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ABSTRACT

We present the first experiment analyzing the effectiveness of robot-
generated mixed reality gestures using real robotic and mixed real-
ity hardware. Our findings demonstrate how these gestures increase
user effectiveness by decreasing user response time during visual
search tasks, and show that robots can safely pair longer, more
natural referring expressions with mixed reality gestures without
worrying about cognitively overloading their interlocutors.
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1 INTRODUCTION

Successful human-robot interaction in many domains relies on suc-
cessful communication. Accordingly, there has been a wealth of
research on enabling human-robot communication through nat-
ural language [7, 13]. However, just like human-human dialogue,
human-robot dialogue is inherently multi-modal, and necessarily
involves communication channels other than speech, with human
interlocutors regularly using gaze and gesture cues to augment,
modify, or replace their natural language utterances. Speakers reg-
ularly use deictic gestures such as pointing, for example, to direct
interlocutors’ attention to objects in the environment, both to re-
duce the number of words that the speaker must use to refer to their
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Figure 1: During the experiment, participants play a mixed
reality game using the Microsoft HoloLens. The Pepper ro-
bot is positioned behind the table, ready to interact.

target referents, as well as to lower the cognitive burden imposed
on listeners to interpret those utterances.

Due to the prevalence and utility of deictic gestures in situated
communication, human-robot interaction researchers have sought
to enable robots to understand [6] and generate [10-12] deictic
gestures just as humans do. However, the ability to understand
and generate deictic gestures comes with hardware requirements
that can be onerous or unsatisfiable in certain use cases. While
perceiving deictic gestures only requires a camera or depth sensor,
generating deictic gestures requires a specific robotic morphology
(e.g., expressive robotic arms). This fundamentally limits the gestu-
ral capabilities, and thus overall communicative capabilities, of the
majority of robotic platforms in use today, such as mobile bases used
in warehouses, assistive wheelchairs, and unmanned aerial vehicles
(UAVs). Moreover, even for robots that do have arms, traditional
deictic gestures have fundamental limitations. In contexts such as
urban or alpine search and rescue, for example, robots may need
to communicate about hard-to-describe and/or highly ambiguous
referents in novel, uncertain, and unknown environments.

A scenario that illustrates all of these problems is an aerial robot
in a search and rescue context that needs to generate an utterance
such as "I found a victim behind that tree" [cf. 21]. In this case,
the ability to precisely pick out the target tree using some sort of
gestural cue would be of great value, as the referring expressions
the robot would need to generate without using gesture would
likely be convoluted (e.g., "the fourth tree from the left in the clump
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of trees to the right of the large boulder") or not readily human-
understandable (e.g., "the tree 48.2 meters to the northwest").

Unfortunately, it is unlikely that such a UAV would have an
arm mounted on it, meaning that physical gesture is not a realistic
possibility, no matter its utility. Moreover, even in the unlikely
case that the robot had an arm mounted on it, it is unlikely that a
traditional pointing gesture generated by such an arm would be
able to pinpoint a specific far-off tree.

In this work, we present a mixed reality (MR) solution that en-
ables robots to generate effective deictic gestures without impos-
ing any morphological requirements. Specifically, we present the
first implementation of the mixed reality deictic gestures proposed
by Williams et al. [20] on real robotic and mixed reality hardware.

Mixed reality deictic gestures are visualizations that can serve
the same purpose as traditional deictic gestures, and which fall
within the broad category of view-augmenting mixed reality inter-
action design elements in the Reality-Virtuality Interaction Cube
framework [19]. Williams et al. [20] divide these new forms of vi-
sual gestures into perspective-free gestures that can be projected
onto the environment, and allocentric gestures (visualized in the
perspective of the listener) that can be displayed in teammates’
augmented reality (AR) head-mounted displays.

Recent work on perspective-free gestures has focused on the
legibility of projected gestures [14], while recent work on allocentric
gestures has focused on gesture effectiveness when paired with
different kinds of language (in virtual online testbeds) [17, 18] and
on effectiveness of ego-sensitive allocentric gestures such as virtual
arms [2, 3]. In this work we focus on this first, (non-egosensitive)
allocentric category of mixed reality deictic gesture.

