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Using unreliable information sources generating conflicting evidence may lead to a large uncertainty, which
significantly hurts the decision making process. Recently, many approaches have been taken to integrate
conflicting data from multiple sources and/or fusing conflicting opinions from different entities. To explicitly
deal with uncertainty, a belief model called Subjective Logic (SL), as a variant of Dumpster-Shafer Theory, has
been proposed to represent subjective opinions and to merge multiple opinions by offering a rich volume
of fusing operators, which have been used to solve many opinion inference problems in trust networks.
However, the operators of SL are known to be lack of scalability in inferring unknown opinions from large
network data as a result of the sequential procedures of merging multiple opinions. In addition, SL does not
consider deriving opinions in the presence of conflicting evidence. In this work, we propose a hybrid inference
method that combines SL and Probabilistic Soft Logic (PSL), namely, Collective Subjective Plus, CSL*, which
is resistible to highly conflicting evidence or a lack of evidence. PSL can reason a belief in a collective manner
to deal with large-scale network data, allowing high scalability based on relationships between opinions.
However, PSL does not consider an uncertainty dimension in a subjective opinion. To take benefits from both
SL and PSL, we proposed a hybrid approach called CSL* for achieving high scalability and high prediction
accuracy for unknown opinions with uncertainty derived from a lack of evidence and/or conflicting evidence.
Through the extensive experiments on four semi-synthetic and two real-world datasets, we showed that the
CSL* outperforms the state-of-the-art belief model (i.e., SL), probabilistic inference models (i.e., PSL, CSL),
and deep learning model (i.e., GCN-VAE-opinion) in terms of prediction accuracy, computational complexity,
and real running time.
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1 INTRODUCTION

Effective decision making is closely related to how to manage uncertainty. Uncertainty is one of
the key causes generating biases that may mislead a decision making. Uncertainty in data and/or
information is often originated from different aspects of its quality, such as incomplete, miss-
ing, corrupted, or modified/forged information caused by either unreliable medium (e.g., wireless
medium) or malicious actions (e.g., attacks) by adversarial entities. In addition, inherent cognitive,
computational limitations by entities (either machines or humans) can introduce uncertainty be-
ing a serious hurdle in proper information processing. In addition, machine learning and/or data
mining research has studied how to deal with uncertain data in the areas of collective classifica-
tion [10], ontology alignment [9], personalized medicine [6], opinion diffusion [1], trust inference
in social networks [12], and graph summarization [20].

Since the 1960s, belief models have been studied to solve dynamic decision making problems,
such as Dempster-Shafer Theory (DST) [24], Fuzzy Logic (FL) [28], Transferable Belief Model
(TBM) [26], Dezert-Smarandache Theory (DSmT) [25], and Subjective Logic (SL) [13]. In particular,
in the 1990s, SL is proposed to explicitly consider an uncertainty dimension in a subjective opinion.
Uncertainty in SL mainly refers to vacuity (or ignorance) caused by a lack of evidence. SL offers a
rich set of operators for binomial, multinomial, and hyper opinions to combine different opinions
based on structural relationships between them. However, combining multiple opinions in SL is
limited based on dyadic relationships and needs to be performed sequentially; there is a scalability
issue for a large-scale network data. In addition, although SL’s capability in predicting unknown
opinions is highly effective with a small-scale network data, SL has its inherent issue in scalability
due to its nature in computing two opinions at a time to derive a fused opinion. Further, the un-
certainty in SL is only limited to dealing with vacuity, not uncertainty introduced by conflicting
evidence. For example, in a binomial opinion in SL, even if there exists a same amount of evidence
supporting two extremes (e.g., pro vs. con), uncertainty can be close to 0. In this situation, the
information a decision maker has is not really useful for his/her decision making. The scalability
issue for large-scale network data can be relaxed by a probabilistic model, called Probabilistic soft
logic (PSL). PSL is proposed to resolve intractable, complexity issues of previous opinion inference
problems (e.g., Markov logic networks, or MLNs) based on logic rules, which allows collective in-
ference of unknown opinions for high scalability. However, PSL does not deal with uncertainty in
subjective opinions.

To consider uncertainty in an opinion based on SL as well as scalability via collective inference
process in PSL, we previously proposed an opinion inference algorithm, called Collective Subjective
Logic (CSL) [31], by combining PSL and SL. However, uncertainty considered in CSL is still limited
to vacuity, not considering uncertainty caused by conflicting evidence. Hence, in this work, we
further enhanced CSL whose opinion inference performance is highly resilient against vacuity
and conflicting evidence. We name it Collective Subjective Logic Plus, CSL*. CSL* is an enhanced
version of CSL [31] that achieves high resilience against multidimensional uncertainty in vacuity
and conflicting evidence, leading to high prediction accuracy in opinion inference with highly
uncertain opinions.

We made the following key contributions in this work:

(1) Providing a scalable solution for opinion inference under uncertainty: The
proposed CSL™ is a hybrid approach taking the merits of both PSL and SL as an enhanced
version of CSL [31] that deals with uncertain opinions based on SL while achieving
high scalability for a large-scale network data using the collective process of opinions
in PSL. We leverage a technique called posterior regularization (PR) providing the ability
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Fig. 1. Ascenario of conflicting evidence and the prediction of congestion on Washington D.C. road network.
A~F are road sections, “red” indicates congested road, “green” is for non-congested. A, B, C, E, and F have
observations collected from traffic sensors. The status of D is unknown, the sensor of A is broken and the
observed status is non-congested, which conflicts with the observed status of A’s upstream where road
sections B and C are congested.

to collectively predict opinions of multiple variables based on known opinions of other
variables and their structural relationships following the logic rules in PSL.

(2) Maximizing prediction accuracy of opinion inference under multidimensional
uncertainty: CSL™ deals with multiple root causes of uncertainty (i.e., lack of evidence
and/or conflicting evidence) that can significantly hinders effective decision making. To
this end, the proposed CSL™ leverages the learning from known opinions (i.e., training
nodes) for maximizing prediction accuracy.

(3) Validation of CSL" via extensive experiments based on six datasets: CSL™ is vali-
dated based on four semi-synthetic dataset and two real-world datasets with three differ-
ent tasks: (1) the trust inference task (i.e., trusted vs. not trusted to determine who trusts
who) using Epinions (a semi-synthetic) datasets; (2) the traffic congestion inference task
(i.e., congested vs. non-congested in road traffic) using District of Columbia (D.C.) and
Pennsylvania (PA) road traffic datasets; and (3) the Sybils attack inference task (e.g., Sybil
vs. benign node in a network) using Facebook, Enron and Slashdot social network datasets.

(4) Proving the outperformance of CSL* over other competitive counterparts: We con-
ducted extensive experiments to ensure the outperformance of CSL* over other state-
of-the-art counterparts, including SL, PSL, CSL, and a GCN-VAE-opinion model (ie., a
deep learning model using graphical convolutional neural networks with variational au-
toencoder) based on all six datasets (i.e., four semi-synthetic dataset and two real-world
datasets) in terms of prediction accuracy of unknown opinions, computational algorithmic
complexity, and real running time.

The rest of this article is structured as follows. Section 2 provides the overview of related work
including probability models, belief models, and other advanced inference models. Section 3 gives
background on SL and PSL, which are mainly leveraged to develop CSL*. Section 4 describes an
example scenario and the problem statement. Section 5 provides the details of the proposed CSL*.
Section 6 describes the experimental setting and datasets and discusses the observed trends of
experimental results. Section 7 concludes the article and suggests the future research directions.

2 RELATED WORK

In this section, we provide the overview of the related approaches for opinion inference under
uncertainty, including probability models, belief models, and machine/deep learning models.
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2.1 Probabilistic Models

Inference problems with lack of information in structured network data have been studied based
on a joint probability distribution where each node represents a random variable in the network.
To be specific, Markov random fields (MRFs) [21] uses potential functions of cliques to obtain
structural relationships that models the joint distribution over a set of variables. A Markov logic
network (MLN) [23] models Boolean MRFs via first-order logic. The MLN can be obtained by at-
taching weights to the clauses (or formulas) in a first-order knowledge base, and can be seen as a
constructing template of a simple Markov network. In spite of its high interpretability, inferring
opinions from MLNSs is computationally intractable. However, existing approximation counter-
parts generate high computational complexity with low accuracy. To resolve the high complexity
of MLNSs, a probabilistic soft logic, namely, PSL [12, 18], is introduced to define how truth proba-
bilities are related to each other in binary variables. PSL uses “Hinge-Loss Markov Random Fields”
(HL-MREFs) [5] to define logic rules, on the basis of graphical models with “log-concave density
functions,” which enables better efficiency and scalability than MLNs. Nevertheless, PSL does not
deal with relations of truth probabilities when opinions are uncertain.

