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Abstract

A unified framework to optimally select the bandwidth and kernel function of spot volatility kernel

estimators is put forward. The proposed models include not only classical Brownian motion driven

dynamics but also volatility processes that are driven by long-memory fractional Brownian motions or

other Gaussian processes. We characterize the leading order terms of the mean squared error, which

in turn enables us to determine an explicit formula for the leading term of the optimal bandwidth.

Central limit theorems for the estimation error are also obtained. A feasible plug-in type bandwidth

selection procedure is then proposed, for which, as a sub-problem, a new estimator of the volatility of

volatility is developed. The optimal selection of the kernel function is also investigated. For Brownian

Motion type volatilities, the optimal kernel turns out to be an exponential function, while, for fractional

Brownian motion type volatilities, easily implementable numerical results to compute the optimal kernels

are devised. Simulation studies further confirm the good performance of the proposed methods.
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1. Introduction

The estimation of the diffusive coefficient σt of the dynamical stochastic system d X t =
µt dt + σt dWt , driven by a Brownian motion W , has received some renewed attention in the

last few years. This research has partly been pushed by the advent of high-frequency data
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(HFD) in several fields but more predominantly in finance. In the latter context, σt is called

the spot volatility of the price process St = exp(X t ) of a risky asset and, in addition of being

a local measure of the asset’s riskiness at the time t , it is also needed for many problems of

finance such as option pricing and portfolio selection.

In this work, we revisit the problem of spot volatility estimation by kernel methods. Kernel

estimation has a long history and extensive treatments of the method can be found in many

textbooks. The selection of the bandwidth and the kernel function are of great importance

for the performance of the kernel estimator in a finite sample setting. The problem has been

extensively studied for density estimation and kernel regression (cf. [4,9,13]). However, in the

context of spot volatility estimation, the literature related to this problem is much scarcer. In

this work, we put forward a unified framework to the problem that allows us to deal not only

with well studied Brownian driven volatilities but also those driven by other Gaussian processes

such as fractional Brownian motions.

Literature review. Foster and Nelson [6] studied a rolling window estimator, which can be

seeing as a kernel estimator with a compactly supported kernel function. Under a number of

stringent conditions, they established the point-wise asymptotic normality of the estimator, and

drew some conclusions about the optimal window length (i.e., bandwidth) and the optimal

weight functions (kernel functions). However, in spite of the non-parametric model setting,

the volatility was constrained to have a Brownian-like degree of smoothness (see Assumption

A (vii) and (viii) therein) and the selection of bandwidth and kernel function was not

systematically studied, since it was assumed the strict relationship1 hn ≍ n−1/2 between

the window’s length hn and the sample size n (see Assumption D therein). Under such a

relationship, they obtained the optimal kernel weights and separately determine the optimal

constant c appearing in the formula hn = cn−1/2, but only for the flat-weights or uniform

kernel case (see Theorem 4 therein). Fan and Wang [5] also showed a point-wise asymptotic

normality for a general kernel estimator under a specific constraint on the rate of convergence

of the bandwidth (Condition A4 therein), which allowed them to neglect the error coming

from approximating the spot volatility by a kernel weighted volatility (we refer the reader to

Section 6 for details), but the achieved convergence rates are suboptimal. For a continuous

Itô semimartingale with volatility driven by a Brownian motion and jumps, Alvarez et al. [2]

considered the estimation of σ
p

t by taking forward finite differences of the realized power

variation process of order p, which is equivalent to a forward-looking kernel estimator with

uniform kernel. CLTs were also developed therein, which allowed them to argue that the best

possible rate of convergence of the estimation error is n−1/4 and that this is attained when

n1/2hn → c ∈ (0, ∞), as n → ∞. More general results along the same vein (i.e., with uniform-

type kernels) have also been developed in the monograph of Jacod and Protter [7] (see Chapter

13 therein). More recently, Mancini et al. [11] have developed asymptotic normality for a more

general class of spot volatility estimators, which includes kernel estimators.

Besides Foster and Nelson [6], the only work we know that studied the problem of

optimal bandwidth selection of spot volatility kernel estimators is that of Kristensen [10],

who also obtained asymptotic normality of the estimators. However, this work imposes a

strong path-wise smoothness condition (see Remark 2.1 for details), which has several practical

and theoretical drawbacks. Indeed, even for simple volatility processes, it is not possible to

verify the pathwise Hölder continuity needed for a central limit theorem with optimal rate.

Furthermore, even though an ‘optimal’ bandwidth formula is deduced in closed form therein,

1 As usual, an ≍ bn if man ≤ bn ≤ Man , for all n and some 0 < m < M < ∞.
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this is not well-defined if we want to attain optimal convergence rates for the estimation error

(see Remark 2.1).

