimal policy π∗ : S → A
which maps states to actions such that the long term expected
reward is maximized. It can be shown that the optimal policy
is π∗(s) = argmax

a
Q∗(s, a), where the action-value function

Q∗ satisfies the Bellman optimality equation [19]:

Q∗(s, a) =
∑
s′,r

P (s′, r|s, a)(r + γmax
a′

Q∗(s′, a′)) (1)

When the state space is small and discrete, the tabular Q-
learning algorithm [19] is guaranteed to find the optimal
action-value function Q∗(s, a) by storing the value of every
possible state-action pair in a table, provided that the agent
visits every possible state-action pair a sufficient number of
times. One common approach to ensure this is to use an ε-
greedy policy, which chooses the action that maximizes the
action-value function with probability 1 − ε, but reserves a
small probability ε for selecting random actions [20].

Algorithm 2 Double Q-Learning with Linear Function
Approximation and Offline Learning [14], [15]

1: Input: A Linear Function Q : S ×A× IRd → IR
2: Initialize Replay Memory D to capacity M
3: Initialize online Q parameters θ randomly
4: Initialize target Q̂ parameter θ− = θ
5: for each Episode do
6: Observe state vector s0 ∈ IRd

7: for each t in Episode do
8: Select at via an ε-greedy policy on Q(st, ·; θ)
9: Execute at then observe rt+1 and st+1

10: Store (st, at, rt+1, st+1) in D
11: for each Update Step do
12: Sample a minibatch of (sj , aj , rj+1, sj+1) from D
13: Select each a′j = argmax

a
Q(sj+1, a; θ)

14:

yj =

{
rj+1 if terminal
rj+1 + γQ̂(sj+1, a

′
j ; θ
−) else

15: Calculate the TD error δj = (yj −Q(sj , aj ; θ))
2

16: Perform a gradient descent step on δ w.r.t. θ
17: Every C steps set θ− = θ
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(a) (b) (c)

Fig. 3: Figures (a) and (b) show two examples of thread migrations made by the reinforcement learning policy RL-TM and
the baseline hand engineered policy TM. The transparent gear shows the thread at its current location. The black lines show
migrations made by RL-TM, whereas the red lines correspond to migration made by TM. RL-TM migrates in both scenarios:
in (a) from Core 6 to Core 7, and in (b) from Core 1 to Core 5. TM migrates the thread only in (a), from Core 6, after
observing three consecutive accesses to Core 15, whereas in (b) it never observes three consecutive accesses to the same core.
The legend key is shown in (c). A detailed walk-through of each scenario is provided in the text.

1) Double Q-Learning with Linear Function Approxima-
tion: When the state space is large, as we will show later is
the case for our proposed problem formulation, it is difficult or
impossible to store the entire state-action table in memory and
visit every state-action pair in a reasonable amount of time. In
these cases, the action-value function can be approximated by
some differentiable function Q(s, a; θ) where θ is a set of real-
valued parameters, and the states are represented as vectors
s ⊆ IRd; this allows the agent to generalize to unseen state-
action pairs and learn more quickly. However, Q-Learning
with function approximation is known to be unstable when the
parameters are updated via gradient descent [20]. To improve
stability during learning, [14] added a target network, i.e. a
copy of the action-value function that updates more slowly,
and experience replay, i.e. a buffer that stores old experience
then samples mini-batches from it to get a better estimate
of the gradient. We adopt a version of this algorithm that
exclusively updates parameters offline and uses linear function
approximation in lieu of a deep neural network. This is to keep
the simulator simple and fast, and to minimize the overhead of
computing the optimal action, respectively. The target network
is used in a Double Q-learning setting [21], [15] to alleviate
maximization bias and speed up learning. The full procedure
that we used to learn the optimal policy is described in
Algorithm 2. As seen in lines 13-14 of algorithm 2, the online
network parameterized by θ is used to select the next actions,
while the offline target network parameterized by θ− is used
to provide their corresponding state-action values, effectively
de-correlating action selection from action evaluation. Finally,
when the buffer is full, new transitions are added by replacing
older transitions at random. In Section III-B we explain the

use of this algorithm for training thread migration RL agents.