In previous work in this space, Williams et al. [18] [see also
17], demonstrated that (non-ego-sensitive) allocentric mixed reality
deictic gestures, at least when tested in a simulated video-based
experiment, could increase communication accuracy and efficiency,
and, when paired with complex referring expressions, were viewed
as more effective and likable than purely linguistic communication.
However, to date, mixed reality deictic gestures have only been
tested in video-based simulations. In this article, we present the
first demonstration of mixed reality deictic gestures generated on
actual AR Head-Mounted Displays (the Microsoft Hololens) in the
context of task-based human-robot interactions.

Moreover, as previously pointed out by Hirshfield et al. [4], the
tradeoffs between language and visual gesture may be highly sen-
sitive to teammates’ level and type of cognitive load. For example,
Hirshfield et al. [4] suggest that it may not be advantageous to rely
heavily on visual communication in contexts with high visual load,
or to rely heavily on linguistic communication in contexts with
high auditory or working memory load. These intuitions are moti-
vated by prior theoretical work on human information processing,
including the Multiple Resource Theory (MRT) by Wickens [15, 16].
In this article, we thus also present the first exploration of the trade-
offs between different forms of mixed reality communication under
different levels and types of cognitive load.

2 EXPERIMENT

In this section, we present the design of a human-subject experi-
ment to assess whether different robot communication styles im-
prove participants’ task performance under four conditions: high
visual perceptual load, high auditory perceptual load, high working
memory load, and low overall load.

2.1 Hypotheses

Based on the assumptions that there are different perceptual re-
sources, and that mixed reality deictic gestures employ visual-
spatial resources in accordance to MRT, this experiment was de-
signed to test the following hypotheses, which formalize the intu-
itions of Hirshfield et al. [4].

H1 Users under high visual perceptual load will perform
quickest and most accurately when robots rely on complex
natural language without the use of mixed reality deictic
gestures.

H2 Users under high auditory perceptual load will perform
quickest and most accurately when robots rely on mixed
reality deictic gestures without the use of complex natural
language.

H3 Users under high working memory load will perform
quickest and most accurately when robots rely on mixed
reality deictic gestures without the use of complex natural
language.

H4 Users under low overall load will perform quickest and
most accurately when robots rely on mixed reality deictic
gestures paired with complex natural language.

2.2 Experimental Context

In this experiment, participants interacted with a language-capable
robot while wearing the Microsoft HoloLens, over a series of trials,
with the robot’s communication style and the user’s cognitive load
systematically varying between trials.

Our experiment employed a dual-task paradigm oriented around
a tabletop pick-and-place task. Participants view the primary task
through the Microsoft HoloLens, allowing them to see virtual bins
overlaid over the mixed reality fiducial markers on the table, as
well as a panel of blocks above the table that changes every few
seconds (Fig. 1). As shown in Fig. 2, the Pepper robot is positioned
behind the table, ready to interact with the participant.

Figure 2: Participants wearing the HoloLens are asked to cor-
rectly pick-and-place virtual blocks into virtual bins.



2.3 Experimental Task
Primary Task

The user’s primary task is to look out for a particular block in the
block panel (selected from among red cube, red sphere, red cylinder,
yellow cube, yellow sphere, yellow cylinder, green cube, green sphere,
green cylinder!). These nine blocks were formed by combining three
colors (red, yellow, green) with three shapes (cube, sphere, cylinder).
Whenever participants see this target block, their task is to pick-
and-place it into any one of a particular set of bins. For example, as
the game starts, the robot might tell a user that whenever they see
a red cube they should place it in bins two or three.

Two additional factors increase the complexity of this primary
task. First, in order to have participants remember the full set of
candidate bins, rather than just one particular bin from that set, at
every point during the task one random bin is marked as unavailable
and greyed out (with the disabled bin changing each time a block is
placed in a bin). Second, to create a demanding auditory component
to the primary task ensemble, the user hears a series of syllables
playing in the task background, is given a target syllable to look
out for, and is told that whenever they hear this syllable, the target
bins and non-target bins are switched. In other words, the bins that
they should consider to place blocks in should be exchanged with
those they were previously told to avoid. For example, if the user’s
target bins from among four bins are bins two and three, and they
hear the target syllable, then future blocks will need to be placed
instead into bins one and four. The syllables heard are selected
from among (bah, beh, boh, tah, teh, toh, kah, keh, koh). These nine
syllables were formed by combining three consonant sounds (b,t.k)
with three vowel sounds (ah,eh,oh).

