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ABSTRACT
Mixed Reality visualizations provide a powerful new approach for
enabling gestural capabilities on non-humanoid robots. This paper
explores two different categories of mixed-reality deictic gestures
for armless robots: a virtual arrow positioned over a target ref-
erent (a non-ego-sensitive allocentric gesture) and a virtual arm
positioned over the gesturing robot (an ego-sensitive allocentric
gesture). Specifically, we present the results of a within-subjects
Mixed Reality HRI experiment (N=23) exploring the trade-offs be-
tween these two types of gestures with respect to both objective
performance and subjective social perceptions. Our results show a
clear trade-off between performance and social perception, with
non-ego-sensitive allocentric gestures enabling faster reaction time
and higher accuracy, but ego-sensitive gestures enabling higher
perceived social presence, anthropomorphism, and likability.
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1 INTRODUCTION
For robots to communicate effectively with humans, they must be
capable of natural, human-like human-robot dialogue [9, 42, 56].
And, in contrast to dialogue agents and chatbots, interactive robots
must be able to communicate with sensitivity to situated con-
text [42, 62]. This requires three broad competencies: environmen-
tal context sensitivity (sensitivity to the spatially situated, large-
scale, uncertain, and incompletely known nature of task environ-
ments [73]); cognitive context sensitivity (sensitivity to the working
memory and attentional constraints of teammates [74]); and social
context sensitivity (sensitivity to the relational context into which
they are embedded, and the importance of strengthening and main-
taining social relationships through adherence to social and moral
norms [39, 76] and building of trust and rapport [19, 30, 50]).

For these three competencies to be mastered, robots must be
able to understand and generate both verbal behaviors and nonver-
bal behaviors such as gesture and eye gaze. Nonverbal behaviors
are critical for situated interaction [2, 18, 28, 47], and are inte-
grally related to these three competencies. Deictic gestures such
as pointing leverage environmental context by identifying nearby
referents, especially when such referents are not currently known
or attended to by interlocutors. These gestures are often generated
due to cognitive context, to direct interlocutor attention [40] and
reduce memory costs that would be otherwise imposed by commu-
nication [16, 47]. And gestures are often generated with sensitivity
to social context, by mimicing the gestures of interlocutors to in-
crease engagement and build rapport through mirroring [8]. While
there has been a host of research on nonverbal behavior genera-
tion in HRI [1, 6, 7, 49, 52–54], not all robots are able to leverage
the techniques developed in that prior work, as many robotic plat-
forms lack the arms, heads, and eyes needed to generate expressive
cues. This is especially true for mobile bases such as those used
in warehouses, and free-flying drone platforms. While these types
of robots may not be designed to be sociable, they still need gaze-
and gestural-capabilities for situated communication. Accordingly,
researchers have been investigating new methods for nonverbal
signalling (e.g., directed lighting cues) that may achieve those goals
typically addressed by physical gaze and gesture [12, 60].
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Mixed-reality technologies such as the Microsoft HoloLens stand
to enable exciting new approaches to human-robot interaction [59],
including generation of nonverbal cues in this vein for robots
with non-humanoid morphologies [77]. The space of visualiza-
tions used as mixed-reality deictic gestures (which can altogether
be classified as view-augmenting Mixed Reality Interaction De-
sign Elements in the Reality-Virtuality Interaction Cube framework
ofWilliams, Szafir, and Chakraborti [75]) can be divided into at least
four primary classes: allocentric gestures (e.g., circling a target ref-
erent in a user’s Mixed Reality head-mounted display (MR-HMD)),
perspective-free gestures (e.g., projecting a circle around a target
referent on the floor of the shared environment), ego-sensitive allo-
centric gestures (e.g., pointing to a target referent using a simulated
arm rendered in a user’s MR HMD), and ego-sensitive perspective-
free gestures (e.g., projecting a line from the robot to its target
on the floor of the shared environment [77]. In previous work,
Williams et al. [68] specifically investigated the first of these cate-
gories, allocentric gestures, and demonstrated that mixed-reality
gestures can significantly increase the communicative effectiveness
of non-humanoid robots [63, 68, 70].

