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ABSTRACT
We propose a new method for analysis of multivariate point pattern data observed in a heterogeneous
environment and with complex intensity functions. We suggest semiparametric models for the intensity
functions that depend on an unspecified factor common to all types of points. This is for example well
suited for analyzing spatial covariate effects on events such as street crime activities that occur in a complex
urbanenvironment. Amultinomial conditional composite likelihood function is introduced for estimationof
intensity function regression parameters and the asymptotic joint distribution of the resulting estimators
is derived under mild conditions. Crucially, the asymptotic covariance matrix depends on ratios of cross
pair correlation functions of the multivariate point process. To make valid statistical inference without
restrictive assumptions, we construct consistent nonparametric estimators for these ratios. Finally, we
construct standardized residual plots, predictive probability plots, and semiparametric intensity plots to
validate and to visualize the findings of the model. The effectiveness of the proposed methodology is
demonstrated through extensive simulation studies and an application to analyzing the effects of socio-
economic and demographical variables on occurrences of street crimes in Washington DC. Supplementary
materials for this article are available online.
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1. Introduction

Multivariate point pattern data with many types of points
are becoming increasingly common. Ecologists collect large
datasets on locations and species of plants and animals, while
police authorities gather ever-increasing datasets on times,
locations, and types of crimes. In epidemiology, multivariate
point pattern datasets concern geo-referenced occurrences of
different types of disease or bacteria. While the literature of
bivariate point patterns is fairly well-developed (see, e.g., the
review in Waagepetersen et al. (2016)), much less work has
been done on the statistical analysis of point patterns with
more than two types of points. Diggle, Zheng, and Durr (2005)
and Baddeley, Jammalamadaka, and Nair (2014) considered
four- and six-variate multivariate Poisson processes and more
recently Jalilian et al. (2015) and Waagepetersen et al. (2016)
considered five- and nine-variate multivariate Cox processes.
Rajala, Murrell, andOlhede (2018) and Choiruddin et al. (2020)
considered penalized estimation for, respectively, multivari-
ate Gibbs and log Gaussian Cox point processes for datasets
containing locations of more than 80 species of rain forest
trees.

This article is concerned with statistical modeling of the
first-order intensity functions of a multivariate spatial point
process with an arbitrary number of types of points. For clar-
ity of exposition, we discuss our proposal in relation to the
specific problem of street crime analysis where we focus on
the spatial aspects of street crimes aggregated over a time span
of interest, see also the data example in Section 6. To model
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street crime activities as a multivariate point process poses three
major challenges: (1) to handle the high complexity of the first-
order intensity function for each type of points; (2) to relate the
street crime locations to available spatial covariates; (3) to take
into account spatial correlations within and between different
types of crimes. The first challenge arises because street crime
activities depend in a complicated way on the layout of the city
(streets, squares, malls, etc.) as well as the typically unknown
population density at any location. Moreover, the intensity of
crime activities may also change abruptly from one area to
neighboring areas. The second challenge arises because it is of
great interest to police and criminologists to gain information
on how street crime occurrences are related to demography,
socio-economic variables, and other covariates. Such informa-
tion is, for example, helpful to assess the validity of competing
theories concerning the causes of the occurrence of crime in
space (Weisburd et al. 1993; Cohen, Gorr, and Olligschlaeger
2007; Haberman 2017), see also Section 3.1. To properly assess
the effects of covariates it is necessary to take into account the
spatial correlation between street crimes, which leads to the
third challenge.

To address the aforementioned first two challenges, we pro-
pose a semiparametric regression model for the first-order
intensity functions. Specifically, we propose a multiplicative
model where the intensity function for each type of points is
a product of a nonparametric component common to all types
of points and a parametric component that models the influ-
ence of the covariates on the intensity function. The common
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nonparametric component models background factors such as
population density or variation in intensity due to the layout
of a city. To fit the model we propose a conditional com-
posite likelihood function that does not depend on the non-
parametric factor and is formally equivalent to multinomial
logistic regression. We derive the asymptotic joint distribu-
tion of the resulting estimators and provide an estimator of
the asymptotic covariance matrix. A few articles have con-
sidered building full parametric models for clustered mul-
tivariate point processes (Jalilian et al. 2015; Waagepetersen
et al. 2016; Rajala, Murrell, and Olhede 2018). However,
these parametric models impose restrictive assumptions that
are difficult to verify in practice and fitting the models can
be rather challenging when the number of point types is
large.

Our approach is inspired by the case-control methodology
introduced in Diggle and Rowlingson (1994) and further con-
sidered in Guan, Waagepetersen, and Beale (2008), Zimmer-
man, Sun, and Fang (2012), and Xu, Waagepetersen, and Guan
(2019). However, we do not restrict attention to the bivariate
case considered in these references. Our approach also has
some resemblance to Diggle, Zheng, and Durr (2005) who
considered spatially varying risks of occurrence of one type of
bacteria relative to the occurrence of other types. We, however,
estimate relative risks using parametric models depending on
covariates, where Diggle, Zheng, and Durr (2005) applied non-
parametric kernel estimation. Diggle and Rowlingson (1994),
Guan,Waagepetersen, and Beale (2008), Zimmerman, Sun, and
Fang (2012), and Xu, Waagepetersen, and Guan (2019) further
assumed independence between different types of points and
that points of at least one type forms a Poisson process while
Diggle, Zheng, and Durr (2005) and Zimmerman, Sun, and
Fang (2012) assumed that all the different types of points form
Poisson processes which are independent. According to the
third challenge mentioned above, we do not assume that any
of the point processes are Poisson and we do not assume inde-
pendence between different types of points. This significantly
expands the applicability of the proposed methodology to ever-
growingmultivariate point pattern data collected in the big data
era.

Our analysis of the street crime data clearly shows that the
different types of street crimes are not distributed as Poisson
processes and are also not independent of each other, see Fig-
ure 4 for details. Thus, the inferential procedures considered in
the existing work cited above, including Diggle and Rowlingson
(1994), would not be valid even in the bivariate case. Table 2
in our simulation study demonstrates that ignoring spatial cor-
relations among different point patterns will lead to severe
under-coverage of the resulting confidence intervals. Table 4 of
our crime data analysis also suggests that failure to take into
account spatial correlations within and between types of points
may result in misleading interpretations of the effects of some
covariates.

Our theoretical investigation reveals that the asymptotic
covariance matrix of our proposed estimator depends on the
so-called pair correlation functions (PCFs) and cross PCFs of
the multivariate point process, neither of which can be consis-
tently estimated due to the common nonparametric component
included in the model of the first-order intensity functions.

A major novelty of our approach is our discovery that the
asymptotic covariance matrix can be consistently estimated by
an estimator expressed in terms of ratios of the PCFs and cross
PCFs, but not the individual PCFs and cross PCFs themselves.
In contrast to the individual PCFs and cross PCFs, it is possible
to estimate these ratios consistently under the proposed model.
However, the naive use of kernel estimators for PCF/cross-PCF
ratios can still lead to serious under-coverage of the resulting
confidence intervals. To further improve the quality of statistical
inference, we developed a novel regularized nonparametric esti-
mator for these ratios by imposing somemild shape constraints.
To the best of our knowledge, no such regularized estimator
has been studied in the literature. Consequently, valid statistical
inferences can be performed for the estimated regression coef-
ficients without restrictive parametric assumptions.

The proposed semiparametric regression model for the first-
order intensity functions allows us to study relative risks given
by the ratios of the first-order intensity functions. Our estima-
tors of ratios of PCFs and cross PCFs allow us to generalize
this concept to the second-order setting. The application to
street crime data in Section 6 shows that practical insights
can be gained by studying these PCF and cross PCF ratios.
This is another novelty of our work. A final novel feature of
our semiparametric model is that we can combine information
for all types of points to estimate the nonparametric com-
ponent and subsequently obtain semiparametric estimates of
the intensity function for each type of points. This provides
a more precise alternative to the usual nonparametric kernel
intensity function estimator that is applied to each type of points
separately.

The rest of the article is organized as follows. Section 2
provides an overview of multivariate point processes with a
focus on intensity and cross PCFs. The semiparametric model
and its inference are introduced in Section 3 and theoretical
investigations are given in Section 4. Simulation studies are
presented in Section 5 and an application to Washington DC
street crime data is given in Section 6. Concluding remarks are
given in Section 7 and all technical proofs are collected in the
supplementary materials.