Secondary Task

Three times per experiment trial, the participant encounters a sec-
ondary task, in which the robot interrupts and utters a new request,
asking the participant to move a particular, currently visible block,
to a particular, currently accessible bin. Depending on the condition
of the experiment trial, the robot’s spoken request may be accom-
panied by a mixed reality gesture. Unlike the long-term primary
task that requires participants to remember the initial target block
and keep track of the continuously changing target bins during the
90 second round, in the secondary task the robot asks participants
to pick a different target block and place it in a different target bin,
after which participants can continue with the primary task.

2.4 Experimental Design

We used a Latin square counterbalanced within-subjects experi-
mental design with two within-subjects factors: Cognitive Load (4
loads) and Communication Style (3 styles) (see Fig. 3).

Cognitive Load

Our first independent variable, cognitive load, was manipulated
through our primary task. Following Beck and Lavie [5], we manip-
ulated cognitive load by jointly manipulating memory constraints

I These colors were chosen for consistent visual processing, as blue is processed differ-
ently within the eye due to spatial and frequency differences of red/green and blue
cones. This did mean our task was not accessible to red/green colorblind participants,
requiring us to remove from our dataset the data of several colorblind participants.

and target/distractor discriminability (cp. [5]), producing four dif-
ferent load profiles: (1) one in which all load was considered low,
(2) only working memory load was considered high, (3) only vi-
sual perceptual load was considered high, and (4) only auditory
perceptual load was considered high.

COMM STYLE 1:
COMPLEX LANGUAGE

COMM STYLE 3:
MR & COMPLEX
LANGUAGE

COMM STYLE 2:
MR & SIMPLE

ONLY LANGUAGE

Low WM (4 bins), Low Visual, Low Auditory

Robot: Could you also put MR+Robot: Could you also MR+Robot: Could you also put
the green cylinder in bin 27 put that block in bin 22 the green cylinder in bin 27
Syllables: TAH, KOH, BEH  Syllables: TAH, KOH, BEH Syllables: TAH, KOH, BEH

HIGH WM (6 bins), Low Visual, Low Auditory

Robot: Could you also put MR+Robot: Could you also  MR+Robot: Could you also put
the green cylinder in bin 67 put that block in bin 67 the green cylinder in bin 67
Syllables: TAH, KOH, BEH Syllables: TAH, KOH, BEH Syllables: TAH, KOH, BEH

Low WM (4 bins), HIGH Visual, Low Auditory

Robot: Could you also put MR-+Robot: Could you also  MR+Robot: Could you also put
the green cylinder in bin 27 put that block in bin 2?  the green cylinder in bin 2?
Syllables: TAH, KOH, BEH Syllables: TAH, KOH, BEH Syllables: TAH, KOH, BEH

Low WM (4 bins), Low Visual, HIGH Auditory

Robot: Could you also put MR+Robot: Could you also MR+Robot: Could you also put
the green cylinder in bin 27 put that block in bin 27 the green cylinder in bin 27
Syllables: TAH, KOH, BEH Syllables: TAH, TOH, TEH Syllables: TAH, TOH, TEH

Figure 3: Participants engage in 12 (Latin square counterbal-
anced) experimental trials formed by combining 4 cognitive
load conditions and 3 communication style conditions.

Working memory load was manipulated as follows: In the
high working memory load condition, participants were required
to remember the identities of three target bins out of a total of
six visible bins, producing a total memory load of seven items (an
"item" is defined by either a bin and/or an attribute) when including
the two properties of the target block (shape and color) and the
two properties of the target syllable (consonant and vowel). In
all other conditions, participants were only required to remember
the identities of two target bins out of a total of four visible bins,
producing a total memory load of six items.



Visual perceptual load was manipulated as follows: In the
high visual perceptual load condition, the target block was always
difficult to discriminate from distractors due to sharing one common
property with all distractors. For example, if the target block was
a red cube, all distractors would be either red or cubes (but not
both). In the low visual perceptual load condition, the target block
was always easy to discriminate from distractors due to sharing no
common properties with any distractors. For example, if the target
block was a red cube, no distractors would be red or cubes.

Auditory perceptual load was manipulated as follows: In the
high auditory perceptual load condition, the target syllable was
always difficult to discriminate from distractors due to sharing one
common property with all distractors. For example, if the target
syllable was kah, all distractors would either start with k or end with
ah (but not both). In the low auditory perceptual load condition,
the target syllable was always easy to discriminate from distractors
due to sharing no common properties with any distractors. For
example, if the target syllable was kah, no distractors would either
start with k or end with ah.

