
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

1

Structured Sparsity Model Based Trajectory
Tracking Using Private Location Data Release

Minglai Shao, Jianxin Li, Member, IEEE, Qiben Yan, Member, IEEE, Feng Chen, Member, IEEE, Hongyi
Huang, Xunxun Chen

Abstract—Mobile devices have been an integral part of our everyday lives. Users’ increasing interaction with mobile devices brings in
significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically,
mobile users’ trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous
studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection
provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this
paper, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from
differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on
single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity
model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy
protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the
experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple
trajectories.

Index Terms—Location privacy, differential privacy, multiple trajectory recovery, structured sparsity model.

F

1 INTRODUCTION

NOWADAYS, mobile devices, e.g., smartphones, have
become an integral part of people’s daily lives. These

mobile devices collect almost indelible trajectories of user
activities. Generally, a trajectory, comprised of a set of lo-
cations, can provide a wealth of useful information, such
as individuals’ habits, interests, activities, and relationships.
Thus, publishing or analyzing the trajectory data, e.g., traffic
flow trajectory, is of great value to many applications.

However, publishing the trajectory data poses serious
threats to individual’s location privacy [1], [2], cautious
mobile users are reluctant to expose their locations. Con-
sequently, in previous studies, location privacy preserving
mechanisms [3], [4], [5], [6], [7] have been proposed to
anonymize user identities using pseudonyms or obfuscate
location coordinates by replacing real locations with forged
locations or regions. Recently, differential privacy [8], [9],
[10], [11], [12], [13], [14], which adds stochastic noises to
protect data release, has been adapted to protect location
or trajectory data release. Unfortunately, adding stochastic
noises distorts the original locations or trajectories and
reduces the utility of published trajectories [15], [16].

On the other hand, a variety of trajectory recovery meth-
ods have been proposed to eliminate noises and recover
trajectories, which perform trajectory recovery on privacy-

• M. Shao and J. Li are with Beijing Advanced Innovation Cen-
ter for Big Data and Brain Computing, Beihang University. E-mail:
shaoml@act.buaa.edu.cn, lijx@act.buaa.edu.cn.

• Q. Yan is with Michigan State University. E-mail: qyan@msu.edu.
• F. Chen is with University of Texas at Dallas. E-mail:

feng.chen@utdallas.edu.
• H. Huang is with Tsinghua University. E-mail:

hhy17@mails.tsinghua.edu.cn
• X. Chen is with CNCERT/CC. E-mail: xx-chen@139.com.

preserving location data as shown in Figure 1. In order to
effectively capture spatio-temporal characteristic of moving
trajectory, most of the existing methods for trajectory recov-
ery, to the best of our knowledge, adopt a Markov model for
modeling temporality to infer locations or trajectories [17],
[18], [19], [20]. However, Markov-based methods can only
recover a single trajectory at one time and achieve low
recovery accuracy, since the Markov transition matrix used
to recover trajectories is constructed by the perturbed/noisy
locations without the consideration of suppressing noise.

In this paper, in order to advance the trajectory recovery
capability and raise concerns about users’ trajectory pri-
vacy, we propose a private trajectory recovering framework,
iTracker, which attacks the differential privacy-based loca-
tion protection model and simultaneously recovers multiple
trajectories from the perturbed locations. iTracker utilizes
a trajectory structured sparsity model that is capable of
recovering multiple trajectories simultaneously, due to the
fact that the model can effectively capture the interdepen-
dency among the locations and adaptively group trajec-
tories. Then, an efficient approximation algorithm, based
on the trajectory structured sparsity model, is designed to
simultaneously recover multiple trajectories from privacy-
preserving trajectories. Moreover, we provide theoretical
analysis and experimental evaluation to examine the con-
vergence and accuracy of iTracker framework.

The main contributions are summarized as follows:
• Formulating a trajectory structured sparsity model.

In iTracker, the protected locations are labeled and
mapped into a location sparsity matrix. Trajectory
Earth Mover’s Distance (TEMD) is employed to mea-
sure the quantity of the changed locations and the
moving distance of the locations in adjacent time

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

2

Fig. 1. Problem setting: the simultaneous recovery of multiple trajecto-
ries from unmarked perturbed locations protected by differential privacy
based protection mechanisms.

slices, based on which we construct a trajectory struc-
tured sparsity model.

• Designing an efficient approximation algorithm at-
tacking the location protection mechanism (differ-
ential privacy based) and recovering multiple tra-
jectories from perturbed locations simultaneously.
We propose an efficient attack framework, iTracker,
based on the trajectory structured sparsity model.
The iterative approximation algorithm suppresses
noise at each iteration, which strengthens the recov-
ery capability and improves recovery accuracy. We
utilize a model projection oracle that finds the best
approximation for recovering multiple trajectories
simultaneously. In addition, we theoretically analyze
the convergence rate and accuracy of the iTracker
framework.

• Performing comprehensive experiments to vali-
date the effectiveness and efficiency of the pro-
posed techniques. Extensive experiments based on
real-world datasets demonstrate that our proposed
method outperforms state-of-the-art methods cus-
tomized for multiple trajectories recovery.

The rest of the paper is organized as follows. Section
2 introduces the related work. Section 3 first defines the
time-series trajectory and reviews the theory of differential
privacy. Then, we build the structured sparsity model and
formulate the trajectory recovery problem. Section 4 details
the proposed approach for multiple trajectories recovery.
Comprehensive experiments are provided in Section 5. Con-
clusion and future work are presented in the final section.

2 RELATED WORK

In this section, we review the state-of-the-art models and
techniques for recovering or analyzing human location
records, which rely on a high degree of temporal and
spatial regularities of human trajectories, e.g., simple and
reproducible daily moving patterns [21]. Thus, such models
and techniques can be employed by adversaries to infer
sensitive locations from individuals’ records. The proposed
approaches can be summarized into three distinct types
according to different data modeling methods, namely: (1)
state-space approaches, (2) data mining approaches and (3) tem-
plate matching approaches.

State-space approaches. These approaches attempt to
model the changes in terms of spatial sequences via time-
series approaches such as the discriminative Conditional
Random Fields (CRFs) [22], Hidden Markov Model (HMM)
[23], or extensions of both two methods [24], [25]. More
recently, DPSense [26] is proposed for the purpose of ob-
taining a good balance between efficiency and location
privacy, in which spectrum-sensing tasks are published by
the spectrum providers for the specific locations and time.
In [27], the authors present the approach PriCSS, a frame-
work proposed for the sensing service provider to choose
the spectrum-sensing participants in a privacy-preserving
manner. Generally speaking, these models have been suc-
cessfully employed in coping with uncertainty, but they
also suffer from high training complexity. For location and
trajectory prediction, naturally, generative approaches such
as HMM can be applied, since they support the generation
of possible next locations with associated probabilities. Un-
fortunately, such techniques that recover trajectories based
on probabilistic inference will induce excessive recovery er-
ror, and are incapable of simultaneously recovering multiple
trajectories.

Data mining approaches. Data mining explores associ-
ation rules and frequent patterns by treating the trajecto-
ries as ordered sequences of time-stamped locations and
employing the corresponding sequence analysis approaches
such as the improved Apriori algorithm [28]. However, most
previous data mining approaches measure the recovered
locations by maximizing the confidence of these locations
based on previous occurrences, and they disregard spa-
tial and temporal distances among trajectories and loca-
tions, resulting in a low recovery accuracy. In addition,
previous works have also analyzed the records of location
through non-sequential unsupervised approaches such as
probabilistic topic approaches known as Latent Dirichlet
Allocation (LDA) [29]. Yet, the data mining technique is not
easily applicable to recover private trajectories perturbed by
stochastic noise.

Template matching approaches. Template matching com-
pares the extracted feature information with the pre-stored
templates or patterns for recovering trajectories, which usu-
ally employs the longest common sub-sequence matching,
or other heuristic string matching algorithms [30], [31].
However, in most cases, pre-stored patterns and templates
are hard to establish.

3 BACKGROUND AND PROBLEM FORMULATION

In this section, we first define the time-series trajectory and
review the theory of differential privacy. Then, we construct
the structured sparsity model and formulate the problem.