2.2 Belief Theory

Since the 1960s, belief theories have been studied to solve decision making problems under uncer-
tainty. The examples include Dempster-Shafer Theory (DST) [24], Fuzzy Logic (FL) [28], Transfer-
able Belief Model (TBM) [26], Dezert-Smarandache Theory (DSmT) [25], and Subjective Logic (SL)
[13]. Fuzzy Logic [28] evaluates imprecise information considering its vagueness, which can be one
of the root causes introducing uncertainty. DST is the most well-known belief model but is well-
known for its counter-intuitive outcome with input of conflicting evidence. To resolve this issue in
DST [24], TBM [26], and DSmT [25] are proposed; but they failed to properly consider conflicting
evidence. SL dealing with vacuity as the uncertainty dimension considered in a subjective opinion
is substantially used to develop trust networks or security mechanisms by leveraging various types
of operators to solve fusion problems [15]. However, most SL operators combine two opinions se-
quentially, which hinders scalability and requires high complexity for the opinion inference of a
large-scale network data. In this work, by fully leveraging the merits of PSL and SL, we propose a
scalable opinion inference algorithm considering the multidimensional causes of uncertainty.

2.3 Other Advanced Inference Models

Collective Subjective Logic (CSL) [31] is an uncertainty opinion reasoning method used for the
cases where all the node level subjective opinions in a network have different levels of beliefs (i.e.,
belief and disbelief) with a same level of uncertainty. Our proposed CSL* combines SL and PSL as
CSL [31], but considers conflicting evidence for the opinion inference. Graph convolutional neural
networks (GCNs) are used to infer opinions along with variational autoencoder (VAE) [34]. GCN-
VAE-opinion (GCN-VAE) method is proposed by formulating an opinion based on SL to explicitly
deal with uncertainty (vacuity) while GCN and VAE are used to achieve low complexity of opinion
inference for large-scale network data.

Beta ProbLog [40] was recently proposed, a probabilistic logical programming approach that
reasons in presence of uncertain probabilities represented as Beta-distributed random variables.
[41] estimates approximate credible intervals or “Bayesian error bars” around the model out-
puts. [42] generalized belief propagation to infer opinions over binary propositions in a singly
connected graph.

Inference and/or prediction with conflicting information is highly challenging and has been
studied in various domains including the data mining, machine learning, and database systems,
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especially the data integration in the database system. Resolving conflict data from multiple data
sources are studied in data mining or web mining, including logic-based methods on data integra-
tion tasks [37] and investigation of dependencies between data sources to find the true values from
conflicting information [36]. These works [36, 37] above mainly focus on resolving conflict values
from different data sources (i.e., data from different database tables, or websites) via probabilistic
or logic-based methods to choose the truth value from one of the data source; however, they do
not resolve uncertainty caused by conflicting evidence upon all evidence considered from multiple
sources. DSmT [25] is more efficient in combining conflicting evidence than the DST [24], but it
has shortcomings when it comes to combining the rules, has high computational complexity [39].
SL offers a number of operators that combine two subjective opinions based on a transitive trust
or consensus where the opinions are independent to each other [15, 35].

3 BACKGROUND

In this section, we provide the brief overview of SL and PSL, which are mainly leveraged to develop
CSL* in this work.

3.1 Subjective Logic

SL provides ways to define three types of subjective opinions: binomial, multinomial, and hyper
opinions [15]. In this work, we consider the binomial opinion to help decision making in given
proposition. A binomial opinion w is defined by [15]

w = (b,d,u,a), (1)

where b indicates belief (e.g., agree), d indicates to disbelief (e.g., disagree), u refers uncertainty
(i.e., vacuity or ignorance), and a is a base rate supporting b (or (1 — a) supporting d), represent-
ing a prior knowledge upon no commitment (e.g., neither true nor false), where b + d + u = 1 for
(b,d, u,a) € [0,1]*. When a belief is multinomial, multiple beliefs exist with a belief mass distri-
bution b over the states of the variable and an uncertainty mass. A base rate (a) can be seen as a
domain prior knowledge related to the given proposition or a human entity’s judgmental capabil-
ity or bias, where a can be interpreted in either way. When an agent’s prior domain knowledge is
not used, we will omit a and denote an opinion as @ = (b, d, u).

A binomial subjective opinion corresponds to a Beta probability density function (PDF) via a
bijective mapping, denoted by Beta(p; a, ), and is given by

I(a+pp*~t(1-p)

L(a)T(B) ’
where 0 < p < 1,a > 0, > 0, and the « and f is obtained based on the base rate a, the amount
of positive evidence r and the amount of negative evidence s: ¢« =r +aW and f =s+ (1 — a)W.
Based on the mapping rule in SL [14], the vector of an opinion, @ = (b, d, u), is given by

r s _ w 3)

»d_ 9u >
r+s+Ww r+s+Ww r+s+Ww

Beta(p; @, f) = (2)

where W is the default non-informative prior weight, and usually set W = 2 supposing that there
is a complete uncertainty when « = 1 and = 1 at the very beginning of opinion update, resulting
in u = 1. The base rate a is set to the default value 0.5 referring to a neutral position. As time
elapses, more positive/negative evidence is gathered with more new evidence « and f, leading to
decreasing uncertainty u. An subjective opinion @ can be expressed based on the amount of new
evidence received as

o = (a, f). 4)
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Fig. 2. Prediction of voters intuition based on the opinions of Twitter users.

This can be mapped to @’ = (b, d, u, a) as in Equation (3) where the base rate a is given as a constant
derived from a historical record. In SL, the transitive trust [17] is estimated based on a discounting
operator ®. We denote i’s trust in j by (ui (b‘ d’ u a’ ) J’s trust in k is expressed by (u

(bj,dj u ak) Thus, i’s trust in k, denotedbya) (b” d” ” ;Cj) = coj®a)k,

Bj _ pipl i J B _ i i ij_
b bjbk, d —b]dk, u = d +u +bj e 4 =a. (5)
To combine two opinions, a consensus operator, @, is used as follows [17]. After two trust

opinions towards a same entlty are combined, the combined opinion is represented by w, e

(bw] d]':J, ,’:J, m])— @w with
i J J i, J J i
bl = b + bk k dm dkuk + dkuk
S “
ouid
ioj _ "k7k ioj _
uk - é, ’ ak - ak’
where§=u}+uk—uu > 0. WhengV—Oa) @w is defined by
i J i J
bioj _ I//bk + bk ioj _ Ebdk + dk ui<>j -0 a1<>] a
k - lﬁ + 1 ) k - ‘p +1 ) k — Y k - ks

where ¢/ = lim(ui /uj). SLprovides discounting “ ®” and consensus “®” operators to estimate trust
relationships following a trust chain of subjective trust opinions [17].

In Figure 2, we show an example for predicting people’s voting intentions via a social net-
work with two kinds of relations, “FrRIEND” and “SPousk,” when a set of observed/given opinions
vy ={y1,...,.ym} and a set of unknown opinions x = {xy,...,xn} are given. These opinions are
represented by a set of random opinion variables where the format of each opinion follows Equa-
tion (1) (i.e., @y, fori=1---nand w,, forj=1---m).

Given the following rule holds,

FrieND(D, T) A VOTEFOR(T, Rep) — VOTEFOR(D, Rep), (7)

This rule implies that if David (D) and Tom (T) are friends and T voted for the Republican (Rep)
party, T may vote for Rep. Similarly, we assume holding the following rule:

Spouse(D, M) A VOTEFOR(M, Rep) — VOTEFOR(D, Rep). (8)

In this rule, if D’s spouse is Mary (M) and M voted for Rep, then D may vote for Rep. Heads of
Rules (8) and (9) imply the same opinion for VoteFor(D,Rep), D may vote for Rep. To infer the
the target opinion for VoteFor(D,Rep), we first identify two independent transitive paths in the
network. We can use discounting operator to compute these two transitive paths (different rela-
tionships and voting intention opinions) ys and y separately, then and combine these two opinions
for VoteFor(D,Rep) using consensus operator. In Table 1, y; ~ ys denotes the trust relations of en-
tities with subjective opinions in a certain proposition. We infer a unknown relation, x, based on
known relationships, y; ~ ys, by using the consensus (@) and discounting (®) operators in SL. The
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Table 1. An lllustration of SL-based Unknown Relation Inference

Observed opinions Given/Inferred opinions
y; = FRIEND(D, T) wy, =(1,0,0,0.5)
Y, = SPOUSE(D, M) wy, = (1,0,0,0.5)

y3 = VOoTeFoRr(T,Rep)  wy, = (0.6,0.1,0.3,0.5)
y4 = VOTEFOR(M, Rep)  wy, = (0.8,0.1,0.1,0.5)

Ys =Y1:Ys3 Wy, = Wy, ® wy, = (0.6,0.1,0.3,0.5)
Yo = Y2 " Ya Wy, = Wy, ® wy, = (0.8,0.1,0.1,0.5)
Unknown opinion Inferred opinion

x = VoTeFor(D, Rep) Wy = Wy, © @y, = (0.81,0.11,0.08,0.5)

The relationships are FRIEND, SPOUSE, and VOTEFOR, where related entities include
David (D), Tom (T), Mary (M), and Republican party (Rep).

opinions y; — y4 are given while ys and y; are derived separately using ® and @: @y, = @y, ® Wy,
and wy, = wy, ® wy,. Last, the unknown opinion, x, is evaluated by wx = wy; ® wy;.

