
624 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 2, FEBRUARY 2021

High-Throughput Dynamic Time Warping
Accelerator for Time-Series Classification With

Pipelined Mixed-Signal Time-Domain Computing
Zhengyu Chen , Member, IEEE, and Jie Gu , Senior Member, IEEE

Abstract— Time-series classification (TSC) is a challenging
problem in machine learning and significant efforts have been
made to improve its speed and computation efficiency. Among
various approaches, dynamic time warping (DTW) algorithm is
one of the most prevalent methods for TSC due to its succinctness
and generality. To improve the throughput of the operation,
this work presents a mixed-signal DTW accelerator utilizing
mixed-signal time-domain (TD) computing where signals are
encoded and processed using time pulses. A pipelined operation
is enabled by a specially designed time flip-flop (TFF) circuit
leading to dramatic improvements in performance and scalability
of the operation. A 65-nm CMOS test chip was implemented
and measured. The results show more than 9× improvements in
throughput compared with prior work on TSC. As most existing
TD designs suffer from the lack of TD storage elements, this work
utilizes sequential circuit elements in TD computing extending the
capability of time-based circuits.

Index Terms— Dynamic programming, dynamic time warp-
ing (DTW), energy efficient computing, machine learning,
mixed-signal time-domain (TD) computing (MSTC), time flip-flop
(TFF), time-series classification (TSC).

I. INTRODUCTION

SPECIAL purpose accelerators have recently gained
significant interests thanks to the bloom of machine

learning applications. It is predicted that the special purpose
artificial intelligence (AI) chips with built-in machine learn-
ing accelerators will grow from U.S. $6 billion in 2018 to
U.S. $90 billion in 2025 specially contributed by the
edge devices [1]. Compared with general-purpose CPU
or microcontroller, the rapid growth in special purpose
application-specified integrated circuit (ASIC) accelerators is
attributed by several factors from the current technology
trends. First of all, the computing efficiency of general-
purpose processors such as CPUs does not meet the heavy
computation demand from many modern machine learning
algorithms or similar special purpose computing algorithms
due to the overhead of instruction encoding/decoding support
as well as the memory-related operations in general-purpose
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microprocessors [2]. As an example, for the deoxyribonucleic
acid (DNA) sequencing tasks, special ASICs are shown to
achieve hundreds of times of performance enhancement in
comparison (CMP) with CPU or GPU [3]. Such a performance
loss from general-purpose processors is sometimes intolera-
ble for the real-time classification of time-series signals, for
instance, human motion classification in a feedback control
system [4]. Second, transistors (excluding the most advanced
technology) have become cheaper and cheaper enjoying 20%–
30% cost reduction leading to favorable adaption of special
purpose ASIC designs with power and performance advan-
tages [5]. Third, the technology trends of big data, social
networks, and autonomous driving bring high volume of
data for processing and high demands on computing devices.
As a result, many new markets have grown significantly
large justifying the cost of special purpose accelerator chips
with examples of tensor processing unit (TPU) from Google,
Mountain View, CA, USA [6], Amazon Web Services (AWSs)
Inferential chip from Amazon, Seattle, WA, USA [7], self-
driving AI chip from Tesla, Palo Alto, CA, USA [8].

The fast development of application-specific accelera-
tors also creates new opportunities in design space where
non-conventional computing methodology is being explored
in search of higher computing efficiency. The energy improve-
ment of conventional digital circuits has reached a bottleneck
because the dynamic energy consumption of digital logic gates
is dictated by CV2

dd where both C , i.e., the capacitance of the
circuits and Vdd, i.e., the supply voltages, are limited by the
technology. Besides, the leakage power of digital design also
contributes significantly to total power consumption and the
leakage power is also mainly determined by the technology in
use. As a result, it is urgent to find alternative computing meth-
ods that can bring efficiency beyond the conventional digital
approach. There has been a growing interest in analog com-
puting which utilizes non-Boolean analog voltage or physical
resistance for computing. For instance, a digital–analog hybrid
neural network (NN) exploited efficient analog computation
and digital intra-network communication for feature extrac-
tion and classification with 7.5× more energy efficient than
an equivalent digital design [9]. A switched capacitor-based
analog matrix multiplication design was proposed to perform
multiply-accumulate-operation (MAC) operations efficiently
for machine learning tasks with similar accuracy compared
with digital counterpart [10]. In addition (ADD), memristor
or RRAM-based computing explores the voltage, current,
and resistance relationship to achieve much higher efficiency
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on multiplier-accumulator (MAC) operations for deep neural
network (DNN) applications [11]. One weakness of analog
computing is its sensitivity to process variation and error-prone
operations. However, as already being well studied, analog
computing, which incorporates analog building blocks such
as amplifiers and analog-to-digital converters, suffers from
requirement of headroom, static leakage, and poor compati-
bility with digital circuits [12].

To address the above challenges, in this work, we present a
time-domain (TD) design methodology to conduct emerging
applications with higher throughput and low energy consump-
tion. More specifically, a dynamic time warping (DTW) engine
for time-series classification (TSC) using TD computing is
proposed. Through a special design of TD flip-flop as a TD
memory, this work realizes an efficient and high-throughput
TD pipelined architecture.