III. REINFORCEMENT LEARNING FOR HARDWARE LEVEL
THREAD MIGRATION

This section discusses the proposed reinforcement learning-
based thread migration (RL-TM). First, we use a walkthrough
example of RL-TM that shows the advantages of RL-TM over
the prior TM approach. Second, we introduce a formulation
of hardware-level thread migration as a low-overhead RL
problem. Last, we will discuss the RL overhead and imple-
mentation complexity.

A. Walk-through Example of Proposed RL-TM vs. Prior TM

Figure 3 illustrates the different migration decisions made
by the proposed RL-TM and the prior TM algorithms on two
real examples. The red −k clouds indicate memory accesses
k time steps in the past, e.g. −1 for the most recent memory
access, −2 for the memory access before it. Similarly, the
green +k clouds indicate memory accesses k time steps in
the future, e.g. +1 indicates the upcoming memory access. At
the time of the migration decision, RL-TM is aware of the
location of the upcoming memory access as well as the prior
5 memory accesses, whereas TM operates using location of
the upcoming and previous 2 memory accesses.

Consider the example of the thread executing on Core 6 in
Figure 3a. Upon observing the location of the access labeled
+1, but prior to performing the actual memory access, RL-
TM migrates to Core 7 which is one hop away from Core 6
to its right. This moves the thread controlled by RL-TM closer
to five future accesses, while moving it further from only a
single future access. On the other hand, the same thread, when
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controlled by TM, it observes 3 consecutive accesses (labeled
−5,−4,−3) to Core 15 and immediately migrates to Core 15
prior to performing the access labeled −3. As a result, under
TM the thread made a more costly three hop migration to Core
15, moving it closer to three future memory accesses, but also
farther from five future memory accesses.

In Figure 3b, based on the five prior accesses labeled with
red clouds and the upcoming access labeled +1, RL-TM
migrates the thread one hop away, from Core 1 to Core 5,
which ends up closer to all 6 future memory accesses. On
the other hand, TM does not migrate the thread, because no
three consecutive accesses are made to any single core. This
is a good example of the relative complexity of our policy.
While TM was unable to identify a pattern which indicated a
migration would be beneficial, RL-TM was able to consider
a weighted combination of prior memory access locations
to make a migration which ultimately reduced overall on-
chip data movement. In both examples, by exploiting learned
patterns that correlate previous with future access locations,
RL-TM is more effective than TM at reducing the total
distance of future accesses and also at lowering the cost of
migrations.

B. Threads as Reinforcement Learning Agents

Each thread is associated with an RL agent that attempts to
minimize the overall on-chip traffic. An agent collects local
information about recent memory accesses from its operating
core and then uses that information to make migration deci-
sions prior to completing each individual memory access. As
shown in Figure 2, the RL-TM algorithm identifies the home
core for a memory access instruction in the execution stage
and passes this information to the RL agent. This location
along with the previous 5 memory access locations forms an
access history of length k = 6 which is used as input to the
RL policy to select a core. If the core is the current location
of the thread, the thread does not migrate and either executes
the memory access locally or issues a remote request on the
interconnection network. If the core is non-local, execution
is interrupted, the thread context is serialized, and the thread
is sent to the remote core where it resumes execution of the
instruction.

Formally, there are N possible actions, where N is the
number of cores in the network. For a thread running on
core m, selecting action n corresponds to migrating to core
n if m 6= n, or staying at the same core otherwise. The
state contains information about the current location of the
thread and the core at which the data for the k most recent
memory accesses is located. Importantly, the most recent
memory access has not been completed yet when the state
vector is formed; the agent has identified the location of the
upcoming access and is making a decision on whether or not
it should migrate before completing that access, as shown in
Figure 2. The location of each of the k most recent memory
accesses ma1,ma2, ...,mak and the current thread location
tl are encoded as one-hot vectors of length N . The resulting
k+1 one-hot vectors are then concatenated to form the overall
state vector, i.e. st = [ma1,ma2, ...,mak, tl].