2. Background onMultivariate Point Processes

Denote byX = (X1, . . . ,Xp) amultivariate spatial point process,
whereXi is a random subset ofRd with the property thatXi∩B is
of finite cardinality for all boundedB ⊆ R

d and i = 1, . . . , p.We
assume that each Xi is observed in a bounded windowW ⊂ R

d

and Xi ∩ Xj = ∅ for any i �= j. Assume that for eachm ≥ 1 and
i = 1, . . . , p, there exists a nonnegative function λ

(m)
i (·) such

that

E
�=∑

u1,...,um∈Xi

1 [u1 ∈ A1, . . . ,um ∈ Am]

=
∫

∏m
j=1 Aj

λ
(m)
i (u1, . . . ,um)du1 · · · dum,

where Aj ⊂ R
d, and

∑ �= indicates that u1, . . . ,um are pairwise
distinct. The function λ

(m)
i (·) is called themth order joint inten-

sity function of Xi. Whenm = 1, the function λ
(1)
i (·) is referred
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to as the intensity and is denoted λi(·). Assume further that for
each n,m ≥ 1 and i, j = 1, . . . , p, there exists a nonnegative
function λ

(m,n)
ij (·, ·) such that

E
�=∑

u1,...um∈Xi

�=∑
v1,...,vn∈Xj

1[u1 ∈ A1, . . . , um ∈ Am, v1 ∈ B1, . . . , vn ∈ Bn] (1)

=
∫

∏m
j=1 Aj

∫
∏n

j=1 Bj
λ

(m,n)
ij (u1, . . . , um, v1, . . . , vn) du1 · · · dumdv1 · · · dvn,

where Ak ⊂ R
d and Bl ⊂ R

d for k = 1, . . . ,m and l = 1, . . . , n.
The function λ

(m,n)
ij (·, ·) is referred to as the (m, n)th order

cross intensity function between Xi and Xj, i, j = 1, . . . , p. The
normalized (cross) joint intensities g(m)

i (·) and g(m,n)
ij (·, ·) are

defined as

g(m)
i (u1, . . . um) = λ

(m)
i (u1, . . . ,um)/

m∏
l=1

λi(ul), and

g(m,n)
ij (u1, . . . ,um, v1, . . . , vn) = λ

(m,n)
ij (u1, . . . ,um, v1, . . . , vn)∏m

l=1 λi(ul)
∏n

k=1 λj(vk)
,

(2)

provided the denominators on the right-hand sides are pos-
itive (otherwise we define g(m)

i (u1, . . . ,um) = 0 and
g(m,n)
ij (u1, . . . ,um, v1, . . . , vn) = 0). For i �= j, g(1,1)

ij (·, ·)
is referred to as the cross PCF and g(1,1)

ii (·, ·) coincides with
g(2)
i (·, ·) which is known as the PCF. From now on, we write
gi(·, ·) for g(2)

i (·, ·) and gij(·, ·) for g(1,1)
ij (·, ·). The notion of cross

joint intensities and their normalized versions can be general-
ized in an obvious way to joint cross intensities λ

(n1,...,nk)
i1i2···ik and

normalized cross joint intensities g(n1,...,nk)
i1i2···ik for Xi1 , . . . ,Xik for

any k ≥ 1, {i1, . . . , ik} ⊆ {1, 2, . . . , p}, and integers n1, . . . , nk ≥
1.

Suppose that a point from Xi is observed at u. Then
λj(v)gij(u, v) can be interpreted as the conditional intensity
of Xj at v given that u ∈ Xi. Thus, the cross PCF informs
on how presence of a point in u affects the intensity of fur-
ther points in Xj. In the special case when Xi and Xj are
independent, gij(u, v) ≡ 1. If X = (X1, . . . ,Xp) con-
sists of independent Poisson processes, we call X a multivari-
ate Poisson process. Then λ

(m)
i (u1, . . . ,um) = ∏m

l=1 λi(ul)
and λ

(m,n)
ij (u1, . . . ,um, v1, . . . , vn) = ∏m

l=1 λi(ul)
∏n

k=1 λj(vk).
Consequently, gij(u, v) = 1, i, j = 1, . . . , p, for a multivariate
Poisson process which is the referencemodel of complete spatial
independence.

Throughout the article, we assume that themultivariate point
process is second-order cross-intensity reweighted isotropic
meaning that gij(u, v) depends only on the distance ||u − v||.
For this reason, we abuse notation and denote by gij(r) the
value of gij(u, v) when ||u − v|| = r. We often refer to so-
called Campbell’s formulas. For example, by standard measure

theoretical arguments, the definition of λ(m)
i (·) implies

E
�=∑

u1,...,um∈Xi

f (u1, . . . ,um)

=
∫

(Rd)m
f (u1, . . . ,um)λ

(m)
i (u1, . . . ,um)du1 · · · dum

for any nonnegative function f on (Rd)m. Similar Campbell
formulas hold for the cross joint intensities.

3. Semiparametric Multinomial Logistic Regression

In this section, we detail the proposed semiparametric model
and the multinomial logistic regression approach to statistical
inference. Formal asymptotic considerations are deferred to
Section 4.

3.1. Semiparametric Model

For spatial point pattern data in an environment like a city,
the intensity function can be rather complex due to the city
layout and variations in population density. To overcome this
difficulty, we follow Diggle and Rowlingson (1994) and assume
that for each point pattern Xi, the intensity function takes the
multiplicative form

λi(u; γ i) = λ0(u) exp
[
γ T
i z(u)

]
, i = 1, . . . , p, (3)

where λ0(·) is an unknown background intensity function, z(u)

is a q-dimensional vector of spatial covariates at location u, and
γ i ∈ R

q is the vector of regression parameters. The back-
ground intensity λ0(·) can be interpreted as the spatial effects
of latent factors such as the urban structure and population
density and is assumed to be common for all point types. The
model (3) is also closely related to the Cox regression model
widely used for the conditional intensity in survival analysis
(Cox 1972).

In case of crime, several competing theories regarding causes
of crime exist (Weisburd et al. 1993; Haberman 2017). The
crime general theory asserts that general factors drive crimes
regardless of crime type. Accordingly, the proportions of crime
types should be roughly constant across space. The crime spe-
cific theory instead asserts that different crimes depend on
different factors, including environmental factors, which should
lead to a more segregated occurrence of crime types with
some crimes being more frequent in some areas than others.
Our background intensity accommodates the effects of envi-
ronmental factors with a common effect for all crimes. Next,
based on (3) we can derive conditional probabilities which
precisely model the proportions of crime types for each loca-
tion u and how they depend on spatial covariates, see (5) in
Section 3.2.

Following Cohen, Gorr, and Olligschlaeger (2007), crime
relevant spatial covariatesmay be categorized as crime attractors
or crime displacements covariates. For example, distances to
places like bars, parking lots, andmusic venues can be viewed as
crime attractor covariates. Another example is the indicator of
neighborhoods where policing of minor offenses are not strictly
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enforced. The spatial intensity of policing is an example of a
crime displacement covariate since increased police activity in
one location merely displaces crime to other locations rather
than reducing crime overall (Ratcliffe 2002). In Section 6, we
model Washington DC street crime by demographical covari-
ates along with the distance to the nearest police station as a
crime displacement covariate. The demographical covariates are
not as such crime attractors but can be used to studywhether the
socio-economic status of a neighborhood has an impact on the
occurrence of crimes.

The parameters γ i are not identifiable since subtracting
kTz(u) from the log-linear model for some k ∈ R

q while
redefining λ0(u) := λ0(u) exp[kTz(u)] does not change the
intensities λi. To address this issue, we pick a baseline process,
say Xp, and define identifiable parameters β i = γ i − γ p for
i = 1, . . . , p − 1. Further, without loss of generality, we may
assume γ p = 0 in which case λ0(·) becomes the intensity of
the baseline process. Using the new parameterization, we can
evaluate the effects of the covariates z(·) relative to the baseline
process Xp similar to matched case-control studies and Cox
regression in survival analysis.

Although estimation of the λi(·) is not our primary concern,
note that given estimates λ̂0(·) and β̂ i, we may estimate λi(·) by

λ̂i(u) = λ̂0(u) exp
[
β̂
T
i z(u)

]
. (4)

If type i points are rare, this estimate may be advantageous
compared to an intensity estimate based only on type i points
since we can borrow strength by estimating λ0(·) using all types
of points, see also Section 6.2.