A. Related Work

More recently, mixed-signal computing techniques using
time-based circuits have drawn significant interests in some
application regimes, e.g., signal processing and machine learn-
ing [13]–[20]. By using digital circuits to encode and process
information in TD rather than in voltage domain, mixed-signal
TD computing (MSTC) shows promise in many applications
with high efficiency while staying mostly compatible with
digital circuits [13], [14]. This leads to the benefit of both
technology scalability as well as compatibility with large-scale
digital design methodology, e.g., synthesis and place and
route (P&R) with regular electronic design automation (EDA)
tools [15]. Similar to analog computing where the multi-bit
information is densely encoded in a single signal, MSTC
preserves the benefits of energy efficiency in analog space
but also suffers from process variation and low resolutions.
Interestingly, in analog and mixed-signal design space, despite
error-prone operations, a desirable error resilient feature is also
observed where the most-significant-bit (MSB) has the least
possibility for errors as compared with the opposite trend in a
digital design [16]. This enables a favorable and flexible accu-
racy and performance tradeoff for the analog and mixed-signal
computing. In this work, we explore mixed-signal TD design
for a special purpose time-series analysis demonstrating signif-
icant benefits of such non-conventional computing techniques.

Several demonstrations have been developed in recent years
using MSTC for realizing emerging applications [13]–[20].
For instance, a TD low-density parity-check (LDPC) design
was demonstrated with 2× reduction in area compared with
the digital implementation [17]. A swarm robotic system
incorporating a TD reinforcement learning accelerator was
implemented with over 30% saving of energy compared
with the digital counterpart [14]. A TD convolutional NN
(CNN) engine showed 12× improvement for energy effi-
ciency compared with the other state-of-the-art digital imple-
mentations [18]. A TD accelerated image processing engine
was delivered with 40% area and energy improvement com-
pared with the digital counterpart [19]. A highly efficient
time-based in-memory computing graph ASIC chip was real-
ized using wavefront expansion and 2-D gradient control for

solving single-source shortest path problems [20]. An NN-
based cardiologist-level arrhythmia detection and classification
engine was implemented in [31]. In ADD, for one edge
per line-based time of arrival encodings, a memristor-based
temporal memory design was recently published in [33].

However, there are still some limitations in the existing
demonstrations.

1) There is a lack of memory in TD operations which
significantly limits the design space of the technique.

2) Most prior works suffer from low throughput and low
hardware utilization due to the non-pipelined operation.

3) Majority of existing works are confined to low-bit pre-
cisions, e.g., 1–4 bits [17]–[21].

4) Also, partially due to the lack of TD memory, most
prior works suffer from excessive time-to-digital or
digital-to-time conversion, leading to significant speed
degradation 14], [18].

In this work, we present a DTW engine for TSC using TD
computing. Through a special design of TD flip-flop as a TD
memory, this work realizes an efficient and high-throughput
TD pipelined architecture.

Note that, there is an interesting time-register design pro-
posed in [32]; however, such a design cannot fulfill the
computation demand in TD DTW design as described in the
following.

1) The previous time-register design is used for time-to-
digital converter (TDC) for phase-locked loop (PLL)
design, while we focus on digital application leading
to many different requirements, e.g., operation range,
precision, and operation sequence.

2) The previous time register cannot be directly used as
a TD register file for pipelining since in the output,
the time delay is Tout = Tfull−Tin. Additional conversion
circuits are needed in order to realize the function of
Tout = Tin. On the other hand, our time flip-flop (TFF)
has a quite different design which is based on ring-based
inverter chains. By nature, our proposed design can
generate the output pulse of Tout = Tin.

3) The previous time-register design cannot deal with the
overflow issue, as they need to reset the time-register
manually when the whole capacity is reached for storing
the TD information. On the other hand, due to the
ring-based structure, our proposed TFF can automati-
cally reset the ring when the ring is full. This special
feature enables the capability of cascading several TFF
into larger-bit TFF modules.

Prior work on DTW operation suffer from low throughput
and high power. For example, the work from [3] and [21]
have relatively low throughput due to a combinational cir-
cuit nature of the mixed-signal design and the ASIC design
from [25]–[27] suffer from the high power and long delay
of each CMP module. Compared with the previous state-
of-the-art mixed-signal analog implementation [3], we intro-
duced the TD pipeline computing structure and improved the
throughput of GCUP by 2.4×–47× compared with the prior
chip implementation in both analog and digital domains [21],
[25]–[27]; the low throughput of prior work low throughput
is due to a combinational circuit nature of the mixed-signal
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design [3], [21] and the high power and long delay of each
CMP module in ASIC design and the high power and long
delay of each CMP module in ASIC design [25]–[27].

Hence, in this work, we implemented a low-power high-
throughput TD DTW accelerator by utilizing pipelined archi-
tecture and systolic array-based data streaming scheme
with novel TFF design. Overall, our design has improved
the throughput of GCUP by 2.4×–47× compared with
prior chip implementation in both analog and digital
domains [21], [25]–[27].