The reward is computed after each completed memory
access as a sum of a data cost and a thread migration cost:

r(st, at) = −dhops(st.ma1)− tsize ∗ thops(at, st.tl) (2)

where dhops is the round-trip number of hops the current
memory access needs to reach the requesting core, tsize is the
size of the thread in flits, and thops is the number of hops the
thread travels to migrate from the current core st.tl to the core
indicated by action at. The first term thus corresponds to the
network traffic cost incurred from accessing data, whereas the
second term estimates the network traffic cost caused by thread
migration. Note that when at = st.cl, no migration happens,
and thus thops(at, st.tl) = 0. Because the reward decreases as
the amount of traffic increases, an agent seeking to maximize
the reward is encouraged to make migration decisions that
reduce the distance traveled by data in a way that optimally
offsets the cost of migrating the thread.

During training the agents follow Algorithm 2. One episode
is considered to be a complete run of a single benchmark
application, so each iteration of the outer for loop on lines 5-17
begins when a benchmark application starts. A new timestep
begins when an agent (operating from the perspective of a
thread) identifies the location of a memory access, but before
the memory access has been completed; for this reason, each
agent has its own set of timesteps and follows lines 7-10
asynchronously. At line 8, each agent uses previously observed
memory access locations and the location of the upcoming
memory access as the state st. The state st is used as input
to the function Q to select the action at that determines the
core to move to (or stay at). At line 9, the agent executes
the migration decision then waits until the memory access
location for the next memory access instruction is known;
the reward rt+1 is computed and the new location is used
to compute the next state st+1. Finally, at line 10, the agent
stores the full transition information, (st, at, rt+1, st+1) in the
experience replay buffer. At this point, one iteration of the
first inner for-loop has completed and the agent is ready to
make another migration decision for timestep t+1. After the
benchmark application has finished, lines 11-17 are executed
for a fixed number of steps. In these steps, the algorithm
repeatedly samples minibatches of the transitions stored by
each agent to update the parameters θ. Because all agents
try to solve the same optimization problem, i.e. minimize
traffic due to on-chip data movement, they use the same
policy. Therefore, they share the same action-value function
Q(S,A; θ) and experience replay buffer D, which requires
the simulator API to globally communicate transition, action
selection, and update information during training. Allowing
the agents to share experience and use the same policy has
the added benefit that training will have a lower sample
complexity and thus proceed much faster. Furthermore, for
the first 10 episodes of training, the behavior policy in line 8
of Algorithm 2 is replaced with the deterministic policy from
[9], which migrates a thread to a core C if and only if it made
three consecutive accesses to that core. After 10 episodes, the
agent follows its own ε-greedy policy shown on line 8, to
improve on the initial deterministic policy.
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Algorithm 3 Low-Overhead RL at Test Time

1: Input: A Linear Function Q : S ×A→ IR
2: Load previously trained Q parameters θ
3: Observe state vector s0 ∈ IRd

4: for each t do
5: Select action at using an ε-greedy policy on Q(st, ·; θ)
6: Execute at then observe next state st+1

At test time, each thread performs thread migration ac-
cording to Algorithm 3. In step 2, a copy of the trained
parameters are loaded into the L1-D cache for each core so
that threads can access the trained policy without the need
for non-local communication. Additionally, the specialized
hardware described in Section III-C is added to each core
to facilitate low-overhead computation of migration decisions,
which results in a very low overhead RL policy at test time.
Similarly to training, each agent has its own set of timesteps
and executes lines 4-6 of Algorithm 3 asynchronously. At line
5, each agent uses the location of previously observed memory
access locations and the upcoming access location to form the
state vector st; st is then used as input to the function Q
to select the action at, which determines the core to migrate
to (or stay at). Finally, at line 6, the agent executes at and
waits to observe the location of the next memory access to
form the next state st+1. This loop continues indefinitely as
long as threads need to execute memory access instructions.
While using a fixed policy may lead to lower adaptability at
test time, prior work has shown that a single, well-selected
thread migration policy can work well across a wide range of
application benchmarks [9], [11], [13].