In terms of criminology research, a solid amount of literature
states that crime is clustered in micro-places called hot spots
(see Haberman 2017, and the references therein). Identifica-
tion of hot spots may help police departments to allocate their
resources properly (Buerger, Cohn, and Petrosino 1995) and hot
spot policing reduces crime (Braga, Papachristos, and Hureau
2014). Numerous nonparametric methods have been developed
to identify the hot spots, including kernel density estimation
(Ratcliffe 2004; Gorr and Lee 2015). The estimator (4) adds
to the existing hot spot detection methods by enhancing non-
parametric kernel estimation with additional information from
spatial covariates. Forecasting future occurrences of crime is
another challenge to police departments. The BrokenWindows
theory of crime (Wilson and Kelling 1982) states that the toler-
ance of “soft” crimes in a neighborhood attracts criminals, hence
the presence of “soft” crimes can be used to forecast “serious”
crimes, see Cohen, Gorr, and Olligschlaeger (2007) and Gorr
and Lee (2015). By a straightforward expansion of model (3) to
a space-time setup, one could use the estimator (4) to forecast
“serious” crimes using an estimate of current soft crime intensity
as a covariate.

3.2. Multinomial Logistic Regression

We tackle the estimation of model (3) by conditional composite
likelihood where we use the reparameterization in terms of the
β i from the previous section. Conditioned on that an event is
observed at location u, under model (3), the probability that it

is from the point process Xi is

pi(u;β) = λi(u; γ i)∑p
k=1 λk(u; γ k)

(5)

=
⎧⎨⎩

exp
[
βT
i z(u)

]
1+∑p−1

k=1 exp
[
βT
kz(u)

] , i = 1, . . . , p − 1,
1

1+∑p−1
k=1 exp

[
βT
kz(u)

] , i = p,

which does not depend on the background intensity λ0(·). To
estimate β , we define the multinomial conditional composite
likelihood as

L(β) =
p∏

i=1

∏
u∈Xi∩W

pi(u;β).

This is formally equivalent to a multinomial logistic regres-
sion likelihood function. It is a composite likelihood func-
tion because it ignores possible dependencies between types of
points given their locations. The log multinomial conditional
composite likelihood function is of the form

�(β) =
p∑

i=1

∑
u∈Xi∩W

⎡⎣βT
i z(u) − log

⎛⎝1 +
p−1∑
k=1

exp
[
βT
kz(u)

]⎞⎠⎤⎦ ,

(6)

and the conditional composite likelihood estimator is defined as
β̂ = argmaxβ �(β).

3.3. Estimation of the Asymptotic CovarianceMatrix of̂β

In this section, we consider the problem of estimating the
asymptotic covariance matrix of β̂ , which is challenging due
to the highly complex between- and within-type correlation
structure of the multivariate point process.

We denote by E(·) and var(·), expectation and variance with
respect to the data generating distribution of X = (X1, . . . ,Xp),
where we assume the intensity function of Xi is of the form (3)
with the parameters γ i given by some specific values γ ∗

i ∈ R
q

and we let β∗
i = γ ∗

i −γ ∗
p for i = 1, . . . , p−1. In this section and

the rest of the article we will refer to the “pooled” point process
Xpl = ∪p

k=1Xi, whose intensity function and PCF are

λpl(u; γ ) =
p∑

k=1
λk(u; γ k) and gpl(u, v;β , g) (7)

=
p∑

l=1

p∑
l′=1

pl(u;β l)pl′(v;β l)gll′(u, v).

The “g” inside gpl(u, v;β , g) signifies the dependence on the gll′ .
We use in the following the short forms λ∗

k(·), p∗
l (·), λpl(·), and

gpl(·, ·) for λk(·; γ ∗
i ), pl(·;β∗

l ), λpl(·; γ ∗), and gpl(·, ·;β∗, g).
It is trivial to see that �(β) in (6) is a concave function of β

and thusmaximizing �(β) is equivalent to solving the estimating
equation e(β) = 0 where

e(β) = [
e1(β)T, . . . , ep−1(β)T

]T , with (8)
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ei(β) = d
dβ i

�(β) (9)

=
∑

u∈Xi∩W
z(u) −

p∑
l=1

∑
u∈Xl∩W

z(u) exp
[
βT
i z(u)

]
1 + ∑p−1

k=1 exp
[
βT
kz(u)

] ,
for i = 1, . . . , p − 1. According to standard estimating
equation theory (see, e.g., Crowder 1986) and formally justi-
fied by Theorem 2 in Section 4.1, the asymptotic covariance
matrix of β̂ is of the form

[
S(β∗)

]−1
�(β∗, g)

[
S(β∗)

]−1 where
S(β∗) = E

[
− d

dβT e(β∗)
]
is the so-called sensitivity matrix and

�(β∗, g) = var
[
e(β∗)

]
is the covariance matrix of e(β∗). The

“g” inside�(β∗, g) emphasizes that var
[
e(β∗)

]
depends on the

underlying cross PCFs.
The explicit forms of S(β∗) and �(β∗, g) are derived in

Section 1 of the supplementary materials. The (i, j)th block of
S(β∗) is of the form

S(β∗)ij =
{ ∫

W Z(u,u)
[
1 − p∗

i (u)
]
λ∗
i (u)du i = j,

− ∫
W Z(u,u)p∗

j (u)λ∗
i (u)du i �= j, (10)

for i, j = 1, . . . , p−1withZ(u, v) = z(u)z(v)T. The (i, j)th block
of�(β∗, g) corresponding to cov

[
ei(β∗), ej(β∗)

]
takes the form

�(β∗, g)ij = S(β∗)ij +
∫
W2

Z(u, v)λ∗
i (u)λ∗

j (v)gpl(u, v;β∗, g)

Tij(u, v;β , g)dudv, (11)

where the function Tij(u, v;β∗, g) is defined as

1 + gij(u, v)
gpl(u, v;β∗, g)

−
p∑

l=1

[
p∗
l (v)gil(u, v) + p∗

l (u)gjl(u, v)
]

gpl(u, v;β∗, g)
.

(12)
By Campbell’s formulas, we can approximate S(β∗) and

�(β∗, g) by Ŝ(β∗) and �̂(β∗, g), whose (i, j)th blocks are
defined as

Ŝ(β∗)ij =

⎧⎪⎨⎪⎩
∑

u∈Xpl
Z(u,u)

[
1 − p∗

i (u)
]
p∗
i (u) i = j,

− ∑
u∈Xpl

Z(u,u)p∗
i (u)p∗

j (u) i �= j, (13)

�̂(β∗, g)ij = Ŝ(β∗)ij (14)

+
�=∑

u,v∈Xpl:||u−v||≤R

Z(u, v)p∗
i (u)p∗

j (v)Tij(u, v;β∗, g),

for i, j = 1, . . . , p− 1. Here R denotes a “correlation range” such
that gij(r) ≈ 1 for r > R. In practice, we replace β∗ by β̂ in (13)
and (14) and the notion “g” emphasizes their dependence on the
underlying cross PCFs, whichwill be replaced by nonparametric
estimators discussed in the next sections.

3.4. Naive Kernel Estimation of Cross PCF Ratios

The empirical covariancematrix (14) depends critically on cross
PCFs which need to be estimated. The definition of a cross PCF
in (2) suggests that its estimation requires consistent estimators
of the intensity functions which are not available under the
model (3), sinceλ0(·) is unknown.However, a closer look at (12)

reveals that for computation of (12) it suffices to estimate the
cross PCFs up to a common multiplicative factor, or, equiva-
lently, to estimate ratios of cross PCFs, that is

gij,kl(u, v) = gij(u, v)/gkl(u, v), i, j = 1, . . . , p, (15)

for some arbitrary fixed pair of types of points k and l. These
ratios are also of great interest in their own right as theymeasure
the strength of correlation among two types of points relative to
the strength of correlation between two other types of points.
Consider the quantity

Fij(r; b,β) =
�=∑ ∑

u∈Xi∩W
v∈Xj∩W

kb(||u − v|| − r)
pi(u;β)pj(v;β)

, (16)

where kb(·) = k(·/b)/b with k(·) being a kernel function
defined on a bounded interval in R and b > 0 is a bandwidth.
Using Campbell’s formula together with Equation (5), it follows
that under model (3),

E[Fij(r; b,β∗)] =
∫
W2

λpl(u)λpl(v)gij(u, v)kb(||u−v||−r)dudv,

where λpl was defined in (7). Under suitable conditions and
appropriately chosen bandwidth b, it is reasonable to expect that
Fij(r; b, β̂) ≈ c(r)gij(r), where

c(r) =
∫
W2

λpl(u)λpl(v)kb(||u − v|| − r)dudv,

is a multiplicative factor which, as desired, does not depend on
ij. Consequently,

ĝnij,kl(r; b, β̂) = Fij(r; b, β̂)/Fkl(r; b, β̂) (17)

becomes an estimator of (15).
Note that the estimator (17) does not depend on the

unknown background intensity λ0(·). The superscript “n”
stands for “naive” kernel estimator (a regularized estimator will
be introduced in the next section).Our Theorem3 in Section 4.2
states that under mild conditions, (17) is consistent for gij,kl(r).
The naive plug-in estimator �̂(β̂ , ĝn) is then obtained by replac-
ing β∗ and the cross PCFs in (12) by β̂ and the estimators (17)
of cross PCF ratios. For the rest of the article, we use the PCF of
the baseline process Xp as the fixed denominator in (15), letting
k = l = p.

