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A Bisubmodular Approach to Event Detection and
Prediction in Multivariate Social Graphs

Shuai Zhang™', Haoyi Zhou, Feng Chen, and Jianxin Li

Abstract— A burst event on a social graph is usually framed
as an anomalous and unexpected pattern that is characterized
as a compact or correlated subset of affected vertices, which is a
subgraph. Subgraph detection becomes a serious problem when
social graphs involve multiple attributes (i.e., multivariate graph).
Most existing methods are not capable of handling the feature
selection and subgraph detection problems simultaneously on
the multivariate graph. In this article, we propose multivariate
anomalous subgraph scanning (MASS), a generic model that
detects anomalous events on the multivariate social graph. First,
we reformulate the traditional nonparametric statistics as a new
statistical objective function that simultaneously measures the
significance of a vertices subset and an attributes subset to
generate an indicator of ongoing or upcoming events. Then,
we reformulate the objective function as the difference between
two bisubmodular functions and approximate it with a bisubmod-
ular objective function, which can be optimized in linear time,
with an analysis of its theoretical properties. We demonstrate
the performance of our proposed method using two burst event
detection and prediction tasks from the real world.

Index Terms— Anomaly detection, bisubmodular, graph, social
network.

I. INTRODUCTION
ITH the development of Mobile Internet, social
microblogs, such as Weibo, Twitter, Facebook, and
Instagram, have played a critical role for people to get in touch
and discuss daily events [1]-[4]. Furthermore, an increasing
number of governments, enterprises, and individuals register
social network accounts to spread and acquire particular
events. Comparing with the traditional event propagation such
as newspaper, notice, and message, microblogs provide a much
faster way to transmit information and also an interactive
tunnel cooperating with many different kinds of “super”
information.
This article aims to contribute to the detection and predic-
tion problem of domain-specific events, such as air pollution
events, disease outbreak events, and crime hot-spot events.
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Fig. 1. Our proposed approach focuses on searching a compact subset of
vertices (A) and a subset of features (B) that are jointly the most anomalous.
In comparison, most existing methods assume that all the features are relevant
and mainly focus on the subgraph detection process.

Social networks are naturally constructed as multivariate
graphs, whose vertices are entities (e.g., users and geographic
locations) and edges are relationships (e.g., follower and
spatial neighborhood) and attributes as features of nodes
(e.g., frequencies of domain-specific keywords). Given a mul-
tivariate social graph, events in the real world can be framed
as anomalous subgraphs on the social graph. Thus, the event
detection and prediction problem is to detect or forecast the
most anomalous subgraph (cluster) of the social graph, and
each subgraph refers to a detection of an ongoing event or a
prediction of an upcoming event.

Most of the existing methods of anomalous subgraph detec-
tion search for subgraphs with the most anomalous attributes
overall under the hypothesis that the set of relevant attributes
is already known. Burkom [5] converted the multivariate
subgraph detection problem into a univariate problem by
aggregating multiple attributes of each vertex to a simple
uni-variate. Kulldorff ef al. [6] proposed a multivariate scan
statistics method for disease surveillance problem, and they
calculated the individual log likelihoods as scores for every
attribute and summed up the scores of all attributes into
a single score. Lappas et al. [7] proposed a brunch-and-
bounding approach searching areas where the total frequency
of the pre-defined terms is abnormally higher than the outer
areas. Chen and Neill [1] calibrated multiple features of
each node of the graph into an empirical p-value through
a two-stage process. The empirical p-value of a node rep-
resents the probability of observing a new random sample
with more abnormal attributes than the present feature of the
node. In other words, they extract the empirical p-values as
features. However, representing multiple attributes with one
variable (such as p-value) has the potential to lose some useful
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information of the events of interests. Shao et al. [2] proposed
a high-efficiency evolution subgraph discovery method using
tree prior based on nonparametric statistics.

Different aggregation functions of multivariate attributes are
presented earlier, assuming that the predefined attributes are
mostly signal attributes implicitly. However, this assumption
is inappropriate for event detection and prediction in social
graphs as the dynamics of event-driven attributes. Differ-
ent events usually have different contexts, and the corre-
lated attributes are unpredictable. Therefore, the detection
of attributes, which are related to the ongoing or upcoming
events, becomes more difficult.