C. Overhead of Reinforcement Learning at Test Time

The total number of parameters requiring storage at test
time is calculated as follows. There are k+1 one-hot vectors
used as input, each of length N , where N denotes the number
of cores. The first k vectors represent the location of the k
most recent memory accesses by a thread, whereas the last
one-hot vector represents the thread’s current location. In our
experiments, k and N were 6 and 16, respectively, as seen in
Tables II and I. Given that a distinct set of parameters is needed
for each of the N actions for computing their action value,
this implies that the total number of parameters is (k+1)N2.
However, at test time the policy is copied into each core; the
one-hot vector that represents the location of the thread is not
needed anymore. Thus, only kN2 parameters must be stored
at each core. To further reduce the storage and computation
overhead of Algorithm 3, the 32b floats used at training time
are converted to 8b integers at test time. In total, the action-
value parameters are stored in approximately 1.5kb of the L1-
D cache at each core.

To further reduce the overhead, during testing we restricted
the agents to make migration decisions only on every 6th

memory access. Figure 4 shows the energy and execution
time of RL-TM as the period of migration decisions is varied.
While the performance on splash2-fft is slightly better for a
period of 5, the 0.3% performance gain would be offset by

Fig. 4: Energy and Execution Time performance of RL-
TM relative to the baseline RA-Only on splash2-fft as the
migration period is varied.

TABLE I: System Configuration

Parameter Settings
Cores, N 16

Thread Contexts per Core 2
Process Size 45nm

L1/L2 cache per core 32KB/128KB
L1/L2 Associativity 8/8 way set associative
Cache Block Size 64b

Interconnection Network Shape 2D Mesh
Interconnection Network Routing XY routing

Hop Latency 2 cycles
Flit Size 128b

Thread Context Size 3.1kb

the increased overhead cost (Section III-D) of making more
frequent migration decisions. Additionally, we found that it
was possible to reduce the number of cores considered at
test time with a simple heuristic: a minimal bounding box
was formed to contain all cores corresponding to the last k
memory accesses. On average, this reduced the number of
actions considered from N = 16 (the number of cores) to
N0 = 9.87, which is a 38.31% decrease in computation.

Because all k input vectors use one-hot encoding, mul-
tiplication with the corresponding parameter vectors simply
requires looking up the parameters corresponding to the index
of the non-zero element in the one-hot vector. Given that there
are k input vectors, this implies that k parameters must be
summed up for each of the N0 pruned actions. The resulting
N0 action-values must then be compared to find the maximum.
Finally, selecting actions on every 6th access reduces the
total number of selections to 1

6 of the number of memory
accesses. Overall, the time complexity consists of kN0 8b
integer lookups, (k − 1)N0 8b integer additions, and N0 − 1
8b integer comparisons.
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TABLE II: RL Hyperparameters

Parameter Settings
Training Steps 1.5e4 per episode

Memory Access Location History 6 accesses
Learning Rate, α 2.5e− 5

Gamma, γ 0.99
Optimizer Adam [22]