3.1 Time-Series Trajectory
Here, we use a time-location coordinate framework and
a map coordinate framework to represent the trajectories.
They can be transformed into one another. L denotes the
domain of space, which can be partitioned into a finer
granularity, denoted as “unit”, i.e, L = {l1, l2, ..., ln},
where each li represents a location unit.

If the space is viewed as a map with longitude and
latitude, a two-tuple coordinate can be used to represent

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

3

(a) Map coordinate framework (b) Time-location coordinate frame-
work

Fig. 2. Two coordinate frameworks of trajectory: map coordinate frame-
work and time-location coordinate framework. They can be transformed
into one another.

a user’s location. A trajectory can be represented by a
sequence of the two-tuple coordinate and time slices. Mean-
while, we propose to project the map coordinate framework
into time-location coordinate framework. In time-location
coordinate, if no trajectory goes through a certain location,
the state of this location is marked as “0”. As time proceeds,
the trajectory of a user can be denoted by a series of loca-
tions. Note that the two coordinate representations can be
transformed into one another. Furthermore, all trajectories
can be projected into any of these two coordinate frame-
works. A formal definition of the time-series trajectory is
presented below.

Definition 1 (Time-series trajectory). A trajectory is an ordered
list of time-location pairs: T = (l1, t1) → (l2, t2) → ... →
(li, ti) → ... → (l|T |, t|T |), where |T | is the length of this
trajectory, ∀i(1 ≤ i ≤ |T |), and li is a discrete spatial location.

Example 1. Figure 2 demonstrates an example using
the two coordinate frameworks to represent a trajectory.
Consider user u whose actual location in region l4 at a given
time t1, then the location l4 can be expressed by (4, 1) in
the form of the two-tuple coordinate. After being mapped
into the time-location coordinate framework, a trajectory
T = (l4, t1) → (l5, t2) → (l8, t3) → (l9, t4) is shown in
Figure 2(b).

The set of time-series trajectories is defined as T =
{T1, T2, ..., T|T|}, where |T| is the size of T. For simplicity,
we assume that the trajectories in T are recorded for the
same set of time stamps. For example, 1 ≤ m,n ≤ |T|,
T (Tm) = T (Tn), where T (T) = {t1, t2, ..., t|T |} denotes the
set of time slices in T . The set of locations of T is composed
of the locations from all trajectories in T.

Since every location is a discrete spatial point, we assume
it difficult to find two trajectories Tm, Tn ∈ T that share the
same location at any time point as discussed in [10], [32],
namely ∀t ∈ T (Tm), Tm(t) 6= Tn(t).

3.2 Threat Model and Differential Privacy Based Trajec-
tory Publishing

Trajectory data provides a great deal of benefits, but it gives
rise to serious threats to the individual privacy [1], [2]. After
aggregating sufficient trajectory data, the data collectors
often publish these data to the internal departments or

external partners for data analysis [16]. Even if the collection
process is secure, some people may be curious about other
individuals’ private information. If the trajectory data is
published in an inappropriate form, these adversaries may
leverage background knowledge to link mobility traces to
individuals [33] and further infer the sensitive individual
information such as home address, employment, health
condition, religion, etc.

To avoid the potential sensitive information leakage,
differential privacy-based protection models have been used
to protect the published locations or trajectories [9], [12],
[34], [35], [36], since they provide a strong privacy guar-
antee. In this work, we consider the following differential
privacy-based protection mechanism as a case study, while
the proposed attack in Section 4 can also be appropriate for
attacking other state-of-the-art protection mechanisms such
as [12], [14].

Definition 2 (ε-geo-indistinguishability) [37]. A mechanism K
satisfies ε-geo-indistinguishability iff for all locations l, l’:

K(l)(Z) ≤ eεd(l,l′)K(l′)(Z), (1)

where l, l′ ∈ X and X is the set of possible locations of a user
at a time slice, K(l)(Z) is the probability that the reported point
belongs to the set Z ⊆ Z and Z is the set of possible reported
locations, d(·, ·) is the Euclidean distance metric, and ε (ε ≥ 0)
represents the strength of protection.

Moreover, given the parameter ε and an actual location
l, the probability density function Dε of the applied noise
on another released location l′ is [37]:

Dε(l)(l
′) =

ε2

2π
e−εd(l,l′). (2)

For an actual location, we randomly select a noisy location
according to the probability density function defined in
Eq. (2) [37].

3.3 Structured Sparsity Model for Recovering Multiple
Trajectories Simultaneously

In order to recover multiple trajectories simultaneously from
locations protected by differential privacy, the trajectory
structured sparsity model is formulated based on the loca-
tion sparsity matrix.

Definition 3 (Location sparsity matrix). Based on the time-
location coordinate framework, the location sparsity matrix can be
defined as: a matrix X ∈ Rh×w, where w denotes the number of
time slices, and h denotes the number of locations. Each element
(li, tj) in X represents a location li released based on the differen-
tial privacy at time tj , where li ∈ {l1, ..., lh}, tj ∈ {t1, ..., tw}.
If no trajectory crosses the location li at time tj , the state of this
location is marked by zero in X; otherwise, marked by li.

For example, Figure 2(b) can be formulated as a location
sparsity matrix X ∈ R9×4, where (l4, t1), (l5, t2), (l8, t3)
and (l9, t4) in a trajectory are marked by l4, l5, l8 and l9
in different time respectively. Others are marked by 0.

Let [h] and [w] denote the set {1, 2, ..., h} and
{1, 2, ..., w}, respectively, and the indices of X can be de-
noted as [h] × [w]. Let S be a subset of X’s indices, i.e.,
S ⊆ [h] × [w]. And let XS be the submatrix of a matrix

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

4

X ∈ Rh×w and XS is identical to X but the entries not
contained in S are set to zero. A matrix X ∈ Rh×w, is
said to be k-sparse if at most k ≤ h × w coordinates are
nonzero. The support of X, supp(X) ⊆ [h] × [w], is also
the set of indices corresponding to nonzero entries. For a
matrix support set S, we denote the support of Lt in S as
suppcol(S,Lt) = {li|(li, Lt) ∈ S}, where Lt is the location
set at time slice t in X.

A trajectory T ⊆ [h] × [w] is a set of locations in X with
one location per column and |T | = w. The support of T is
supp(T) = {(l, t) | (l, t) ∈ Ti, for i ∈ {1, 2, ..., |T|}}, where
|T| is the total number of trajectories in X. Furthermore, the
Trajectory Earth Mover’s Distance (TEMD) is defined based
on [38] to measure the number of the changed locations and
the moving distance of the locations in adjacent time slices.

Definition 4 (TEMD). The Trajectory Earth Mover’s Distance of
two adjacent time slice location sets Lt, Lt+1 is defined as:

TEMD(Lt, Lt+1) = min
π:Lt→Lt+1

∑
lt∈Lt

|lt − π(lt)|, (3)

where π ranges over all one-to-one mappings from Lt to Lt+1, Lt
and Lt+1 are location sets at time slices t and t + 1 respectively.
Lt and Lt+1 contain the same number of locations. | · | is the
absolute value of the variation of a location in adjacent time slices.

Definition 5 (STEMD). Let S ⊆ [h] × [w] be the support of
the location matrix X , |suppcol(S,Lt)| = |T| for t ∈ [w]. The
TEMD of Support S is defined as:

STEMD(S) =

w−1∑
t=1

TEMD(suppcol(S,Lt), suppcol(S,Lt+1)),

(4)
where the suppcol(S,Lt) is the support of column Lt in S and
the suppcol(S,Lt+1) is the support of column Lt+1 in S.

STEMD of the location matrix X, denoted as Θ, repre-
sents all the locations that change in consecutive time slices.
Next, we provide the definition of trajectory structured
sparsity model as follows.

Definition 6 (Trajectory structured sparsity model). Given
the location matrix X ∈ Rh×w, the trajectory structured sparsity
model can be defined as:

M(Θ, |T|) = {S ⊆ [h]× [w] | STEMD(S) ≤ Θ,

|suppcol(S,Lt)| = |T| for t ∈ [w]}. (5)

where |T| is the number of trajectories, w is the total time slices,
suppcol(S,Lt) is the support of column Lt in S, and Θ is the
STEMD of location matrix X.