Our contributions. Having discussed some previous work, we now mention some motivating

factors and objectives of the present work. To begin with, we wish to impose easily verifiable

and general enough conditions to cover a wide range of frameworks without restricting the

degree of smoothness of the volatility process. From a theoretical point of view, we also aim

to provide a formal justification of the optimal convergence rate of the kernel estimator and to

establish central limit theorems (CLT) and asymptotic estimates of the mean square errors

with optimal rates. From the practical side, the two factors that affect the performance of

the estimator, bandwidth and kernel function, ought to be optimized jointly, not separately,

and meanwhile, the proposed method should remain feasible and sufficiently efficient to be

implementable for HFD.

The key assumption to our unifying treatment of the problem is a mild local scaling property

of the covariance structure of the volatility process. This assumption covers a wide range of

frameworks including deterministic differentiable volatility processes and volatilities driven by

Brownian Motion, long-memory fractional Brownian Motion, and, more generally, functions of

suitable Gaussian processes. Under the referred assumption, we characterize the leading order

terms of the Mean Squared Error (MSE) and, as a byproduct, we derive, in closed form, the

leading order term of the optimal bandwidth. From this, the theoretical optimal convergence

rate for the estimation error is identified. We then proceed to show that our optimal bandwidth

formulas are feasible by proposing an iterated plug-in type algorithm for their implementation.

An important intermediate step is to find an estimate of the Integrated Volatility of Volatility

(IVV), for which we propose a new estimator based on the two-time scale realized variance

of Zhang et al. (2005). Consistency and convergence rate of our vol vol estimator are also

established. The estimation of the IVV has also been addressed in [3,15].

Equipped with an explicit formula for the asymptotically optimal MSE, we proceed to

set up a well-posed problem for optimal kernel selection. Concretely, for Brownian motion

driven volatilities, we prove that the optimal kernel function is the exponential kernel K (x) =
2−1 exp(−|x |). Such a result formalizes and extends a previous result of Foster and Nelson [6],

where only kernels of bounded support were considered. We also show that, due to the nature

of the data we are analyzing (namely, HFD), exponential kernel function enjoys outstanding

computational advantages, as it reduces the time complexity for estimating the whole path of the

volatility on all grid points from O(n2) to O(n). We also consider the volatility processes driven

by the long-memory fractional Brownian motion and, in such a case, we provide numerical

schemes to compute the optimal kernel function.

To complement our asymptotic results based on MSE, asymptotic normality of the kernel

estimators is also established for two broad types of volatility processes: Itô processes and

continuous function of some Gaussian processes. In this way, our results cover volatility

processes with flexible degrees of smoothness. The results are consistent with the leading order

approximation of the MSE, so that CLT’s with the optimal convergence rate are obtained.

By contrast, as mentioned above, the CLT’s of Fan and Wang [5] and Kristensen [10] have

suboptimal convergence rate, while the analogous result of Foster and Nelson [6] is limited to

a specific smoothness order and strong constraints on the kernel function and bandwidth. In

the case of Itô volatility processes, we generalize the CLT of Alvarez et al. [2] and Jacod and

Protter [7], from uniform to general forward looking kernels.

Paper Outline. The rest of the paper is organized as follows. In Section 2, we introduce the

kernel estimator and our assumptions, and verify that common volatility processes satisfy our
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assumptions. In Section 3, we deduce the leading order approximation of the MSE of the kernel

estimator and solve the optimal bandwidth selection problem. Then, in Section 4, we deal with

the optimal kernel function selection problem for different types of volatility processes. A

feasible implementation approach of the optimal bandwidth is discussed in Section 5, where

we also introduce the two-scale estimator of the IVV. Central Limit Theorems of the kernel

estimator are discussed in Section 6. Finally in Section 7, we perform Monte Carlo studies.

The proofs of the main results are provided in Appendix A while the proofs of some technical

lemmas and supporting propositions are deferred to the supplemental material to this article

available online.

2. Kernel estimators and assumptions

In this section, we first introduce the classical kernel estimator for the spot volatility. We

then discuss some needed smoothness conditions on the volatility processes and verify that most

common volatility processes used in the literature indeed satisfy our assumptions. Finally, we

discuss some regularity conditions on the kernel function.

Throughout the paper, we consider the following stochastic differential equation (SDE):

d X t = µt dt + σt d Bt , (2.1)

where all stochastic processes (µ := {µt }t≥0, σ := {σt }t≥0, B := {Bt }t≥0, etc.) are defined on a

complete filtered probability space (Ω , F ,F,P), with F = {Ft }t≥0. We also assume that µ and

σ are adapted to the filtration F and B := {Bt }t≥0 is a standard Brownian Motion (BM) adapted

to F. We assume that the process X is observed at the times ti := ti,n := i∆n , 0 ≤ i ≤ n, where

∆n := T/n. We will use ∆
n
i Z := ∆Z ti−1

:= Z ti − Z ti−1
to denote the increments of a process

Z and ∆n = T/n to denote the time increments. For notational simplicity, we sometimes omit

the subscript n in ∆n and the superscript in ∆
n
i Z .