Adam Epsilon 1e− 8
Experience Replay Size 1.5e6

Update Batch Size 32
Target Network Update Frequency, C 1e3

Exploration Rate, ε 0.1 ∗ 0.9E

Train/Test Decision Frequency Every 1/6 access(es)
Length of Access History, k 6

D. RL-TM Unit Implementation

The RL unit first uses adders to sum k 8b integers for
an average of 10 actions on each migration decision; these
sums represent the action-value for each of the pruned ac-
tions. To sum the k values, we utilize carry-save adders
(CSA) organized in a Wallace tree [23] to ensure a low
propagation delay. Furthermore, a Brent-Kung adder (BKA)
[24] is utilized to minimize power and area overhead. The
10 sets of k weights are assigned to a unique adder unit to
compute the sums asynchronously; the resulting 10 sums are
passed to a comparator tree to find the maximizing action,
which is returned and used to make a migration decision.
The RL unit implementation is shown in Figure 5. After
modeling the hardware unit in Verilog HDL and synthesising
via Synopsys DC Ultra using the NanGate 45nm open cell
library, results show a timing overhead of 1.7ns (< 5 cycles)
and a power overhead of 5.23pJ, while the area overhead is
7813µm2. Including the RL units, the total area of the chip is
746.14mm2; thus, collectively the 16 RL units occupy 15.9%
of the total area of the chip. Because migration decisions are
computed every 6 memory accesses in this design, the timing
and energy overhead per memory access is effectively 0.28ns
and 0.87pJ, respectively. Using the specialized hardware added
to each core, this yields a timing and energy overhead of 1
cycle and 0.87pJ on average for every migration decision. In
context, 1.4% of the total cycles are spent computing migration
decisions. Overall, the resulting energy and timing penalty
are negligible relative to the total energy consumption and
execution time. While already small, these overhead numbers
will decrease significantly as the architecture is modernized
into the sub-10nm scale.

IV. PERFORMANCE EVALUATION

This section discusses the network simulator, its configu-
ration and its use in training and evaluation of the proposed
RL-TM scheme.

A. Simulation Setup

Evaluation was performed using the Snipersim multi-core
simulator [16] on a set of Splash2 [17] and Parsec [18]
benchmarks. Snipersim is designed to use a directory-based
memory hierarchy when organized in a network on chip

Fig. 5: RL-TM unit block diagram showing: (a) The adder and
comparator tree organization (b) The Wallace tree adder.

mesh architecture. Accordingly, the simulator was modified
to enable the remote access memory architecture described
throughout this document. Furthermore, the simulator does
not support hardware-level thread migration out of the box.
To enable these experiments, the simulator was also modified
to compute the cost in latency and energy associated with
migrating threads over the interconnection network. For a
fair comparison to [9], which was originally evaluated on a
different simulator, we implemented their migration algorithm
on the modified copy of Snipersim using the same simulation
parameters. The relevant chip design specifications can be seen
in Table I; notably, the system uses only 16 cores due to
the time complexity of making migration decisions frequently
at every core during simulation. As simulator technology
improves along with computational power, training thread
migration models on a larger number of cores will become
more feasible, with the results in Section V indicating that it
will scale effectively.

For the RL-enabled thread migration described in previous
sections, henceforth referred to as RL-TM, a trained RL policy
will be queried on every memory access by every thread on
the chip as seen in Figure 2. The migration policy of the
TM model compares the number of consecutive accesses to
memory on the same core to a predetermined threshold; RL-
TM replaces that simple manually engineered policy with a
policy learned using a more complex combination of network
statistics via Algorithm 2.

B. RL-TM Evaluation Procedure

We use a leave-one-out evaluation scenario, where at every
step a single Splash2 or Parsec benchmark is used for testing,
whereas all the remaining benchmarks are used to gather
experience and train the RL policy; this process is repeated
so that each benchmark is used for testing once. By never
using the test benchmark during training, the leave-one-out
evaluation results reflect how well a trained policy generalizes
to an unseen benchmark. The hyperparameters used during
training can be seen in Table II.
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Fig. 6: Shown is execution time of the thread migration frameworks discussed. All values are normalized to the value of the
RA-Only migration framework.

Fig. 7: The energy consumption of the three thread migration policies.

V. RESULTS AND ANALYSIS

We compare the proposed RL-TM to both a Remote-Access-
Only (RA-Only) baseline which can never migrate threads
and TM. A breakdown of the execution time for each of
the benchmarks can be viewed in Figure 6. It can be seen
that the RL-enabled thread migration algorithm reduces the
total execution time by an average of 43.1% relative to RA-
Only, and by an additional 9.6% relative to TM. Additionally,
the comparison of energy consumption is presented in Figure
7. Here, it’s shown that the RL-enabled thread migration
algorithm reduced the overall energy consumption by 41.1%
relative to the RA-Only baseline and an additional 10.2%
compared to TM. Figures 9 and 10 show that across all
benchmarks, the number of migrations and evictions using
RL-TM were reduced by 79.3% and 54.0%, respectively. The
average distance (in hops) each memory access must travel
round-trip on chip is shown in Figure 11. RL-TM reduces
the average access distance by 23.7% relative to RA-Only,
and an additional 1.1% relative to TM. Finally, Figure 12
shows the normalized energy consumption of RL-TM when
it is trained using applications from one benchmark suite
evaluated using application from the other benchmark; results
are normalized to the energy consumption of RL-TM when
trained using benchmark applications from both benchmark
suites, excluding the application being evaluated. Figure 12a
shows an average increase of 2.6% in energy consumption,
whereas Figure 12b shows a mean increase of 3.4%. While
it’s possible that similarity among applications within the same
benchmark suite (see splash2-lu.cont and splash2-lu.ncont)
helps boost performance to some degree, it’s also possible that