One downside of these previous explorations of allocentric ges-
ture is low ecological validity of evaluation context, with crowd-
workers viewing interactive videos simulating the expected ap-
pearance of such gestures. Accordingly, participants in previous
experiments had full Field of View and viewed the entire experimen-
tal environment through an unchanging vantage point. In realistic
task contexts, users are unlikely to be able to view their entire task
environment from a single perspective, and Mixed Reality deictic
gestures must be delivered through platforms like the HoloLens,
limiting the portion of the environment in which gestures can be
displayed. In even moderately larger task contexts, these factors
could result in users completely directing their Field of View and
attention towards the regions where mixed-reality deictic gestures
are being displayed, completely avoiding the non-humanoid robot
generating the visualizations. This lack of attention towards the
robot could have detrimental long-term effects on human-robot
teaming, such as decreased trust, rapport, and situation awareness.

These challenges may be addressable by another form of Mixed
Reality deictic gesture highlighted in Williams et al. [77]’s taxon-
omy: ego-sensitive allocentric gestures, in which simulated arms
are rendered above the robot, and used to point just as physical
arms would [29]. The use of such arms could increase the robot’s
anthropomorphism, and because users would need to consistently
look towards the robot to see where it is pointing, such arms could
increase the robot’s social presence.

On the other hand, ego-sensitive allocentric gestures may come
with their own challenges. Because users will need to follow the
vector along which the robot is pointing and estimate which objects
fall within the robot’s deictic cone, they may be less accurate and
efficient at determining the targets of those gestures, especially
when target referents are far from the robot (the very context in
which ego-sensitive allocentric gestures are expected to provide
social benefits). In this paper, we systematically evaluate these
expected differences in social- and task-oriented benefits between
ego-sensitive and non-ego-sensitive forms of allocentric gesture.

2 RELATEDWORK
2.1 Human Deictic Gesture
Deixis is a key component of human-human communication [37,
44]. Humans begin pointing while speaking even from infancy, us-
ing deictic gestures around 9-12 months [4], and mastering deictic
reference around age 4 [14]. Among adults, deictic gestures remain
a critical component of situated communication, helping direct
interlocutor attention in order to establish joint and shared atten-
tion [2]. Deictic gestures also help humans express their thoughts,
especially in environments in which verbal communication would
be difficult such as in noisy factory environments [31]. Accordingly,
HRI researchers have been investigating how to enable effective
robotic understanding and generation of deictic gestures.

2.2 Robot Deictic Gesture
Widespread evidence has been found in the HRI literature for the
effectiveness of robots’ use of nonverbal cues, including deictic ges-
tures such as pointing, across a variety of different contexts, includ-
ing tabletop environments [53] and free-form direction-giving [46].
Not only can robots use deictic gestures just as effectively as hu-
mans for the purpose of shifting interlocutor attention [7], but
moreover it has been shown that robots’ use of deictic gestures also
improves subsequent human recall and human-robot rapport [6].

Related to our work, Sauppé and Mutlu [54] investigated a group
of robotic deictic gestures: touching, presenting, grouping, point-
ing, sweeping, and exhibiting. This group of gestures was inspired
by [15], who studied human deictic gestures and concluded that
humans use more than just pointing as deictic gestures. Sauppé
and Mutlu examined the objective and subjective differences be-
tween these six categories deictic gestures; Similarly, in this work
we examine the objective and subjective differences between two
categories of Mixed Reality deictic gestures.

2.3 Mixed Reality Human-Robot
Communication

While the utility of robot deictic gestures has been well demon-
strated, the generation of these gestures by robots is subject to a
number of constraints. First, the ability to generate precise and nat-
ural deictic gestures typically requires robot arms: a morphological
choice that is not only often prohibitively expensive, but moreover
does not make sense for all use cases due to factors such as arm
size and weight (e.g., in the case of drones). In order to enable ges-
tural capabilities while avoiding the financial and morphological
limitations of traditional deictic gesture, some researchers have
recently been investigating the use of Mixed Reality gestures that
could serve these same purposes.

Mixed Reality provides opportunities for a host of new forms of
human-robot communication across domains such as task-driven
interaction [26, 27, 57], collaboration exploration [48], and social
interaction [13, 65]. For example, Frank et al. [26] presents an MR
interface that shows a robot’s reachable spatial regions in green and
unreachable regions in red so that humans can better understand
where and how to pass objects to the robot. In [27], humans and
robots work together to assemble and move a car door. In the MR
interface, the robot gives the human teammate information about
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Figure 1: Categories of mixed-reality gestures [69] (used with permission).

its working area, what part of the door it will work on next, moving
instructions, and the success of each subtask. In [13], the robot
projects its trajectory and the spatial region that it would occupy
while moving on the floor so the nearby humans can see and make
a move to avoid collision with the robot.