Given the location matrix X of the protected trajectories
and the trajectory structured sparsity model M(Θ, |T|), the
multiple trajectory recovery can be realized by finding the
best approximation for the real trajectory location matrix
X with the support S ∈ M(Θ, |T|) based on the structured
sparsity model M(Θ, |T|):

arg min
X
′∈Rh×w

||X −X
′
||22 s.t. supp(X

′
) ∈ M(Θ, |T|), (6)

where location matrix X ∈ Rh×w has the same basic
definition and properties as X, the trajectory structured
sparsity model M(Θ, |T|) is defined as a family of structured
supports: M(Θ, |T|) = {S1, S2, ... , SN} and Si ⊆ [h]× [w].

4 ITRACKER DESIGN AND THEORETICAL ANALY-
SIS

In this section, we first present the design of iTracker.
iTracker attacks the location protection mechanism (differ-
ential privacy based) by recovering multiple trajectories
from perturbed locations simultaneously. Then, we present
the theoretical analysis on its convergence and accuracy.

4.1 iTracker

In order to find the best recovered multiple trajectories
simultaneously from released locations protected by differ-
ential privacy, a novel framework named as iTracker is in-
troduced based on the trajectory structured sparsity model
M(Θ, |T|) which can effectively capture the interdepen-
dency of the locations and adaptively group trajectories.
However, the problem in Eq. (6) is NP-hard. Instead of seek-
ing for the exact solution to the problem, iTracker utilizes
two approximation algorithms, namely UP-approximation
Trajectories (UP(X)) and DOWN-approximation Trajectories
(DOWN(X)):

1) An UP-approximation Trajectories oracle returns a
support S, namely the indices of most of the relevant
trajectory locations in X , such that the norm of ||XS ||2 is
approximately maximized as shown in Section 4.2.

2) A DOWN-approximation Trajectories oracle returns
a support S, namely the indices of most of the relevant
trajectory locations in X , such that the norm of ||X −XS ||2
is approximately minimized as shown in Section 4.3.

Algorithm 1 iTracker Framework
1: Input: location matrix X of published trajectories, the

number of iterations: I , measurement: M.
2: Output: Estimated location matrix.
3: i = 0, X0 = 0;
4: repeat
5: Xa = X−MXi;
6: Xb = MTXa;
7: Xc = Xi + UP(Xb);
8: Xi+1 = DOWN(Xc);
9: until i = I ;

10: Return XI+1.

iTracker uses these two approximations to bounce
between upper bound and lower bound to approach the
optimal solution of the problem shown in Eq. (6) [39].
Furthermore, iTracker integrates these two approximations
with a linear measurement X = MX+τ , where the matrix
M satisfies the variant of restricted isometry property
named as Model-RIP, the definition of which is presented
below.

Definition 7. The matrix M ∈ Rp×q has Model-Restricted
Isometry Property (Model-RIP) [40] with constant ρ, if for all
supp(X) ∈ M(Θ, |T|):

(1− ρ)||X||22 ≤ ||MX||22 ≤ (1 + ρ)||X||22. (7)

Integrating the two approximation algorithms and the
measurement, iTracker reduces the noise in each iteration,

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

5

and its solution will converge to the most probable
trajectories efficiently (See Alg. 1).

As shown in Algorithm 1, MTXa is used to update
the location matrix in each iteration. Then, a subset of
locations is identified via UP(Xb) (UP-approximation Tra-
jectories) that returns locations with UP value, which is at
least a constant fraction of the optimal UP value (Section
4.2). The locations in this subset are then merged with
the current estimate to obtain the merged location matrix.
Then a subset of locations is identified via DOWN(Xc)
(DOWN-approximation Trajectories) that returns locations
with DOWN value, which is at most a constant times
larger than the optimal DOWN value (Section 4.3). After
several iterations, the corresponding approximation oracle
returns most of the relevant trajectory locations and exhibits
provably robust convergence and recovery property.

4.2 UP-approximation Trajectories (UP(X))
Given the location matrix X = Xb obtained in each iteration
of Algorithm 1 and the trajectory structured sparsity model
M(k, |T|), UP-approximation Trajectories oracle returns a
support S, namely the indices of most of the relevant
trajectory locations in X , such that the norm of ||XS ||2 is
approximately maximized, formally written as:

||XS ||2 ≥ CU · max
S′∈M(Θ,|T|)

||XS′ ||2, (8)

where 0 < CU < 1 is a constant.

Algorithm 2 UP-approximation Trajectories
1: Input: location matrix X = Xb obtained in each

iteration of Algorithm 1, Θ.
2: Output: |T| trajectories.
3: X1 = X ;
4: for i ∈ {1, ..., |T|} do
5: Ti = arg max

Ti∈Xi

Li(Ti) s.t. STEMD(Ti) ≤ bΘ
i c;

6: Xi+1 = Xi;
7: for (l, t) ∈ Ti do
8: Xi+1(l,t)

= 0;
9: end for

10: end for
11: Return

⋃|T|
i=1 Ti.

Generally, a trajectory T in X is a set of locations
with L(T) = ||XT ||22 =

∑
li∈T |li|

2 and STEMD(T) =∑w−1
i=1 |li − li+1| = STEMD(supp(XT)), where l1, ..., lw

are the locations of trajectory T from time 1 to w. Then, we
can get the locations support S by finding |T| trajectories
iteratively. The details of UP-approximation Trajectories are
presented in Algorithm 2 and an example of finding |T|
trajectories is shown in Example 2.

Example 2. A matrix including protected trajectories
based on differential privacy is shown in Figure 3, where
Θ = 5, |T| = 3, location li ∈ {1, 2, 3, 4, 5, 6}, t ∈ {t1, t2, t3}.
In the first iteration, bΘ

i c = bΘ
1 c = 5, trajectory T1 =

(5, t1)→ (6, t2)→ (5, t3) is selected based on the constraint
that max

Ti∈X
L(Ti) subject to STEMD(Ti) ≤ bΘ

i c. After that,

all locations selected in T1 are set to 0 marked by pink in
Figure 3. Then, i = 2, bΘ

2 c = 2. Repeat the above operation,
we can get T2 = (3, t1) → (4, t2) → (4, t3). Similarly,

in iteration 3, T3 = (2, t1) → (0, t2) → (2, t3). Through
this process, almost all locations in X are found. Moreover,
all locations are distributed into three disjoint trajectories.
Note that the perturbed locations that are distant from the
original trajectories will be removed.

In Algorithm 2, given Li(Ti) = ||Xi,T ||22 =
∑
li∈Ti

|li|2,
we derive the following results.
Theorem 1. The approximation results of the trajectories satisfy:

||XS ||2 ≥
1

2
max

S
′∈M(Θ,|T|)

||XS′ ||2. (9)

Proof. Let SO be the optimal support of X and
S be the support of trajectories returned by UP-
approximation Trajectories algorithm. And let {O1, ..., O|T|}
with STEMD(O1) ≥ STEMD(O2) ≥ ... ≥ STEMD(O|T|)
be the trajectories corresponding to the decomposition of
the SO . In the algorithm of UP-approximation Trajectories,
when we obtain the trajectory Ti in Xi, there are two cases:
1) the trajectories {T1, ..., Ti−1} only contain less than half
of the locations of Oi in X , namely Li(Oi) ≥ (1/2)L(Oi);
2) the trajectories {T1, ..., Ti−1} contain more than half of
the locations. Let A = {i ∈ [|T|] | case 1) holds for Ti},
B = {i ∈ [|T|] | case 2) holds for Ti}. Then we can get:

||XS ||22 =

|T|∑
i=1

Li(Ti) =
∑
i∈A

Li(Ti) +
∑
i∈B

Li(Ti)

≥
∑
i∈A

Li(Ti) ≥
1

2

∑
i∈A

L(Oi).