In this paper, we study the problem of estimating the spot volatility στ , at a given time

τ ∈ (0, T ), by the kernel estimator (cf. [5,10]),

σ̂ 2
τ,n,h :=

n∑

i=1

Kh(ti−1 − τ )(∆n
i X )2, (2.2)

where Kh(x) = K (x/h)/h. Again, for simplicity, we sometimes omit the subscript n and/or h

in the notation σ̂ 2
τ,n,h . As is often the case with kernel estimation, the selections of the bandwidth

h and kernel function K of (2.2) are of great importance in practice, especially for the finite

sample settings commonly encountered in econometric applications.

We now proceed to give the required assumptions on the volatility process that allow us to

examine the rate of convergence of the kernel estimator defined in (2.2). Our first assumption,

which is also imposed in [10], is a non-leverage condition. For Brownian-driven volatilities

and weak convergence results, this assumption will be relaxed in Section 6, hence allowing

correlation between the Brownian motions driving the volatility and the price processes.

However, for more general volatilities, including those driven by fractional Brownian motions,

such an assumption would allow us to treat the bandwidth and kernel selection problems in

a unified manner under a mean-squared loss function, which, as stated in the introduction, is

one of our main objectives in this work.

Assumption 1. (µ, σ ) are adapted cádlág processes independent of B.

Next, we impose some mild moment boundedness assumption on µ and σ .
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Assumption 2. There exists MT > 1 such that E[µ4
t + σ 4

t ] < MT , for all 0 ≤ t ≤ T .

The following is our key assumption, which at the end of this section is shown to be satisfied

by a large spectrum of volatility models.

Assumption 3. Suppose that for γ > 0 and certain functions L : R+ → R+ and

Cγ : R × R → R, such that Cγ is not identically zero and

Cγ (hr, hs) = hγ Cγ (r, s), for r, s ∈ R, h ∈ R+, (2.3)

the variance process V := {Vt = σ 2
t : t ≥ 0} satisfies

E[(Vt+r − Vt )(Vt+s − Vt )] = L(t)Cγ (r, s) + o((r2 + s2)γ /2), r, s → 0. (2.4)

A function Cγ satisfying the condition (2.3) is said to be homogeneous of order γ . The

index γ determines the degree of smoothness of the volatility paths t → σt . It is easy to check

(see details in the supplemental material to this article available online) that Cγ (r, s; t) :=
L(t)Cγ (r, s) is unique and satisfies the following non-negative definiteness property:

∫∫
K (x)K (y)C(x, y)dxdy ≥ 0. (2.5)

We shall see in the next section that most volatility processes that are studied in the literature

satisfy Assumption 3 with a function Cγ of the form:

Cγ (r, s) = 1

2
(|r |γ + |s|γ − |r − s|γ ), (2.6)

for some γ ∈ [1, 2]. The case of γ = 1 covers volatility processes driven by BM, while

γ ∈ (1, 2) corresponds to volatility processes driven by fractional Brownian Motions (fBM)

with Hurst parameter H > 1/2. Deterministic and sufficiently smooth volatility processes can

also be incorporated by taking γ = 2. In the following section, we cover these cases and other

more general models.

Remark 2.1. We now draw some connections with the work in [10]. Therein, the variance

process {Vt }t≥0 is assumed to satisfy the following pathwise condition

|Vt+δ − Vt | ≤ L̃(t, |δ|)|δ|γ + o(|δ|γ ), δ → 0, (2.7)

where δ → L̃(t, δ) is a slowly varying random function. Under this condition, Kristensen

[10] shows, via a central limit theorem, that the rate of convergence of the kernel estimator is

OP (n−γ /(1+γ )). To gain some intuition about the usefulness of this approach, let us suppose that

{Vt } is a Brownian motion. In that case, the above holds for all γ < 1/2, but such choices of γ

can only produce suboptimal convergence rate of the kernel estimator. Furthermore, in light of

Lévy’s modulus of continuity, the condition (2.7) holds for γ = 1/2, but only if L̃(t, δ) → ∞,

as δ → 0. But, in that case, the optimal bandwidth selection formulas proposed by Kristensen

[10] are not well defined as they require that limδ→0 L̃(t, δ) =: L̃(t, 0) is finite.

Finally, we introduce the assumptions needed on the kernel function.

Assumption 4. Given γ > 0 and Cγ as defined in Assumption 3, we assume that the kernel

function K : R → R satisfies the following conditions:

(1)
∫

K (x)dx = 1;

(2) K is Lipschitz and piecewise C1 on its support (A, B), where −∞ ≤ A < 0 < B ≤ ∞;
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(3) (i)
∫

|K (x)||x |γ dx < ∞; (ii) K (x)xγ+1 → 0, as |x | → ∞; (iii)
∫

|K ′(x)|dx < ∞, (iv)

V ∞
−∞(|K ′|) < ∞, where V ∞

−∞(·) is the total variation;

(4)
∫∫

K (x)K (y)Cγ (x, y)dxdy > 0.