Actually, a lot of keywords in a large dictionary are
needed to be tracked, and usually, only a small subset of
keywords are related to a specific event. An aggregation
of all the attributes will be potentially dominated by the
majority of noise attributes. In terms of this, we consider
a different optimization approach to optimize an objective
function about “interestingness” or “anomalousness” over all
subsets of vertices and attributes. As shown in Fig. 1, we focus
on searching a compact subset of vertices and a subset of
features that are jointly the most anomalous. Moreover, this
optimization task involves a critical computational challenge:
the exhaustive search over all subsets of vertices and attributes
is computationally infeasible and leads to an exponential scale
as the number of attributes and vertices increases. To the
best of our knowledge, limited work has been performed
to solve this computational challenge. Neill [8] proposed a
heuristic algorithm to iteratively maximize the spatial scan
statistic functions over subsets of vertices and attributes in
a multivariate spatial graph until convergence. This algorithm
is sensitive to the initial settings and does not have known
theoretical properties on the quality of the detected subsets.

This article makes the following main contributions.

1) Proposing MASS Model: We propose a generic model
multivariate anomalous subgraph scanning (MASS)
to solve the detection and prediction problem of
domain-specific events on a multivariate social graph.
Events are detected and predicted as multidimensional
node subsets and attribute subsets, respectively. The fea-
ture significance of nodes and attributes is parameterized
with a nonparametric scan statistic, which is distribution
assumptions free.

2) Designing Approximation Process for MASS: We refor-
mulate the problem of MASS and prove that the opti-
mization problem is NP-hard. Then, we rewrite the
original objective function as the difference of two
bisubmodular functions, derive a tight bisubmodular
lower bound of the original objective function, and
propose a random greedy algorithm that optimizes the
lower bound in linear time. Our algorithm guarantees the
convergence to a local optimum within linear time under
certain conditions. We believe that we are the first to
detect a multivariate anomalous subgraph by optimizing
an approximated bisubmodular function.

3) Comprehensive Experiments: The effectiveness and effi-
ciency of MASS are validated via comprehensive exper-
iments on the Twitter data and Weibo data. The results

demonstrate that our method outperforms representative
competitive methods.

The structure of this article is organized as follows.
Section II presents the preliminaries on multivariate graph,
p-value, and nonparametric statistics. Section III presents the
proposed MASS model for MASS. Section IV presents a linear
time approximation algorithm to the MASS problem, with its
theoretical analysis. Section V presents the experiments on
the Weibo and Twitter data sets, and Section VI describes the
conclusion and future work.

II. PRELIMINARIES

In this section, three key relevant definitions are presented,
including multivariate graph, nonparametric scan statistics, and
bisubmodular.

A. Multivariate Graph

Definition 1 (Multivariate Graph G): A multivariate graph
G is defined as a directed graph G = (V, &, f), where V
represents the ground set of vertices, £ € V x )V represents
the edge set (relations), and f : V — RP represents a map
function that maps each vertex v to a D-dimensional feature

vector f(v), in which D denotes the total feature number.
In this article, we consider a snapshot graph G of Weibo and

Twitter in the present day as two case studies. In a multivariate
graph G, vertex v represents a user of Weibo or Twitter. The
p-value of the dth feature of vertex v is denoted as f;(v), and
it represents the frequency of keyword d in user v’s tweets in
the current day. For each feature d of vertex v, we estimate
the importance of this feature by the statistical p-value based
on its empirical distribution, denoted as py(v). The p-value
pa(v) is calculated as [1], [9]

1 T
pa@) = 2 D 1(f20") = fa@)). d=1.....D.
t=1

Intuitively, the p-value is an anomaly evaluation within the
range [0, 1]: the smaller the p-value, the higher anomalous
degree. We are ready to present the nonparametric statistics
for measuring the anomalousness of a group of p-values of
the vertex subset and feature subset.

B. Nonparametric Statistics

Definition 2 (Nonparametric Statistics [1]): S is a set of
p-values. The aggregation function over S is G(S), which
is a nonparametric scoring functions measuring the joint
significance of all p-values in S. G(S) is defined as

G(S) = ¢(a, Nu(S), N(S)) (&)

where a is a predefined significance level of p-values (0.05 by
default), N, (S) denotes the number of p-values in S which is
smaller or equal to @, and the function ¢ (a, Ny, N) satisfies
two intuitive properties defined in the following.