3.5. Regularized Cross PCF Ratio Estimators

Even though Theorem 3 in Section 4.2 shows that the naive
kernel estimator (17) is consistent under mild conditions, the
finite sample performance of the plug-in estimators �̂(β̂ , ĝn)
may be unsatisfactory due to high variabilities of the ĝnij,pp(·)’s.
In particular, our numerical experiments suggest that when the
number of observed points is small, some diagonal elements of
the �̂(β̂ , ĝn) may be negative, resulting in negative estimated
variances for some components of β̂ .

We notice that this phenomenon is mainly caused by the
existence of a large number of negative values of Tii(u, v; β̂ , ĝn)
when ||u−v|| is large, leading to negative values in the diagonal
of �̂(β̂ , ĝn)ii as defined in (14). This issue can be resolved or
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alleviated by imposing constraints on the cross PCFs. In this
article, we impose the following constraints

gij(r) ≤
√
gii(r)gjj(r) for r ≥ R∗, i, j = 1, . . . , p, (18)

for some R∗ ≥ 0. Intuitively, condition (18) means that for
lags r ≥ R∗, the spatial correlation between different point
processes is weaker than the (geometric) average of spatial
correlationwithin each individual point process. Condition (18)
is not necessarily true for any multivariate point process but is
indeed valid with R∗ = 0 for a large class of multivariate log
Gaussian Cox processes (Waagepetersen et al. 2016) (see also
Section 5) and for a large subclass of the multivariate shot-noise
Cox processes proposed in Jalilian et al. (2015).

To enforce the constraint (18) on the naive kernel estimators,
let Ĝn

r be a p × p matrix whose (i, j)th element is ĝnij,pp(r; b, β̂)

for some r > R∗. The regularized nonparametric estimators,
denoted as ĝrij,pp(r; b, β̂), are collected in the matrix Ĝr

r obtained
by

Ĝr
r = arg min

�=[θij]
∥∥� − Ĝn

r
∥∥2
F , with (19)

θij = θji, θpp = 1, θ2ij ≤ θiiθjj,

where || · ||F is the Frobenius norm of a matrix.
It can be shown (Section 2 in the supplementary materials)

that for ||u − v|| > R∗, the plug-in estimator with ĝrij,pp(·)’s
satisfies

min
1≤i≤p

Tii
(
u, v; β̂ , ĝr

) ≥ 1 − max
1≤l≤p

ĝrll,pp(||u − v||; b, β̂)/gpl(u, v; β̂ , ĝr).

In contrast, using the naive ĝnij,pp(·)’s, we can only achieve the
lower bound

1 −
[
2 max
1≤l,l′≤p

ĝnll′ ,pp(||u − v||; b, β̂) − min
1≤l≤p

ĝnll,pp(||u − v||; b, β̂)

]
/

gpl(u, v; β̂ , ĝn).

Note that the first lower bound above can be much larger
than the second lower bound, which partly explains why the
regularized cross PCF ratio estimators would produce much
fewer large negative Tii(u, v; β̂ , ĝr)when ||u− v|| > R∗, leading
to a better covariance matrix estimator. In Section 5 of the sup-
plementary materials, we give a more detailed demonstration
through numerical examples.

Remark 1. Our numerical investigations suggest that the regu-
larized estimator is quite robust to the choice ofR∗. The simplest
choice is to set R∗ = 0. Otherwise we recommend to use R∗ =
argminr≥0{maxi Pii(r) > 0.05}, wherePii(r) is the percentage of
pairs (u, v) that give Tii(u, v; β̂ , ĝn) < 0 within the set {(u, v) :
u, v ∈ Xpl and ||u − v|| ∈ (r − h, r + h)}. In other words, when
the percentage of negative Tii(u, v; β̂ , ĝn)’s exceeds 5% around
the distance R∗ for any i = 1, . . . , p, the restriction (18) will be
enforced for r > R∗.

4. Asymptotic Properties

In this section, we study asymptotic properties of β̂ when X is
observed on a sequence of increasing windows Wn. Denote by

e(n)(β) the multinomial estimating function (8) evaluated on
Wn and by β̂n the sequence of estimators obtained as solutions
to e(n)(β) = 0. The quantities γ ∗, β∗, �n(β

∗, g) and Sn(β∗) are
defined as in Section 3.3 withW = Wn for the last two. We also
define “averaged” versions, �̄n(β

∗, g) = �n(β
∗, g)/|Wn| and

S̄n(β∗) = Sn(β∗)/|Wn|. Finally, ||A||max = maxij aij denotes
the maximum norm of A = [aij]ij.

4.1. Consistency and Asymptotic Normality of̂βn

The following conditions are sufficient to establish the consis-
tency of β̂n.

C1 W1 ⊂ W2 ⊂ · · · and
∣∣⋃∞

l=1Wl
∣∣ = ∞.

C2 There exists an 0 < K1 < ∞ such that ||z(u)||max, λ∗
i (u)

and gij(u, v) are bounded above by K1 for all u, v ∈
∪∞
l=1Wl and i, j = 1, . . . , p.

C3 There exists an 0 < K2 < ∞ so that
∫
Rd |gij(0,u) −

1|du < K2 for all i, j = 1, . . . , p.

C4 lim inf
n→∞ λmin

[
|Wn|−1 ∫

Wn
Z(u,u)λ∗

i (u)pp(u;β∗)du
]

> 0
for i = 1, . . . , p − 1, where λmin[A] denotes the minimal
eigenvalue of a matrix A.

C1–C3 are mild conditions that have been widely used in the
literature. C4 ensures that the averaged sensitivitymatrix S̄n(β∗)
is invertible for sufficiently large n, which is commonly used
in the estimating equation literature. Heuristically speaking, C4
requires that sufficient information regarding β∗ need to be
accumulated across space and it could be violated if z(·) is close
to constant.

Theorem 1. Under conditions C1–C4, there exists a sequence of
solutions β̂n to the estimating equation en(β) = 0 for which

β̂n
p−→ β∗, as n → ∞.

The proof of Theorem 1 is given in Section 3.1 of the supple-
mentary materials.

Next, we proceed to establish asymptotic normality of β̂n.
Following Biscio and Waagepetersen (2019), we define an α-
mixing coefficient by regardingX as amarked point processwith
points in R

d and marks inM = {1, . . . , p}. That is, a point u in
Xi corresponds to amarked point (u, i).We then for setsA ⊆ R

d

and B ⊆ M, defineXA,B = X∩A×B as the set of marked points
in X whose “point parts” fall in A and whose marks fall in B.

To define the α-mixing coefficient for X we first define an α-
mixing coefficient for two σ -algebras F and G on a common
probability space,

α(F ,G) = sup{|P(F ∩ G) − P(F)P(G)| : F ∈ F ,G ∈ G}.

Define d(u, v) = max{|ui − vi| : 1 ≤ i ≤ d} for u, v ∈ R
d.

The marked point process α-mixing coefficient of X is then for
s, c1, c2 ≥ 0 given by

αX
c1,c2 (s) = sup{α(σ(XE1,M), σ(XE2,M)) :

E1 ⊂ R
d,E2 ⊂ R

d, |E1| ≤ c1, |E2| ≤ c2, d(E1,E2) ≥ s},
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where |A| is the Lebesgue measure of A and d(A,B) =
inf{d(u, v) : u ∈ A, v ∈ B}. This coefficient measures the
dependence between X ∩ E1 × M and X ∩ E2 × M, where E1
and E2 are arbitrary Borel subsets of Rd with volumes less than
c1 and c2 and separated by the distance s.