2.1. Common volatility processes

In this subsection, we demonstrate that many volatility processes studied in the literature

satisfy Assumption 3. We consider three fundamental cases. The proofs of the results in this

part are relatively simple and for the sake of space are deferred to the supplemental material to

this article available online. Let us start by considering the solutions of a standard SDE driven

by BM, which are widely used in practice.

Proposition 2.1. Suppose that the process Vt = σ 2(t, ω) satisfies the SDE

dVt = f (t, ω)dt + g(t, ω)dWt , t ∈ [0, T ], (2.8)

where {Wt }t≥0 is a standard Wiener process adapted to F. Assume that f (t, ω) and g(t, ω) are

adapted and progressively measurable with respect to F, E
[

f 2(t, ω)
]

< M, for t ∈ [0, T ],

and E
[
g2(t, ω)

]
is continuous for t ∈ [0, T ]. Then, Assumption 3 is satisfied with γ = 1,

C1(r, s) = min{|r |, |s|}1{rs≥0}, and L(t) = E[g2(t, ω)]. Furthermore, C1(r, s) is an integrable

positive definite function; i.e., we have strict inequality in (2.5) for all K : R → R such that∫
|K (x)|dx > 0.

Next, we show that some processes defined as integrals with respect to a two-sided fBM

B(H ) = {B
(H )
t : t ∈ R} (see [14] for a detailed survey of fBM) satisfy Assumption 3. A proto-

typical example is the fractional Ornstein–Uhlenbeck process Y
(H )
t = σ

∫ t

−∞ e−λ(t−u)d B(H )
u ,

which is frequently used to model volatility processes. It is worth mentioning that, when

H ̸= 1/2, the fBM is not a semimartingale and the problem of defining the stochastic integral

with respect to fBM is more subtle. In our paper, we only focus on integrals of deterministic

functions f for which the integral can be defined on a path-wise sense under the following

condition (cf. [14]):
∫ ∞

−∞

∫ ∞

−∞
| f (u) f (v)||u − v|2H−2dudv < ∞. (2.9)

Proposition 2.2. Let Y
(H )
t =

∫ t

−∞ f (u)d B(H )
u where f (·) is a deterministic continuous function

that satisfies (2.9) and {B
(H )
t }t∈R is a (two-sided) fBM with Hurst parameter H ∈ ( 1

2
, 1)

defined on a filtered probability space (Ω , F ,F = {Ft }t≥0, P). Then, the processes Y (H ) and

{exp(Y
(H )
t )}t≥0 satisfy Assumption 3 with γ = 2H ∈ (1, 2) and Cγ given by (2.6).

For our final case, we show that if a Gaussian process satisfies Assumption 3, so does a

suitable smooth function of the process.

Proposition 2.3. Assume that (Z t )t≥0 is a Gaussian process that satisfies Assumption 3

uniformly over (0, T ),2 with γ (Z ) ∈ [1, 2), L(·), and C (Z )
γ (·, ·) defined as in (2.4). For each

fixed τ ∈ (0, T ) and a function f ∈ C2(R), further assume the following:

2 The Assumption 3 is satisfied uniformly over (0, T ) if supτ∈(0,T )(r
2 + s2)−γ /2|E[(Vτ+r − Vτ )(Vτ+s − Vτ )]

− L(τ )Cγ (r, s)| → 0, as r, s → 0, and, also, supτ∈(0,T ) |L(τ )| < ∞. This implies the existence of a positive

constant C such that E[(Z t − Zs )2] ≤ C |t − s|γ , for all t, s ∈ (0, T ).
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(a) E[(Zτ+r − Zτ )Zτ ] = O(|r |), E[Zτ+r ] − E[Zτ ] = O(|r |), as r → 0.

(b) E[( f ′(Zτ ))4] < ∞, E[supt∈(τ−ϵ,τ+ϵ)( f ′′(Z t ))
4] < ∞ for some ϵ > 0.

Then, the process Vt := f (Z t ), t ≥ 0, satisfies Assumption 3 with γ (V ) = γ , L(t) =
E[( f ′(Z t ))

2]L Z (t), and C (V )
γ = C (Z )

γ .

3. MSE decomposition and bandwidth selection

In this section, we first deduce an explicit leading order approximation (up to O(∆
h

) and

O(hγ ) terms) of the MSE of the estimator. In what follows, we omit n in the notations ∆n ,

hn , and σ̂ 2
τ,n . The proof is deferred to Appendix A.