1) ¢ increases monotonically with Nj,.

2) ¢ decreases monotonically with both N and a.

In our model, ¢ can be any function that satisfies the
above-mentioned properties. To be specific in this article,
we use Berk—Jones (BJ) statistics [10] as an illustration since
many real-world applications show the effectiveness of BJ
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statistic in the anomalous subgraph detection [1], [11]-[13].
It is defined as

#BJ(Na(S), N(S), a) = N(S) x KL(Na (S)/N(S),a)  (2)
where KL is the Kullback—Leibler divergence defined as
KL(a, b) = alog(a/b) + (1 — a)log((1 — a)/(1 — b)).

The BJ statistics is the KL divergence between the observed
and expected proportions of p-values that are less than a.
It is the ratio of log likelihood on whether the empirical
p-values follow a uniform distribution or a piecewise constant
distribution. Berk and Jones [10] demonstrated that the BJ
statistic fulfills several optimality properties, and it has greater
power than any weighted Kolmogorov statistic.

III. MULTIVARIATE ANOMALOUS SUBGRAPH SCANNING

In this section, we generalize nonparametric statistics and
propose a multivariate subgraph scan statistic functions for
MASS

where A C V refers to a subset of vertices, B C {1,2,..., D}
refers to a subset of attributes, N(.) is the cardinality function,
and N(A) and N(B) are the sizes of subset A and subset B,
respectively. w (A, B,a) = > ca 4ep 1(pa(v) < a) denotes
the count of p-values among all p;(v) relevant to A and B that
are smaller or equal to a. Function ¢ is BJ statistic, which is
defined in Definition 2. We take the multivariate subgraph scan
statistic function Fg;(A, B) that is on the strength of the BJ
statistic [see (2)] as a case study. The model we proposed will
also be suitable for other multivariate subgraph scan statistic
functions

Fpy(A, B)
= ¢py(a, y(A, B,a), N(A) - N(B))
= N(A) - N(B) x KL(y (A, B,a)/(N(A) - N(B)), a).
Based on the scan statistic function as defined earlier,
we consider the following problem formulation.

Problem 1 (Multivariate Anomalous Subgraph Scanning):
Given a multivariate graph G = (V, &, f), find a subset of

vertices A C V and a subset of attributes B € {1,2,..., D}
that maximize the objective function
Fpy(A, B) — /- R(A) 4)

where F (A, B) is a multivariate subgraph scan statistic func-
tion [see (3)] measuring the level of anomalousness of the
subsets A and B, R(A) is a submodular function measuring
the compactness of the subgraph induced by A, the smaller
the value of D the more compact the subgraph, and /1 is a

tradeoff specified by the user.
The set function R(A) is submodular if it satisfies the

diminishing return property; for every X,Y €V with X C Y
and every x € V \ x, we have that D(X U {x}) — D(X) >
DY U {x}) — D(Y). A number of popular compactness
functions naturally satisfy the submodular property, including
the graph cut function [14], the summation of distances of
all pairs of vertices in A [15], and the connectivity function

that is “1 minus the number of connected components in A™:
R(A) = N(V)—(N(A)—c(A))+1, where c(A) is the number
of connected components in the subgraph G = (V, €a, f), €a
refers to the set of edges corresponding to A, and N(A)—c(A)
is the number of connected components of the subgraph G =
V\ A, Ea, f).

In order to reformulate the MASS problem as a new
form related to bisubmodular optimization, we define the
super ground set V. = V U {l,..., D} and allow A and
B to be subsets of V. When A ¢ V or B ¢ {1,..., D},
F(A,B)= F(ANV, BN{l,...,D}) and R(A) = D(ANY).
A biset function is bisubmodular if it satisfies the biset version
of the diminishing return property that will be introduced
next. Theorem 1 shows that the objective function of the
MASS problem can be reformulated as the difference between
two bisubmodular functions, and Theorem 2 presents two
important theoretical properties of the MASS problem.