the relative drop in performance when restricting the training
set is simply due to a less diverse training set.

A. Analysis of Learned Policy

Results in Figures 6 and 7 show that RL-TM is a more
effective thread migration algorithm than prior work while
also maintaining enough generality to work across multiple
benchmark suites using the same set of hyperparameters. Thus,
the results indicate that using the hyperparameters shown in
Table II would lead to effective thread migrations on a wide
variety of parallel applications with little or no added design
complexity, allowing the methodology to be extended to new
applications easily, and could improve with a wider variety of
training data. The rest of this section will analyze and explain
the performance of RL-TM.

To understand why RL-TM is working, it is useful to first
look at the number of migrations and evictions shown in
Figure 9 and Figure 10. These show that the overall number of
migrations and evictions for RL-TM are significantly reduced
when compared to TM. Additionally, Figure 11 shows that
RL-TM manages to reduce the average access distance by
a smaller amount. Together, these three results show that
RL-TM is able to achieve better data locality with a much
smaller number of migrations. Migrations have a very large
overhead due to the large thread context that must be sent
over the interconnection network, so making less migrations
significantly reduces timing and energy overhead for thread
migration schemes. Interestingly, Figure 8 shows that RL-TM
slightly improves over the RA-Only baseline by 2% increased
local access rate, but makes 14.3% less local accesses than
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Fig. 8: The percentage of cache accesses which were local to the accessing thread’s core.

Fig. 9: The number of migrations performed by RL-TM relative to the TM algorithm of [9]; RA-Only is omitted because it
never migrates threads.

TM. This displays the other strength of RL-TM; where TM
is only ever able to migrate to a core where it has made
multiple consecutive memory accesses, RL-TM is also able to
migrate to intermediate cores that are close to multiple caches
from which it needs data. In other words, while RL-TM less
frequently moves directly to cores that can cache the data it
needs, the benefit of moving to intermediate cores allows it to
migrate less frequently while maintaining better data locality
than RA-Only and TM. This reliance on intermediate cores
suggests that RL-TM will become increasingly beneficial as
the number of cores grows when compared to either baseline,
as RL-TM will minimize expected distance to data, which will
be increasingly distributed among a larger number of cores.
While this indicates that a trained RL policy could become
even more useful with higher core counts, the performance of
the algorithm under practical constraints imposed by a growing
state-action space remains an empirical question and is left for
future work.

B. Need for bootstrapping

In the proposed RL formulation, there are approximately
1.76 × 1016 possible states. Rather than throwing out the
valuable policy used by TM, we use it as the initial policy
for the RL agents. Effectively, this forces the RL agent to
learn the value of a known, good solution, and then fine-tune
it into a better, more complex policy. This bootstrapping step
was instrumental for obtaining good performance with RL-
TM, which effectively makes RL-TM a policy improvement
algorithm. A similar approach was taken in [25], where a
policy gradient reinforcement learning algorithm was used to

improve a simpler search algorithm to play the game of Go.
This view suggests that collecting data from other manually
engineered policies, which make good migrations based on
other simple access patterns, and using that data to pre-train
RL-TM could further improve performance.