Even for referential communication alone, Augmented andMixed
Reality afford many new forms of communication. For example,
Sibirtseva et al. [57] presents a Mixed Reality interface in which
circles and labels are used to indicate the set of objects a robot is con-
sidering during reference resolution. By looking at those candidate
objects, humans can provide additional explanation to the robot to
assist disambiguation. In contrast, Reardon et al. [48] present a MR
interface for collaborative human-robot exploration tasks. Once a
robot finds a target object, a trajectory from the human’s current
location to that object’s location is visualized in the MR interface,
to aid navigation to that object.

While Sibirtseva et al. focus on passive backchannel communica-
tion and Reardon et al. focus on passive nonlinguistic communication,
we are particularly interested in active linguistic communication in
which Mixed Reality imagery can be visualized alongside spoken
language as an alternative to physical gesture. In previous work,
Williams et al. [69] presented a framework for categorizing the
different types of Mixed Reality deictic gestures that could be used
in this way, delineating between four main categories of deictic
gestural cues unique to Mixed Reality environments (Fig. 1):

(1) Perspective-free gestures: gestures that are projected onto
the environment from a third-party perspective. Weng et al.
[67], for example, studied where a robot should project arrows
onto a tabletop to reference target objects.

(2) Ego-sensitive perspective-free gestures: gestures that are
projected onto an environment in a way that connects the
speaker (i.e., the robot) to its referent, e.g., if Weng et al. had
generated their visualizations in such a way that the base of
generated arrows originated at the robot.

(3) Allocentric gestures: gestures that pick out the speaker’s tar-
get referent using imagery generated from the viewer’s perspec-
tive (e.g., within MR-HMDs). Williams et al. [68, 70] prototyped

one category of Mixed Reality deictic gesture, non-ego-sensitive
allocentric gestures (e.g., gestures like circles and arrows, gener-
ated from a user’s perspective, without taking the robot gener-
ator into account), and provided the first evidence for the effec-
tiveness of those gestures within an online evaluation testbed.
More recently, [63] demonstrated the effectiveness of these for
the first time on realistic robotic and mixed-reality hardware.

(4) Ego-sensitive allocentric gestures: gestures that connect the
speaker to its referent within the viewer’s perspective. For ex-
ample, [29] augment an otherwise armless robot with virtual
arms shown in an MR interface.
However, while researchers are beginning to prototype and ex-

plore gestures within each of these categories, there has been no
previous research comparing gestures between these categories. In
this work, we present the first such research, systematically com-
paring between the non-ego-sensitive and ego-sensitive categories
of allocentric Mixed Reality deictic gestures. We choose to inves-
tigate these two categories in particular because we believe they
present a challenging tradeoff between objective task performance
and subjective robotic perception, as detailed in the next section.

2.4 Social Perceptions of Robots
While most research on robot deictic gesture has evaluated ges-
tures based on objective, task-driven metrics such as accuracy and
reaction time of gesture interpretation, recent work has also sought
to evaluate how those gestures are subjectively perceived. Sauppé
and Mutlu [54], for example, evaluate gestures on the basis of how
natural they appear to be, and Williams et al. [69, 71] evaluate
gestures on the basis of their impact on robot likability. We believe
that the two categories of gestures we examine in this work may
present a challenging design case in which each of the two gestural
options optimizes a fundamentally different category of metric.

First, we would expect non-ego-sensitive allocentric gestures
(e.g., circles and arrows) to perform better on the objective mea-
sures delineated above. When a robot uses ego-sensitive allocentric
gesures (e.g., virtual arms attached to its body), viewers must fol-
low the deictic cone extending from the robot along its arm and
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attempt to determine which objects might fall within that cone. In
contrast, when a robot uses non-ego-sensitive deictic gestures (e.g.,
circles and arrows), the robot’s intended target is immediately and
obviously picked out in the user’s Field of View, providing little
opportunity for inaccuracy or inefficiency.

However, we expect ego-sensitive allocentric gestures (e.g., vir-
tual arms) may in turn perform better on subjective measures, such
as anthropomorphism, social presence, likability, warmth, and com-
petence. Below, we will examine each of these categories and artic-
ulate why we believe the use of ego-sensitive allocentric gestures
may lead to higher subjective ratings in those categories.