Theorem 3.1. For the model (2.1) with µ and σ satisfying Assumptions 1–3, and a kernel

function K satisfying Assumption 4, let

MSEa
τ,n,h := 2

∆

h
E[σ 4

τ ]∥K∥2
2 + hγ L(τ )

∫∫
K (x)K (y)Cγ (x, y)dxdy. (3.1)

Then, for any τ ∈ (0, T ) and ∆, h → 0 such that ∆/h → 0, we have:

MSEτ,n,h = E[(σ̂ 2
τ − σ 2

τ )2] = MSEa
τ,n,h + o

(
∆

h

)
+ o (hγ ). (3.2)

It is not hard to see from the proof of the previous result that all o(·) terms are uniform on

τ ∈ (0, T ) if the condition given by (2.4) is satisfied uniformly in t . Then, we readily get the

following:

Corollary 3.1. For 0 < a < b < T , let

MSEa
n,h(a, b) := 2

∆

h

∫ b

a

E[σ 4
t ]dt∥K∥2

2 + hγ

∫ b

a

L(t)dt

∫∫
K (x)K (y)Cγ (x, y)dxdy.

(3.3)

Then, for the model (2.1)) with µ and σ satisfying Assumptions 1–3, so that the term

o((r2 + s2)γ /2) in Eq. (2.4) is uniform in t, and a kernel function K satisfying Assumption 4,

we have

IMSEn,h :=
∫ b

a

E[(σ̂ 2
t − σ 2

t )2]dt = MSEa
n,h(a, b) + o

(
∆

h

)
+ o(hγ ). (3.4)

Based on the approximations above, it is natural to analyze the behavior of the approximated

MSE of the kernel estimator. We focus on the integrated MSE (3.4) but an analogous

analysis can be made for the local MSE (3.2). Note that, by Assumption 4, we have that∫∫
K (x)K (y)Cγ (x, y)dxdy > 0. We then obtain the following:

Proposition 3.1. With the same assumptions as Corollary 3.1, the approximated optimal

homogeneous bandwidth, denoted by h̄
a,opt
n , which is defined to minimize the approximated

IMSE given by (3.3), is given by

h̄a,opt
n = n−1/(γ+1)

[
2T

∫ b

a
E[σ 4

t ]dt
∫

K 2(x)dx

γ
∫ b

a
L(t)dt

∫∫
K (x)K (y)Cγ (x, y)dxdy

]1/(γ+1)

, (3.5)
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while the attained minimum of the approximated IMSE is given by

IMSEa,opt
n (a, b) = n−γ /(1+γ )

(
1 + 1

γ

)(
2T

∫ b

a

E[σ 4
t ]dt

∫
K 2(x)dx

)γ /(1+γ )

×
(

γ

∫ b

a

L(t)dt

∫∫
K (x)K (y)Cγ (x, y)dxdy

)1/(1+γ )

.

(3.6)

A direct consequence of the previous result is the following proposition about the optimal

convergence rate.

Proposition 3.2. With the same assumptions as those in Corollary 3.1, the optimal

convergence rate of the kernel estimator is given by n−γ /(1+γ ). This is attainable if the

bandwidth is chosen as hn = cn−1/(γ+1) for some constant c ∈ (0, ∞).

An important problem is to formalize the connection between the approximate optimal

bandwidth h̄
a,opt
n (respectively, h

a,opt
n ), which is defined as the minimizer of the MSE (3.3)

(respectively, (3.1)), and the “true” optimal bandwidth, whenever it exists, which is denoted

by h̄∗
n (respectively, h∗

n) and is defined as a value of the bandwidth that minimizes the actual

IMSE (respectively, MSE) of the kernel estimator. In the supplemental material to this article

available online, we show that, under a mild additional condition, they are equivalent in the

sense that h̄∗
n = h̄

a,opt
n + o(h̄

a,opt
n ) and h∗

n = h
a,opt
n + o(h

a,opt
n ).

4. Kernel function selection

As an important application of the optimal bandwidth selection problem defined in Section 3,

we now study the problem of selecting an optimal kernel function by minimizing the optimal

IMSE attained by (3.5). As shown therein, the optimal kernel function only depends on the

covariance structure, Cγ (·, ·). There are two possible situations. The first one is when Cγ is

positive definite. In such a case, we cannot improve the rate of convergence of the IMSE, but

we can attempt to minimize the constant appearing before the asymptotics of the IMSE in (3.6)

or, equivalently, minimize the functional:

I (K ) =
(∫

K 2(x)dx

)γ ∫∫
K (x)K (y)Cγ (x, y)dxdy. (4.1)

Another situation is when Cγ is simply non-negative definite. In such a case, if we relax (4)

of Assumption 4, it is possible to improve the rate of convergence of the IMSE by choosing

a so-called “higher order” kernel function. An important instance of this case is when the

volatility is deterministic and sufficiently smooth (see Remark 4.1 for more information).