(10)

For every Oi and i ∈ B, let ιi = Oi ∩
⋃
j<i Tj , namely

the locations of Oi have been covered by some Tj when we
target Ti. Then we can get:∑

(l,t)∈ιi

|Xl,t|p = L(Oi)− Li(Oi) ≥
1

2
L(Oi), (11)

∑
i∈B

∑
(l,t)∈ιi

|Xl,t|p ≥
1

2

∑
i∈B

L(Oi), (12)

Oi and ιi are pairwise disjoint for every i ∈ B, so we can
get ιi ⊆

⋃
j<i Tj . Therefore,

||XS ||22 =

|T|∑
i=1

L(Ti) ≥
∑
i∈B

∑
(l,t)∈ιi

|Xl,t|p ≥
1

2

∑
i∈B

L(Oi). (13)

Combining Eqs. (10) and (13), we can get:

2||XS ||22 ≥
1

2

∑
i∈B

L(Oi) +
1

2

∑
i∈A

L(Oi), (14)

which is equivalent to (9).

Theorem 2. The time complexity of UP-approximation Trajecto-
ries algorithm is O(|T|wh2Θ).

Proof. In the process of recovering each trajectory in
location-comprised matrix X , we obtain the trajectory of
the largest weight at corresponding locations and the cor-
responding amount of STEMD support θ ∈ {1, 2, ... ,Θ}.
Since there are h×w location nodes in X and each location
has h outgoing edges to the locations in the next time slice.
The time complexity of finding a trajectory is O(wh2Θ). As
there are |T| trajectories for recovery, we need to run the
above procedure |T| times. As a result, the time complexity
of UP-approximation Trajectories algorithm is O(|T|wh2Θ).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

6

Fig. 3. The process of finding |T| = 3 trajectories based on UP approx-
imation. Trajectory T1 = (5, t1) → (6, t2) → (5, t3), T2 = (3, t1) →
(4, t2)→ (4, t3), T3 = (2, t1)→ (0, t2)→ (2, t3).

4.3 DOWN-approximation Trajectories (DOWN(X))

Given the location matrix trajectories X = Xc obtained in
each iteration of Algorithm 1 and the trajectory structured
sparsity model M(Θ, |T|), DOWN-approximation Trajecto-
ries oracle returns a support S, namely the indices of most
of the relevant trajectory locations in X , such that the norm
of ||X−XS ||2 is approximately minimized, formally written
as:

||X −XS ||2 ≤ CD · min
S′∈M(Θ,|T|)

||X −XS′ ||2, (15)

where CD > 1 is a constant.
In order to approach an optimal solution to the problem

in Eq. (15), we reformulate the problem into min-cost max-
flow problem which is a generation of the classical maximum
flow problem [41]. Given the location matrix X ∈ Rh×w,
we reconstruct X as the graph, named as GraphX,λ, based
on min-cost max-flow problem. In GraphX,λ, the numbers
on edges indicate the edges costs; the edges costs are the
location distances between the start and the end locations,
multiplied by λ; the locations costs are the negative absolute
values of the corresponding location information. An exam-
ple of the graph is shown in Figure 4. The main elements of
this graph are described as:

• Nodes: locations in X = Xc got in each iteration of
Algorithm 1.

• Edge: an edge from ∀lm at time t to ∀ln at time t+ 1,
where m,n ∈ [h], t ∈ [w − 1].

• Costs: the cost of location li is −|li|2, where i ∈ [h].
The cost of an edge form lm at time t to ln at time
t+ 1 is λ|m− n|, where λ > 0.

• Capacity: the capacity of both edges and nodes is 1.

The main idea is to find the disjoint trajectories via the
GraphX,λ, which correspond to the support of X . For any
fixed λ, a solution of the min-cost max-flow problem on the
graph includes a subset of the locations. These locations
correspond to a support with exactly |T| locations per time
slice that minimize the cost of −||XS ||22 + λ · STEMD(S),
where −||XS ||22 is the cost of the location nodes. Since the
paths in S do not intersect vertically, they represent a min-

Fig. 4. A location matrix X and the corresponding reconstructed graph:
GraphX,λ, where t = 3, |T| = 2. The numbers on edges indicate the
edges costs. And the edges costs are the location distances between
the start and the end locations, multiplied by λ. The locations costs are
the negative absolute values of the corresponding location information.
The capacity of both nodes and edges is 1.

cost matching for the locations in S. Hence, the cost of edges
between columns of X sums up to λ · STEMD(S).

Note that ||X−XS ||22 = ||X||22−||XS ||22. Since ||X||22 does
not depend on S, minimizing ||X −XS ||22 + λ · STEMD(S)
with respect to S is equivalent to minimizing −||XS ||22 +
λ · STEMD(S), which means the min-cost graph solves a
Lagrangian relaxation of the original problem. Then, the
next important question is how to select the parameter λ,
which defines a trade-off between STEMD and approxi-
mation location error. For any fixed λ, the min-cost graph
provides the optimal solution to the Lagrangian relaxation
[42]. Moreover, we show that we can find such a good loca-
tion support efficiently via a binary search over λ. And the
details of DOWN-approximation Trajectories are presented
in Algorithm 3. In this algorithm, % and δ are two constant
parameters and we assume that GRAPH(GraphX,λ) returns
the support of locations corresponding to an integral min-
cost graph in GraphX,λ. Theorem 3 presents the approx-
imation results of the DOWN-approximation Trajectories
algorithm, and Theorem 4 presents the time complexity of
this algorithm.

Algorithm 3 DOWN-approximation Trajectories
1: Input: location matrix X = Xc obtained in each itera-

tion of Algorithm 1, Θ, parameters % and δ.
2: Output: S.
3: lmin = minli∈X |li|2, λ0 = lmin

2wh2 , η = lmin

whh %;
4: S = GRAPH(GraphX,λ0);
5: if there is a S ∈ M(k,T) and ||X −XS ||2 = 0 then
6: return S;
7: λright = 0, λleft = ||X||22;
8: while λleft − λright > η do
9: λm = (λleft − λright)/2;

10: S = GRAPH(GraphX,λm);
11: if STEMD(S) ≥ Θ and STEMD(S) ≤ δΘ then
12: return S;
13: if STEMD(S) > δΘ then λright = λm;
14: else λleft = λm;
15: end while
16: Return S = GRAPH(GraphX,λleft

).

Theorem 3. Let S be the location support got from Algorithm 3,
O be the approximation error of the best location support under

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

7

the support of STEMD no more than Θ, δ > 1, % > 0, Sleft =
GRAPH(GraphX,λleft

), Sright = GRAPH(GraphX,λright
),

Then the following two results can be got: (1) ||X −XS ||22 ≤ O
s.t. Θ ≤ STEMD(S) ≤ δΘ; (2) ||X −XS ||22 ≤

δ+δ%−%
δ−1 O s.t.

STEMD(S) ≤ Θ.

Proof. (1) If the S is returned in line 6 of the Algorithm 3,
the first result is satisfied obviously. When the S is returned
in line 12 of Algorithm 3, Θ ≤ STEMD(S) ≤ δΘ. Moreover,
||X − XS ||22 + λmidSTEMD(S) ≤ minS′∈M(Θ,|T|) ||X −
XS′ ||22 + λmidSTEMD(S

′
) ≤ O + λmidΘ. Then we can get

||X −XS ||22 ≤ O.
(2) When S is returned in the last line of Algorithm 3,

λleft − λright > η. In the process of iterations, we keep two
invariants: 1) STEMD(Sleft) ≤ Θ; 2) STEMD(Sright) ≥
δΘ. Based on the GRAPH(GraphX,λ), we can get:

||X −XSright ||
2
2 + λrightSTEMD(Sright) ≤ O + λrightΘ

λrightδΘ ≤ O + λrightΘ

λright ≤
1

δΘ−Θ
O.

(16)

At the end of the iteration, we get λleft − λright < η,
which is equivalent to λleft − λright <

lmin

whh %. Based on
GRAPH(GraphX,λ), we can also get:

||X −XSleft ||
2
2 + λleftSTEMD(Sleft) ≤ O + λleftΘ

||X −XSleft ||
2
2 ≤ O + λleftΘ

≤ O + (λright +
lmin
whh

%)Θ.