Theorem 1 (Bisubmodular Reformulation): The objective
function of the MASS problem can be reformulated as the
difference between two bisubmodular functions

Fpy(A,B) — A-R(A) = Fi(A, B) — F2(A, B) (5)
where
Fi1(A, B)=—N(A)-N(B)log(N(A)-N(B))—w(A, B,a)loga
and

F>(A,B) = —w(A,B,a) -logw(A, B,a)
—(N(A) - N(B) — (A, B, a))log(l — a)
—(N(A)-N(B) —y(A, B,a))
- log(N(A) - N(B) — w(A, B, a))
— 1 -R(A).

Proof: To prove the equivalence in (5), it suffices to prove
that each additive component in Fi(A, B) and F>(A, B) is
bisubmodular. The bisumodularity of a function f : 22V —
R can be proved using the following diminishing return
property: Y(A, B) € 22V, (A’,B’) € 2%V with A € A’
and B € B’, we have for each v ¢ A’ and v ¢ B’
f(AU{v},B) — f(A,B) > f(A"U {v},B") and f(A, B U
{v}) — f(A, B) > f(A’, B'U{v}). By applying this property,
we can readily prove that the functions “—N(A) - N(B),”
“—w(A, B,a)loga,” “—w(A, B,a)log(l — a),” “—(N(A) -
N(B) — w(A, B,a)),” and “1 - R(A)” are bisubmodular,
where “N(A) - N(B) — w(A, B, a)” refers to the number of
p-values greater than o among those related to A and B. The
submodularity of other additive components can be proved
that using properties, such as a composition of a decreasing
convex function and an increasing bisubmodular function,
is still bisubmodular. |

Theorem 2 (Theoretical Properties of the MASS Problem):
The MASS problem has two main theoretical properties:
1) the MASS problem is NP-complete and 2) the MASS

problem is a non-bisubmodular optimization problem.
Proof: About the NP-hardness, it suffices to show that this

problem is NP-hard when 4 is a finite positive value, and the
compactness function R(A) is the cut function of the subgraph
induced by A. In this special case, this problem is equivalent
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to the traditional minimum two-cut problem that is known to
be NP-complete [16]. According to Theorem 1, the objective
function of the MASS problem can be reformulated as the
difference between two bisubmodular functions, which indi-
cates that the objective function is neither bisubmodular nor
bisupermodular. [ |

IV. APPROXIMATION ALGORITHMS

Theorem 2 indicates that the MASS problem is a non-
bisubmodular optimization problem, and hence, the exist-
ing bisubmodular optimization algorithms are not directly
applicable to this problem. We apply the well-known
majorization—-maximization framework [17]-[20] by replac-
ing the bisubmodular function F,(A, B) using a tight
bimodular upper bound function of this function. The
majorization—-maximization framework has a number of iter-
ations. In a specific iteration k, suppose that the interme-
diate solution obtained at the previous iteration is denoted
as (A®=D_ B&=1) Denote the tight upper bound bimodular
function of F»(A, B) as }:"z(k) (A, B) that satisfies the following
two conditions.

1) Tightness Condition:
FP(A, B) = Fy(A®=D, By

if A=A%"D and B = B*-D,
2) Upper Bound Condition:

EX(A,B) > F2(A,B) VA,BC V.

To define the upper bound function }:"2(]‘) (A, B), we first
define the supergradients of F> with respect to A and B. The
supergradient of F, with respect to A has the form

ga1() = BV \{j), B - BV, BE)
if j € A%=D; otherwise
81() = RASD 4 (), BED) — R (A%D, BED),

The supergradient of ]:"2, namely, &>, is similarly defined.
The upper bound function of F> then has the form

F9(4, B) = F(AD, BE)
+81(A) + 62(B)
—51(A®D) — g (BETD), (6)

The objective function of the MASS problem can then be
approximated by its tight lower bound bisubmodular function
Fi(A, B) — F{P(A, B), which is identical to Fp;(A, B),
if A= A®=D and B = B*=D and, otherwise, is lower than or
equal to Fpy(A, B). We obtain an approximated bisubmodular
maximization problem of the original MASS problem

max, p-y  Fi(A, B) — ﬁz(k)(A, B). (7)

Expression (7) can be approximately solved using a random-
ized greedy algorithm that has the guaranteed approximation
factor 2 [21]. The proposed overall algorithm for the MASS
problem is shown in Algorithm 1. There are two main loops in
this algorithm. The outer loop relates to the implementation
of the majorization—-maximization framework, and the inner
loop relates to the implementation of the randomized greedy

Algorithm 1 MASS Algorithm
Input: The multivariate graph G = (V, &, f)
Result: The subsets of vertices and features: A and B.