3.2 Probabilistic Soft Logic

PSL is a statistical relational learning (SRL) [38] technique applying logics to formulated SRL prob-
lems. PSL offers a formulation tool providing a user friendly language interface for collective,
probabilistic reasoning point-valued unknown probabilities under known probabilities. In PSL,
the key instances are ‘truth probabilities of binary random variables’ (i.e., Boolean). PSL employs
‘weighted first-order logic rules with conjunctive bodies and single literal heads’ that considers
the structural relationships between the random variables. Each logic rule is assigned with non-
negative weights with a real value in [0, 1], where the weight indicates the importance of a logic
rule. To compare PSL with SL, we present the same example in Section 3.1 showing the prediction
of a voter intuition based on the two types of relations, Friend in Rule (7) and Spouse in Rule (8).

PSL defines a non-negative rule weight per rule representing the confidence (i.e., importance) on
the logic rule. For instance, given the weight of Rule (7) is 0.3 and the weight of Rule (8) is 0.8, we
interpret that the spouse relation is stronger than the friend relation, implying that a same vote
can be observed in a stronger relation such as a spouse relation than a friend relation. PSL has its
syntax rule basis on the first order logic and uses a real number representing soft truth probabilities
in [0, 1], instead of a binary decision 0 or 1. We call probability p,, an atom for a random variable x;
that refers to a certain relation. px = [px,- - -, pr]T € [0, 1]" means a vector of unknown atoms.
In the above voter example, Rule (8) is weighed more than Rule (7), which means in a spouse
relationship, one more tends to vote for what his/her voted for than what his/her friend voted for.
To assess how well the ground logic rule works, PSL adopts the Lukasiewicz t-norm and co-norm
as the relaxation of the logical operators A (conjunction or logical AND), V (disjunction or logical
OR), and — (negation or logical NOT) [19], respectively, by

le /\pxz = max[pX1 +pxz - 1’0]’ pxl Vpxz = min[pxl +pxz’ 1]’ _'pxl =1 _pxl‘ (9)

These operators coincide with the Boolean logic operators for integer inputs; but it also offers a
consistent mapping for intermediate values between integers. A grounding PSL logic rule, r, is

represented by
/\ pxi - \/ P?Ci7 (10)

iel” iel*
where I” C {1,..., N} refers to a set of indices in the body of the rule ry and I* c {1,...,N}\ I~
indicates a set of indices in the head of the rule ry. ri(px) captures the degree of rule kth being
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satisfied and is given by

r(pX)Zmin[szi"'Z(l_Pxi)71]- (11)

iel* iel”
For example, considering the realization of the atom,
Px, = Spouse(B, A) = 1.0, py, = VotesFor(A, P) = 0.8,and p,, = VotesFor(B, P) = 0.1.

Let i be the corresponding grounding instance of Rule (8). We get that r(px) = min[0.1 + ((1 —
1) + (1 -0.8)), 1] = 0.3. Instead of soft values in [0, 1], if all the atoms are Boolean (binary) vari-
ables (True ‘1’ or False ‘0’), Equation (11) is similar to

(V) V(V ps): (12)
ielt iel”
where the satisfaction of this rule (i.e., 1 or 0) is same as that in a standard first-order logic.
Overall PSL uses first-order logic syntax to define constraints and potential functions in a graph-
ical model over the truth values of logical atoms to infer unknown truth values. More detailed
information is provided in References [5, 6].

4 EXAMPLE SCENARIO AND PROBLEM STATEMENT

In this section, we describe an example realistic scenario and a problem formulation.

4.1 Example Scenario

Let us take an example real-world application scenario aiming to predict the traffic congestion in
a road network where a node refers to an intersection of road links and an edge is a road link.
On the commuting roads, we may encounter traffic congestion. To check the road conditions, we
often listen to the radio and/or may use GPS or online maps. The prediction of road congestion is
expected to be presented with a certain probability. Although rich, diverse traffic-related applica-
tions are available, unexpected traffic congestion caused by the latest accidents may occur without
any chance of knowing it. Hence, it is highly challenging to predict unknown traffic conditions
when some partial updates and/or observations are available. Note that the road traffic prediction
is one of the examples we can apply our CSL*, and we discuss our experimental results using six
different semi-synthetic and real datasets to prove the outperformance of the CSL* in Section 6.

4.2 Problem Statement

Given a structured network, denoted by G = (V, E, f) where V = {1,2,...,1} is a set of vertices
representing intersections of road links and E C V X V is a set of edges indicating road links, we
define the mapping function f : E — {0, 1} with a Boolean variable f(e;) for each edge e;, with
‘0’ indicating a non-congested road and ‘1’ meaning a congested road at a current time. Suppose
there is a subset of edges E, = {ey,..., ey} C E with traffic sensors (e.g., cameras, speed radar)
installed at these edges representing known opinions. For the edges without traffic sensors, we
treat them unknown opinions, denoted by E, = {0,...,0n}, and E = E, U E,. In addition, we
consider a set of unknown traffic sensors that report unreliable observations providing conflicting
observations to the true traffic observations (labels) of their corresponding edges.

Suppose we have a vector of observations on road congestion status at a current time on
E,, which shows known opinions y = [f(e1),..., f(eam)] € {0, 1}M based on observations, and
the beliefs towards the states of these variables derived based on their historical data on the
observations. Given [, our goal is to predict the beliefs of the states on the congestion vari-
ables at the edges without sensors (i.e., intersections without any camera or speed sensors),
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denoted as x = [f(01), ..., f(on)] € {0,1}N. A belief over the states of a road congestion vari-
able x; (or y;) can be represented as a subjective opinion, defined as wy, = (by,, dx,, Ux,, ax,),
@y, = (byj,dyj, Uy, ayj) in Equation (1), or following a Beta distribution with given parameter
evidence (ay,, fx,;), Beta(px,; @x;, Px;) (see Equation (2)). wy, is also obtained by SL’s mapping rule
in Equation (3). For edge e; € [E, with historical observations Zthl f(e}) where ry and s, are the
counts of 0’s (i.e., no traffic congestion) and 1’s (i.e., have traffic congestion) in these observations,
respectively. Beta(py,; ay,, By,) is given by
ay, =ry; +ay,W, By, = sy, +(1-ay)W, (13)

where r,, and s,; are the volumes of positive and negative evidence, W is a predefined non-
informative prior weight representing an amount of uncertain evidence, and a,; is the base rate
on proposition y;, predefined probability of prior general knowledge on y; used to interpret W.
Because the edges in [, do not have historical observations, we cannot directly infer their beliefs.
However, we can infer the unknown beliefs towards the edges in E, based on the structural rela-
tionships between the known beliefs on the edges in E,. We also consider untrustworthy known
sources (i.e., edge sensors) providing conflicting evidence.

As the identification of conflicting sources and the prediction of unknown opinions are equally
important because of their inter-dependency, we formulate a statistical model for predicting un-
known opinions and learning the conflicting sources simultaneously as follows:

PrROBLEM 1 (UNCERTAINTY-BASED OPINION PREDICTION AGAINST THE CONFLICTING EVIDENCE
IN NETWORK DATA). The key notations are:

o Lety = (y1,...,Yym) be a vector of given input binary variables whose opinions are denoted
by wy = (@y,, . ..,y ), Beta(py,; ®,,) refers to the PDF of the truth probability p,, of the
variable y;.

o Letx = (xy,...,xN) be a vector of target binary variables whose opinions are represented by
Wx = (Wy, - .., Wxy) to be predicted. Beta(py,; wx,) is the PDF of the truth probability p,, of

the variable x;.

o Letpy = (le’ o> Dxn)s Py = (Pyl’ cee ’pym): and Pxy = (PX’Py)-
e by = (byl, R byM) is a vector of binary variables, in which each by, € {0, 1} indicates whether
y; is a source providing conflicting evidence or not.

Given

o y e {0, 1M, wy, is the subjective opinion on'y;, and
e R ={rg, pk}le, a set of PSL logic rules, in which ry is the k-th rule over pyy and by, and py
is the weight of r.. A logic rule ry. is defined as

re= A\ o\ (pun 0=00)) >\ pe /(P v ) (14)

icl™ e~ et e
lEIx,k 1€Iy,k leIx,k lEIy’k

where I, and I;k indicate the indices of variables in x and 'y occurring in the body of the
logic rule ry, separately; and I;k and I;k are the indices of variables in x and y occurring in
the head of the logic rule ry.