Anthropomorphism is the projection of human characteristics
to non-human entities [20, 21, 23]. Within HRI, researchers have
framed anthropomorphism in terms of the contrast between robots
designed in the image of humans (with humanlike features and ap-
pendages) and robots designed in the image of animals (i.e., zoomor-
phism) or robots with purely functional designs [25]. Anthropomor-
phism has been shown to be a valuable for robot design as it cues
models of human-human interaction, facilitating sensemaking and
mental model alignment [20], leading humans to be more willing
to interact, accept, and understand robot’s behaviors, and reducing
human stress during interaction [36]. Moreover, robots that use
gesture have been found to appear more anthropomorphic [52]. We
expect robots using ego-sensitive allocentric gestures to be viewed
as more anthropomorphic because they can provide human-like
morphological features to otherwise mechanomorphic robots, can
provide the illusion of motion and life to otherwise inert robots, and
are more directly analogous to traditional physical robot gestures.

Social Presence is the feeling of being in the company of an-
other social actor [58], and has been long explored within media
studies due to the potential for a technology’s social presence to
enable more effective social and group interactions [5, 38]. Within
HRI, researchers have found that robot social presence facilitates
user enjoyment and desire to re-interact [33], perhaps due to our in-
nate drive to seek out, engage in, and respond to socially interactive
behaviors with other social actors. Social presence is also related
to anthropomorphism in interesting ways. Specifically, Nowak and
Biocca [45] found that very low and very high levels of anthropo-
morphism led to lower levels of social presence than middling levels
of anthropomorphism. We predict that robots using ego-sensitive
allocentric gestures will be viewed as more anthropomorphic, but
not highly anthropomorphic, both due to their status as obvious
augmentations and because the arms we explore in this work are
not highly photorealistic renderings of human arms. We further
predict that this will lead robots to be perceived as having greater
social presence. Moreover, we believe that the use of robot arms is
likely to engender greater social presence due to the impact these
arms may have on visual attention. That is, while cues like circles
and arrows may be interpreted without looking at or considering
the robot generating them, virtual arms require the user to repeat-
edly regard the robot in order to interpret its gestures. We believe
this is likely to significantly increase the perceived presence of the
robot.

Warmth and Competence are social psychological constructs
that are at the core of social judgment and are nearly entirely re-
sponsible for social perceptions among humans [24]. While warmth

captures whether an actor is sociable and well-intentioned, the com-
petence captures whether they have potential to deliver on those in-
tentions. Warmth and competence are thus valuable within human-
human interaction as they lead to more positive emotions [24].
Within HRI, warmth and competence have been found to be key
predictors for human preferences between robots and robot behav-
iors [55], and have been shown to lead to more positive human-
robot interactions [10]. These concepts are also related to those
discussed above: warmth in particular is often associatedwith Social
Presence [32], and anthropomorphism has been shown in certain
contexts to directly lead to greater warmth [35] and competence-
based trust [66]. Because we predict that robots using ego-sensitive
allocentric gestures will be viewed as more anthropomorphic and
as having higher social presence, we thus believe that this will then
also lead them to be perceived as more warm and competent.

Likability is a key usability metric used to summarize peoples’
overall perceptions of technology, and has been one of the primary
metrics used across the HRI field [3]. In gesture-related contexts,
including in Mixed Reality contexts, it has been found that gesture
use can lead to increased likability [52, 70, 76]. Because we predict
that robots using ego-sensitive allocentric gestures will be viewed
as more anthropomorphic, and as having higher social presence,
warmth, and competence, we thus believe that this will then also
lead them to be perceived as more likeable.

2.5 Hypotheses
Based on our review of the previous work discussed above, we
formulate the following concrete hypotheses:

H1:A robot that uses non-ego-sensitive allocentric gestures (i.e.,
arrows drawn over target referents) when referring to target refer-
ents will (H1.1) be more effective than a robot using ego-sensitive
allocentric gestures (i.e., pointing using virtual arms) as measured
by (1) accuracy and (2) reaction time, and (H1.2:) these benefits
would be more pronounced for objects farther away from the robot.