(17)

Combining Eqs. (16) and (17), we can get:

||X −XSleft ||
2
2 ≤

δ

δ − 1
O +

lmin
whh

%Θ

≤ δ

δ − 1
O + %lmin

≤ δ + δ%− %
δ − 1

O.

(18)

As a result, we prove the second result.

Theorem 4. The time complexity of DOWN-approximation Tra-
jectories is O(|T|wh2(log(wh/%) + log(lmax/lmin))), where
lmax = maxli∈X |li|2, lmin = minli∈X |li|2, i ∈ [h], % > 0.

Proof. Since the capacity of all edges and location
nodes is 1, we focus on finding |T| trajectories to
get the min-cost graph. Each trajectory in X can be
found in O(wh2) time [43]. Then, to find the best λ ,
the upper bound of the total number of iterations is:
log
||X||22−0

ε = log
wh2||X||22
%lmin

≤ logw
2h3lmax

%lmin
≤ logw

3h3

% +

log lmax

lmin
≤ 3logwh% + 3log lmax

lmin
. In summary, the total run-

time of the DOWN-approximation Trajectories algorithm is
O(|T|wh2(log(wh/%) + log(lmax/lmin))).

4.4 Theoretical Analysis of iTracker
This section analyzes the convergence property, the re-
covered trajectory signal estimates for various number of
released trajectories, and the time complexity of iTracker.

Theorem 5 (Convergence of iTracker). Let ∆i = X − Xi

for various number of released trajectories, where Xi is the result
estimated by iTracker in iteration i, then,

||∆i+1||2 ≤ ω||∆i||2 + ξ||τ ||2, (19)

where ω = (1 +CD)[ρ+ (1− (CU(1− ρ)− ρ)2)1/2], ξ = (1 +

CD)[(1+CU)(1+ρ)1/2

CU(1−ρ)−ρ + (1+CU)(1+ρ)1/2(CU(1−ρ)−ρ)
(1−(CU(1−ρ)−ρ)2)1/2

+(1+ρ)1/2].

Proof. From the iTracker, Xc = Xi + UP(Xb). Based
on the triangle inequality, for various number of released
protected trajectories, ||∆i+1||2 can be upper bounded as:

||∆i+1||2 ≤ (1 + CD)||∆i −UP(MTM∆i + MT τ)||2. (20)

Furthermore, let Ψ = supp(UP(Xb)), we can get the up-
per bound: ||∆i,Ψc ||2 ≤ (1− (CU(1− ρ)− ρ)2)1/2||∆i||2 +

[(1+CU)(1+ρ)1/2

CU(1−ρ)−ρ + (1+CU)(1+ρ)1/2(CU(1−ρ)−ρ)
(1−(CU(1−ρ)−ρ)2)1/2

]||τ ||2 (~), where
∆i,Ψc is the set of coordinates in the complement of Ψ in ∆i.
Then based on RIP and (~), ||∆i −UP(MTM∆i + MT τ)||2
can be upper bounded as:

||∆i −UP(MTM∆i + MT τ)||2
≤ [(1− (CU(1− ρ)− ρ)2)1/2 + ρ]||∆i||2

+ [
(1 + CU)(1 + ρ)1/2(CU(1− ρ)− ρ)

(1− (CU(1− ρ)− ρ)2)1/2
]||τ ||2

+ [
(1 + CU)(1 + ρ)1/2

CU(1− ρ)− ρ]||τ ||2

+ [(1 + ρ)1/2]||τ ||2.

(21)

Combining the above, we can get the (19) [39].

In (19), the second item of the right side of this inequality
can be ignored when there is no noise, and then we can only
focus on the factor ω. In order to achieve the convergence ,
ω needs to be smaller than 1. Namely:

ω = (1 + CD)[ρ+ (1− (CU(1− ρ)− ρ)2)1/2] < 1. (22)

Note that we can make ρ as small as we desire since
this assumption only affects the measurement bound by
a constant factor. Therefore, for guaranteed convergence
of various number of released trajectories, the condition
C2

U >
C2

D+2CD

(1+CD)2 must hold.
iTracker uses two approximation algorithms (UP-

approximation Trajectories and DOWN-approximation Tra-
jectories) to bounce between upper bound and lower bound
and to reduce the noises in each iteration to find the
best recovered multiple trajectories simultaneously from
the released data protected by differential privacy. Finally,
iTracker converges for different number of trajectories as
discussed in Theorem 5. Furthermore, the convergence of
iTracker implies that this approach quickly recovers esti-
mated trajectories for various number of released trajecto-
ries. Formally, we present the Theorem 6.

Theorem 6. Let X be a true optimum, iTracker returns a signal
estimate X̂ such that supp(X̂) ∈ M(Θ, |T|) and

||X − X̂||2 ≤ (
1− ω + ξ

1− ω
)||τ ||2 (23)

after i = dlog(||X||2/||τ ||2)/log(1/ω)e iterations. Moreover,
the runtime of iTracker can be written as:

O((T + |T|wN(Θ + log
N

%
+ log

lmax
lmin

))log
||X||2
||τ ||2

), (24)

where T is the time complexity of one execution of the subproblem
in Line 5 and Line 6 in Algorithm 1, N = w ∗ h is the number of

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

8

elements in X .

Proof. (1) Based on the Theorem 5 and the simple induc-
tive argument which are applicable to various number of
released trajectories, we can get that:

||X −Xi+1||2 ≤ ωi||x||2 + ξ||τ ||2
i∑

j=0

ωj . (25)

After i = dlog(||X||2/||τ ||2)/log(1/ω)e iterations,
ωi||X||2 ≤ ||τ ||2 can be derived. Further, the bound
of

∑t
j=0 ω

j can be bounded by 1/(1 − ω). Combining the
above, we can get (23).

(2) The time complexities of the UP and DOWN ap-
proximations are O(|T|wh2Θ) and O(|T|wh2(log(wh/%) +
log(lmax/lmin))), respectively. The time complexity of one
iteration in Algorithm is O(T + |T|wN(Θ + logN% +

log lmax

lmin
)), and the total number of the iterations is

dlog(||X||2/||τ ||2)/log(1/ω)e. The overall time complexity
follows.

5 EXPERIMENTS

This section evaluates the effectiveness and efficiency of the
proposed approach based on comprehensive experiments
using two real-world datasets.

5.1 Experimental Setup
Datasets: In experiments, two real data sources (Geolife and
Gowalla) are used, the details of which are described below.

Geolife: Geolife is collected from 182 users from April
2007 to August 2012. This dataset is represented by a series
of tuples including latitude, longitude and time, and records
a wide range of users’ movements. 17,621 trajectories with
the total duration of 50,176 hours and the total distance
of 1,292,951 kilometers are contained in this dataset. 91.5
percents of the trajectories are logged in a relatively dense
representation, such as every 5 ∼ 10 meters or every 1 ∼ 5
seconds per location. In experiments, we randomly select
100 original trajectories from this dataset, each of which
contains at least 100 sampling points, to train our method
and baseline methods. Moreover, these selected original
trajectories are used as the ground truth to evaluate all the
comparison methods in the experiments.

Gowalla: Gowalla is a location-based social network-
ing website. In this website, users share their locations by
checking-in. There are 6,442,890 checking-in locations of
196,586 users over the period of February 2009 to October
2010 in this dataset. We select all the records in Los An-
geles as the ground truth to train our approach and the
competitive approaches, with the map partitioned into the
cells of 0.9 × 0.9 km2. Moreover, check-ins are logged in a
relatively low frequency, such as every 1 ∼ 50 minutes. The
difference in Gowalla dataset and Geolife dataset allows for
a fair evaluation of our approach.