The following extra conditions are needed to establish
asymptotic normality.

N1 There exists ε > 0 such that αX
2,∞(s) = O(1/sd+ε).

N2 There exist an integer m > 2d/ε + 2 and Cg such
that g(n1,n2,...,nk)

i1i2···ik (·, . . . , ·) ≤ Cg for any {i1, . . . , ik} ⊆
{1, 2, . . . , p}, and integers n1 + · · · + nk ≤ m.

N3 It holds that lim infn→∞ λmin
[
�̄n(β

∗, g)
]

> 0.

N1 is a standard mixing condition that, for example, holds for
multivariate log Gaussian Cox processes with PCFs of bounded
range (meaning gij(r) = 1 when r is larger than some 0 ≤ R <

∞) or Poisson cluster point processes with sufficiently quickly
decaying cluster densities. Condition N2 of bounded normal-
ized joint cross intensities is satisfied formostmultivariate point
process models. N3 is a standard condition which ensures that
the variance of |Wn|−1e(n)(β) is not degenerate for sufficiently
large n.

Theorem 2. Under conditions C1–C4 and N1–N3, as n → ∞,
we have that

|Wn|1/2�̄−1/2
n (β∗, g)S̄n(β∗)(β̂n − β∗) d−→ N

(
0, I(p−1)q

)
.

The proof of Theorem 2 is given in Section 3.2 of the supple-
mentary materials.

Theorem 2 implies that the asymptotic variance of β̂n is of
the form

|Wn|−1 [
S̄n(β∗)

]−1
�̄n(β

∗, g)
[
S̄n(β∗)

]−1

= [
Sn(β∗)

]−1
�n(β

∗, g)
[
Sn(β∗)

]−1 ,

where the left-hand side suggests that the variance of β̂n is of
order |Wn|−1. Based on Theorem 2, one can make statistical
inference regarding β∗ and other quantities of interest. For
example, as in classical multinomial regressionmodels, onemay
be interested in the probability of a certain event at a given
location, that is, p∗

i (u), or the log-odds log p∗
i (u)

p∗
p(u)

= z(u)Tβ∗
i for

i = 1, . . . , p − 1.
Denote by μ(β∗) a parameter of interest where μ :

R
(p−1)q → R is differentiable. A simple application of the Delta

method gives for 0 < α < 1 the 100α%approximate confidence
interval for μ(β∗),

μ(β̂)±z1−α/2

√[
μ(1)(β̂)

]T [̂
Sn(β̂)

]−1
�̂n(β̂ , ĝrn)

[̂
Sn(β̂)

]−1
μ(1)(β̂), (20)

where zα is the 100αth percentile of a standard normal distribu-
tion, μ(1)(β) = dμ(β)/dβ , and estimators of β and cross PCFs
have been plugged into (13) and (14), see also Sections 3.4, 3.5,
and 4.2.

4.2. Asymptotic Properties of ĝnij,kl(r;b,̂β) and ĝrij,kl(r;b,̂β)

LetWn and bn be sequences of observation windows and band-
widths, respectively. Denote by ĝnij,kl,n(r; bn, β̂n) a sequence of

estimators that is given by

ĝnij,kl,n(r; bn, β̂n) = Fij,n(r; bn, β̂n)/Fkl,n(r; bn, β̂n),

where the Fij,n’s are defined as in (16) with W = Wn. In
this subsection, we show that ĝnij,kl,n(r; bn, β̂n) is a consistent
estimator of gij,kl(r) for any i, j = 1, . . . , p, under the following
conditions.

K1 For i, j = 1, . . . , p, the cross joint intensity g(2,2)
ij is

translation invariant: g(2,2)
ij (u1,u2, v1, v2) = g(2,2)

ij (0,u2 −
u1, v1 − u1, v2 − u1), u1,u2, v1, v2 ∈ ∪∞

l=1Wl, and there
exists K3 < ∞ so that

∫
Rd |g(2,2)

ij (0,u, v,w + u) −
gij(0, v)gij(0,w)|du < K3 for all u, v,w ∈ ∪∞

l=1Wl.
K2 There exists K4 < ∞ so that

g(m,n)
ij (u1, . . . ,um, v1, . . . , vn) < K4 for all um, vn ∈

∪∞
l=1Wl withm + n < 4 and i, j = 1, . . . , p.

K3 The kernel function k(·) has a compact support [−1, 1]
and the bandwidth bn satisfies that (a) bn → 0; and (b)
|Wn|bn → ∞ as |Wn| → ∞.

Theorem 3. Under conditions C2 and K1–K3, one has that

ĝnij,kl,n(r; bn, β̂)
p−→ gij,kl(r), as n → ∞, for i, j, k, l = 1, . . . , p.

(21)
If we further assume that constraint (18) holds true, then

ĝrij,kl,n(r; bn, β̂)
p−→ gij,kl(r), as n → ∞, for i, j, k, l = 1, . . . , p.

(22)

The proof of Theorem 3 is given in Section 3.3 of the supple-
mentary materials.

5. Simulation Studies

In this section, we assess the finite sample performance of the
proposed methodology through simulation studies. To eval-
uate our estimators we need to simulate from a model with
known forms of the intensity functions and of the ratios of cross
PCFs. This precludes the use of multivariate Gibbs processes as
considered, for example, in Rajala, Murrell, and Olhede (2018)
and we consider instead a Cox process model. Specifically, the
multivariate point patterns are simulated from a multivariate
log-Gaussian Cox process where for i = 1, . . . , p, Xi has a
random intensity function of the form

	i(u) = λ0(u) exp[γi0 + γi1z(u)] (23)
exp

[
αiY(u) + σiUi(u) − α2

i /2 − σ 2
i /2

]
,

whereλ0(·) is the inhomogeneous background intensity, z(·) is a
spatial covariate, and Y(·) andUi(·) are independent zero-mean
unit variance Gaussian random fields. The spatial correlation
functions of Y(·) and Ui(·) are assumed to be exponential
cY(u, v) = exp(−||u−v||/ξ) and cUi(u, v) = exp(−||u−v||/φi)
with scale parameters ξ and φi. Conditional on the 	i, the Xi
are independent Poisson processes. This model has a natural
interpretation and can generate both positive and negative cor-
relations between different types of points.
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Figure 1. The log-background intensity (left panel); the spatial covariate (middle panel); the true PCFs and cross PCFs (right panel).

Table 1. The true parameters for the multivariate LGCP.

X αi σ 2
i ξ φi γ ∗

i0 γ ∗
i1 Ni X αi σ 2

i ξ φi γ ∗
i0 γ ∗

i1 Ni
X1 0.5 0.5 0.1 0.05 5.17 0 150 X2 −0.4 0.5 0.1 0.05 5.44 0.3 200
X3 0.6 0.5 0.1 0.05 5.88 −0.6 300 X4 −0.3 0.5 0.1 0.05 6.13 0.6 400

The process Y(·) can be viewed as an unobserved factor that
affects all types of points and hence induces spatial correlations
both within and between different types of points. The latent
Gaussian process Ui(·) is a type-specific factor that only affects
the ith type of points. Conditional on λ0(·) and z(·), E[	i(u)] =
λ0(u) exp[γi0 +γi1z(u)] and the cross PCF between Xi and Xj is
of the form

gij(r; θ) = exp
[
αiαjexp (−r/ξ) + 1[i = j]σ 2

i exp (−r/φi)
]
,
(24)

where θ = (α1, . . . ,αp, ξ , σ 2
1 , . . . , σ 2

p ,φ1, . . . ,φp) ∈ R
3p+1. For

i �= j, αiαj > 0 (< 0) implies positive (negative) correlation
between points from Xi and Xj whereas αiαj = 0 implies that Xi
and Xj are independent given λ0(·) and z(·).

5.1. Simulation Settings

More specifically, we consider the multivariate log-Gaussian
Cox process with p = 4 and observed within a sequence
of increasing square windows Wl = [0, l] × [0, l], 1 ≤
l ≤ 2. The baseline intensity function in (23) is λ0(u) =
exp

[
0.5V(u) − 0.52/2

]
, where V(u) is a realization of zero-

mean unit variance Gaussian random field with the exponential
correlation function and a scale parameter 0.05. The spatial
covariate z(u) is chosen as an independent copy of V(u), see
Figures 1(a) and (b).