Predict wy, the unknown opinion on a vector of target variables x and A conflicting evidence
indicator vector, by.
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Without concerning the constraints based on PSL logic rules, the joint PDF of the input and
output variables has the following form:

M
1-by,. by.
PrOb(px,ya bya X,Yy; Wx, Wy, wO) = 1_[ { (Beta(pyi s Wy; )) vi (Beta(pyi ; (1)0)) vi (15)

i=1
N

Bin(ys: py,)Bin(by, po)} [ TBinCxi: px,)Beta(ps,: @),
=1

where Bin(-) and Beta(-) refer to the PDF functions of a Binomial distribution and a Beta distri-
bution, respectively. If y; is a source providing conflicting evidence, then its opinion w,, set to
the base rate opinion @y = (1, 1), and the probability p,, = 0.5, which indicate the totally uncer-
tain opinion and probability. The aim is to find the target unknown opinion vector wy and the
conflicting-source indicator vector by, which maximize the likelihood Prob(y; w, @y, @) subject
to the constraints defined by the set of PSL rules R. We adopt a generally employed strategy that
enforces the PSL logic rule constraints on Prob(py,y, by|y; wy, @y, @) through an expectation op-
erator. In particular, for each rule r; and each of its related variables py y, by, we expect

IEProb(px,y,by|y;aox,aoy,mo) [7k (Px,y7 by)] =1,
with a confidence evaluated by the non-negative weight py. By imposing the constraints based on
PSL logic rules, our key problem of predicting unknown opinions in the presence of conflicting
evidence is defined as a maximization problem based on a constrained log-likelihood, £(wx) by

arg max L (wy) = arg maxlog Prob(y; wx, wy, ) (16)
wyx, E>0 wyx, E>0

$.L. PkEprob(py by lyswm @y, @0) | 1 = Tk (Pxy»by) [ < &k
IEllp < e,k =[1:K],

where i indicates a slack variable, || - ||s represents a norm. We basically allow slight violations
with slack variables & on the PSL logic rules, the norm of ¢ is bounded by € > 0. Since our maxi-
mization problem is analytically intractable, we introduce an efficient robust approximation infer-
ence algorithm, CSL*, to address this problem in Section 5.

5 CSL* FOR OPINION PREDICTION

Predicting unknown opinions in the presence of conflicting evidence is defined as a problem in
Equation (16). This problem has two challenging issues, in terms of high computational complexity
and low scalability: (1) The expectation operator Epsob(p, by ly:wx. @) [1 = Tk (Pxy, by)] is computa-
tionally intractable; and (2) the dimensionality of unknown opinions wy is often high, aligned with
network density (i.e., a number of edges) in the network data. We describe CSL* in twofold: (1) pre-
diction of unknown opinions in the presence of conflicting evidence (Equation (16)) in Section 5.1;
and (2) estimation of the expectation components as the part of CSL* and conflicting evidence
inference in Section 5.2.

5.1 Prediction of Unknown Opinions in CSL*

To solve the maximization problem in Equation (16) and obtain a computationally tractable so-
lution, we adopt posterior regularization (PR) [11], a probabilistic approach for the structural re-
lational learning. PR is a technique for regularizing relational learning models by encoding prior
knowledge in constraints on model posteriors. Via applying PR, CSL* learns a new simpler den-
sity function g(py,y, by) that fits the PSL logic rules while staying close to the posterior PDF (i.e.,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 7. Publication date: November 2020.



CSL™: Scalable Collective Subjective Logic under Multidimensional Uncertainty 7:11

Table 2. Key Notations and Their Meanings

Notations Description

y =y, ymls y is a vector of M input (observed) binary random variables whose

Py = [Pyis- - s Pynr s opinions are given. py and wy are the corresponding vectors of truth

Wy = [@y,, ..., 04,], probabilities and opinions of y, respectively. by is a vector of M binary

by = [by,,...,by,] random variables indicating the conflicting sources.

X = [x1,...,xN], x is a vector of N output binary random variables whose opinions are

Px = [Pxs - - > Pxn ] predicted. px and wy are the corresponding vectors of truth

Wx = [®x, ..., 0xy] probabilities and opinions of x, respectively.

wy = (by,dy, uyx, ax) A binomial opinion of a binary random variable x as defined in
Equation (1)

[1:K] 1,...,K

o' = (ax, fx) Evidence parameters of Beta(py|ay, Bx) that corresponds to an
opinion w, in Equation (3).

Pxy: @xy Pxy = (Px: Py), @xy = (@x, @y)

R = {rk, pk}f:1 A set of PSL logic rules as defined in Equation (14), in which ry is the
k-th rule over py, py, and by, and py is the non-negative weight of ry.

q(px.y> by) A simpler new PDF function that fits the PSL rules as in R as well as

meets the minimal Kullback-Leibler (KL)-divergence distance to the
posterior Prob(py,y, byly; @x) (See Equation (17)).

Prob(py,y, byly; wy)) concurrently, where we do not explicitly show the parameters wy, @, and py
that are assumed known as input. For each weighted PSL logic rule, ry, we expect that Eq¢,  b,)
[k (pxy,by)] = 1, with a weight pi, where r(py,y,by) is the level of the satisfaction of the PSL
logic rule ry as defined in Equation (11). All the constraints by the PSL logic rules in R construct
a rule-restraint space of all valid distributions. To guarantee the closeness between the posterior
PDF and q(py,y, by) and Prob(py y, by|y; @), we minimize the closeness using KL-divergence [8],
a measure of the closeness of two distributions. Summing up the above two main considerations
and further allowing the slight slackness for each constraint, we formalize the following equivalent
optimization problem:

I;Irgg KL(q(px,y’ by)v PrOb(px,y, by|Y§ (I)x)), (17)

where Q, the domain of g, denotes the constrained posterior (with slacks) space of PDF as defined
by the PSL logic rules, R, and is defined as

Q= {q(px’y,by) L8 > 0, kB g(pu, by [1 — 7k (Prys by)] < &3 1€l < s}. (18)

The intent of the above optimization problem is to project the posterior PDF into the structural
constrained posterior space, Q. This optimization can be effectively and efficiently solved in its dual
problem with analytical closed-form solutions that are provided by the PR framework. Due to the
space limit, we show the detailed derivation steps in Appendix A in our supplement material and
directly show the following final solution:

K
q(px,y, by) o PrOb(px,ys by|y; Wy, wy) + €Xp {_ Zk:1 Pk(l — Tk (Px,y’ by))} . (19)

Apparently, from above Equation (19), we can observe that a stronger PSL logic rule with large
weight py. leads to lower probabilities, py y, that result in failing to meet the constraints.
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Prob(p,y. by | v,0)
)

o~
M — Step: E' — Step:
[ max F(q,0) J [ rggé(F(qve) ]
-~

a(Pxy by) 0

min KL

Fig. 3. Modified EM for the unknown opinion prediction under conflicting evidence problem in Equation (16)
in CSL*.

For a given wy, a new desired density function, q(px,y,by), that fits the structural constraints
of PSL logic rules while concurrently being close to our model posterior, can be estimated via
given analytical form in Equation (19). For a given approximated q(py,y, by), by Jensen’s inequal-
ity [8], we construct an evidence lower bound F(g, wx) of the log likelihood function £(wx) =
log Prob(y; wyx) by

Prob(py,y, by, y; wx)

Lwy) = o (Px.y» by) (20)
gpz;) q Px,y y Q(px,yaby)
Xy Py
Prob(py,y, by, y; @x)
> q(px.y, by) log - = F(q, wx). (21)
p:;y o q(Px.y, by) *

F(q, wx) can be reformulated as

F(@.@:) = ), d(Puy:by) 108 (Prob(pry. bylys @) Prob(yi0)) = " q(Pryby) 108 (Pry-by)
Px.yby Py by

= L(wx) — KL(q(px,y’by)’ PrOb(px,y’bylyi ("X))’ (22)

where ¥, b q(Pxy.by) =1 and L(wx) =logProb(y; wx) =log X, b, Prob(pxy. by, y; @x)).
According to the above interpretation, we design a modified Expectation Maximization (EM) in-
ference algorithm to solve the unknown opinion prediction under conflicting evidence problem
in Equation (16). As shown in Figure 3, beginning from an initial parameter estimate w' (or 6')
at step [ = 0 in the first starting iteration, our algorithm iterates two block-coordinate ascent, and
has the following E’ and M steps:

e E’ — Step, a modified E-step that includes the constraints defined by the PSL rules R:

ql+1 = argmaxgeq F(q, wi) = arggleiSKL(q(px,y,by),Prob(p&y,by|y; wx)), (23)

where Q is the PSL logic rule constrained space of the PDF as defined in Equation (18), and
the analytical solution of g'*! is given in Equation (19).
e M- Step:

I+1

ol = argmax,,_F(q'*!,

wx) = argmax[E .i[logProb(pyy, by, y; wx, @y, wo)]. (24)
Wx
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From the joint PDF in Equation (15), the objective function of E-Step in Equation (24) can be
rewritten as

N M
wi” = argmax { Z E 11 [log Beta(px,; @x;)] + Z E i [(1 - by,) logBeta(py,;; @y,)
R = i=1

M M
+ by, log Beta(pyi;wo)] + Z E 141 log Bin(by,; po) + Z E i1 [log Bin(yl—;pyi)]}
i=1 i=1

N
= argmax Z E 11 [log Beta(px,; wx;)] + const.
wx £
i=1

The above point-wise summation equation implies that the opinions in wy, including {@y,, ...,
Wy, }, can be optimized separately. The opinion w,, can be computed by treating the other opin-
ions in Equation (24) as constants, where ., = (ax;, fx,) as we defined in Equation (4). Ultimately,
the main goal of M-step is solving the following optimization point-wise sub-problem:

max Eqm log Beta(py, lax,, Px;) | + const. = (25)

Ax; >0, Bx; >0

max logI'(ax, + fx;) —logT(ax;) = T(Bx;) + (ax; = DE i [log px,] (26)

Ax; >0, fx; >0
+ (B = DEgallog(1 = pu)l,

where const. represents  the  additive  terms (Xj#i Egri [log Beta(py,; wx;)] +
2?11 log Beta(py,; wy,) + 2%1 log Bin(y;; py,)) that are constants w.rt. ay, and fy; and the
equality can be achieved by replacing the analytical form of Beta(py, |ay,, fx;) in Equation (2);
and I'(x) = (x — 1)!, x € R. The above problem formulation is similar to a Maximum Likelihood
Estimation (MLE) problem of a standard Beta distribution. Only differences are that the negative
constants “log py,” and “log(1 — py,)” are substituted by their expectation on ¢'*!: E g+ [log px;]
and E i [log(1 - px,)], respectively. Thus, we can directly apply the numerical methods in
References [4, 7] for the MLE estimation of a Beta distribution to solve Equation (25).

5.2 Approximate Expectation Estimation

In this section, we present an efficient approximate expectation estimation algorithm to reduce the
computational complexity of {E ji+1[log px, ], E i1 [log(1 — py;)] | i = 1,..., N}. Because the com-
putation of these expectation terms is impossible and leads to intractable inference, we adopt a
commonly used approximation approach: p; ; and by represent the values at the “most probable”
setting of pxy and by with the current inferred opinion wy. The expectation terms E .1 [log px, ]
and [E 11 [log(1 - px;)] can be approximated as log p}, and log(1 - py,), respectively. We can ob-
tain the “most probable” values py , and bj by solving the following optimization problem (by
replacing the analytical solution in Equation (19)):

Pxy:by = arg prxrly{gy —log q(px.y» by)
- in —log Prob(py.y, b o b 27
= arg Pigl’lgy —logrro (px,y’ y|Y) + Zk:l Pk( — Tk (px,y7 y)), (27)

where the parameters wy, py, @x and wy are not shown in the Prob(-) function for simplicity. The
definition of PSLlogic rule rx (px,y, by) € R is given in Equation (14), and according to the definition
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of the distance to satisfaction of a given rule r; in Equation (11), r¢ (px,y, by) is defined by
Fe(Pry,by) =mind 1, 3" po+ > (py +by )+ Y. (I=pe)+ Y (1=py +by)(, (28)
iely ielly i€l el

where I]:r, I, € Vand I; AL =0.Letpxy k = (Pxk> Py.k)- Then, we can reformulate the optimiza-
tion problem in Equation (27) as follows:

K
arg mir}} —log Prob(py,y, byly) + Z Pk max {fk (Px,y,k» by, k) 0},

Px,y> Dy =1
where Py koby k) =1= D ey = D (g, +by) = D (1=pe) = D (1=py, +by).
ieI):k ieI;k ieI;k iEIyik

In the above objective function, the first term (joint probability of input and output variables) is
a convex function and the second term (logical rule constraints) is a hinge-loss function that is
convex but non-smooth. Thus, the optimization problem in Equation (27) is a non-smooth convex
optimization problem.

To tackle the various of convex/non-smooth convex optimization problems, many state-of-the-
art and off-the-shelf methods are proposed, such as gradient descent (GD)-based methods and
interior-point methods (IPMs). But these methods are inefficient to solve the optimization problem
in Equation (27) with a large number of variables N + 2M, where N is the total number of target
unknown variables and M is the total number of given variables. In our article, we propose a robust
and efficient algorithm, uses consensus optimization via adopting Alternating Direction Method of
Multipliers (ADMM) [27], to solve this problem. The adopted ADMM-based consensus maximum-
a-posteriori (MAP) inference process has the following three main steps: (1) forming and initialing
local copies of the variables in each PSL logic rule by constraining the local copies to be equal to
the original global variables; (2) decomposing the problem into independent sub-problems; and (3)
block-wise updating until converging to a consensus on the optimum. Let py k., Py, x, and f)y, k be the
local copies of the global variables py ., py, x, and by, x in the PSL logic rule (rx, px) € R, separately.
Finally, our main problem based on the ADMM framework is formulated as follows:

K
_min { — log Prob(py,y, byly) + Z P max{ i (Px,y, ks By,k), 0}},
{ﬁx,yykvbyyk}f:ppxyy’by k=1
s.t. f’x,y,k = Px,y, k> ByJ( = by,k,k =[1:K]. (29)

Then these constraints are transformed into and augmented Lagrangian with penalty x and La-
grange multipliers A and y:

-E({f)x,y,ky l;y,k7 Ax,y,ka YY»k}szy Px.y» by) = log PrOb(Px,y, byly) (30)
K
o 1 , 1o )
+ Z (Pk max{fk(px,y,k, by,k)s O} + _”px,y,k - px,y,k + K/lx,y,kuz + _”by,k - by,k + K)/y,k||2>’
p 2K 2K

where x > 0 represents the step-size (penalty) of ADMM. ADMM aims to find a saddle point of
L(pxy; Pxy> Axy» ¥y) via updating the four blocks of variables at each iteration ¢:

For k = [1: K]
1
t _ qt-1 Al—1 t—1
Ax,y,k - /IX,Y»k + ;(pX,y,k - px,y,k) (31)
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Repeat

l P1 until converge l
E—— ¥
I Px.
P, - .
e
= ® Dy,
Local Copies /' pYZ
P Dy
N X _— bﬁV1
tx (Pr)
yM
Sub-problems Global Variables

Update global variables
by consensus averaging

Fig. 4. An illustration of the consensus algorithm.

1/-

— -1 -1 -1
vy = ryi + < (b = by) (32)
f);y,k,f)}t, = argp n’;ll; kpk max {gk(px,y k?bt 1) }

XY, y>
Af—1 t t
+21< Pryk ~ px’ykth+1</1 yk” +21<b’ -b k+K}/ka (33)
— : 1

Pl b = arg min £(pL Bl Bbf 2 y00f). &

where the rule indices are k = 1, ..., K. The block-wise ADMM updates make sure that p, y and by
converge to the global optimums p,’;y and b;f , assuming that there exists a feasible assignment to
Px.y and by. Updating of the Lagrange multipliers A y £, Vy,kisa basic step in the gradient direction
in Equations (31) and (32). The local variables related problem in Equation (33) can be efficiently
solved via a customized algorithm proposed in Reference [5]. After solving the sub-problems in
Equations (31)—(33), we can treat the local variables py «, Py, x, and l;y’ & as constants and substitute
the local variables in Equation (30). We can use the same technique in Equation (25), via grouping
the constants and variable terms. The problem related to global variables in Equation (34) has an
analytical solution ensuring that the gradient of the objective function is 0.

Figure 4 shows the main architecture of the consensus MAP inference algorithm. We decom-
pose the problem into independent subproblems and optimize each potential ¢ functions inde-
pendently (can be done in parallel). We let each subproblem to vote to the optimal solution until
all the independent distances to satisfaction. Our problem is a convex problem; so it guarantees to
converge global optimum. Auxiliary variables ensure consensus reached across subproblems.