Protection Method: In the experiments, differential pri-
vacy based on Laplace mechanism is used to perturb loca-
tions and protect the real trajectories. The desired differen-
tial privacy parameter ε is set as 0.1, 0.2, ..., 0.9 respectively.
For different trajectories, we can have different privacy-
preservation setting based on different ε. In this work, we

use the same privacy-preservation setting as a case study
for ease of comparison among different methods.

iTracker: In this work, an efficient multiple trajectory
recovery framework, named as iTracker, is proposed based
on the trajectory structured sparsity model. Specifically, in
our proposed method, M is an i.i.d. Gaussian matrix. We set
Θ = 10, 000 by default. Moreover, we note that, to obtain
the best performance of our proposed method iTracker, we
try a set of different Θ values (Θ = 1,000, 2,000, 3,000,...,
20,000) and return the best.

Comparison Methods: We compare iTracker with three
baseline methods. Since there is no method for recovering
multiple trajectories simultaneously, we propose to combine
the traditional classification methods and single trajectory
prediction methods as the baseline methods to implement
multiple trajectories recovery.

The three baseline methods have two main steps. First,
K Nearest Neighbor (KNN), Support Vector Machine (SVM)
and K-means are selected as the classification methods to
assign the locations into different trajectories. Then, we
infer the trajectories based on the results of classifications.
We compare against Markov [44], PutMode (Prediction of
uncertain trajectories in Moving objects databases) [45] and
a recently proposed method, AT [24]. Specifically, the order-
k Markov approach supposes that the locations can be
predicted based on the context, namely, the sequence of
the k most recent records in the location history. Moreover,
the underlying Markov model represents the states as the
contexts, and the transitions are used to represent the pos-
sible locations which follow the context [44]. PutMode is a
framework proposed for predicating uncertain trajectories
based on Continuous Time Bayesian Networks (CTBNs) in
databases of moving objects [45]. AT provides the adversary
with both the locations where users conduct activities and
the information when users stay at each of these locations
[24]. The attack is formulated as an optimization problem
based on Bayesian theorem. We strictly follow the strategies
recommended by the authors in their papers to estimate
the model parameters. We use 10-fold cross validation to
identify the best combination of all the related parameters.

Performance Metrics: In the experiments, trajectory sim-
ilarity measures (Euclidean distance and Hausdorff dis-
tance) and classification performance measure (F-measure)
are used to evaluate the performance, where F-measure
provides an integrated result of precision and recall.

(1) Trajectory Similarity Measures: Two measures are
selected to compare the performance of our method and the
baseline methods.

Euclidean distance, also known as L2-norm, is a dis-
tance measure in literature for measuring trajectory similar-
ity. Given two trajectories T1, T2, the Euclidean distance
d(T1, T2) can be calculated as:

d(T1, T2) =
1

n

n∑
i=1

d(t1,i − t2,i), (26)

where d(t1,i − t2,i) is the distance on spatial space.
Hausdorff distance. It is widely used to express the spa-

tial similarity between two trajectories. For two trajectories
T1 and T2, the Hausdorff distance, D(T1, T2), is defined as:

D(T1, T2) = max{d(T1, T2), d(T2, T1)}, (27)

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

9

(a) The average F-measure of KNN. (b) The average F-measure of SVM. (c) The average F-measure of K-means.

Fig. 5. The comparison of the F-measure among KNN, SVM and K-means approaches based on the Geolife dataset and Gowalla dataset.

where
d(T1, T2) = max

lT1
∈T1

min
lT2
∈T2

||lT1
− lT2

||. (28)

(2) Classification Performance Measure: F-measure,
based on the precision and recall, is used to measure the
results of classification. We define ∂(X) as the set of the
locations in X , X0 as the set of locations of true trajectories
and X1 as the set of locations of detected trajectories by
a specific method. Then the precision (p), recall (r) and F-
measure can be defined as:

p =
|∂(X1)

⋂
∂(X0))|

|∂(X1)| , r =
|∂(X1)

⋂
∂(X0))|

|∂(X0)| ,

F−measure =
2× p× r

p + r
.

(29)

5.2 Experimental Results and Analyses

Comparison of Recovery Accuracy: Using Geolife and
Gowalla datasets, we run all competition approaches under
different protective degrees respectively. The privacy protec-
tion based on Laplace mechanism perturbs the locations of
original trajectories. The ε, as a privacy budget, controls the
protection intensity. The smaller its value is, the stronger the
privacy guarantee is. The results are shown in Figure 5-10.

(1) F-measure: The comparison of the F-measure based
on different methods is shown in Figure 5. In Figure 5(a),
we can see that the results of KNN classification become
better with both Geolife dataset and Gowalla dataset when
ε increases from 0.1 to 0.9. Specifically, when ε equals to 0.7,
0.8 and 0.9 respectively, there is a better classification with
Gowalla dataset. However, with the ε decreasing from 0.7 to
0.1, the classification results become worse. The main reason
for this is that the strength of protection become stronger
with smaller ε. The locations of all trajectories largely devi-
ates from their original positions and are intricately mixed
together. Moreover, when ε increases from 0.1 to 0.9, the F-
measure of SVM slowly increase with fluctuations as shown
in Figure 5(b) and there are also fluctuations of the F-
measure of K-means as shown in Figure 5(c). As shown in
Figure 5, the KNN performs the best classification results
among these three methods, especially, when the ε grows
from 0.6 to 0.9.

Then, based on these results of classification, we train
the traditional Markov method, PutMode method and AT
method for each trajectory recovery. Moreover, we also train
our proposed method on the Geolife and Gowalla datasets.
The average Euclidean distance and the average Hausdorff

distance of all trajectories, normalized to [0, 1], are presented
in Figure 6, 7, 8 and 9 respectively.

(2) Euclidean Distance: Using both Geolife dataset and
Gowalla dataset, we can see that even when the results of
all methods become worse with increasing protection grad-
ually, our proposed approach retains the best performance
under different ε. Specifically, based on KNN classification
method, there is a better classification result that F-measure
is nearly 0.9 when the ε is set from 0.7 to 0.9 as shown in Fig-
ure 5. At this time, the classification exerts little impacts on
the recovery since almost all locations are correctly assigned
to trajectories that they belong to. Moreover, all the average
Euclidean distance of the baseline methods with KNN are
smaller than the baseline methods with other classification
methods. Nevertheless, our proposed method yields the
best result since it can capture the interdependency of the lo-
cations and adaptively group trajectories. With the decrease
of the ε, the results of classification become worse, which
further reduces the accuracy of the recovery. Moreover,
we can see that the classification results of SVM and K-
means are not as good as the results of KNN approach,
and the average Euclidean distance based on SVM method
or K-means method are larger than the distance based
on KNN classification method respectively. Moreover, the
results show that ε exerts a great impact on the accuracy of
recovery in both Geolife dataset and Gowalla dataset.

(3) Hausdorff Distance: The results of Hausdorff dis-
tance are shown in Figure 6(b), Figure 6(d), Figure 7(b),
Figure 7(d), Figure 8(b) and Figure 8(d). The ε shows a
greater impact on the results of Hausdorff distance in both
Geolife dataset and Gowalla dataset. Specifically, with the
increase of the ε, the Hausdorff distance based on KNN
classification method sharply decreases in Gowalla dataset.
Although all baseline methods present the similar results
when ε equals to 0.5, 0.6, 0.7, 0.8 and 0.9 as shown in both
Figure 6(b) and Figure 6(d), our proposed method obtains
shorter Hausdorff distance and shows the best performance
in Gowalla dataset. Moreover, as shown in Figure 7 and Fig-
ure 8, the average Hausdorff distance of baseline methods
based on the results of SVM or K-means seems to be not
as good as the Hausdorff distance of the methods based on
the results of KNN approach. To sum up, iTracker gets the
shorter distance than all baseline methods and obtains the
best recovery effect among all comparison approaches, due
to the fact that iTracker can effectively capture the interde-
pendency of the locations to accurately group trajectories.

(4) Sensitivity to the Parameter Θ: We set Θ = 104 by

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

10

(a) Euclidean distance vs ε based
on Geolife dataset.

(b) Hausdorff distance vs ε based
on Geolife dataset.

(c) Euclidean distance vs ε based on
Gowalla dataset.

(d) Hausdorff distance vs ε based
on Gowalla dataset.

Fig. 6. The comparison between iTracker and baseline methods with KNN under different ε based on the Geolife dataset and Gowalla dataset.