VI. RELATED WORK

Most similar and a direct inspiration to our work is the work
in [6], [8], [9]. There, the authors focused on introducing the
concept of a directoryless, shared-memory protocol that relied
on informed, fast, provably deadlock-free thread migration to
reduce cache miss rates. The authors used a program counter to
track the number of consecutive accesses to remote cores; after
a predetermined, hand selected number of remote accesses to
the same core, a thread would interrupt execution and migrate
via the chip interconnection network to the location of the
remote data. Our work adopts the idea of a NUMA memory
design that relies on migrations to improve data locality, but
uses a history of memory access locations to train a low-
overhead RL policy to make decisions to migrate to any
core in the network, rather than just the core associated with
the remote access. In [11], this idea was improved upon by
introducing a stack based core architecture. This allowed the
system to dynamically decide to migrate differing amounts
of the thread context, thus reducing the overhead incurred
by migrating a thread over the interconnection network. [3]
introduces the idea of computation migration; this is shown
as an alternative to bringing data to the locus of computation,
where programmers annotate the location where procedures
should be run to improve data locality. Rather than copying
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Fig. 10: The number of evictions caused by RL-TM relative to the algorithm of [9]; RA-Only is omitted because it never
migrates threads.

Fig. 11: Shown is the normalized mean memory access distance (in hops) for each method; for each algorithm on each
benchmark, this is the expected distance each memory access will have to travel on-chip to be completed.

memory to multiple locations and using a coherence protocol,
[26] explore systems to reactively place pages and threads on
chip according to dynamic measurements made at run-time
at the programming language level. [27] introduces a thread
migration technique in a SMP multiprocesor system which is
performed by the operating system at timeslice granularity;
OS-based migration protocols such as [27] were effective for
achieving long-term goals like load-balancing, but due to the
high overhead of such methods, optimizing data locality for
short bursts of data accesses is better suited for methods
like those presented in this paper. [28] used a programming
language level method to identify idle cycles at compile
time which could be utilized to hide the overhead of these
relatively high-overhead programming language level and OS-
level migration schemes. Similarly, [29] attempts to alleviate
the overhead of migrating call-stacks by compiling functions
to a machine-independent string so that a programmer can
specify when to move function execution on a heterogeneous
system. [10] introduces a system that makes migration de-
cisions both via compile-time optimization and via an OS-
level system that analyzes the run-time behavior of threads.
On the other hand, [4] and [5] utilize both dynamic voltage
and frequency scaling and thread migration to save energy
while sidestepping the area/performance overhead penalties
of using DVFS alone; likewise, all methods rely on a central
arbiter or handshake that makes the decision to migrate threads
to a higher or lower frequency core based on their current
workload, and can’t be considered truly low-overhead or fine-
grained. In an attempt to further reduce the latency of the

actual migration, [10] introduces the Teleportation Register
File and special migration hardware to reduce the amount of
time it takes to migrate threads on a heterogeneous chip in a
register based ISA, rather than the stack based ISA used by
[11].

Additional work has been done which focuses on the
heterogenous nature of modern System-on-Chips (SoCs). [30]
attempted to map tasks to the appropriate type of process-
ing element in heterogeneous System-on-Chips; this idea is
improved in [31] by dynamically scheduling tasks which
communicate to a single processing element. Similarly, [32],
to decomposes applications to tasks then dynamically maps
these tasks onto processing elements at runtime to minimize
communication between tasks. [33] utilizes compile-time op-
timization to identify dependent instructions, then partitions
them into tasks; a RL-based task scheduler then attempts to
place tasks on their preferred type of processing element such
that the distance to other tasks which they communicate with
is minimized. While similar in spirit to thread migration, the
aforementioned task mapping algorithms dynamically provide
only initial mappings for tasks, and they could benefit from
thread migration algorithms, such as the proposed algorithm
RL-TM, which allow threads to move after their initial map-
ping; this is especially true in parallel applications which
require frequent communications between many threads.

In addition, RL has been applied to many other tasks on
the Network-on-Chip (NoC). Power management is frequently
addressed by training RL agent(s) to make dynamic voltage
and frequency scaling decisions for on-chip components [34],
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(a) (b)

Fig. 12: Figures (a) and (b) show the energy consumption of RL-TM when restricting the training set to include applications
from only one benchmark suite, normalized to the energy consumption when RL-TM is allowed to train on all benchmark
applications except the one being evaluated. In Figure 12a, RL-TM was trained using the 4 Parsec benchmarks then evaluated
on the 7 Splash2 benchmarks. In Figure 12b, RL-TM was trained on Splash2 benchmarks and evaluated on Parsec benchmarks.