B. Contribution of This Work

As extended from the previous publication in [13], in this
work, we deliver a novel pipelined TD computing design to
realize a commonly used algorithm for time-series analysis,
i.e., DTW algorithm. More specifically, the contributions of
this article are highlighted as follows.

1) At Circuit Level: We developed a special TD storage
cell, namely, TFF. TFF can not only store multiple-bit
TD information, i.e., 6 bit in this work, but also can
work as a TD accumulator. TFF can be further cas-
caded into a wider TFF with 10 bit or more precision.
In ADD, we also developed special circuits in TD, e.g.,
absolute (ABS) and minimum (MIN) modules to realize
the TD DTW operation.

2) At Architecture Level: We presented a pipelined archi-
tecture with TFF circuit. The pipelined operation leads to
an order-of-magnitude improvement in throughput and
a scalable processing capability for time-series data.

3) At System Level: We realized a TD acceleration solution
for DTW algorithm for TSC. A special data stream-
ing flow was utilized to support pipelined operation.
A highly automated design methodology was utilized in
this work to eliminate the manual layout effort for the
mixed-signal circuit design. Also, a systematic calibra-
tion scheme was applied to deal with process variations.

The proposed techniques were implemented to conduct
DTW algorithm for TSC, e.g., electrocardiogram (ECG) clas-
sification, gesture recognition, DNA sequencing, and so on.
We demonstrated such techniques in a 65-nm test chip with
results showing orders of magnitude improvement compared
with the state-of-the-art implementations. The remainder of
this article is organized as follows. Section II introduces
overall the background of TSC including the DTW algorithm.
Section III presents the TD circuit technique and acceleration
method. Section IV introduces the architecture level design
methodology of the TD DTW engine. Chip implementation
and measurement results are discussed in Section V.

II. BACKGROUND

A. Time-Series Classification

A time series is a series of data points indexed, listed,
or graphed in time order [22]. Time series are encountered in
many real-world applications ranging from electronic health
records to human activity recognition. Typical examples of
time series are stock price, voice, human motion, ECG signal,
and so on. The classification of time-series signals, e.g., an

Fig. 1. DTW algorithm.

ECG signal, is commonly used for detection of special events
or operational anomaly. However, TSC has been considered
as a significantly challenging problem in data mining due to
its variable speed, lack of alignment, random appearance of
sparse events, and long time sequence [21], [22]. Three con-
ventional classification methods are being developed including
the distance-, model-, and feature-based methods [22], [23].
The model- and feature-based methods are case-specific and
complex to implement. For example, the hidden Markov model
(HMM) algorithm as a model-based method can only be
useful when dealing with voice signal classification. On the
other hand, the distance-based methods, e.g., Euclidean-based,
DTW-based, or cosine-based, are comparatively easy to imple-
ment with good accuracy results. Especially, DTW, a variant
of the dynamic programming algorithm, has been widely used
for TSC. In ADD, as machine learning introduced promising
results in dealing with classification and detection workloads,
a few NN-based works for TSC were implemented show-
ing good classification results [31]. Even though NN-based
designs sometimes show better accuracy, they rely on large
database for training which may not be available and requires
large computation efforts. The NN-based design also usually
consumes more area and energy compared with the succinct
distance-based methods. The strong capability for distance
measurement for variable-speed temporal sequences makes
DTW a popular method for TSC in broad applications,
such as ECG diagnosis, motion detection, voice recogni-
tion, stock prediction, and so on. [22] In ADD, a similar
dynamic programming-based approach is also being used
in DNA sequencing for CMP of similarity between DNA
pairs [21]. To accelerate the operation, a DNA sequencing
hardware accelerator based on dynamic programming algo-
rithm was previously implemented resulting in 15 giga-cell-
update per second (GCUP) throughput at 70-mW power con-
sumption [21].

B. Dynamic Time Warping

Fig. 1 shows the basic principle of DTW, which detects sim-
ilarities among temporal signals with variable speed. As shown
in Fig. 1, for two time series A and B , Di, j can be formulated
as the summation of ABS difference |Ai − B j | and the
MIN value of its three ancestor nodes min(Di−1, j , Di, j−1,
Di−1, j−1) where Ai and B j denote the i th and j th elements
of A and B , respectively, and Di, j denotes the DTW value at
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node (i, j). The equation is written as follows:
Di, j = |Ai − B j | + min(Di−1, j , Di−1, j−1, Di, j−1). (1)

A “warping path” is produced in order to align the two
signals in time, as highlighted in Fig. 1. The value of bottom-
right node denotes the DTW distance between the two inputs.
The lower distance represents more similarity between the
inputs and can be directly used for classification tasks. As will
be shown later, TD design holds significant advantages in
performing simple operations such as MIN and ABS, which
are repetitively used in DTW operations. As a result, in this
work, we aim at utilizing TD computing to accelerate the
DTW operations.

The time complexity of DTW algorithm implemented on
this chip (matrix level) is O(m × n) where m and n represent
the length of each time sequence. In each DTW module,
it realizes the operation of ABS(x − y) + MIN(a, b, c) whose
time complexity is O(1).