(a) Euclidean distance vs ε based
on Geolife dataset.

(b) Hausdorff distance vs ε based
on Geolife dataset.

(c) Euclidean distance vs ε based on
Gowalla dataset.

(d) Hausdorff distance vs ε based
on Gowalla dataset.

Fig. 7. The comparison between iTracker and baseline methods with SVM under different ε based on the Geolife dataset and Gowalla dataset.

(a) Euclidean distance vs ε based
on Geolife dataset.

(b) Hausdorff distance vs ε based
on Geolife dataset.

(c) Euclidean distance vs ε based on
Gowalla dataset.

(d) Hausdorff distance vs ε based
on Gowalla dataset.

Fig. 8. The comparison between iTracker and baseline methods with K-means under different ε based on the Geolife dataset and Gowalla dataset.

default. Moreover, we note that, to obtain the best perfor-
mance of our proposed method iTracker and evaluate the
sensitivity to the parameter Θ, we try a set of different Θ
values (Θ = 1,000, 2,000, 3,000,..., 20,000). The sensitivity of
Euclidean distance and Hausdorff distance to the parameter
Θ based on Geolife dataset and Gowalla dataset is shown
in Figure 9. We can see that both the Euclidean distance
and the Hausdorff distance decrease with the increase of the
parameter Θ. When the parameter Θ reaches a certain value,
the best value is obtained. After that, with the increase of
the parameter Θ, the results will not change. Specifically,
when the parameter Θ is close to 13,000, the best distance
results are achieved based on the Geolife dataset. However,
based on the Gowalla dataset, the best distance results
can be achieved when Θ is close to 12,000. Moreover, the
Gowalla dataset is more sensitive to parameter Θ than Geo-
life dataset. Overall, we achieve better distance results using

Gowalla dataset compared with the results using Geolife
dataset.

(5) Comparison of the Time Cost: Figure 10 shows the
time costs of iTracker and all competitive baseline methods
based on KNN, SVM and K-means on the two benchmark
datasets (Geolife dataset and Gowalla dataset). The results
indicate that our method is faster than PutMode method
which is based on KNN, SVM or K-means classification
method in both Geolife dataset and Gowalla dataset. Fur-
thermore, iTracker runs faster than any other methods based
on K-means approach. The main reason is that iTracker
eliminates the dependency on classification methods, sim-
plifies the recovery process, and retains competitive time
complexity. For instance, PutMode and classification meth-
ods based baseline approach include steps such as location
classification, continuous time Bayesian networks construc-
tion, trajectories clear up, and trajectories step prediction.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

11

(a) The Euclidean distance of iTracker under different Θ. (b) The of Hausdorff distance of iTracker under different Θ.

Fig. 9. The comparison of Euclidean distance and Hausdorff distance of iTracker under different Θ based on the Geolife and Gowalla datasets.

(a) The runtime of iTracker and baseline
methods with KNN approach.

(b) The runtime of iTracker and baseline
methods with SVM approach.

(c) The runtime of iTracker and baseline
methods with K-means approach.

Fig. 10. The comparison of runtime between iTracker and baseline methods with different classfication methods (KNN, SVM and K-means) based
on the Geolife dataset and Gowalla dataset.

(a) Trajectory recovery based on
iTracker.

(b) Trajectory recovery based on
Markov and KNN.

(c) Trajectory recovery based on
PutMode and KNN.

(d) Trajectory recovery based on
AT and KNN.

Fig. 11. An illustration of a randomly selected original trajectory and the recovered trajectories based on iTracker and baseline methods using
Geolife dataset.

On the other hand, iTracker can directly predict multiple
trajectories simultaneously based on our proposed struc-
tured sparsity model. Although the runtime of our proposed
method is sometimes longer than Markov method, our
approach achieves much higher recovery accuracy within
acceptable runtime. As a result, iTracker presents the best
overall performance compared with the existing methods
considering the efficiency and accuracy based on both Geo-
life dataset and Gowalla dataset.

5.3 Case Study: Trajectory Recovery
An illustration of the original trajectory, perturbed trajectory
and recovered trajectories based on the competitive meth-
ods, including iTracker, Markov+KNN, PutMode+KNN and
AT+KNN, in Geolife dataset are shown in Figure 11. Here,
KNN is selected as the classification method due to its
performance edge against SVM and K-means. We randomly
select a section of a trajectory from original Geolife dataset.
The original trajectory and perturbed trajectory have been

shown in each subfigure of Figure 11. As shown in these
subfigures, the locations of the original trajectory are per-
turbed and the original trajectory is changed. For instance,
the location 1) in the original trajectory is replaced by the
location 2) in the perturbed trajectory shown as Figure 11(a).
The recovered trajectories based on different recovery meth-
ods have been presented in different subfigures of Figure
11. We can see that the trajectory recovered by iTracker
resembles the original trajectory more than the trajectories
recovered by all baseline methods. For example, the loca-
tions of recovered trajectory based on Morkov+KNN largely
deviate from the original trajectory locations as shown in
Figure 11. The main reason for the underperformance is
due to the misclassification of some locations. Even worse,
the Markov transition matrix used to recover trajectories
is constructed by wrong locations with the unavoidable
classification error and the perturbed/noisy locations with-
out any consideration of suppressing noise and alleviating
errors.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

12

6 CONCLUSIONS AND FUTURE WORK

This paper presents a completely new angle of attacking
a standard location protection mechanism based on dif-
ferential privacy, and implements multiple trajectories re-
covery simultaneously from perturbed locations. iTracker,
an efficient framework, is designed to build the trajectory
structured sparsity model and execute the model projection
oracles to find the best approximation for the multiple
trajectories. Furthermore, the convergence and accuracy
of the proposed approach are theoretically analyzed and
experimentally evaluated. In future, we will consider the
overlapped trajectories and focus on the design of trajectory
protection methods to protect against iTracker.

REFERENCES

[1] M.-P. Pelletier, M. Trépanier, and C. Morency, “Smart card data use
in public transit: A literature review,” Transportation Research Part
C: Emerging Technologies, vol. 19, no. 4, pp. 557–568, 2011.

[2] R. Clarke, “Person location and person tracking-technologies, risks
and policy implications,” Information Technology and People, vol. 14,
no. 2, pp. 206–231, 2001.

[3] B. Lee, J. Oh, H. Yu, and J. Kim, “Protecting location privacy using
location semantics,” in SIGKDD, pp. 1289–1297, ACM, 2011.

[4] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” in 2011 IEEE Symposium on Secu-
rity and Privacy, pp. 247–262, IEEE, 2011.

[5] Y. Wang, D. Xu, X. He, C. Zhang, F. Li, and B. Xu, “L2p2: Location-
aware location privacy protection for location-based services,” in
INFOCOM, pp. 1996–2004, IEEE, 2012.

[6] Y.-S. Chen, T.-T. Lo, C.-H. Lee, and A.-C. Pang, “Efficient
pseudonym changing schemes for location privacy protection in
vanets,” in ICCVE, pp. 937–938, IEEE, 2013.

[7] V. A. Kachore, J. Lakshmi, and S. Nandy, “Location obfuscation
for location data privacy,” in 2015 IEEE World Congress on Services,
pp. 213–220, IEEE, 2015.

[8] Y. Cao and M. Yoshikawa, “Differentially private real-time data
release over infinite trajectory streams,” in MDM, pp. 68–73, 2015.

[9] C. Yin, J. Xi, R. Sun, and J. Wang, “Location privacy protection
based on differential privacy strategy for big data in industrial
internet of things,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 8, pp. 3628–3636, 2017.

[10] J. Hua, Y. Gao, and S. Zhong, “Differentially private publication
of general time-serial trajectory data,” in INFOCOM, pp. 549–557,
IEEE, 2015.

[11] W. Qardaji, W. Yang, and N. Li, “Differentially private grids for
geospatial data,” in ICDE, pp. 757–768, IEEE, 2013.

[12] Y. Xiao and L. Xiong, “Protecting locations with differential
privacy under temporal correlations,” in Proceedings of the 2015
ACM SIGSAC Conference on Computer and Communications Security,
pp. 1298–1309, ACM, 2015.