[35], [36]. Additionally, RL polices have been used to save
energy by learning to power-gate NoC components with the
goal of reducing static power consumption [34], [37]. [37]
each use RL to provide adaptive error detection and correction
in the NoC. [38] used RL to learn an adaptive scheduling
policy for the memory controller in a chip multiprocessor.
Another common application of RL in the NoC is learning dy-
namic/adaptive routing schemes [39], [40], [41]; each of these
works attempt to alleviate network congestion by introducing
a dynamic routing algorithm learned via RL. On the other
hand, our proposed RL-TM algorithm attempts to dynamically
assign threads to cores for any parallel processing application,
and is orthogonal to all of the above RL-for-NoC work.

VII. CONCLUSIONS

Researchers predict the number of cores on multicores will
reach the thousands in the near future. The proposed RL-TM
offers a proof of concept that low-overhead approximate RL
can be used to train a policy which effectively utilizes inter-
mediate cores to make migrations to minimize the expected
access distance for future memory accesses. By stripping out
test-time learning which is characteristic of most contemporary
RL algorithms and making several other improvements, RL-
TM requires negligible overhead to compute migration deci-
sions. Compared with a simple baseline that never migrates
threads, the proposed methodology reduces execution time by
43.1% and energy consumption by 41.1%. When compared to
a similar algorithm which utilizes a human engineered rule,
RL-TM reduces execution time by an additional 9.6% and
energy consumption by an additional 10.2%. Data collected
from experiments shows that this decrease can largely be
attributed to a 79.3% decrease in the number of migrations
made, a 54.0% reduction in thread evictions and the use
of intermediate cores as migration locations to improve data
locality. RL-TM is able to do this by bootstrapping from the
simpler human engineered policy. Finally, the experiments on
both Splash2 and Parsec benchmarks suggest that our proposed
methodology generalizes to many parallel applications. Future

work could diversify the set of benchmarks even further
as simulators become more efficient and computers to run
experiments become faster. Altogether, RL-TM is a general
approach to hardware-level thread migration which effectively
reduces on-chip data movement to both reduce execution time
and save energy.

ACKNOWLEDGMENT

This research was partially supported by NSF awards, CCF-
1513606, CCF-1513923, CCF-1702980, CCF-1703013, CCF-
1812495, CCF-1901192, and CCF-1936794. We sincerely
thank all the anonymous reviewers for their excellent feedback
on this work.

REFERENCES

[1] M. Ottavi, S. Pontarelli, D. Gizopoulos, C. Bolchini, M. K. Michael,
L. Anghel, M. Tahoori, A. Paschalis, P. Reviriego, O. Bringmann,
V. Izosimov, H. Manhaeve, C. Strydis, and S. Hamdioui, “Dependable
Multicore Architectures at Nanoscale: The View From Europe,” IEEE
Design Test, vol. 32, no. 2, pp. 17–28, Apr. 2015, conference Name:
IEEE Design Test.

[2] A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, “Opportunistic Computing in GPU
Architectures,” in Proceedings of the 46th International Symposium on
Computer Architecture, ser. ISCA ’19. New York, NY, USA: ACM,
2019, pp. 210–223, event-place: Phoenix, Arizona. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322212

[3] W. C. Hsieh, P. Wang, and W. E. Weihl, “Computation migration:
enhancing locality for distributed-memory parallel systems,” ACM
SIGPLAN Notices, vol. 28, no. 7, pp. 239–248, Jul. 1993. [Online].
Available: https://doi.org/10.1145/173284.155357

[4] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread Motion:
Fine-grained Power Management for Multi-core Systems,” in
Proceedings of the 36th Annual International Symposium on Computer
Architecture, ser. ISCA ’09. New York, NY, USA: ACM, 2009,
pp. 302–313, event-place: Austin, TX, USA. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555793
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