The parameters for the multivariate log-Gaussian Cox pro-
cess are listed in Table 1, where the intercept parameters γ ∗

i0, i =
1, . . . , p, are chosen so that there are on average Ni points in
the point pattern Xi in W1 with the Ni’s specified in Table 1.
We use Xp as the baseline point process and consider three
parameters of interest: the intercepts β∗

0i = γ ∗
0i − γ ∗

0p, the slopes

β∗
1i = γ ∗

1i − γ ∗
1p, and the log-odds θ∗

i (u) = log pi(u;β∗)
pp(u;β∗) =

β∗
0i+β∗

1iz(u), for i = 1, . . . , p−1. The log-odds θ∗
i (u) represent

the elevated (or reduced) likelihood of a point in Xi at location

u with an observed covariate z(u) relative to the probability of
a point in Xp at u. For the log odds we consider z(u) = 0.5.
The αi’s are chosen such that there are positive and negative
spatial correlations among theXi’s. The resulting PCFs and cross
PCFs show (Figure 1(c)) strong between- and within- spatial
dependence.

In Section 5.2, we evaluate estimation accuracies for the
parameters of interest and the coverage probabilities of their
associated confidence intervals. The performances of the non-
parametric cross PCF estimators proposed in Sections 3.4 and
3.5 are further considered in Section 5 of the supplementary
materials.

5.2. Estimation Accuracies and Coverage Probabilities

The log odds θ∗
i (u) are estimated by replacing the β i’s in the

definition of the θ∗
i (u)’s by their estimates β̂ i. Four types of con-

fidence intervals are investigated, denoted CIĝn , CIĝr , CIgPoisson ,
and CIgtrue . All confidence intervals are constructed using (20)
with the sensitivity and the covariance matrices estimated using
Equations (13) and (14) with R = 0.4 but with different choices
of cross PCF estimators. The CIĝn and CIĝr use, respectively, the
“naive” and “regularized” kernel cross PCF ratio estimators (17)
and (19). The R∗ used for the “regularized” kernel estimators
is obtained with the data-driven procedure in Remark 1. The
CIgPoisson is obtained by assuming gij(·) ≡ 1 for i, j = 1, . . . , p,
and CIgtrue is constructed using the true gij(·)’s. The coverage
probabilities of CIgtrue serve as bench marks while CIgPoisson may
reveal potential problems of using multivariate Poisson point
process models in presence of spatial correlations. Summary
statistics based on 1000 simulations are given in Table 2 and also
illustrated in Figure 2.

The “Bias” columns in Table 2 show that the parameter esti-
mates are close to unbiased. Further, as predicted by Theorem 2,
the standard errors are approximate halved when the observa-
tion window is increased fromW1 to the four times largerW2.
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Figure 2. Top panels: The root mean squared errors (RMSE) of multinomial composite likelihood estimators; bottom panels: coverage probabilities of various confidence
intervals. Observation windows range fromW1 toW2.

Table 2. Estimation accuracies and coverage probabilities of confidence intervals.

CIĝn CIĝr CIgPoisson CIgtrue CIĝn CIĝr CIgPoisson CIgtrue

Bias SE 90% 95% 90% 95% 90% 95% 90% 95% Bias SE 90% 95% 90% 95% 90% 95% 90% 95%

β̂01 −0.002 0.246 66.1 71.8 87.0 92.6 47.6 54.6 89.3 93.8 β̂01 −0.001 0.131 82.1 89.2 86.7 92.3 46.1 52.7 88.0 93.8
β̂02 0.002 0.155 66.5 72.2 93.6 97.1 62.6 70.5 90.5 94.9 β̂02 −0.006 0.080 83.3 90.4 92.3 95.7 62.0 68.5 89.6 94.7
β̂03 0.002 0.254 67.0 74.4 84.7 90.8 39.3 45.5 89.7 94.4 β̂03 0.005 0.137 81.5 88.3 86.2 92.3 34.8 42.6 87.9 94.0

β̂11 −0.001 0.135 88.6 94.4 88.2 94.4 68.5 77.6 90.4 95.9 β̂11 −0.002 0.067 91.2 96.0 91.6 96.0 71.1 80.4 91.6 96.4
W1 β̂12 0.002 0.105 89.5 94.4 89.1 94.6 75.7 83.3 90.5 95.4 W2 β̂12 −0.001 0.054 89.7 95.5 89.7 95.5 78.1 85.8 90.5 95.6

β̂13 −0.001 0.127 87.4 93.5 86.9 92.6 63.9 73.3 89.6 94.5 β̂13 −0.001 0.067 88.7 95.4 88.8 95.4 63.6 72.6 89.2 95.4

θ̂1 −0.003 0.246 68.4 75.4 87.0 93.0 44.3 52.2 89.8 94.5 θ̂1 −0.002 0.130 83.9 88.7 88.0 92.4 45.4 52.4 88.8 94.2
θ̂2 −0.008 0.157 70.5 77.6 92.2 96.0 61.4 70.6 89.7 95.3 θ̂2 −0.006 0.083 84.0 89.7 91.2 96.0 59.4 69.0 89.2 95.2
θ̂3 −0.002 0.261 72.6 80.7 86.2 91.3 44.1 51.3 90.8 94.5 θ̂3 0.005 0.143 83.7 88.2 86.0 91.8 40.2 47.9 88.7 93.9

The coverage probabilities of CIgtrue are all close to the nominal
levels, suggesting that statistical inferences based on Theorem 2
are valid provided all cross PCF functions are correctly specified.
On the contrary, in almost all cases, CIgPoisson suffers from severe
undercoverage that may lead to wrong conclusions in practical
applications. Confidence intervals based on the “naive” kernel
estimator of cross PCF ratios, that is, CIĝn , achieve nominal
levels for all slope parameters but suffer from serious under-
coverage for intercepts and the log-odds when the observation
window is small (W1 = [0, 1] × [0, 1]). The undercoverage
of CIĝn becomes much less severe when the window expands
to W2 = [0, 2] × [0, 2]. Finally, confidence intervals based
on the “regularized” cross PCF ratio estimators, that is, CIĝr ,
can effectively correct the undercoverage of CIĝn and achieve

nominal levels for all parameters of interest. This suggests that it
is important to apply the modification proposed in Section 3.5
for practical applications with only limited sample sizes.

Figure 2 paints a more complete picture of how estimation
accuracies and coverage probabilities change as Wl expands.
The root mean squared error (RMSE) of all estimators decrease
as thewindow size increases, supporting our theoretical findings
in Section 4.1. Figure 2 also reveals that while the coverage prob-
abilities of CIĝn for intercepts and log-odds are getting closer to
the nominal level asWl expands, the undercoverage of CIgPoisson
does not improve at all. This emphasizes the importance of
taking into account spatial correlations to make valid statistical
inferences. Lastly, the coverage probabilities of CIĝr are close to
the nominal level for all parameters and window sizes and only
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Figure 3. Left: Street crimes locations (n = 5378); right: a map of Washington DC.

Table 3. List of spatial covariates.

Name Definition

1. % African Square root of percentage of African American residents
2. % Hispanic Square root of percentage of Hispanic residents
3. % Male Square root of percentage of male residents with age 18-24
4. % HouseRent Percentage of housing units occupied by renters
5. % Bachelor Percentage of residents over age 25 with a bachelor’s degree
6. MedIncome Logarithm of median annual per capita income (in $1000)
7. Pdist Logarithm of the distance to the nearest police station

slightly worse than those of CIgtrue . Therefore, we recommend
CIĝr for practical use.

6. Washington DC Street Crime Data

Figure 3 shows spatial locations of nine types of street crimes
committed in Washington DC in January and February 2017.
The dataset is publicly available from the website http://
opendata.dc.gov/datasets/crime-incidents-in-2017. Nine types
of street crime are included: (1) Other theft, (2) Robbery, (3)
Theft from automobile, (4) Motor vehicle theft, (5) Assault
with weapon, (6) Sex abuse, (7) Arson, (8) Burglary, and (9)
Homicide. The numbers of each crime type aren1 = 2254, n2 =
366, n3 = 1832, n4 = 335, n5 = 332, n6 = 44, n7 =
1, n8 = 259, and n9 = 14. We omit the rare street crimes
“Sex abuse,” “Arson,” and “Homicide.” Using spatial covariates
similar to those suggested in Reinhart and Greenhouse (2018),
the first 6 spatial covariates listed in Table 3 are obtained from
US census data and are constant within each of 179 census
tracts partitioning Washington DC, see also Section 6.3. We
calculated ourselves the last covariate (distance to nearest police
station) which varies smoothly across the city. Square root and
log transformations have been applied to some covariates to
achieve approximate normal distributions.