1k < O,A(k) <~ @, BO «— ¢

2 repeat

3 | Calculate Fz(k) (A, B) via Equation (6) ;

4| A< @, B <

5 | foreach v € V do

6 A < Fi(AU {0}, By — EP (AU {0}, B) —
(Fi(A, B) — F}" (A, B))

7 Ap < Fi(A, BU{}) — EP (A, BU{o}) —
(Fi(A, B) — F{" (4, B))

8 Ay < max(0, Ay)

9 Ap < max(0, Ap)

10 if A4+ Ap # 0 then

11 Let i € {1, 2} be chosen randomly with

Pr[i = 1] <« ﬁ and
Pr[i =2] < 1=Pr[i = 1]

12 if i = 1 then

13 | A< AU )

14 else

15 | B < BU{v};

16 end

17 end

18 | end

19 | ACTD A BpktD L B.

20 | k< k—+1;

21 until A® < AGK=D gyq BB . ph=D).
2> return A® and B®;

(54

algorithm for approximately solving the bisubmodular maxi-
mization subproblem 7. Within the inner loop, Lines 6 and 7
calculate the marginal gains A4 and Ap of the objective
function in (7) for the new vertex » with respect to A and B,
respectively. Lines 8 and 9 ensure that the marginal gains A 4
and Ap should be at least 0. Lines 11-16 randomly add an
element v to A (or B) with probability proportional to the
resulting marginal gain A4 (or A p) with respect to the current
solution (A, B).

Theorem 3: The MASS algorithm is guaranteed to converge
to a local maximum solution of Problem 1 if the intermediate
solution (A, é) returned by the inner loop (Lines 5-18) at the
kth iteration is a local optimum to (7). The MASS algorithm
has the time complexity O({-n), where ¢ refers to the number
of iterations of the outer loop.

Proof: As (A®+D_ B*+DY ig an optimum to (7) at each
kth iteration, we have the following inequalities:

F (A(k_H), B(k+1)) _ Fz(A(k_H), B(k+1))

F (A(k+l), B(k+1)) _ ﬁz(k)(A(kH), B(k+l))
Fl(A(k), B(k)) _ ﬁz(k)(A(k), B(k))

F (A(k), B(k)) _ FQ(A(k), B(k))

IV

\%

IV

where the fist inequality follows from the upper bound condi-
tion: Fr(AK+TD Bty < Fz(k)(A(kH), B®**D), the second
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inequality follows from the optimality of (A*+D BKk+D)y)
and the third inequality follows from the tightness condi-
tion of F®. According to the definition of F® based on
supergradients, it can be readily proved that the function
Fi(A®+tD gty _ p (AK+D Bk+DY will not increase if
we add an arbitrary element to (or remove an arbitrary element
from) A®tD or B+ The convergence to a local optimal
solution of the MASS problem then follows. In every iteration
of the outer loop of MASS, it calculates Fz(k) and the inner
loop. The time complexity of ﬁz(k) and inner loop are both
O(n), and thus, the time complexity of each run of the outer
loop is also O (n). Since the outer loop runs a constant number
of times, the time complexity of the entire MASS algorithm
is O(n). [ ]

V. EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency
of the proposed MASS algorithm using two real-world data
sets. We considered the detection and prediction of haze
and flu outbreak events as two case studies. MASS shows
the advantages in anomalous subgraph detection and feature
selection compared with other proposed techniques.