5.3 Complexity Analysis

Algorithm 1 is pseudo-code of our purposed CSL* and it summarizes the key steps of CSL*. CSL™*
has two main loops: The outer loop (Lines 3 to 19) is related to the modified EM inference. The
modified E’-Step is implemented in Line 4. The M-Step is implemented by Lines 5 through 17.
Especially, Lines 5 through 15 (including the inner loop) show the ADMM steps for estimating
the “most probable” values p; ; and by by solving the optimization problem in Equation (27). The
calculated most probable values py , are used to approximate [E 1.1 [log px, ] and E 1.1 [log(1 — px,)
aslog py, and log(1 — py, ), separately, which are then applied to implement the M—Step in Lines 17
and 18. The computational complexity and time consumption of Algorithm 1 are shown in Lines
13, 14, and 18.
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ALGORITHM 1: CSL* on the Opinion Prediction
Input: wy,y, R, 0o, po
Output: wy

1 Initialize [ =1 , w

!

x>

2 repeat
3 Update ql(px,y, by) via Equation (19);
4 Initialize ¢ = 1, pxy, by:
5 Initialize f))’( vk and B; s copies of the probability variables, p; vk and b; e that occur in the
k-th rule in R, respectively, k = [1 : K];
6 Initialize Lagrange multipliers Ay ¢, Ay x and Vy.k corresponding to variable copies Py x and py .,
respectively, k = [1: K]J;
7 repeat
8 t=t+1
9 Update Lagrange multiplier A;y’ « via Equation (31), k = [1: KT;
10 Update Lagrange multiplier y; vk via Equation (32), k = [1: KJ;
1 Update local copies f);’y,k and B;,k via solving the problem in Equation (33), k = [1 : KJ;
12 Update global variables p,‘;y, b;, via solving the problem in Equation (34);
13 until convergence
14 [=1+1;
15 fori=[1:N]do
16 L Update opinion a)g(l_ via solving the problem in Equation (25);

-

7 until convergence
1

s return wy

=

Line 13 requires to solve K sub-problems in Equation (33) that can be solved by applying the
algorithm in Reference [5] with O(KP), where P is the maximum number of variables occurred in
the PSL logic rules, R. Line 14 requires to solve the optimization of global variables in Equation (34),
and needs to update all global variables and the analytical solutions can be obtained in O(N + 2M).
Lines 17 and 18 require to solve the optimization problem in Equation (25), which is similar to
the MLE problem of a Beta distribution and can be solved applying the method of moments [4]
in O(1). Ty and T, represents the numbers of iterations of the outer and inner loops, separately.
Summing up above, the overall computation complexity of CSL* (Algorithm 1) is O(T; - T» - (K +
2M + N + KP)). As K sub-problems in Line 13 can be calculated via parallel processing, if we have
enough processors with count C such that O(K/C) ~ O(1). Finally, the computational complexity
isO(T; - T, - (K + 2M + N + P)), which is linear w.r.t. to M, N, and K. This analysis indicates that
our proposed CSL™ is scalable to large-scale network data. Compared to CSL, CSL* via doubling
the variable size and not increasing the time complexity too much, achieves better performance
on different scale of datasets. We further prove the scalability via extensive empirical evaluations
in Section 6.

6 EXPERIMENTAL RESULTS AND ANALYSIS
6.1 Datasets and Experimental Set-Up

In the experiments, we validate our proposed CSL* method on four semi-synthetic dataset and two
real-world datasets on three different tasks under the conflicting evidence scenarios: Epinions
(semi-synthetic) datasets on the trust inference task, DC and PA road traffic datasets on the
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Table 3. Dataset Statistics

Dataset # Nodes #Edges # Weeks # Snapshots in total (hours)
Philadelphia (PA) 603 708 43 3440
Washington, D.C. 1,383 1,878 43 3440

Facebook 8,078 372,936 - -
Epinions 47,676 477,468 - -
Enron 67,392 743,244 - -

Slashdot 164,336 2,018,920 - -

congestion inference task, and Facebook, Enron, and Slashdot social network datasets on
the Sybils attack inference task (also semi-synthetic). Dataset statistics are summarized in Table 3.

6.1.1 Epinions. Epinions' is who-trust-who network data that were crawled in 2003 [22]. The
used Epinions dataset is a directed network, and has 47,676 users (i.e., nodes) and 467,468 trust
relations (i.e., edges). As there are lack of ground truth trust information for Epinions dataset, we
infer the actual trust relations between the users according to the trust inference method applied
in References [17, 31] by proceeding the following main steps:

Initialization Step: randomly select 20% of the edges (relationships) and set the trust of the
edges to “1”s indicates USER; trusts USER; (but not necessarily USER; trusts USER;, and “0” indicates
distrust) where UseRr; and USER; are users in the given Epinions network.

Exploration Step: 10,000 exploration steps are taken to update trust relationships based on the
following trust PSL logic rule:

TrusTS(A, B) A TrRUsTS(B, C) — TrRUSTS(A, C). (35)

To generate synthetic trust observation, we select an edge e; randomly, identify the rule instances
(neighborhood edges of ¢;) related to e;, and generate an observation for e; (trust “1” or distrust “0”)
based on the probability of the rule instances. Through the above steps, we obtain 1st realization
of trust relationships on the edges in the Epinions network. Now each edge has a single trust
observation. We obtain the 2nd realization based on the previous one by randomly choosing 5%
of the edges and flip their observations from “1” to “0” or “0” to “1,” and then iteratively repeating
10,000 exploration steps to make the generated observations consistent with the above trust rule.
Following this process, we obtain 3rd, .. ., and Tth realizations.

Performance Evaluation Step: After generating T realizations, then each edge has T trust re-
lationship observations in total to estimate the opinion of this link. To validate the performances
of proposed CSL* and the baselines on the networks of different sizes, we randomly generate in-
duced sub-networks size with Ng € {1,000, 5,000, 10,000} from the original Epinions trust network.
From all the edges, we randomly select the testing edges with the percentages (or test ratios (TR):=
ﬁ X 100%) € {10%, 20%, 30%, 40%, 50%}, and from the rest of edges, we select the conflict edges
randomly with percentage (or conflict ratios (CR)) € {0%, 10%, 20%, 30%, 40%}; and we flip a half of
the observations of the conflict edges. The opinions of testing edges (target edges) are predicted
based on the given opinions of the other edges (maybe have conflicting evidences), which are
training edges.

6.1.2  Road Traffic Datasets. We crawled live traffic data from June 1, 2013 to March 31, 2014
across two major cities from INRIX [2] website, Washington D.C. and Philadelphia (PA), as given

1 http://www.trustlet.org/downloaded_epinions.html.
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the summarization in Table 3. The original raw INRIX data provides traffic speed and reference
speed information for each road section (link) per hour interval. The reference speed of each road
link indicates the “non-congested free flow speed” [3], and is set based on the 60th percentile of
the recorded speed for all time periods over several years, where the reference speed work as a
golden threshold labeling into two traffic states, congested vs. non-congested. We collect for each
of these two cities 43 weeks of traffic information in total. An hour is denoted by a tuple (h, d, w),
i.e,, (hour,day,week), where the hour (h € {8, ...,22}), the day (weekday) (d € {1,2,3,4,5}), and
the week (w € {1,2,...,43}): (h,d, w). We only consider weekdays from Monday (d = 1) to Friday
(d = 5) and hours from 8 AM (h = 8) to 9 PM (h = 21).

Ground truth opinions of the training and testing edges in the traffic datasets. For
DC and PA traffic datasets, the opinion of a specific (training/testing) road link i at an hour
(h,d,w) is calculated based on the historical observations of the same hour in previous T weeks
{Xi h.dwsXi.h.d.w—1s - - - » Xi.h.d.w—T+1) as the evidence, where x; j, 4., refers to the congestion ob-
servation (“0” or “1”) of the link i at hour (h, d, w) and T indicates a predefined time window size.
Especially, the belief, disbelief, and uncertainty mass variables by, , dy,, and uy, of a specific road
link i are estimated as

T-1
by, = tho Xi,h,d,w—t /(T + W),
T-1
do = (T= D Fuhdowt) /(T +W),
Uy, = W/(T+W), (36)

where we set the amount of uncertain evidence W = 2 and the specific base rate (i.e., prior knowl-
edge) ay, = 0.5 for all road links. For the semi-synthetic dataset, the opinion of each training /
testing edge is estimated based on the T observations similar to the above. Similar to the Epinions,
we try the same TR € {10%, 20%, 30%, 40%, 50%}, and CR € {0%, 10%, 20%, 30%, 40%}.