In this section, we focus on the covariance function Cγ defined in Eq. (2.6) with γ < 2,

which is actually positive definite. This is because Cγ admits the integral form Cγ (x, y) =∫
Fγ (x, u)Fγ (y, u)du with

Fγ (x, y) := m
(
|x − y|

γ−1
2 sgn(x − y) + |y|

γ−1
2 sgn(y)

)
,

and a certain constant m (see [12] for details). We can then easily check that
∫ ∫

K (x)K (y)

Cγ (x, y)dx =
∫

(
∫

K (x)Fγ (x, u)dx)2du > 0, for an arbitrary nonzero kernel function K :
R → R. Furthermore, it also follows that its symmetrization, Ks(x) := (K (x) + K (−x))/2, is

such that∫∫
K (x)K (y)Cγ (x, y)dxdy −

∫∫
Ks(x)Ks(y)Cγ (x, y)dxdy ≥ 0. (4.2)
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The previous relation implies that in order to minimize the constant appearing before the

asymptotic IMSE in (3.5), it suffices to consider symmetric kernel functions K .

Remark 4.1. In the accompanying material to this article available online, we give some new

results regarding optimal kernel selection for smooth deterministic volatilities. Concretely, by

using the calculus of variation with constraints, we obtain optimal kernel functions of higher

orders. The second order optimal kernel is exactly that of Epanechnikov [4] kernel, while, for

higher order cases, we provide ways to calculate those optimal kernel functions.

4.1. Optimal kernel selection for BM driven volatilities

Consider a BM type volatility with γ = 1 and C1(r, s) = 1{rs>0} min(|r |, |s|). We will show

that the exponential kernel function is the optimal kernel function. Foster and Nelson [6] argued

that this is the case, but their proof lacks rigor, due to their bounded support assumption on

the kernel function.

From (4.1) and the relation (4.2), the objective function that we need to minimize is
∫ ∞

0

K 2(x)dx

∫ ∞

0

∫ ∞

0

K (x)K (y) min(x, y)dxdy.

In terms of U (x) :=
∫∞

x
K (y)dy, we can write this as

I ∗(U ) :=
∫ ∞

0

[U ′(x)]2dx

∫ ∞

0

[U (x)]2dx . (4.3)

The problem is then changed to minimize I ∗(U ) for functions U that are continuous and piece-

wise twice differentiable on R+ such that U (0) = 1
2

and limx→+∞ U (x) = 0. Next, using

Cauchy–Schwarz inequality, note that

I ∗(U ) ≥
(∫ ∞

0

U ′(x)U (x)dx

)2

=
(∫ ∞

0

U (x)dU (x)

)2

=
(∫ 0

1/2

udu

)2

= 1

64
,

where the first inequality becomes equality if and only if there exist non-zero constants C1

and C2 such that C1U ′(x) + C2U (x) ≡ 0, for all x ∈ R+. We have two possible cases: (1)

there exists x0 > 0, such that U (x) > 0, for all x ∈ [0, x0) and U (x0) = 0; (2) U (x) > 0, for

all x ∈ R+. For the first case, we have that U ′(x)/U (x) = −C2/C1, for x ∈ (0, x0), whose

solution is U (x) = 1
2
eBx and it is then impossible that U (x0) = 0. Therefore, only the second

case is possible and, by solving the same differential equation, we have the following.

Theorem 4.1. For the model (2.1) with µ and σ satisfying Assumptions 1 and 3, where Cγ is

given by (2.6) with γ = 1, and for a kernel function K satisfying 4, we have that the optimal

kernel function that minimizes the first order approximation of the IMSE of the kernel estimator

is the exponential kernel function K exp(x) = 1
2

exp(−|x |).

Remark 4.2. We can easily demonstrate to what extent the exponential kernel decreases the

MSE. As seen from (3.6), I M SE
a,opt
n = C

√
I ∗(K ), where the constant C does not depend

on the kernel function K . Below, we show the value of I ∗(K ) := I ∗(U ) for the exponential,
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uniform, triangular, and the Epanechnikov kernels:

I ∗(.5 e−|x |) = 1

72
≈ 0.0138, I ∗(.5 1{|x |<1}) = 1

24
≈ 0.0416,

I ∗(|1 − x |1{|x |<1}) = 1

30
≈ 0.0333, I ∗(.75 (1 − x2)1{|x |<1}) = 297

8240
≈ 0.036.

In Section 8 of the supplemental material to this article available online, we show some Monte

Carlo experiments to illustrate the superior performance of the exponential kernel.

Let us finish by noting that the exponential kernel function not only minimizes the MSE of

the kernel estimator, but also enables us to substantially reduce the computational complexity

of the volatility estimation. The idea is using the decomposition

σ̂ 2
τ,exp :=

n∑

i=1

K
exp

h (ti−1 − τ )(∆i X )2 := σ̂ 2
τ,+ + σ̂ 2

τ,∗ + σ̂ 2
τ,−, (4.4)

where, fixing i0 such that ti0−1 ≤ τ < ti0 ,

σ̂ 2
τ,− =

∑

i<i0

K
exp

h (ti−1 − τ )(∆i X )2,

σ̂ 2
τ,∗ = K

exp

h (ti0−1 − τ )(∆i0 X )2,

σ̂ 2
τ,+ =

∑

i>i0

K
exp

h (ti−1 − τ )(∆i X )2.