A. Experiment Design

1) Data Sets: In this article, we consider two case study
scenarios in the real world to evaluate our burst event detection
and prediction method MASS.

a) Haze outbreak data set: We collected about 1.4 billion
tweets from Weibo in a nine-month period starting from
April 11, 2014, which is 10% of total number during that time.
The data are cleaned by removing tweets with less than two
terms related to haze outbreaks. The dictionary of haze-related
terms contains 68 words defined by domain experts. After data
cleaning, 0.35 million tweets posted by 49655 users remain
in the data set. Each user is treated as a vertex in the graph,
while the edges are constructed by the comention in tweets
and following relations between users. The user—user network
contains 149408 edges, and users are geocoded by province
from their profiles. The 68 haze-related keywords are the
attributes of a vertex. For each day d, we construct a snapshot
graph and got 276 snapshot graphs across the nine-month
period. In each user u in a snapshot graph, a corresponding
empirical p-value is calculated for each keyword using the
same approach from [1]. As for the ground truth of haze
outbreak, we collected 9384 haze outbreak records (level > 3)
from official websites (MEP) as Gold Standard Reports
(GSRs). An example GSR is like (Province = ‘“Hebei,”
DAY = “10-06-2014").

b) Flu outbreak data set: Ten percent of all Twitter
tweets in the United States across 226 weeks (January 1,
2011 to May 1, 2015) are collected as raw data. A flu outbreak
dictionary of 72 keywords is defined by domain experts.
After filtering by containing at least two keywords from the
dictionary, 0.15 million tweets posted by 39565 users remain.
Similar to the Haze Outbreak data set, a user—user network
of 49204 edges is constructed by connecting users with
comentions and following relations. Each user is geocoded by

the location profile in terms of state. Over the 226 weeks,
there are 226 snapshot graphs. In every snapshot graph,
the corresponding empirical p-value is calculated for each
week d and user u. The reason why we used weeks here rather
than days such as Haze Outbreak data set is that they have
different time granularities in the ground-truth data. We col-
lected 2260 flu outbreak records (ILI > 2000) from the official
website (http://www.cdc.gov/flu/weekly/.) that is maintained
by the Centers for Disease Control and Prevention (CDC)
as GSRs. CDC publishes weekly influenza-like illness (ILI)
activity level for each state based on the proportion of out-
patient visits to healthcare providers. An example of a flu
outbreak event is: (STATE = “California,” COUNTRY =
“U.S.,” WEEK = “01-20-2013 to 01-26-2013”).

2) Data Preprocessing:: Here, we describe the details of
data preprocessing after the raw data collection as follows.

1) Dictionary Definition: Domain experts of haze and
flu, respectively, defined a vocabulary of 68 keywords
related to haze outbreak and a vocabulary of 72 terms
related to flu outbreak.

2) Content Filtering: We only selected the tweets that
contain more than two different keywords from the
dictionary.

3) Document Geocoding: For each document, we chose the
location under the following principles:

(a) using locations and landmarks inside the content;

(b) using position tag, including latitude and longitude
value from users’ phone;

(c) using location information from the users’ profiles.

4) Event Record Formatting: Every event Records (ERs)
were written in the following format: (“Time (YYYY-
MM-DD) / #Week,” “Location (Province / State),”
“Report”).

3) Baselines: We considered four representative baselines,
including EventTree [15], NPHGS [1], LGTA [22], and
FSS [23]. We strictly followed the strategies recommended by
authors in their articles to tune the related model parameters.

4) Proposed MASS: We denote the proposed approach as
MASS. The tradeoff parameter 4 was set to 1, and we used
graph cut as the compactness function.

5) Metrics: In this article, we focus on the evaluation of
event detection and prediction using different approaches. The
used evaluation metrics include the following.

1) FPR It refers to the proportion of predicting results that

correspond to no event record.

2) True Positive Rate (TPR) for Prediction: refers to the
proportion of events that are successfully predicted.

3) True positive rate (TPR) for both detection and pre-
diction: refers to the proportion of events that are
successfully predicted or detected.

4) Lead Time for Prediction: refers to the time before an
event is successfully predicted (longer is better);

5) Lag time for Detection: refers to the time after an event
is successfully detected (shorter is better).

For each comparison approach, the reported alerts are struc-
tured as (date and location), where “location” is defined at the
state or province level. For different GSR events, a checklist
will be applied as follows.
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FPR versus TPR between MASS and four baselines on the Haze data set. (a) FPR versus TPR (prediction). (b) FPR versus TPR (prediction and

detection). (c) FPR versus lead time (prediction). (d) FPR versus lag time (detection).