6.1. Inference Regarding Regression Coefficients and
Cross PCFs

Using model (3), we assume that the intensity of each street
crime is given by

λi(u; γ i) = λ0(u)exp [γi0 + γi1z1(u) + · · · + γi7z7(u)] ,

i = 1, . . . , 5, 8.

where the zk(·)’s are listed in Table 3. The common first street
crime “Other theft” is used as the baseline. The regression
parameters are estimated by maximizing the composite like-
lihood (6). The asymptotic standard errors and p-values are
computed with R = 3 km and either of two types of cross
PCFs: using the “regularized” kernel estimator ĝr proposed in
Section (3.5) with b = 0.2 km, or assuming all gij(·) ≡ 1
( “Poisson”) for any i, j = 1, . . . , 5, 8. The R∗ used for the
“regularized” kernel estimators is obtained through the data-
driven procedure outlined in Remark 1. Estimated regression
coefficients, standard deviations, and p-values are summarized
in Table 4, and estimated PCF ratios and cross PCF ratios are
illustrated in Figure 4.

Figure 4(a) indicates that within and between clustering for
crimes types other than “Other theft” is less strong than for
“Other theft” up to around 250 m. After that some crime types
appear to bemore clustered than “Other theft” but the difference
in clustering strength vanishes around 3 km distance. In partic-
ular, Figure 4 suggests that a multivariate Poisson model is not
appropriate for street crime data.

In Table 4, the Poisson model as expected always gives
smaller standard errors for all coefficients. As a result, more
regression coefficients appear to be statistically significant at the
α = 0.05 level (highlighted in blue) compared to those for the
proposedmethodwhere cross PCFs are estimated from the data.
In some cases, the two methods reach contradictory conclu-
sions. For example, the covariate “% HouseRent” is significant
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Table 4. Estimated coefficients, standard errors, and p-values for street crime data.

Std. err. p-values Std. err. p-values

Street crime Covariate Coef. ĝr Poisson ĝr Poisson Street crime Covariate Coef. ĝr Poisson ĝr Poisson

% African 0.894 0.867 0.697 0.302 0.199 % African 2.318 0.813 0.346 0.004 <0.0001
%Hispanic 0.669 0.685 0.499 0.329 0.180 % Hispanic 2.369 0.760 0.286 0.002 <0.0001
%Male 0.141 1.183 0.962 0.905 0.884 %Male −2.332 1.049 0.500 0.026 <0.0001

Robbery % HouseRent −0.783 0.442 0.352 0.077 0.026 Theft from % HouseRent −0.412 0.444 0.188 0.352 0.028
(n2 = 366) % Bachelor −1.130 0.970 0.760 0.244 0.137 automobile % Bachelor 2.936 0.891 0.417 0.001 <0.0001

MedIncome −0.071 0.371 0.304 0.847 0.814 (n3 = 1832) MedIncome −0.461 0.339 0.164 0.174 0.004
Pdist 0.176 0.108 0.086 0.102 0.040 Pdist 0.071 0.107 0.047 0.508 0.131

% African −0.451 0.872 0.702 0.605 0.520 % African 1.346 1.004 0.806 0.180 0.095
% Hispanic −0.556 0.724 0.533 0.443 0.297 % Hispanic −0.101 0.794 0.541 0.898 0.851
%Male −0.139 1.174 0.962 0.906 0.885 %Male −2.76 1.358 1.132 0.042 0.0145

Motor vehicle % HouseRent −1.295 0.443 0.355 0.003 0.0003 Assault with % HouseRent −1.229 0.494 0.377 0.013 0.001
theft % Bachelor −1.767 0.993 0.785 0.075 0.024 weapon % Bachelor −0.619 1.124 0.839 0.582 0.461

(n4 = 335) MedIncome −0.174 0.361 0.300 0.630 0.563 (n5 = 332) MedIncome −0.798 0.391 0.314 0.041 0.011
Pdist 0.205 0.113 0.089 0.070 0.022 Pdist 0.145 0.122 0.088 0.235 0.100

% African −2.332 1.187 0.801 0.050 0.003
%Hispanic −0.029 0.983 0.583 0.977 0.961
%Male 0.776 1.555 1.039 0.618 0.455

Burglary % HouseRent −1.930 0.670 0.376 0.001 <0.0001
(n8 = 259) % Bachelor −3.374 1.327 0.875 0.011 0.001

MedIncome −0.352 0.432 0.300 0.415 0.240
Pdist 0.359 0.168 0.105 0.033 0.0006

NOTE: Highlighted values in Table 4 indicate spatial covariates whose p-values are less than 0.05 under respective models.

Figure 4. (a) Estimated PCF ratios gii(r)/g11(r) for i = 2, . . . , 5, 8; (b) estimated cross PCF ratios gij(r)/g11(r) for i, j = 2, . . . , 5, 8 and i �= j.

under the Poisson model (p-value 0.028) when comparing
“Theft from auto” to the baseline process “Other theft,” while
the proposed model asserts otherwise with a p-value of 0.352.
In such cases, considering the strong spatial correlations dis-
played in Figure 4, we argue that the proposed method is more
reliable.

Based on the proposed method, all estimated coefficients
for “% HouseRent” are negative and many of them are sig-
nificant, suggesting that when “% HouseRent” is large, “Other
theft” becomes relatively more frequent compared to all other
crime types. Second, no covariate elevates or reduces the relative
risk of “Robbery” compared to “Other theft” and no covari-
ate other than “% HouseRent” is significant for the relative
risk between “Motor vehicle theft” and “Other theft.” Third,
“Theft from automobile” tend to occur more often in a neigh-
borhood with more African American/Hispanic population,

less young male percentage and residents with relatively low
education level, as compared to “Other theft.” Fourth, “Assault
with weapon” is more likely to occur in a neighborhood with
low young male population and low income levels compared
to “Other theft.” Finally, compared to “Other theft,” “Burglary”
tends to occur more in areas with low African American pop-
ulation, low education level and larger distance to the police
station.

Returning to the discussion regarding crime general and
crime specific theories in Section 3.1, our results clearly show
that the relative risks of different crime types depend signifi-
cantly on subsets of the covariates considered. This also means
that the conditional probabilities (5) depend significantly on the
covariates which results in a clear spatial segregation regarding
the relative risks of different crimes, see Figure 5. These results
support the crime specific theory.
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Figure 5. Estimated conditional probability maps for Washington DC.

6.2. Conditional ProbabilityMaps and Intensity
Estimation

For any location u, using the fitted β̂ , we can compute
pi(u, β̂) for i = 1, . . . , p, using (5). This enables us to
create the conditional probability maps in Figure 5 which show
pi(u, β̂), i = 1, . . . , 5, 8 computed at the 5378 observed crime
locations. Recall that given a street crime occurs at location
u, pi(u, β̂) is the fitted probability that the crime is of the ith
type. The strong spatial patterns in these conditional probabil-
ities are remarkable. For instance, in the southeast part of the
city (southeast to the Anacostia River), given a crime occurs, it
is much more likely to be of type “Robbery” or “Assault” than
in other parts of the city. In contrast, “Theft from automobile”
is more likely to be reported in the middle and northern parts
of the city while the hot spot for “Other theft” is located in the
middle-west part of the city.

Figure 6 shows semiparametric kernel estimates of the six
crime intensities using (4)whereλ0 is estimated using the kernel
estimate

λ̂0(u) = 1
p

p∑
i=1

∑
v∈Xi

exp[−β̂
T
i z(v)]k[(u − v)/b]/b2, (25)

where k is a two-dimensional kernel and the bandwidth b =
3.37 km is chosen according to the data-driven criterion of
Cronie and Van Lieshout (2018). Compared to the conditional
probability plots given in Figure 5 that demonstrate relative
compositions of different types of crimes at a given location,
the marginal intensities provide additional information on how

often each type of crime occurs in the same location. Both plots
can be useful in practice for the police department to better
allocate limited resources to effective fight different types of
crimes.