III. TD ACCELERATION TECHNIQUE

A. Mixed-Signal TD Computing

The basic concept of MSTC is to represent data/information
in the format of delay or length of time pulses and then
process the information in TD with special mixed-signal
circuits. More specifically, in this work, the information is
encoded as the pulsewidth of the data-carrying time pulses.
Many computation tasks, e.g., ADD, subtraction (SUB), and
nonlinear logic operation, e.g., maximum (Max), MIN, and
Compare, can be efficiently carried out in TD [16]. As shown
in Fig. 2(a), a digital-to-time converter (DTC) or also referred
to as time encoder is used to convert digital information into
TD. Correspondingly, TDC carries the job to convert TD
information back into digital domain. The circuit examples
of DTC and TDC are depicted in Fig. 2(b) and (c).

In MSTC design, digital information is encoded in a linear
fashion which is indeed a drawback in terms of information
density in some perspectives. However, such an encoding
scheme introduces the unique energy/area efficiency for TD
computing in some computation especially non-linear opera-
tions, e.g., MAX, MIN, CMP, and so on. When it comes into
the case that we need to deal with larger bit group operations,
e.g., 8-bit or more, we partition the large bit group into
several small bit groups. For example, we can partition 8-bit
multiplication into 4 of the 4-bit multiplication to improve the
area energy and throughput. In this design, we partition the
12-bit data path into 2 of the 5-bit data path.

Note that, among existing demonstrations of TD computing
techniques including this work, floating-point (FP) operations
have not been supported due to the complexity of some of the
FP operations, such as shift and ADD operations.

The operation waveform of TDC is shown in Fig. 2(c). The
basic concept is to delay the input pulse (Tin) by multiple
times of TD single bit resolution (Ts) and compare the delayed
input pulse with the reference time pulse (Tref) to generate the
digital output (D[2n − 1 : 0]). In Fig. 2(d), the operation of
CMP(A + B , C + D) is implemented in simple TD circuits
consisting of only tunable delay cells and standard cell circuits

Fig. 2. (a) Overview of TD computing. (b) DTC. (c) TDC and waveform.
(d) TD implementation example and transistor count CMP.

rendering 3.5× reduction in terms of transistor count. The
detail of basic TD operations as well the corresponding circuits
will be introduced in Section III-B.

As the nature of analog mixed-signal design, on-chip varia-
tion plays an important role in the MSTC design. We addressed
the variation concern in the following three steps.

1) A comprehensive study on the impact of both global
process voltage temperature (PVT) variation and local
mismatch variation impact was conducted in [16]. Com-
pared with local mismatch, global PVT variation has
very relaxed impact for TD design since the relative
delay among bits matter more compared with the oper-
ation. Hence, linearity matters the most rather than
the ABS delay values. Local mismatch poses more
challenges to TD design which is addressed below.

2) During the circuit design phase, the variation margin was
carefully budgeted based on the application requirement.
Since we typically target on error-tolerant applications,
1- or 2-bit error of final results would not cause signifi-
cant accuracy degradation (∼2% degradation). We con-
duct variation analysis through the entire data path
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Fig. 3. Circuit details of TD circuits implemented in this work. (a) Basic
TD circuits. (b) ABS module. (c) Three-input MIN module.

based on Monte Carlo simulation (under three sigma
configuration) to understand the error caused by local
mismatch. We then utilized such information to decide
the single bit resolution in TD design, e.g., 40 ps per
digital bit, to guarantee the final error is within 1 LSB
in TD.

3) Moreover, a calibration scheme was introduced in this
design by integrating calibration capability inside of
some variation vulnerable modules based on Monte
Carlo simulation on each individual module. We first
find out which sub-module introduces the most variation
and then implement calibration circuits to realize the
best efficiency in terms of calibration. More information
and testing results are introduced in Section V-B.

B. Basic TD Computing Circuits

As the fundamental building blocks, basic TD operations,
i.e., SUB, MAX, MIN, ADD/accumulation, equal detection
(EQ), and CMP, are specially designed with high energy and
area efficiency, as depicted in Fig. 3(a). As shown in Fig. 3(a),
some of the input signals are required to be overlapped while

Fig. 4. Differences between (a) DFF and (b) TFF.

others are not. In order to guarantee the correctness of TD
operations, we introduced the following mechanisms: 1) the
overlap and non-overlap fashion of signals are pre-defined for
different operations. For most operations besides ADD are
working in the fashion of overlap and 2) we have special
technique to make sure the rising or falling edges of two
input TD signals are aligned in order to conduct the operation
correctly. For example, by using the proposed TFF to latch
TD signals, the output TD pulses are aligned by falling
edge. The operations, such as CMP, MAX, and MIN, can
be easily implemented in TD using few standard cell gates.
DTW algorithm also requires some sophisticated computing
modules, i.e., ABS and MIN, which are generally not easy
to be implemented in digital domain. Fig. 3(b) and (c) shows
the MIN and ABS modules used in this work. In the MIN
module, computation is split into MSB and LSB groups. Both
modules consist of only simple digital gates, e.g., NAND,
rendering 6× reduction compared with equivalent digital
implementation. The three-input MIN module consists of a
two-input MIN module and one equal detector module. The
data path is divided into MSB and LSB paths. As shown
in Fig. 3(b) and (c), both MSB and LSB MIN modules are built
by simple NAND, NOR, and MUX gates with corresponding
waveform depicted.