Communication Style

Our second independent variable, communication style, was ma-
nipulated through our secondary task. Following Williams et al.
[17] and Williams et al. [18], we manipulated communication style
by having the robot exhibit one of three behaviors:

During experiment blocks associated with the complex lan-
guage communication style condition, the robot referred to objects
using full referring expressions needed to disambiguate those ob-
jects (e.g., "the red sphere").

During blocks associated with the MR + complex language
communication style condition, the robot referred to objects using
full referring expressions (e.g., "the red sphere"), paired with a mixed
reality deictic gesture (an arrow drawn over the red sphere).

During blocks associated with the MR + simple language com-
munication style condition, the robot referred to objects using min-
imal referring expressions (e.g., "that block"), paired with a mixed
reality deictic gesture (an arrow drawn over the object to which
the robot was referring).

Following Williams et al. [17] and Williams et al. [18], we did
not examine the use of simple language without MR, as that com-
munication style typically does not enable referent disambiguation,
resulting in the user needing to ask for clarification or guess at
random between ambiguous options.

3 RESULTS AND DISCUSSION

36 participants were recruited from our university (31 M, 5 F),
ranging in age from 18 to 32. For both primary and secondary tasks,
we measured perceived mental workload, perceived communicative
effectiveness, task accuracy, and task response time.

For each measure, a repeated measures analysis of variance (RM-
ANOVA) [1, 8, 9] was performed, using communication style and
cognitive load as random factors. Anecdotal to strong evidence
was found against any effects of communication style or imposed
cognitive load on perceived mental workload, perceived commu-
nicate effectiveness, task accuracy, and the primary task response
time. However, we did find moderate evidence in favor of an effect

of mixed reality communication style on secondary task response
time, but no effect of or interaction with workload was found.

Our results suggest that the primary benefit of mixed reality
deictic gestures in robot communication lies in their ability to
increase users’ speed at performing a secondary task by reducing
the time taken to perform constituent visual searches (especially
when paired with complex referring expressions), regardless of the
level and type of workload users are experiencing.

These results align with previous work not performed in realis-
tic task environments [18], which found that participants demon-
strated slower response times when complex language alone was
used, with no clear differences between simple and complex lan-
guage when pairing language with mixed reality deictic gestures,
and suggested that people found a robot more likable when it used
longer more natural referring expressions. When combined with the
results of our experiment, this suggests that robots likely can pair
complex referring expression with mixed reality gestures without
worrying about cognitively overloading their interlocutors.

Despite these positive findings, our results failed to support our
four workload-driven hypotheses. While we originally expected
differences between communication styles under different cognitive
load profiles, especially based on whether communication style was
overall visual or auditory, in fact what we observed is that visual
augmentations, especially when paired with complex referring
expressions, may always be helpful for a secondary task, regardless
of level and type of imposed workload.

While this study shows the effect of mixed reality deictic ges-
tures on human’s task response time, it has a number of limitations.
We found that some participants failed early into the game and
completely lost track of what block to place in what bin. Providing
some sort of real-time, directive cues might help participant recover
from errors. However, the purpose of a challenging primary task is
to impose high workload on the participants and to observe how the
robot’s different communication styles can help enhance its human
teammate’s task performance while being cognitive overloaded. Ad-
ditional consideration is needed to design ways that recovery hints
can be presented (either visual and/or auditory) without interfering
with the imposed workload profiles during the experiment.

Additionally, we received feedback from some participants dur-
ing the debriefing that they felt the series of syllables playing in
the task background (e.g., bah, beh, boh, tah, teh, toh, kah, keh, koh)
could easily be misheard. After missing the auditory cue that sig-
nals the switch of the target and non-target bins, they started to
guess the target bins to attempt to proceed with the primary task.
We recommend future studies to use distinguishable sounds instead
of these syllables in order to improve auditory discrimination.

Lastly, future research could use a mixed reality device that
supports both eye-tracking and hand-tracking such as the newer
Microsoft HoloLens 2. This will enable researchers to more precisely
capture response time and allow users to interact with holograms
through completely natural hand gestures rather than the simple
gaze-and-commit (e.g., air tap) interaction of the Hololens 1.
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