6.1.3  Social Networks Dataset with Synthesized Sybils Attack. We utilize three social networks
used in References [29, 30], i.e., Facebook, Enron, and Slashdot (see Table 3 for basic statistics) to
represent vary application scenarios. These datasets are publicly available at SNAP.? (1) Facebook:
a node represents a user on Facebook and an edge between two nodes indicates they are friends.
(2) Enron: an email address is denoted by a node, and an edge between two nodes implies at least
one email was exchanged between these two. (3) Slashdot: a technology-related news website
where a node represents a user and an edge between two users indicates a friend relationship.
We also follow the method in References [29, 30] to synthesize the Sybil attack in different sce-
narios. That is, in the above social networks, a single user (i.e., a node in a network) can pretend
to have multiple identities, performing Sybil attack, with its unknown identity. Our main goal is
to infer the identity of the unknown users performing Sybil attack. We set a real social network
graph as the Benign region while synthesizing the Sybil region and between the Benign and Sybil
regions uniformly at random add attack edges (see Figure 5). For each social network graph, we
use it as the Benign region and replicate it as a Sybil region. We labeled the observation of the
nodes in the Sybil region to “1” at time stamp ¢ = 1, “0” to the nodes in the Benign region. In Ex-
ploration step, we duplicate the observations of each node and process T realizations, and then
we randomly swap observations of 1% of nodes each realization. We randomly select % of nodes
(or TR) € {10%, 20%, 30%, 40%, 50%} (where we randomly select the same amount of nodes from
the Benign and Sybil region) as the test nodes. Except for the test nodes, we select from the re-
maining nodes with the percentage (or CR) € {0%, 10%, 20%, 30%, 40%} as the conflict nodes, for

2SNAP: http://snap.stanford.edu/data/index.html.
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Benign Region Sybil Region

Fig. 5. lllustration of Benign and Sybil region and the attack edges.

each conflict node we flip (set “0” to “1,” or “1” to “0”) the observation of the half of the real-
ization. We also try different numbers of attacking edges between the Benign region and Sybil
region, {1,000, 5,000, 10,000, 15,000, 20,000}, which make our conflicting inference and prediction
task more challenging.

6.1.4  Parameter Settings. In our experiment, the main parameters of our datasets are CR (Con-
flict Ratio), TR (the percentage of testing edges/nodes or Test Ratio) and T (time window size).
The values of CR are set as {0%, 10%, 20%, 30%, 40%} and TR are set as {10%, 20%, 30%, 40%, 50%}.
The values of T are set as T € {8,9, 10, 11}. The corresponding uncertainty mass values, u of these
T values can be obtained based on Equation (36), {20%, 18%, 16%, 15%}. Epinions dataset has three
parameters: The parameter N (network size) € {1,000, 5,000, 10,000}, the positive trust ratio (the
percentage of randomly selected edges) is 20% in the initialization phase and the percentage of
edges in the exploration phase (5%) whose observations were flipped between “0” and “1.” In the
experimental results, the patterns observed are consistent or similar with the results of other pa-
rameter settings. The numbers of attack edges between the Benign and Sybil region are set as
{1,000, 5,000, 10,000, 15,000, 20,000}. We set w( = (1,1) and py = 0.5, indicating complete uncer-
tainty. po is a hyperparmeter that represents the expected percentage of conflicting observed opin-
ions. If py matches the CR, then the CSL+ would exhibit the best performance. However, in our
experiments, any prior information about the CR is assumed unknown, leading to setting po = 0.5.

6.1.5 Performance Metrics. The uncertainty mass uy, of each edge (training and testing edges)
can be calculated based on Equation (36). For a predefined the window size T, uy, is a known and
constant value, without the actual observations. Because of u,, is fixed, our empirical analysis
of the experiments on all the datasets is focused on the comparison between the proposed CSL*
and other baselines based on the two metrics: (1) Expected truth probability MAE (denoted as
Probability MAE or EP-MAE) and running time complexity (seconds). Based on the definition of
expected belief probability £, = b, + au, and Table 2, EP-MAE is defined as

*
Qx; ay,

i

O, + Pry ak, + P

EP-MAE(wy) = — ZN

N £ui=1 (37)

where wy, = (ax,, Bx;) and w3, = (a3, f%,) represent the predicted and true opinions of a target
Qx;

variable x;, separately, and -— i refers to the predicted expected truth probability (or the ex-

pected belief) of the opinion wy,. Expected probability MAE is calculated as the mean absolute
difference between the estimated expected belief and the true expected belief on all testing links;
and (2) Average running time comparison between CSL* and other methods on the real-world
dataset experiments.
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6.1.6  Baseline Methods. We compare the proposed CSL™ (Section 5) with the comparable coun-
terpart methods, including SL [13] (Section 3.1), PSL [5] (Section 3.2), CSL [31], and the deep
learning-based GCN-VAE-opinion (for short GCN-VAE) method [34]. GCN-VAE is a DL-based
opinion inference model while node-level opinions are still formalized based on SL. Followed the
authors recommendation, we use the returned result that give the minimum belief and uncer-
tainty MAE among all epochs as the final results of GCN-VAE. As PSL is proposed to predict the
truth probability of the testing edges, but not their subjective opinions. We extend PSL? as follows:
suppose the truth probability of a testing edge x; predicted by PSL is denoted as py,. For a given
uncertainty mass u, an subjective opinion of wy, based on the probability py, can be calculated as

Wy, = (Px, - (1= 1), (1= px,) (1 —u), ). (38)

6.1.7  Parameter Tuning. SL has only one parameter that is the maximum length of its inde-
pendent paths. We try different settings {3,4, .. ., 20} where for each dataset, we keep the settings
returning the best result. Thus, we set the maximum length to 10 for Epinions, PA and DC, set
3 to Facebook, Enron, and Slashdot datasets. For GCN-VAE [34], we used the recommended set-
tings from the original paper in our experiments: A = 0.01 (the trade-off parameter), n = 0.001 (the
learning rate), K = 16 (the mini-batch size), and P = 16 (the dimensionality of the latent encoded
vectors), and dropout rate = 0.1. CSL*, CSL and PSL require additional input as logic rules for
reasoning. In our experiments, we used the trust rules from Reference [32], for Epinions dataset:

TruUsTs(A, B) A TRusTS(B,C) —  TrusTs(A,C),
—TRrUsTS(A, B) A TRusTs(B,C) —  —TrusTs(A,C),
TrusTs(A, B) A =TrusTs(B,C) —  —TrusTs(A,C), (39)

where A, B, and C are users, and Trust (-, -) indicates their trust relationship. The logical rules from
Reference [29], for Sybil attack dataset:

Homogeneous(U, V) A BENigN(U) —  Benign(V),
HomogGeneous(U, V) A =BENIGN(U) —  —BeNiGN(V),
HeTEROGENEOUS(U, V) A BENIGN(U) —  —BENiGN(V),
HeTEROGENEOUS(U, V) A =BENIGN(U) —  BeNiGN(V), (40)

where these rules indicate that two linked network entities share the same label with a high prob-
ability. A single rule from Reference [33], for the traffic datasets:

NEIGHBOR(E1, E;) A CONGESTED(E;) — CONGESTED(E3), (41)

where E; is a congested road section and E; is its upper stream neighbor, then Ej is likely congested.
As rule weights are applied to model the relative importance of different rules. In our experiments,
we set the rule weights to 1.0, where we see all the rules equally important.

6.2 Experimental Results on Semi-Synthetic Dataset

6.2.1 Parameter Sensitivity Study. In this section, we vary Uncertainty Mass (u), Test Ratio (TR),
and Conflict Ratio (CR) to investigate their impact on the performance of CSL™ and its counterparts.
To evaluate how changes to the parameterization of CSL* and the synthetic dataset affects its per-
formance on the uncertainty learning, we conducted experiments on the Epinions semi-synthetic
dataset and compared with the baseline methods. Figure 6 demonstrates the performance of our

3PSL Code:https://github.com/lings/psl-examples.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 7. Publication date: November 2020.


https://github.com/linqs/psl-examples

CSL™: Scalable Collective Subjective Logic under Multidimensional Uncertainty 7:21

—— GCN-VAE o GONVAE —— GCN-VAE
— L — PsL — sl
—o- sL e s —o- sL

0.47 8- csL 8- CSL B CSL
—— CsL* e CsLt —— CsLt

o
=
o
=

w - e ° W w

< % <

=03 Z03 =03 2
z @ z w : z 5

3 0\,’_’/ 3 3

Sop| 3 02

S ED.Z S 0

& & &

o
4
°

20% 18% 16% 15% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40%
Uncertainty Mass Test Ratio Conflict Ratio

(a) Effect of u under TR = 40% and (b) Effect of TR under CR = 20% and (c) Effect of CR under TR = 20% and
CR = 20%. u = 18%. u = 18%.

Fig. 6. Probability MAE results on the semi-synthetic network based on Epinions dataset (Ng = 5,000, Test
Ratio (TR), Conflict Ratio (CR), and Uncertainty Mass (u)).

CSL* method and the four baseline methods on the probability MAE of the semi-synthetic dataset
based on Epinions.

Figure 6(a) shows that the performance of CSL* exceeds all the baselines on the truth probability
MAE with respect to different uncertainty masses, u. With fixed conflict ratios and test ratios, on
varying uncertainty masses u, CSL* shows significantly better performance among the baselines.
Compared with the best baseline GCN-VAE, CSL* decreases the probability MAE 13%~15%.