H2:A robot that uses non-ego-sensitive allocentric gestures (i.e.,
arrows drawn over target referents) when referring to target ref-
erents will: (H2.1:) have lower social perception than a robot using
ego-sensitive allocentric gestures (i.e., pointing using virtual arms)
as measured by (1) social presence, (2) anthropomorphism, (3) lika-
bility, (4) warmth, and (5) perceived competence, and (H2.2:) these
detriments would be more pronounced for objects farther away
from the robot.

3 EXPERIMENT
To investigate these hypotheses, we conducted a within-subjects
human-subject experiment in which participants interacted with a
robot in a mixed-reality HRI context.

3.1 Experimental Design
Our experiment consisted of a series of four Latin-Square order-
counterbalanced experiment blocks in each of which participants
interacted with a robot in a mixed-reality HRI context. In each of
these experiment blocks, participants performed a gesture under-
standing task consisting of ten trials. No time limit was imposed,
but participants were encouraged to complete the task as quickly as
possible. In each trial, participants’ robot teammate gestured to one
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Figure 2: Robot arm gesturing to holographic sphere (Not in
experimental environment).

of three target referents (multi-colored spheres) at random using
a Mixed Reality deictic gesture, and participants were required to
"click" (using an air-tap gesture) on the referent they believed the
robot was gesturing towards. Between experiment blocks, partici-
pants completed surveys assessing their perceptions of the robot
and its gestures, as described in Sec. 3.4.

Experimental blocks differed according to a 2x2 design in which
two independent variables were manipulated: Gesture Type and Ref-
erent Distance. Specifically, each task was conducted in one of two
Gesture Type conditions: in two of the four within-subject blocks,
participants interacted with a robot that gestured using ego-sensitive
allocentric gestures in which a virtual arm reached out and pointed
towards target referents; in the other two within-subject blocks,
participants interacted with a robot that gestured using non-ego-
sensitive allocentric gestures in which an arrow appeared over target
referents. Each of these two conditions was then further subdivided
into two Referent Distance conditions: a robot-close condition in
which the robot’s target referents were approximately one meter
from the robot and two meters from the human, and a robot-distant
condition, in which the robot’s target referents were approximately
two meters from the robot and one meter from the human.

3.2 Experimental Apparatus
Robotic Platform: As shown in Fig. 2, a Kabuki TurtleBot 2 was
used, affixed with an MR cube: a 12cm cardboard cube with fiducial
markers on each face. This cube served as an anchor for the robot
arm in the arm conditions, and allowed the HoloLens to determine
the robot’s position in all conditions.

Mixed-Reality Head-Mounted Display: The MR-HMD used
in this experiment was a Microsoft HoloLens, a commercial-grade
stereographic Mixed-Reality Headset with a 30◦ × 17.5◦ Field of
View. Participants’ air-tap gestureswere detected using theHoloLens’
built-in gesture recognition capabilities.

Mixed-Reality Deictic Gestures: Two mixed-reality deictic
gestures were designed in Unity; a arrow and arm. The arrow was a
simple magenta arrow that statically appeared over target referents,
shown in Fig. 3. The arm used a virtual arm model created and
textured using Blender, and animated in Unity using a custom-built
key-frame-based animation library.

Experimental Application: The experimental procedure and
autonomous robot behavior were coded as a Unity application

Figure 3: Virtual arrow pointing to holographic sphere (the
robot arm doesn’t show up in this case)

deployed onto the HoloLens. When viewing the scene through the
HoloLens, participants perceived three spheres (red, green, and
blue) hovering a half-meter above the ground between the subject
and the TurtleBot. Different colors were used for compatibility with
intended future work. The HoloLens also enabled participants to
see the robot’s gestures. In the arm conditions, an arm was always
visible over the TurtleBot. In the arrow conditions, the arm was
invisible and an arrow instead appeared over target referents.

3.3 Procedure
Upon arriving at the lab, participants provided informed consent
and completed a demographic survey. Participants were then intro-
duced to the TurtleBot, the HoloLens, and the task through both
verbal instruction and an interactive tutorial designed in Unity and
deployed on the HoloLens. The tutorial interface showed instruc-
tion text and virtual red, blue, green spheres, walking participants
through a sample experimental trial. During the tutorial, the partic-
ipants learned how to use air-tap gestures to choose a sphere. After
demonstrating the ability to successfully air-tap a target sphere
three times, participants proceeded to the experiment. After com-
pleting the experiment, participants were paid and debriefed.