As mentioned in Section II, the existing TD demonstrations
suffer from excessive digital and TD conversion and the lack
of internal storage. Missing the storage mechanism in TD
causes a lack of TD sequential logic which is required for
high-throughput pipelined structure or design of finite state
machines in non-combinational circuits [21]. Thus, in this
article, a novel TD storage cell, namely TFF, is introduced
in Section III-C.

C. TFF Circuit

The proposed TFF takes time pulse as inputs and generates
time pulse as the output triggered by the read enable signal.
As shown in Fig. 4, compared with digital D-type flip-
flop (DFF), the proposed TFF operates in a similar fashion
but has some advanced features: 1) TFF can store multi-bit
information in TD; 2) TFF takes multiple time pulses as input
in a sequential order; and 3) accumulation operation can be
naturally realized—the output pulsewidth equals to the width
summation of input pulses.

Fig. 5(a) shows the circuit diagram of a ring-based multi-bit
TFF design which contains three parts.

1) A 33-stage tri-state inverter chain serves as the storage
unit. In this design, a total of 6-bit TD information with
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Fig. 5. TD flip-flop designs. (a) Circuit diagram of TFF. (b) Circuit diagram
of the WTFF module.

40-ps single-bit resolution (a total of 2520-ps capacity)
can be stored in such a tri-state inverter ring.

2) A carry signal detection module is used to generate a
carry signal when the ring is fully filled. Due to the
nature of the ring structure, the storing process can
continue without the need of resetting the circuit after
the ring is full.

3) A peripheral module which is used to reset the ring at
the very beginning of the computation.

Besides, such a peripheral circuit is also used to flip the
polarity of the output pulse when the ring is fully filled. In this
design, each TFF can store a 6-bit TD signal and two TFFs are
used to construct a 10-bit TD values separated into MSB and
LSB units, leading to a wide-TFF (WTFF) module, as shown
in Fig. 5(b). In WTFF, once the LSB TFF is full, a carry
signal is sent to a pulse generator to generate an extra pulse
to be stored in the MSB TFF, extending the operation into 10
bits. In ADD, a MIN pulse generator circuit is used to create
a removable offset to keep the pulse from being too narrow
(less than 100 ps) to be propagated.

The write and read mechanism are described in Fig. 6.
In the scenario when the input pulses are not large enough to
fully fill the ring (overflow), the simulated waveform is shown
in Fig. 6(a). During reset phase (t = t0), rstb signal is sent to
reset voltages in the internal nodes of TFF. During the write
phase (t = t1, t2), input pulses are sent to the ring, which
allows propagation of “0” through the ring with a duration
of input pulses. Multiple input pulses can be repeatedly sent
to TFF and will be accumulated through the propagation of
the ring. During readout phase (t = t3, t4), the stored pulse
is sent out from the output pin of the ring with pulsewidth
equivalent to summation of the stored values. Note that while
the inputs are quantized time pulses, the information is stored
as analog voltages on the internal nodes of the inverter chain
so no quantization loss occurs inside the TFF.

Fig. 6. Simulated waveform of TFF when (a) ring is not fully filled and
(b) ring is fully filled.

In another scenario when the ring is filled during write
phase, the corresponding simulated waveform is shown
in Fig. 6(b). At t = t2 when the ring is filled, the operations
are identical to the first scenario. At the moment of t = t2,
the ring is fully occupied by the input pulses, while the
writing process is still going on since the second pulse is
not fully finished yet. A carry signal rises by the carry
detection peripheral circuit and the ring will rotate back with
remainder values stored inside (t = t3–t4). The “rotation”
operation conveniently allows cascading TFFs into multi-bit
groups rendering a scalable large numerical range of TFF.

IV. TD DTW ARCHITECTURE

A. TD DTW Algorithm Mapping

As shown in (1), the core computations of DTW contain two
non-linear operations—the ABS and MIN. Such operations
can be efficiently realized in TD. The corresponding TD
waveform for node Di, j of (1) is depicted in Fig. 7(a). The
MIN value of its three ancestor nodes is carried by TD signal
T (min(Di−1, j,Di, j−1, Di−1, j−1)) which is generated by the TD
MIN module. The ABS difference is carried by TD signal
T (|Ai − B j |) which is generated by the TD ABS module.
The two-time pulses are subsequently summed to generate
the local DTW value of the current node. By recursively
calculate the local nodes’ DTW values in the matrix, the final
DTW distance of the two time-series input can be obtained.
The high-level circuit diagram of such a TD implementa-
tion is shown in Fig. 7(b) with succinct topology and data
path.
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Fig. 7. TD DTW algorithm. (a) Waveform of TD DTW. (b) TD implemen-
tation of DTW.

Fig. 8. Architecture diagram of implemented pipelined TD DTW.