Figure 6(b) demonstrates the sensitivity of testing (or training) ratio on the probability MAE
of all the baseline methods. Apparently, CSL™ achieves best performance among all the baseline
methods while GCN-VAE demonstrates the second best performance in terms of probability MAE.
More or less, all the baselines and CSL* show sensitivity with respect to the test ratio (i.e., a smaller
test ratio implies more training data used while a large test ratio implies to less training data used).
Compared with the best baseline GCN-VAE, CSL* decreases the probability MAE 10%~17%.

Figure 6(c) shows the effect of conflicting evidence ratios on the probability MAE of all methods.
All the methods show higher sensitivity with respect to the ratio of conflicting evidence; when the
conflicting evidence ratio increases, the probability MAE also increases. It is obvious that CSL*
outperforms among all the methods. Compared with the other baselines, CSL* decreases the prob-
ability MAE up to 26%.

Overall, for all these different settings of parameters and the variety of datasets with conflict-
ing evidence, CSL™ outperforms all the other baseline methods even with high uncertainty and
conflicting evidence.

6.2.2  Opinion Prediction. In Figure 7, we show the simplex opinion plots, where the binomial
opinion point is represented by a subjective opinion tuples (belief, disbelief, uncertainty). We vi-
sualize the ground truth and the inferred (or predicted) opinion points on the simplex plots to
study the opinion prediction performance of CSL* and other counterparts on the Epinions testing
data. Figure 7(a) shows the expected belief probability, belief, disbelief, and uncertainty MAE of
the predicted opinions with conflicting evidence. Figures 7(b)~7(f) are the corresponding opinion
simplex plots of the results showed in Figure 7(a) for CSL* and the baseline methods, respectively.

From Figure 7(a), we can observe that CSL™ gives the best performance separately on the predic-
tion of the truth probability, belief and disbelief MAE compared to other baselines. In the simplex
plots, the bottom, left, and right axes are corresponding to the belief, disbelief, and uncertainty,
respectively. In Figures 7(b)~7(f), the purple points represent the ground truth opinion points,
and the other points represent the predicted opinion points by CSL* and the baselines. Most of
the predicted opinions of CSL* are more likely overlapped or close to the ground truth opinions
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(see Figure 7(f)). The predicted opinions of GCN-VAE, PSL and CSL are close to the ground truth
opinions but do not overlap each other (see Figures 7(b), 7(c), and 7(e)). The predicted opinion
results of SL are more scattered (see Figure 7(d)). These visualization plots demonstrate the low
opinion prediction error of CSL* on opinion prediction against the baselines.

6.3 Experimental Results on Real-world Datasets

6.3.1 Parameter Sensitivity Study. In this section, we examine the effect of varying the number
of Sybil attack edges on the performance of CSL* and its counterparts while we fixed the other
parameters. Figure 8(a) is one of the results on Facebook dataset and it shows the probability MAE
of CSL* and the compared methods on the real-world Facebook dataset. And in this experiment the
number of attack edges increasing from 1,000 to 20,000 while TR = 20%, CR = 30%, and u = 16%.
We can observe from the results that CSL* and the other compared methods achieve low truth
probability MAE when a social network has strong homophily, i.e., the number of attack edges is
small. One of the main reason is the Benign and Sybil users have fewer ties and are totally sepa-
rated, and it is easy to detect them. When the conflicting evidence ratio, test ratio, and uncertainty
mass are fixed, if we increase the number of attack edges, then the probability MAE of CSL* and
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Fig. 9. Probability MAE and Running time log scale (sec.) for real-world datasets, TR = 20%, CR = 30%, and
u = 16% (for DC and PA, u = 4%).

the baseline methods will also increase. However, CSL™ outperforms (decreases the probability
MAE up to 50%) among all the others for varying number of attacking edges. Figures 8(b) and 8(c)
show the experiment results of Enron and Slashdot datasets, respectively. On the other parameter
settings, we observe the same patterns.

6.3.2 Experimental Results. We conduct experiments on four semi-synthetic dataset with Ng =
5,000 based on the Epinions and other two real-world datasets, such as two traffic datasets for PA
and DC cities and three social network datasets for Facebook, Enron, and Slashdot, with different
parameter settings. We validate the conflicting evidence inference performance of the proposed
CSL™ method on the following tasks: (1) Trust inference on Epinions network: learning of un-
known trust relationships between users from the given trust relationship opinions with highly
conflicting evidence; (2) Congestion inference on the road traffic networks: prediction of the
traffic congestion status of unknown road sections (testing links) by using the given opinions of
other road sections with conflicting evidence; and (3) Sybil attack detection on the social net-
works: detection of the Sybil and Benign network nodes from the given known node information
with conflicting evidence.

We observe similar performance patterns from all the datasets experiments with different pa-
rameter settings. Figure 9(a) is one of the result plot where TR = 20%, CR = 30% for all six datasets,
u = 4% for DC and Philly, and u = 16% for other datasets. For Facebook, Enron and Slashdot
datasets the number of attack edges is 10,000. Figure 9(a) shows the probability MAE results of
six datasets. We can observe that CSL* performs the best among all in terms of probability MAE,
and CSL* improves the results up to 44.6%. The overall performance order of the compared meth-
ods is CSL* > GCN-VAE ~ CSL > SL > PSL.

6.3.3  Scalability. In our experiments, the network size is varied from Philly traffic network with
603 nodes (users) and 708 edges to Slashdot network with 164,336 nodes and 2,018,920 edges. Also
for our proposed CSL™, the inference rule instances are varied from 980 to 2 million. As discussed
in Section 5.3, CSL™ shows low complexity, with linear increase with respect to N, M, and K, that
are the number of testing and training variables and logic rules, respectively. Figure 9(b) shows the
average running time of CSL™ and other counterpart methods on real-world datasets. GCN-VAE
is a little bit slower for large-scale graphs, due to handling the large size of adjacency and feature
matrices. The running time of SL increases exponentially when the network size increases and
SL is not scalable for large networks. Even PSL using a consensus algorithm to speed up, still it
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is slower when it infers large number of rule instances. CSL™ and CSL scale nearly linearly with
respect to the network size. The reason for CSL* being a little slower than CSL is that CSL* predicts
opinions and infers the conflicting evidence simultaneously.

Trade-off between performance and running time. As discussed before, CSL* via doubling the
variable size and not increasing the time complexity too much, achieves better performance on
the different scales of datasets. Compared to CSL, CSL+ decreases the MAE error 23~50% for all
different datasets. To achieve a lower error rate, we recommend using robust CSL* method.

7 CONCLUSION AND FUTURE WORK

In this work, we proposed a method so called Collective Subjective Logic Plus, namely, CSL*, that
infers unknown opinion in the presence of uncertainty caused by both vacuity and conflicting ev-
idence. CSL™ keeps an opinion format based on SL to consider the degree of uncertainty (i.e., vacu-
ity) while performing opinion reasoning operations based on PSL to collectively derive unknown
opinions, and also resolves the issue of conflicting evidence, which has not been considered by SL
or CSL. CSL™ can infer conflicting evidence from the given opinions during derivation of unknown
opinions. Through the extensive experiments, the key findings are summarized as follows:

(1) We formulate the unknown opinion prediction problem as an uncertainty minimiza-
tion problem, so that CSL* can effectively predict unknown opinions with linear complex-
ity. CSL* achieves high performance under a lack of evidence and/or conflicting evidence,
because CSL™ learns conflicting representation of known opinions while inferring the un-
known opinions.

(2) In the parameter sensitivity experiment, CSL* demonstrates less sensitivity over a wide
range of test ratios, implying high resilience, compared to SL, PSL, CSL, and GCN-VAE.
The performance order in the expected belief probability MAE on the parameter sensi-
tivity study experiments of semi-synthetic Epinions datasets follows: CSL*>GCN-VAE >
CSL > SL > PSL.

(3) The performance order in expected belief probability MAE on the experiment of real-
world datasets follows: CSL*>GCN-VAE ~ CSL > SL > PSL. When varying the number
of Sybil attack edges on the experiment of Facebook, Enron and Slashdot datasets, the
performance follows: CSL*>GCN-VAE > CSL > SL > PSL.

(4) Overall CSL™ outperformed in the opinion prediction performance among all base-
lines and counterparts in both the expected truth belief probability MAE and opinion pre-
diction. In addition, it provided a scalable solution for large-scale network datasets (e.g.,
Slashdot dataset with 164,000 nodes and 2 million edges), and scaled almost linearly in
proportion to the network size.

As the future work, we plan to: (1) explore the impact of changes to hyperparameter p, on
the CSL+ performance; (2) extend our proposed framework to address uncertainty-based online
opinion inference problems; and (3) study the possibilities of the adversarial attacks on rule-based
graph datasets and propose a new method that has resistance to strong adversarial attacks.
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