[13] K. Gu, L. Yang, and B. Yin, “Location data record privacy protec-
tion based on differential privacy mechanism,” Information Tech-
nology And Control, vol. 47, no. 4, pp. 639–654, 2018.

[14] P. Xiong, T. Zhu, L. Pan, W. Niu, and G. Li, “Privacy preserving in
location data release: A differential privacy approach,” in Pacific
Rim International Conference on Artificial Intelligence, pp. 183–195,
Springer, 2014.

[15] M. E. Gursoy, L. Liu, S. Truex, and L. Yu, “Differentially private
and utility preserving publication of trajectory data,” IEEE Trans-
actions on Mobile Computing, 2018.

[16] R. Chen, B. Fung, and B. C. Desai, “Differentially private trajectory
data publication,” arXiv preprint arXiv:1112.2020, 2011.

[17] A. Mannini and A. M. Sabatini, “Accelerometry-based classifica-
tion of human activities using markov modeling,” Computational
Intelligence and Neuroscience, vol. 2011, p. 4, 2011.

[18] E. Kim, S. Helal, and D. Cook, “Human activity recognition and
pattern discovery,” IEEE Pervasive Computing, vol. 9, no. 1, p. 48,
2010.

[19] M. Götz, S. Nath, and J. Gehrke, “Maskit: Privately releasing
user context streams for personalized mobile applications,” in
SIGMOD, pp. 289–300, ACM, 2012.

[20] L. Liao, D. J. Patterson, D. Fox, and H. Kautz, “Learning and
inferring transportation routines,” Artificial Intelligence, vol. 171,
no. 5-6, pp. 311–331, 2007.

[21] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Next place
prediction using mobility markov chains,” in Proceedings of the
1st Workshop on Measurement, Privacy and Mobility, pp. 1–6, ACM,
2012.

[22] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional random
fields for activity recognition,” in Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Systems,
p. 235, ACM, 2007.

[23] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[24] X. Chen, A. Mizera, and J. Pang, “Activity tracking: A new attack
on location privacy,” in 2015 IEEE Conference on Communications
and Network Security (CNS), pp. 22–30, IEEE, 2015.

[25] N. Nguyen and Y. Guo, “Comparisons of sequence labeling algo-
rithms and extensions,” in ICML, pp. 681–688, ACM, 2007.

[26] X. Jin, R. Zhang, Y. Chen, T. Li, and Y. Zhang, “Dpsense: Differ-
entially private crowdsourced spectrum sensing,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 296–307, ACM, 2016.

[27] X. Jin and Y. Zhang, “Privacy-preserving crowdsourced spectrum
sensing,” IEEE/ACM Transactions on Networking (TON), vol. 26,
no. 3, pp. 1236–1249, 2018.

[28] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, “Wherenext:
a location predictor on trajectory pattern mining,” in SIGKDD,
pp. 637–646, ACM, 2009.

[29] K. Farrahi and D. Gatica-Perez, “Discovering routines from large-
scale human locations using probabilistic topic models,” TIST,
vol. 2, no. 1, p. 3, 2011.

[30] D. E. Riedel, S. Venkatesh, and W. Liu, “Recognising online spa-
tial activities using a bioinformatics inspired sequence alignment
approach,” Pattern Recognition, vol. 41, no. 11, pp. 3481–3492, 2008.

[31] O. Ossama and H. M. Mokhtar, “Similarity search in moving object
trajectories,” in Proceedings of the 15th International Conference on
Management of Data, pp. 1–6, 2009.

[32] M. Li, L. Zhu, Z. Zhang, and R. Xu, “Achieving differential privacy
of trajectory data publishing in participatory sensing,” Information
Sciences, vol. 400, pp. 1–13, 2017.

[33] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using
social network as a side-channel,” in CCS, pp. 628–637, ACM, 2012.

[34] E. Elsalamouny and S. Gambs, “Differential privacy models for
location- based services,” Transactions on Data Privacy, vol. 9, no. 1,
pp. 15–48, 2016.

[35] R. Dewri, “Local differential perturbations: Location privacy un-
der approximate knowledge attackers,” IEEE Transactions on Mo-
bile Computing, vol. 12, no. 12, pp. 2360–2372, 2013.

[36] N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi, “Op-
timal geo-indistinguishable mechanisms for location privacy,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 251–262, ACM, 2014.

[37] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: Differential privacy for
location-based systems,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, pp. 901–914,
ACM, 2013.

[38] E. Levina and P. Bickel, “The earth mover’s distance is the mallows
distance: Some insights from statistics,” in ICCV, vol. 2, pp. 251–
256, IEEE, 2001.

[39] C. Hegde, P. Indyk, and L. Schmidt, “Approximation algorithms
for model-based compressive sensing,” IEEE Transactions on Infor-
mation Theory, vol. 61, no. 9, pp. 5129–5147, 2015.

[40] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-
based compressive sensing,” IEEE Transactions on Information The-
ory, vol. 56, no. 4, pp. 1982–2001, 2010.

[41] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows:
theory, algorithms, and applications,” Journal of the Operational
Research Society, vol. 45, no. 11, pp. 791–796, 1993.

[42] A. Kyrillidis and V. Cevher, “Sublinear time, approximate model-
based sparse recovery for all,” arXiv preprint arXiv:1203.4746, 2012.

[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to algorithms, vol. 6. MIT press Cambridge, 2001.

[44] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating location pre-
dictors with extensive wi-fi mobility data,” in INFOCOM, vol. 2,
pp. 1414–1424, IEEE, 2004.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2972334, IEEE
Transactions on Dependable and Secure Computing

13

[45] S. Qiao, C. Tang, H. Jin, T. Long, S. Dai, Y. Ku, and M. Chau,
“Putmode: prediction of uncertain trajectories in moving objects
databases,” Applied Intelligence, vol. 33, no. 3, pp. 370–386, 2010.

Minglai Shao is a PhD candidate in Beijing Ad-
vanced Innovation Center for Big Data and Brain
Computing, School of Computer Science and
Engineering, Beihang University, Beijing, China.
He was a visiting scholar in the State University
of New York at Albany in 2018. He received the
M.S. degree from Guangxi University in 2015.
His research interests include trajectory privacy,
anomaly detection, botnet detection, graph min-
ing, event detection and forecasting and ma-
chine learning.

Jianxin Li is a professor in Beijing Advanced
Innovation Center for Big Data and Brain Com-
puting, School of Computer Science and Engi-
neering, Beihang University, Beijing, China. He
received the PhD degree from Beihang Univer-
sity in 2008. He was a visiting scholar in the Ma-
chine Learning Department of CMU in 2015, and
a visiting researcher of MSRA in 2011. His cur-
rent research interests include big data, anomaly
detection, machine learning.

Qiben Yan is an Assistant Professor in Depart-
ment of Computer Science and Engineering of
Michigan State University. He received his Ph.D.
in Computer Science department from Virginia
Tech, an M.S. and a B.S. degree in Electronic
Engineering from Fudan University in Shang-
hai, China. His current research interests include
wireless communication, wireless network secu-
rity and privacy, mobile and IoT security, and big
data privacy.

Feng Chen received the PhD degree in com-
puter science from Virginia Tech, Blacksburg,
Virginia, in 2012. He is an associate professor
in Department of Computer Science, University
of Texas at Dallas, USA. He is a recipient of
the 2018 NSF CAREER award. His research
interests include anomalous pattern detection,
event detection and forecasting, graph mining,
and machine learning.

Hongyi Huang is currently a Ph.D. student in In-
stitute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China. He received
his B.S. degree in Computer Science from Bei-
hang University, Beijing, China. His current re-
search topics cover network function virtualiza-
tion and data-driven network management.

Xunxun Chen received the PhD degree in
School of Computer Science, Harbin Institute
of Technology, Harbin, China. He is a profes-
sor in CNCERT/CC, Beijing, China. His current
research interests include anomaly pattern de-
tection, intelligent transportation, event detection
and forecasting, machine learning and data min-
ing.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 26,2021 at 01:46:51 UTC from IEEE Xplore. Restrictions apply.