B. Pipelined TD DTW Algorithm

The TD implementation of DTW described in Section IV-
A is in the combinational logic fashion—there is no internal
clock to synchronize the computation. This solution has its
own benefits such as compact architecture, simple circuit
requirement, and smaller latency when dealing with single
time-series pair. However, it suffers from low throughput with-
out pipelining, low utilization of hardware, and the bounded
length of input time-series data limited by the dimension
of hardware implementation. For such reasons, a pipelined
architecture is developed to overcome the above issues.

One key element to enable the TD pipelined design is
the TD information storage cell, i.e., TFF, as introduced in
Section III-C. By inserting TFF to every node of the DTW
matrix, the pipelined architecture can be realized. Fig. 8 shows

Fig. 9. Diagonal data path and pipeline stage structure of DTW engine.

the pipelined DTW engine with 20 × 20 DTW unit cells and
scalable operation to construct longer time series. The DTW
matrix contains a group of DTW unit cells with a diagonal
pipeline structure. The unit cell, as depicted in Fig. 8, contains
two WTFF modules, an ABS module and a MIN module.
The second WTFF module (marked in white) in the unit cell
is used to copy the data from last pipeline stage, because the
data stored in node (i −1, j −1) are one pipeline stage earlier
than the nodes (i − 1, j) and (i , j − 1).

A 4-bit DTC is implemented inside ABS to convert input
digital values into TD pulses. The DTC consists of an
inverter-based delay chain and multiplexers. The inputs of
ABS modules are stored in on-chip SRAMs and sent to
the 20 × 20 DTW array in the fashion of the systolic data
streaming as will be introduced in Section IV-C.

C. Pipelined Structure and Data Streaming Flow

Due to the use of the TFF, in every clock cycle, the TD
pulses are propagated along the diagonal direction of the
matrix, as depicted in Fig. 9. A total of 39 pipeline stages
in the diagonal direction are synchronized by the global
clock and reset signals. Note that, the TFF is the largest
component and takes about 40% area of each DTW node.
Hence, 40% overhead is added to enable pipeline operation.
However, the throughput improvement of pipeline mode is 7×
compared with the non-pipeline mode.

Data interaction can always be a challenge for array-based
accelerator design, especially in a mixed-signal design which
is very sensitive to the quality of signal routing. One straight-
forward solution for DTW data signal routing is shown
in Fig. 10(a), with a massive routing broadcasting all signal
connections. This would not only introduce signal crosstalk but
also lead to the top-level signal routing congestions. Instead,
in this work, a systolic data streaming flow is implemented
where each data item is piped through the DTW matrix
as inputs to ABS modules both vertically and horizontally
[see Fig. 10(b)]. Such a flow is similar to a systolic dataflow in
other accelerators, e.g., Google’s TPU design [6]. With such a
solution, we reduce the signal crosstalk and eliminate massive
data signal routing by more than 15×: The routing signals
of ABS inputs are reduced from 2 × 20 × 20 × 4 b into
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Fig. 10. Data streaming flow CMP between (a) brute-force data streaming
flow and (b) systolic data streaming flow.

Fig. 11. Unfolding mode of the proposed DTW engine.

2 × 20 × 4 b at 20× reduction. However, some calibration
signals still need to be explicitly routed into each DTW node
which makes the total reduction into 15×.

D. Unfolding DTW Operation

The pipelined operation allows fixed dimensions of the
DTW engine to be unfolded for longer data sequences,
as shown in Fig. 11. The total unfolded length is ultimately
limited by internal register storage capacity, i.e., 10 bits in
this implementation but can be easily extended further using
the WTFF design. All output pulses from the bottom and right
boundaries are decoded by shared TDCs every clock cycle and
re-sent back for further operations.

Please note that due to the nature of analog/mixed-signal
(AMS) computing, this design also has limitation on the
scalability compared with digital implementation although we
intend to improve this drawback by adding an unfolding
operation in the special pipelined mode. In this study, most
of our results are based on the final distance which require
the value at the bottom right point of the matrix given that
the distance measurement of two time series can be obtained
at the bottom right corner of the matrix. For the goal of
retrieving all intermediate data for post-processing for a larger
matrix, multiple similar cores (not implemented in this work)
can be stitched together on the same chip. In that case,
the data from TDC can be send out to the next core for
further operation with some degradation of the throughput due

Fig. 12. Architecture diagram of non-pipelined DTW mode.

to data transmission. Such an operation is only supported in
pipelined mode because the non-pipelined mode in this work
would generate data asynchronously leading to a high cost in
obtaining intermediate data.

E. Non-Pipelined DTW Mode

The pipelined mode is essentially designed for accelerating
multi-bit TSC. And each pipeline period is determined by
the capacity of the WTFF module, which is 10 bits in this
design. As the processing time scales with the number of
bits in TD operation, the pipelined mode is not efficient for
low-resolution TSC, e.g., DNA sequencing that only requires
1-bit operation. In such a case, the throughput is higher in
non-pipelined operation than the pipelined operation due to the
extremely fast operation at each node with only 1-bit input.
Hence, to speed up the operation for simple data sequence
case, a non-pipelined mode is implemented by bypassing the
TFF modules and allowing signal edges to directly propa-
gate through the matrix, as shown in Fig. 12.Different from
pipelined case, in non-pipelined case, we encode information
by the delay of rising edges instead of the pulsewidth of time
pulses (similar to prior work [3]). Note that, the rising edge
is naturally accumulated through the combinational block for
“ADD” operation, as depicted in Fig. 7(b).