3.4 Measures
To assess our two hypotheses, seven key metrics were collected
during our experiment, including two objective measures and five
subjective measures.

Objective Measures
Our first hypothesis was assessed using two objective measures:
Accuracywas measured as the percent of trials in which the target
selected after a gesture was in fact the target of that gesture.
Reaction Time was measured as the time (in seconds) from the
time a gesture was triggered to the time a user selected the object
they believed to be indicated by that gesture.

Subjective Measures
Our second hypothesis was assessed using five sets of survey ques-
tions administered after each experiment block. Each set of survey
questions was a Likert scale comprised of 5-6 items asking for
statement agreement or disagreement on a 1-5 scale.
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Social Presence was measured using the Almere Social Presence
scale [34].
Anthropomorphism was measured using the Godspeed II An-
thropomorphism scale [3].
likability was measured using the Godspeed II likability scale [3].
Warmth was measured using the RoSAS Warmth scale [11].
Competencewasmeasured using the RoSASCompetence scale [11].

3.5 Participants
24 participants were recruited from the Colorado School of Mines
through web postings and flyers (14 male, 10 female) for an ethics
board approved experiment. Participants ranged in age from 18 to
52 (M=22.46, SD=7.86). 20 of the 24 participants had not previously
engaged in any experiments from our laboratory involving Mixed
Reality. One participant failed to complete the experiment, leaving
23 usable data points.

3.6 Analysis
Data analysis was performed within a Bayesian analysis frame-
work using the JASP 0.8.5.1 [61] software package, using the de-
fault settings justified by Wagenmakers et al. [64]. For each mea-
sure, a Bayesian Repeated Measures Analysis of Variance (RM-
ANOVA) [17, 43, 51] was performed, using Gesture Type and Ref-
erent Distance as random factors. Bayes Inclusion Factors Across
Matched Models (“Baws Factors”) [41] were then computed for
each candidate main effect and interaction, indicating (in the form
of a Bayes Factor) the evidence weight of all candidate models in-
cluding that effect compared to the evidence weight of all candidate
models not including that effect. Analysis of Likert Scale data was
performed after averaging responses within each scale.

4 RESULTS
4.1 Objective Results
Figure 4 summarizes our main objective results.

Accuracy – Our results provided strong evidence in favor of
an effect of Gesture Type on accuracy (Bf 16.376), as shown in
Fig. 4a, suggesting that our data were 16 times more likely to be
generated under models in which Gesture Type was included than
under those in which it was not, and specifically that when virtual
arrows were used, participants were more accurate in determining
the intended target of those gestures (close distance (M=1, SD=0),
far distance (M=0.996, SD=0.021)) than when virtual arms were
used (close distance (M=0.935, SD=0.204), far distance (M=0.891,
SD=0.195)). However, anecdotal evidence was found against an
interaction effect between Gesture Type and Referent Distance on
accuracy (BF 0.415), with the data 1/0.415 = 2.41 times less likely to
have been generated under models including such an interaction.

Reaction time – Our results provided strong evidence in favor of
an effect of Gesture Type on reaction time (Bf 22.264), as shown
in Fig. 4b, suggesting specifically that when virtual arrows were
used, participants could more quickly identify the targets of those
gestures (close distance (M=2.265, SD=1.047), far distance (M=2.139,
SD=0.757) thanwhen virtual armwere used (close distance (M=3.678,
SD=2.941), far distance (M=5.152, SD=6.154)). However, anecdotal
evidence was found against an interaction effect between Gesture
Type and Referent Distance on reaction time (BF 0.455), that is, the

data was 1/0.455 = 2.198 times less likely to have been generated
under models including such an interaction.

4.2 Subjective Results
Figure 5 summarizes our main subjective results.

Social Presence – Our results provided extreme evidence in fa-
vor of an effect of Gesture Type on social presence (Bf 440.332),
as shown in Fig. 5c, suggesting specifically that when virtual ar-
rows were used, participants viewed the robot as having lower
social presence (close distance (M=9.458, SD=3.845), far distance
(M=10.125, SD=3.327)) than when virtual arms were used (close
distance (M=11.792, SD=2.570), far distance (M=11.250, SD=3.179)).
However, our results provided no significant evidence for or against
of an interaction between Gesture Type and Referent Distance on
social presence, suggesting that more data must be collected before
a conclusion can be reached. As shown in Fig. 5c, it is plausible but
not yet verifiable that when objects were close to the robot that use
of virtual arms led to greater robotic social presence.