1) Whether the approach raises an alert of a certain state/
province within 7 days (for haze data set) 1 week (for flu
data set) before that event, which is denoted “predicted.”
Whether the approach raises an alert of a certain
state/province within seven days (for haze data set) or
one week (for flu data set) after that event, which is
denoted “detected.”

Whether the approach raises no alert of a certain
state/province within seven days (for haze data set) nor
one week (for flu data set) before or after that event,
which is denoted “undetected.”

For the haze data set, the time unit is “day” and for flu data
set, the time unit is “week,” so we talk about them separately
in the above, although seven days and one week indicate for
the same time span.

Transforming the Anomalous Subgraph to Event Alerts:
To detect abnormal events in every time unit, both baseline and
our proposed method return a discovered subgraph of users,
together with an anomaly score of the subgraph. The anomaly
score of our method is the maximum value of (refupperbound).
The next step is to map the anomalous subgraph to outbreak
alerts. The location information of users in the subgraph, such
as provinces or states, represents the regions that should have
an outbreak event alert.

2)

3)

B. Results: Event Detection and Prediction

Figs. 2 and 3 present the comparison between the pro-
posed MASS algorithm with four competitive methods at
various FPR for the task of prediction flu outbreak and
haze events. The experimental results show that MASS can
achieve higher detection TPR and prediction TPR than all
competitive approaches. Moreover, on both prediction and
detection tasks, the difference between TPR of MASS and
those of other baseline approaches tends to increase as FPR
increases. In particular, the difference in prediction is more
than 20%, and the difference in detection is more than 10%.
In addition, MASS achieves larger lead time but lower or sim-
ilar Lag Time comparing to all other competitive approaches
at different false positive rates. The improvement of Lead
Time is more than 30%. An example illustration of detection
and prediction results of MASS on the Flu data set is shown
in Fig. 4.

Among the baseline methods, only FSS and LGTA were
designed to conduct subgraph detection and feature selection
concurrently. However, these two methods performed worse
than EventTree, the competitive method that only conducted
subgraph detection but performed the second best on all the
metrics. Although FSS and LGTA have considered feature
selection during the subgraph detection process, their strategies
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TABLE I
KEYWORDS SELECTED BY MASS, LGTA, AND FSS ON THE HAZE DATA SET

167

FPR versus TPR between MASS and four baselines on the Flu data set. (a) FPR versus TPR (prediction). (b) FPR versus TPR (prediction and

\ \ Event 1 \ Event 2 \ Event 3 |
PM10 j(";m(atmosphere) TR (health) 15 9% (pollution) % 3 (haze) & % (harm)
MASS PM2.5 JBE (cold) .9 (harm) 7™ E (serious) £.9 (nasal congestion) B0 (asthma)
##% (over-range)  EFfR(env-protection) 25 5% (haze) — IR (breathe) By (carcinogenic)
97 (disease) filif& (lung cancer) M & (mask) TR (health) TH % (smoke) Ui HE(emission reduction)
J¢ 1% (disaster) A B (treatment) JB'E (cold) filiJ& (lung cancer) 1 2 (mask) N (emergency)
LGTA | {5%(pollution) [ 5% (shadow) PM2.5 J 55 (smoke) f& % (harm) ER$5% (environment)
FUJ& (carcinogenic)  PA5E(environment) T (warning) 755 (air) 755 (air) fNYE S (humidifier)
1 & (mask) K= (atmosphere) EUJE (carcinogenic) AQI KZE (fog) £ (rhinitis)
HB T (excess) PM2.5 % 75 (haze) TR (health) PM2.5 ER TR (env-protection)
I (breathe) £ (rhinitis) 235 (air) &% (harm) IR (breathe) {EF (health)
FSS EA 5% (environment) K (atmosphere) filif& (lung cancer) EA45% (environment) B (disease) 25 (air)
JBE (cold) IR R (env-protection) 15 %4 (pollution) I (breathe) .5 (harm) % 3 (haze)
— — IR R (env-protection) JF  (quality) 15 %¥(pollution) ™ E (serious)

did not perform well on the quality of features and subgraph

that were identified.