F. Design Automation for Mixed-Signal Circuit Design

Mixed-signal circuit design typically suffers from the
requirement of manual layout efforts to enhance the integrity
of the signals. To ease the large amount of design effort for
the 2-D array, a TD design automation technique is utilized,
as shown in Fig. 13 [15].

In the local module level, the implemented automation tech-
nique includes both the synthesis and P&R parts. The synthesis
process involves two steps: 1) the register-transfer level (RTL)
with customized syntax for TD logics is utilized to perform
a special MSTC logic synthesis process which generates an
initial gate-level netlist and 2) the size of each module in
the initial netlist is tuned by a special optimizer to meet the
variation budget while keeping the area consumption small.
The P&R process utilizes an adjacent constraint graph-based
placement algorithm to realize the special signal mapping
requirement in TD [15]. As a result, majority of the mod-
ules are automated except critical local cells, e.g., ring core
of TFF.
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Fig. 13. Design automation techniques used in this work. (a) Design
automation flowchart. (b) Layout result of 20 × 20 DTW matrix.

In the higher level, we developed placement script and
utilized digital tool to conduct the layout as such an exam-
ple shown in Fig. 13(b). The neighbor DTW nodes are
placed right close to each other to minimize the routing
length of inter-module connections. The critical global signals,
i.e., clock and reset, are routed in a structured way by routing
script with higher metal layer to relieve the signal crosstalk
effect. As a result, the massive manual signal routing can be
avoided at the higher level of the design while still maintaining
routing quality/matching performance compared with hand
layout.

G. DTW Matrix Calibration Scheme

Similar to analog computing, variation is also a significant
concern in TD computing [16]. To relieve such an issue,
special calibration scheme is introduced to calibrate the 20 ×
20 DTW matrix, as shown in Fig. 14. A 2-b tunable delay cell
is implemented in each unit cell to tune the output pulsewidth,
compensating for process variations.

The DTW nodes are calibrated through each diagonal path
following a center-to-side order, as depicted in Fig. 14(a).
On each diagonal path, the nodes are calibrated from bottom-
right to top-left, as shown in Fig. 14(b) and (c), and the
calibration is performed node by node. The basic idea is to
construct special input sets which make the warping path (as
marked in green in Fig. 1) to lie into the particular diagonal
path and to be calibrated. By specially manipulating the input
data pattern, each node is further calibrated in that particular
diagonal path one by one. Once the diagonal path is properly

Fig. 14. Calibration scheme of the 20 × 20 DTW matrix. (a) Calibration
order through different diagonals. (b) Calibration order of each DTW node
on the main diagonal. (c) Calibration order of each DTW node on the second
diagonal. (d) Example of special input sets to enable the calibration of different
nodes on the main diagonal.

Fig. 15. Die photograph and chip specification.

calibrated, the next diagonal path will be calibrated following
center-to-side order until all the nodes on all diagonals are
calibrated. This systematic calibration flow allows each cell to
be tuned sequentially without back and forth operations and
can be easily automated using the PC. The calibration results
are shown in Section V.

V. EXPERIMENTAL RESULTS

A. Test Chip Setup

A test chip of the proposed DTW accelerator engine was
implemented in a 65-nm CMOS process with die photo and
specification table shown in Fig. 15. The chip is running at
110 MHz with a nominal supply voltage of 1 V. Two sets
of TDCs, based on Vernier delay chains, are placed at the
right and bottom sides to decode TD signals at the boundaries.
A single-bit resolution of 40 ps is used in the DTW design,
while a resolution of 20 ps is used in the TDC to reduce
quantization errors at the boundary of operation. All the input
and output data can be scanned in and out through a scan
chain for verification.
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Fig. 16. Measured waveform of (a) pipelined mode and (b) non-pipelined
mode.

Fig. 17. Linearity measurement of TFF at nominal 1.0 V with (a) retention
time of 10 ns and (b) retention time of 1 µs.

B. Measurement Results

Fig. 16(a) shows the measured waveform in the pipelined
mode which confirms the expected output pulse at a frequency
of 110 MHz. The negative pulses depicted in the zoomed-in
window carry the DTW distance information in TD. Fig. 16(b)
shows 3.1-ns processing time in DNA-sequencing non-
pipelined mode.

The linearity of the TFF is key to the accuracy of the
DTW computation. Also, the retention capability of TFF for
TD signals is important since the degradation of TD signal
over the time due to leakage will cause information loss
for the computation. The linearity of TFF is measured and
verified under different retention time condition. As shown
in Fig. 17(a) and (b), the TFF is verified to retain data for
over 1 µs at a supply voltage of 1 V, with less than 0.5-LSB
linearity loss due to leakage. This retention time is sufficient
for the target application whose retention requirement is only
7 ns. The linearity of TFF is also verified at a lower supply
voltage of 0.7 V. As shown in Fig. 18, the linearity loss is
1.5 LSBs which results to classification error increase (2%) in
the low-voltage operation.