Anthropomorphism – Our results provided strong evidence in
favor of an effect of Gesture Type on anthropomorphism (Bf 6026.6),
as shown in Fig. 5a, suggesting specifically that when virtual ar-
rows were used, participants viewed the robot as having lower an-
thropomorphism (close distance (M=9.833, SD=4.239), far distance
(M=9.667, SD=4.239)) than when virtual arms were used (close dis-
tance (M=12.125, SD=3.826), far distance (M=12.417, SD=4.671)).
However, moderate evidence was found against an interaction ef-
fect between Gesture Type and Referent Distance on perceived
anthropomorphism (BF 0.301), that is, the data was 1/0.301 = 3.322
times less likely to have been generated under models including
such an interaction.

Likability – Our results provided moderate evidence in favor
of an effect of Gesture Type on likability (Bf 6.145), as shown in
Fig. 5b, suggesting specifically that when virtual arrows were used,
participants viewed the robot as having lower likability (close dis-
tance (M=15.500,SD=3.845), far distance (M=15.583, SD=3.263)) than
when virtual arms were used (close distance (M=16.917,SD=3.855),
far distance (M=16.583, SD=3.764)). However, moderate evidence
was found against an interaction effect between Gesture Type and
Referent Distance on perceived likability (BF 0.319), that is, the data
was 1/0.319 = 3.13 times less likely to have been generated under
models including such an interaction.

Warmth – Our results provided no significant evidence for or
against of an effect of Gesture Type on warmth (Bf 1.567), as shown
in Fig. 5d, suggesting that more data must be collected before a
conclusion can be reached. Moreover, moderate evidence was found
against an interaction effect between Gesture Type and Referent
Distance on perceived warmth (BF 0.328), that is, the data was
1/0.328 = 3.049 times less likely to have been generated under mod-
els including such an interaction.

Competence – Our results provided no significant evidence for
or against of an effect of Gesture Type on competence (Bf 1.194),
as shown in Fig. 5e, suggesting that more data must be collected
before a conclusion can be reached. Moreover, moderate evidence
was found against an interaction effect between Gesture Type and
Referent Distance on perceived competence (BF 0.284), that is, the
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Figure 5: Subjective Results

data was 1/0.284 = 3.521 times less likely to have been generated
under models including such an interaction.

5 DISCUSSION
5.1 Hypothesis One
We hypothesized that a robot that uses virtual arrows when re-
ferring to target referents would: (H1.1) be more effective than a
robot using virtual arms, as measured by accuracy and reaction
time, and (H1.2) that these benefits would be more pronounced for
objects farther away from the robot.

Our results support Hypothesis H1.1 but not Hypothesis H1.2.
Our result suggests that a robot using virtual arrows is more effec-
tive than a robot using virtual arms: virtual arrows allowed users to
complete the task faster and more accurately than virtual arms. This
is unsurprising as virtual arrows directly pick out target referents
without users needing to follow and interpret a deictic cone. While
in the arrow scenario referent distance did not appear to impact
accuracy and reaction time, in the arm scenario such an effect was
observed: when the target referent was close to the robot, users
could more accurately and quickly identify it.
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While our Hypothesis H1.1 are supported, the results are in-
conclusive for Hypothesis H1.2. The anecdotal evidence against
an interaction effect between Gesture Type and Referent Distance
on accuracy (BF 0.415) and reaction time (BF 0.455) is not strong
enough to conclusively rule out an effect, and visual inspection
suggests there may indeed have been effects of distance on both
accuracy and reaction time, in which task performance improved
for virtual arms when referents were closer to the robot. More data
will be needed to confirm or rule out these effects, in a larger envi-
ronment allowing greater distinction between distance conditions.

5.2 Hypothesis Two
We hypothesized that a robot that uses virtual arrows when re-
ferring to target referents would: (H2.1) be have lower social per-
ception than a robot using arms as measured by social presence,
anthropomorphism, likability, warmth, and perceived competence,
and (H2.2) that these detriments would be more pronounced for
objects farther away from the robot. We will thus separately assess
this hypothesis for each of these subjective measures.