The overall running times of all the methods are shown
in Fig. 5 on both the haze and flu outbreak tasks. The
results indicate that MASS is the fastest among all the
methods on the haze task. For Flu task, MASS (23.4 min)
is the second fastest and slightly slower than EventTree
(20.4 min). The execution efficiency of the MASS algorithm

shows the linear time complexity of our method, as shown in

Theorem 3.

C. Results: Feature Selection

Tables I and II show that the features which were obtained
by MASS, FSS, and LGTA approaches for six different
randomly selected example GSR events.
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weeks @ 1he prediction regions of flu outbreak events based on MASS
147 11‘) 153 157 226
Oct 26,2013 Nov 09, 2013 Dec 07, 2013 Jan 04, 2014

week ending

Fig. 4.

Tlustration of the comparison of the ground truth and MASS detection and prediction results on the flu data set from week 147 (ending

October 26, 2013) to week 157 (ending January 04, 2014) in the United States. The first, second, and third rows refer to the ground truth based on
GSR, the event detection alert, and the event prediction alert based on MASS. During the overall 226 weeks time span, we chose week 147, 149, 153, and
157 to illustrate the four key points of the ten-week flu outbreak events from the end of 2013 to early 2014 in the U.S.

TABLE II
KEYWORDS SELECTED BY MASS, LGTA, AND FSS ON THE FLU DATA SET

[ [ Event 1 [ Event 2 [ Event 3 |

body flu cold infection cough sleep

MASS diarrhea ache cough throat headache sneeze
disease stomach sneeze hand-washing meds spread

flu pain flu runny flu aliment

cold fever cough shoulder cold stomach

LGTA virus grippe virus body cough muscle
cough disease cold germ runny fever
sore muscle sleep infection sneeze meds
body cold ache cold ache body

cough flu cough fever cold flu

FSS sleep stomach flu head cough headache
virus disease pain runny migraine runny
— — stomach infection sneeze meds

In the first place, the experimental results in Tables I and II
show that the number of features obtained by MASS was
much less than the selected attributes based on the LGTA
approach. Our proposed MASS approach is able to select
different numbers of features for different events, whereas
most existing methods require to predefine a fixed number of
features, including the baseline LGTA approach. In the second
place, the keywords obtained based on both two approaches
overlap for a small number of features, which can also
represent the core keywords that are relevant to the selected

events. Nevertheless, the obtained keywords based on both two
approaches are different for all selected events significantly.
Since the MASS approach performs better than the LGTA
approaches using the two data sets as discussed in Section V-B,
the MASS approach can discover a small set of representative
signal features which are more effective than those keywords
discovered based on the LGTA approach for the task of event
prediction and detection.

We illustrate the quality of features discovered based on
the MASS approach employing Event 1 for the problem
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Fig. 5. Runtime of each approach using the Haze and Flu data sets.

of haze detection. Event 1 happened on December 14,
2014, and there is a corresponding news published on
the same day, which reports an ongoing haze outbreak:
ST (there is no wind today) R (it is
becoming warmer), ZBEIALHIFEFE X (the haze around
Shenyang is becoming serious again)® IEFHTTERR R 25 S
HHMHRBZES REAMARE R LR FRita
WA RALZ o VIR AL I B LA By g
Hep skt Er Rz FEELUEE (Air Quality
Index is over-range),%iﬁ 500 (more than 500 degree),
EHET I HPM2.5SFIPM1075 2% /™ H 15 3 (Primary
pollutant PM2.5 and PM10 six serious pollution)....” As
shown in the paragraph of the news, four of the six selected
keywords were mentioned, namely Z“% (atmosphere).”
“PM10,” “PM2.5,” and R (over-range)” where the last
three keywords were not discovered by LGTA or FSS.

VI. CONCLUSION

In this article, we present a generic method, namely MASS,
to the problem of multivariate anomalous subgraph discovery
that is free of distributions as nonparametric statistics are
used to measure the level of anomalousness of a multivari-
ate anomalous subgraph. We propose a nearly linear time
approximation algorithm for concurrent subgraph detection
and feature selection and demonstrate that our proposed
algorithm performed better than four representative state-of-
the-art methods on two real-world outbreak detection and
forecasting tasks. In our future work, we will try to extend
the MASS approach to discover the anomalous subgraphs in a
multivariate heterogeneous graph, in which the nodes or edges
own different kinds of types.
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