(4.5)

The computational reduction arises from the fact that σ̂ 2
τ,− and σ̂ 2

τ,+ can actually be computed

iteratively as follows:

σ̂ 2
τ+∆,− = e−∆/h

[
σ̂ 2

τ,− + K
exp

h (ti0−1 − τ )(∆i0 X )2
]
,

σ̂ 2
τ+∆,+ = e∆/h

[
σ̂ 2

τ,+ − K
exp

h (ti0 − τ )(∆i0+1 X )2
]
.

(4.6)

It is now clear that, in order to estimate {σti }i=0,...,n , using an exponential kernel, we need a

time of O(n), instead of the orders O(n2) or O(n2h) needed for general kernels of unbounded

or bounded support, respectively.

In practice, kernel estimators suffer of biases at times closer to the boundary. As proposed

in [10], this can be corrected by using the following estimator:

σ̂ b
τ,n,h =

∑n
i=1 Kh(ti−1 − τ )(∆n

i X )2

∆
∑n

i=1 Kh(ti−1 − τ )
. (4.7)

where the superscript denotes boundary effect. The denominator above can still be efficiently

calculated similarly as (4.4) except that all (∆i X )2 are replaced by 1.

4.2. Optimal kernel function for a fBM driven volatility

In this section, we now consider a general fBM covariance structure, i.e. γ ∈ (1, 2) and

Cγ given by (2.6). From (4.1) and the relation (4.2), and since Cγ (x, y) + Cγ (x, −y) =
|x |γ + |y|γ − 1

2
|x + y|γ − 1

2
|x − y|γ for x, y > 0, our goal is to minimize

I ∗(K ) =
(∫ ∞

0

K 2(x)dx

)γ ∫ ∞

0

∫ ∞

0

K (x)K (y)A(x, y)dxdy. (4.8)

where A(x, y) = |x |γ + |y|γ − 1
2
|x + y|γ − 1

2
|x − y|γ . Unfortunately, the problem of solving

the calculus of variation problem associated with (4.8) and finding an explicit form for the
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optimal kernel function is more challenging. Therefore, we instead seek a numerical method

to find the optimal kernel function, for which, we consider a two-step approximation procedure.

First, since all unbounded support kernels can be approximated by a kernel with bounded

support and the optimization problem is unchanged with K (x) scaled by a small bandwidth,

we will limit the support of K (x) to be [0, 1]. Second, we approximate the kernel function

K by step functions of the form Km(x) = 1∑n
i=1 ai

∑m
i=1 ai 1[ i−1

m , i
m )

(x), with x ∈ [0, 1], ai ∈ R

(i = 1, . . . , n), as well as approximate
∫ i/m

(i−1)/m

∫ j/m

( j−1)/m
A(x, y)dxdy with A((i − 0.5)/m, ( j −

0.5)/m) := Ai j . Using the just described approximation, we seek to minimize:

f (a) = mγ

(
m∑

i=1

a2
i

)γ
⎛
⎝

m∑

i=1

m∑

j=1

ai a j Ai j

⎞
⎠
(

m∑

i=1

ai

)−2γ−2

, (4.9)

over all valid values of (a1, . . . , am), for which we use gradient descent. In spite of the high

dimensionality of the optimization problem, this is still tractable, since the gradient can be

calculated explicitly as

∂ f

∂ai

= C(a)2γ+2
(

a2

)γ−1

⎡
⎣2aiγ

⎛
⎝

n∑

i=1

n∑

j=1

ai a j Ai j

⎞
⎠+ a2

⎛
⎝2

n∑

j=1

a j Ai j

⎞
⎠
⎤
⎦

− (2γ + 2) (a)2γ+1
(

a2

)γ

⎛
⎝

n∑

i=1

n∑

j=1

ai a j Ai j

⎞
⎠ ,

where a :=
∑n

i=1 ai/n, a2 :=
∑n

i=1 a2
i /n, and C is a constant that depends on n but not on

the ai ’s.

Fig. 1 shows the resulting optimal kernels for γ = 1.0, 1.3, 1.6, 1.9. Note that the resulting

approximated optimal kernel for γ = 1 is consistent with true optimal kernel that was proved

to be exponential in Section 4.1. We also observe from Fig. 1 that, as γ increases, the optimal

kernel function becomes flatter and less convex. This indeed makes sense, since a higher γ

indicates less chaos of the volatility, and thus more weights should be given to data farther

from the estimated point.