Our results support Hypothesis H2.1 but fail to support Hypothe-
sis H2.2. First, our results suggest that robots using arm have higher
social perception in terms of anthropomophism, social presence,
and likability than non-ego-sensitive allocentric gestures, which we
believe is due to the human-like, animated morphology provided by
virtual arms. Second, our results suggest that robots using arm were
also perceived as more likable than robots using virtual arrows,
which we believe is due to that anthropomorphism and social pres-
ence. Again, we believe that while virtual arms continually draw
the user’s visual attention back to the robot, when virtual arrows
are used, users can essentially ignore the robot generating them
without any loss in performance. These findings were also observed
to be highly sensitive to distance. First, the robot using virtual arms
perceived to have higher anthropomorphism when referring to
objects closer to it, which we believe to be due to increased time
with the animated robot in frame within the HoloLens’ limited
Field of View. Second, the robot using virtual arms was rated as
more likability and more socially present when referring to objects
farther from it; effects which are not yet clear how to interpret.

Finally, our results neither supported or refuted an effect of Ges-
ture Type on warmth or competence. We expect that these findings
may in part due to the actual increase in competence for robots that
used virtual arrows. That is, the decreased anthropomorphism and
social presence may have led these robots using arm to be perceived
as more competent, but overall robots using those gestures were
in fact overall less competent in picking out target referents than
robots using virtual arrows.

5.3 Limitations and Future Work
The main limitation of our experiment is small sample size, which
while necessary due to pandemic-related campus shutdowns, yielded
unnecessarily inconclusive results in some analyses. Specifically,
several analyses produced Bayes Factors between 1/3 and 3, sug-
gesting inconclusive results neither supporting nor refuting our
hypotheses, and instead suggesting the need to collect more data.
While in the wake of COVID-19 many experiments are moving
online [22], and while some preliminary MR-for-HRI experiments

have indeed been conducted online [68], the nature of this exper-
iment (especially with respect to physical head and eye motions
to shift the Field of View of Mixed Reality) is not only ill-suited to
online experimentation but would also benefit from measurement
options available only in person.

In future work we hope to leverage the HoloLens 2, which has
a larger Field of View, which would allow us to identify whether
our observed effects were due in part to the need for participants
to physically shift their overall gaze in order to keep visualizations
in-frame. Moreover, the eye-tracking capabilities of the HoloLens 2
would allow us to determine whether there were in fact differences
in gaze-towards-robot between different Mixed Reality gestures.
Moreover, while the use of MR experiments increases Pandemic-
related safety in some ways (e.g., by decreasing contact between
humans and task-relevant objects [72]), it also necessitates the use
of inherently high-contact equipment (i.e., the MR-HMD itself).

Finally, our results revealed an interesting design challenge, in
which designers should use non-ego-sensitive allocentric gestures
like circles and arrows if they wish to maximize short-term task
performance, but should use ego-sensitive allocentric gestures like
virtual arms if they wish to maximize social dimensions likely to
impact long-term task performance. In future work, we hope to
explore whether these gesture categories can be used in conjunction
to achieve the best of bothworlds, or whether this would cognitively
and visually overload users.

6 CONCLUSION
We conducted an N=24 HRI experiment to compare two categories
of mixed-reality deictic gestures for armless robots: a virtual ar-
row positioned over a target referent (a non-ego-sensitive allo-
centric gesture) and a virtual arm positioned over the robot (an
ego-sensitive allocentric gesture). Our results suggest that non-ego-
sensitive allocentric gestures enable faster reaction time and higher
accuracy, while ego-sensitive gestures enable higher perceived so-
cial presence, anthropomorphism, and likability. This presents a
clear design trade-off: our results suggest the need for different
mixed reality gestures to be used in different application domains
depending on the nature of the task and the intended relationship
the designer seeks to establish between human and robot. Most
domains in which Mixed Reality HRI is currently being envisioned
are task-oriented domains, such as the use of collaborative robots
in advanced manufacturing environments. In such domains, our re-
sults suggest that designers may wish to leverage non-ego-sensitive
allocentric mixed reality gestures. On the other hand, for robots
designed for more socially oriented domains, or even task-oriented
domains where it is advantageous to highlight a robot’s social or an-
thoropomorphic characteristics, ego-sensitive allocentric gestures
may instead be preferable. Finally, our results highlight important
connections between visual attention, anthropomorphism, social
presence, warmth, and competence, which are critical to the design
of interactive robots even beyond mixed reality environments.
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