Fig. 19(a) shows measurement results on classification error
using the fabricated DTW chip. University of California,
Riverside (UCR) TSC databases were used with five data-
bases from four typical applications including ECG signal

Fig. 18. Linearity measurement of TFF in low-voltage case (0.7 V) with
retention time is 20 ns.

Fig. 19. Measurement results of different applications. (a) DTW classification
error rate of UCR archive (pipelined mode). (b) Simulated versus measured
DNA alignment distance (non-pipe mode).

classification, gesture recognition, words recognition, and face
detection [24]. The measured error rate for classification by the
DTW engine is only 1.5% higher than ideal DTW operation
(FP results in software). The increased error rate is mainly
due to quantization loss (contributing about 0.5%) and process
variation effect (contributing about 1%).

In order to test the performance of the non-pipeline DTW
mode, a measurement of the DNA sequencing application
is conducted. 100 sets of DNA sequence data from the
human genome database (GDB) were tested for CMP between
ideal DTW operation and measurement results. As shown
in Fig. 19(b), the measured distance closely tracks the ideal
results, having an error within 2.6%.

As shown in Fig. 20, in order to test the robustness of
the chip, the chip was verified at different supply voltages
in pipelined mode down to 0.7 V, with a 2.3% increase in
error rate compared with ideal DTW operation on the UCR
database.

Fig. 21 shows the chip calibration results before and after
calibration operations. In this experiment, a 20 × 20 TSC task
was conducted with 4-bit inputs. The scale for the figure is
the measurement distance error in the unit of LSB. The final
ABS computation different is 1 LSB. After calibrating the
20 × 20 DTW matrix, the MAX DTW distance computation
error drops from 5 to 1.5 LSBs. Fig. 22 shows the CMP with
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Fig. 20. Chip operating frequency and error rate measurement under different
supply voltages.

Fig. 21. DTW node error measurement before and after calibration.

prior work. A throughput of 140 GCUPS for DNA sequencing
is achieved with 9× improvement over previous work [21].
The number of bits in this work are 4 bits as input and 10 bits
in internal operation as compared with low resolution in most
prior work, e.g., 1 bit [21]. More than 20× higher throughput
per area (GCUPS/mm2) is observed compared with prior CPU,
GPU, and ASIC implementations. This is mainly due to the
area efficiency of TD circuit technique in special operations,
e.g., CMP, MAX, and MIN. Overall, 1.5×–50× improvement
of energy per GCUP is realized in this work compared with
prior chip implementations. Over 20× and 18× improvements
on inference per second per mm2 and inference per second per
watt are achieved, respectively.

In order to form an apple-to-apple CMP, the technology
scaling effect is also taken into consideration, compared
with [21], whose throughput is limited by their time resolution
which is 2 ns. We assume the bit resolution scales with
technology (which is not typically true in AMS design), and
our technology advances about three generation with scaling of
about 0.73 leading to about 3× improvement in throughput.
On the other hand, our design has shown 9× improvement
of throughput, so we observe 3× improvement if taking
into account of the technology impact. Compared with [27],
we further scale down the process impact by 0.7 (from 90 to
65 nm) and the bit precision impact (from 32 to 4 bit), and
this leads to a throughput improvement of about 11× for the
ASIC implementation of [27].

In ADD, the use of TFFs enables the first pipelined
architecture for TD design which not only improves the
throughput but also increases the hardware utilization. Com-
pared with non-pipelined operation, the pipelined design
shows 7× improvement in throughput for general DTW appli-
cations. The hardware utilization has been improved from 11%
to 93% due to the pipeline architecture.

Fig. 22. CMP table with prior work. ∗In DNA application, single-bit non-
pipeline mode with input length of 20 is utilized for fair CMP with prior
work. ∗∗ Technology scaling is considered and is further discussed in the
above paragraph.

In ADD to the fabricated prior test chips, Li et al. [28]
proposed a DTW single-element processing unit to investigate
the suitability of using it as a building block for more complex
architecture for embedded applications. Sundaresan et al. [29]
introduced parallel DTW algorithm. Xu et al. [30] proposed a
memristor-based DTW accelerator design. Compared with the
digital implementations in [27] and [28], our design improved
the throughput by over 4×. Compared with the analog and
mixed-signal design in [29], we realized a throughput improve-
ment over 200×.

VI. CONCLUSION

In this work, a general-purpose DTW engine using TD
computing is designed for TSC. A special TD storage cell,
namely, TFF, has been developed with extendable ring-based
structure and embedded accumulation functionality. The devel-
oped DTW engine also allows high-throughput pipelined data
flow and unfolded operation for longer time series through a
specially designed pipeline architecture utilizing the TFF cir-
cuits. A 65-nm CMOS test chip was fabricated and tested. The
measurement shows a throughput improvement of more than
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9× compared with prior works. In ADD, a design automation
methodology was applied to ease the mixed-signal design
effort. A post-silicon calibration scheme was also incorporated
to reduce the impact from process variation leading to 3×
reduction of distance measurement error.
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