6.3. Residual Analysis

In this subsection, we perform a residual analysis for the fitted
model. We divide the data according to the 179 census tracts
in Washington DC, denoted as A1,A2, . . . ,AK , K = 179, we
define the raw residual for the ith type of street crime in Ak as

ε̂i,k(β̂) =
∑
u∈Xi

I(u ∈ Ak) −
∑

u∈Xpl∩Ak

pi(u; β̂), (26)

for i = 1, . . . , p and k = 1, . . . ,K. Equation (26) is essentially
a restricted version (within Ak) of the intercept component of
ei(β̂) defined in (9). By definition of β̂ , ei(β̂) = 0, implying∑K

k=1 ε̂i,k = 0 for i = 1, . . . , p. If the model fits the data
reasonably well, one should expectmost ε̂i,k to be relatively close
to 0.

Use the same arguments leading to (14), the variance of
ε̂i,k(β

∗) can be estimated by

σ̂ 2
i,k(β

∗, g) =
∑

u∈Xpl∩Ak

[
1 − p∗

i (u)
]
p∗
i (u)

+
u �=v∑ ∑

u,v∈Xpl∩Ak

p∗
i (u)p∗

i (v)Tii(u, v;β∗, g),
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Figure 6. Semiparametric log-intensity (per km2) maps for crime data in Washington DC.

Figure 7. Standardized residuals for 179 census tracts for six types of street crimes.

whereTii(u, v;β∗, g) is defined in (12). Consequently, by replac-
ing β and cross PCFs by their estimates, the standardized resid-
ual can be defined as ε̂i,k(β̂) = ε̂i,k(β̂)/σ̂i,k(β̂ , ĝr), for i =
1, . . . , p and k = 1, . . . ,K.

Standardized residuals for all census tracts in Washington
DC are illustrated in Figure 7. One census tract that does not
have any reported street crime activities in January andFebruary
2017 is indicated by the black color. Most standardized residuals
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Figure 8. Estimated Tj(z), j = 4, 5, 7 in (30) for the covariates % HouseRent, % Bachelor, and Pdist, together with 95% percentiles computed from the Poisson model and
the LGCP model (plots for the other covariates are given in the supplementary materials).

are inside the range of [−3, 3] for all six types of street crimes,
indicating an adequate model fit. Finally, the apparent strong
spatial correlations among the residuals further support the use
of the proposed method.

6.4. Goodness-of-Fit Assessment

In addition to the graphical residual analysis in Section 6.3, it
is useful to have a numerical summary of the overall goodness-
of-fit of the fitted model. In this section, we propose a Monte
Carlo test procedure inspired by the goodness-of-fit tests pro-
posed in Dong and Yu (2021, 2019). To do so, we view the
covariate vector z(u) as a realization of a random vector Z(u) =
(Z1(u), . . . ,Zq(u))T and consider our data as a collection of
marked points (u,Z(u),Y(u)) where u ∈ Xpl denotes a crime
scene and Y(u) ∈ {1, . . . , p} is the type of crime committed at
u. We can define an empirical conditional distribution function
as

F̂Y|Zj(y|z) = 1
Nj(z)

∑
u∈Xpl

I
[
Y(u) ≤ y, zj(u) ≤ z

]
,

y = 1, . . . , p, z ∈ R, (27)

where Nj(z) = ∑
u∈Xpl I

[
zj(u) ≤ z

]
, j = 1, . . . , q. This is an

estimate of

FY|Zj(y|z) = E
1

Mj(z)
∑
u∈Xpl

I
[
Y(u) ≤ y,Zj(u) ≤ z

]
, (28)

whereMj(z) = ENj(z). Under our model (3), one can show that
an alternative estimator of (28) is given by

F̂∗
Y|Zj(y|z) = 1

Nj(z)
∑
u∈Xpl

[ y∑
i=1

pi(u; β̂)

]
I
[
zj(u) ≤ z

]
,

y = 1, . . . , p, z ∈ R, (29)

where pi(u; β̂) is defined in (5) with β̂ obtained from (6).
Following Dong and Yu (2021), if model (3) is appropriate,

one would expect F̂Y|Zj(y|z) and F̂∗
Y|Zj(y|z) to be close for any z

and j = 1, . . . , q. Therefore, we can define for each covariate a
test statistic as

Tj(z) =
p∑

i=1

∣∣∣̂FY|Zj(y|z) − F̂∗
Y|Zj(y|z)

∣∣∣ �j,z(i), j = 1, . . . , q,

(30)
where �j,z(i) = F̂Y|Zj(i|z) − F̂Y|Zj(i − 1|z), i = 1, . . . , p.

It remains to evaluate the distribution of the Tj(z)’s. Dong
and Yu (2021) suggested using a bootstrap exploiting that their
pairs of covariate vectors and response variables are indepen-
dent and identically distributed. This is not possible in our
situation where the (Z(u),Y(u))’s are not independent. In the
following, we pursue some model-based bootstrap alternatives
where we replace the unknown background intensity λ0(·) by its
nonparametric estimate (25) and try out some simplemodels for
the correlation structure.

The simplest choice is the multivariate Poisson model,
where we assume the Xi’s are independent inhomogeneous
Poisson processes with intensity functions λi(·)’s. Based
on B simulations from this model, one can compute
TPoisson
j,1 (z), . . . ,TPoisson

j,B (z) from which point-wise 95%
percentiles can be estimated. Figure 8 shows the observed
test statistic Tj(z) as a function of z for three covariates and the
corresponding 95% percentiles based on simulations from the
Poisson model (plots for the remaining covariates are similar
and shown in the supplementary materials). The absence of
between or within spatial correlation for the Poisson model
means that the simulated parameter estimates based on (6)
vary too little compared to their variation under the true data
generating mechanism where spatial correlation is present as
suggested in Figures 4 and 7. It is therefore not surprising that
some observed Tj(z)’s are above the 95% percentile based on
Poisson simulations.

To partially account for spatial correlation we next consider
a second special case of model (3) where all point processes
are independent log-Gaussian Cox processes (LGCPs), each
with an exponential covariance function. Plugging in the kernel
estimate of λ0(·), we then estimate the correlation parameters
for each LGCP separately using standard minimum contrast
methods. Figure 8 shows that all observed Tj(z)’s are well below
the 95% percentiles based on simulations of the fitted LGCPs.
Thus, large values of the observed Tj(z)’s can be explained



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

by sampling variation even when we only take into account
correlation within each type of points and not between.

Plugging in the nonparametric estimate of λ0(·) is not opti-
mal but seems to be the only alternative at the moment to fit
parametric models for the correlation structure. Developing a
parametricmodel for the full correlation structure is beyond the
scope of this article.

7. Concluding Remarks

We propose a flexible semiparametric model for multivariate
point pattern data. The nonparametric component of the model
takes into account features of themultivariate intensity function
that are difficult to model or specify while the parametric part
facilitates a study of effects of covariates on relative risks of
occurrence of different types of points. Interesting conditional
probability maps can be obtained from the parametric part and
the intensity of a specific type of points can be estimated using
the full dataset by combining the parametric estimate of the
relative risk with an estimate of the nonparametric part.

Our multinomial logistic composite likelihood estimation
approach does not require knowledge of the nonparametric
model component. It is moreover well founded theoretically
since we established the asymptotic properties of the estimation
approach in a very general setting that does not require any inde-
pendence assumptions, neither within nor between the different
types of points.

Our nonparametric estimation approach allows us to esti-
mate cross PCFs up to a common multiplicative factor. This
is sufficient for estimating the covariance matrix of regression
parameter estimates and for inferring ratios of cross PCFs.
However, to infer individual cross PCFs, it seems necessary to
introduce parametric models for the cross PCFs. We plan to
pursue this in future work. There is also room for improving
the kernel estimate (25) which can be criticized for ignoring the
layout of the city.

Our methodology is applicable in very diverse fields. Our
example application is within criminology where the estimated
conditional probability maps disclose a remarkable structure in
the occurrence of various types of street crimes in Washington
DC. Other obvious areas of applications are disease mapping
in epidemiology and studies of spatial distributions of plant
and animal species in ecology. Our approach can further be
extended to space-time multivariate point pattern data, which
have attracted much interest in various research areas including
criminology, see, for example, the thorough review in the recent
article (Reinhart and Greenhouse 2018).

Supplementary Materials

The supplementary materials for this article contain further simulation
studies and plots, proofs, and auxiliary results.
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