5. Plug-in bandwidth selection methods

In this section we propose a feasible plug-in type bandwidth selection algorithm, for which,

as a sub-problem, we also develop a new estimator of the volatility of volatility based on

the kernel estimator of the spot volatility and a type of two-time scale realized variance

estimator. We shall focus on the case of a BM type volatility as described in Proposition 2.1,

while similar methods can be developed for other types of volatility structures. To implement

the approximated optimal bandwidth formula (3.5), it is natural to estimate
∫ T

0
E[σ 4

t ]dt and∫ b

a
L(t)dt =

∫ b

a
E[g2(t)]dt with the integrated quarticity of X , I Q(X ) =

∫ T

0
σ 4

τ dτ , and

the quadratic variation of σ 2, I V (σ 2) =
∫ T

0
g2(τ )dτ . A popular estimate for

∫ T

0
σ 4

τ dτ is

the realized quarticity, which is defined by Î Q = (3∆)−1
∑n

i=1(∆i X )4. The estimation of∫ T

0
g2(τ )dτ is a more subtle problem and, below, we propose an estimator, which is termed

the Two-time Scale Realized Volatility of Volatility (TSRVV) and is hereafter denoted by
ˆI V (σ 2)(tsrvv). With these estimators, the final bandwidth can then be written as

ha,opt
n =

[
2T Î Q(X )

∫
K 2(x)dx

n ˆI V (σ 2)(tsrvv)

∫∫
K (x)K (y)C1(x, y)dxdy

]1/2

. (5.1)
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Fig. 1. Optimal Kernel Functions for Different γ .

The previous bandwidth estimator involves the spot volatility itself, through ˆI V (σ 2)(tsrvv),

which, of course, we do not know in advance. To deal with this problem, we propose to use

an iterative algorithm in the same spirit of a fixed-point type of procedure. Concretely, we start

with an initial “guess” for the bandwidth such as

hini t
n =

[
2T

∫
K 2(x)dx

n
∫∫

K (x)K (y)C1(x, y)dxdy

]1/2

. (5.2)

With such a bandwidth, we can obtain initial estimates of the spot volatility at all the grid points.

Such an initial spot volatility estimation can then be applied to compute ˆI V (σ 2)(tsrvv), which,

in turn, can be used to obtain another estimation of the optimal bandwidth. This procedure is

continued iteratively until a predetermined stopping criterion is met. Our simulations show that

one or two iterations are typically enough.

We are now ready to define our estimator ˆI V (σ 2)(tsrvv) of I V (σ 2) =
∫ T

0
g2(τ )dτ , which is

often referred to as the Integrated Volatility of Volatility (IVV) of X . The idea is to note that,

at each observation time ti , the estimated spot volatility can be written as σ̂ 2
ti

= σ 2
ti
+eti , where

eti is the estimation error. This suggests to make an analogy with the problem of estimating the

realized quadratic variation of a semimartingale Y based on discrete observations of Y exposed

to market microstructure. So, we can apply any of the different techniques to tackle this problem

such as the Two-time Scale Realized Volatility (TSRV) estimator of Zhang et al. [16]. However,

note that, unlike the problem in [16], our estimation errors are correlated and such a correlation

becomes more significant when we take the difference ∆i σ̂
2 = σ̂ 2

ti+1
− σ̂ 2

ti
. To alleviate such

a problem, we propose to use one-sided kernel estimators and take the difference between

the right and left side estimators to find ∆i σ̂
2. Concretely, let σ̂ 2

l,ti
and σ̂ 2

r,ti
be the left- and
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right-side estimator of σ 2
ti

, respectively, defined as

σ̂ 2
l,ti

=
∑

j≤i Kh(t j−1 − ti )(∆
n
j X )2

∆
∑

j≤i Kh(t j−1 − τ )
, σ̂ 2

r,ti
=
∑

j>i Kh(t j−1 − ti )(∆
n
j X )2

∆
∑

j>i Kh(t j−1 − τ )
. (5.3)

Next, we define the following two difference terms: ∆i σ̂
2 = σ̂ 2

r,ti+1
− σ̂ 2

l,ti
, ∆

(k)
i σ̂ 2 = σ̂ 2

r,ti+k

− σ̂ 2
l,ti

. Finally, we can construct the estimator

ˆI V (σ 2)(tsrvv) = 1

k

n−k−b∑

i=b

(∆
(k)
i σ̂ 2)2 − n − k + 1

nk

n−k−b∑

i=b+k−1

(∆i σ̂
2)2. (5.4)

Here, b is a small enough integer, when compared to n. The purpose of introducing such a

number b is to alleviate the boundary effect of the one sided estimators. More specifically,

since we are using left- and right-side estimators of the spot volatility, we are not able to

estimate, for example, σ̂ 2
l,t0

and σ̂ 2
r,tn

. Therefore, in practice, we suggest to select an appropriate

b to avoid such a problem. Theoretically, we will establish our asymptotic properties to the

estimator of
∫ T −tb

tb
g2(τ )dτ for some small but fixed tb ∈ (0, T/2). Similar to Zhang et al. [16],

we can take k = n2/3 in our case. There is some work to do if one wants to optimize such a

TSRVV estimator, by selecting better b and k to improve the convergence, but this is outside

the scope of the present work.

The result below shows the consistency of (5.4) and shed some light on its rate of conver-

gence. Its proof is provided in Appendix A.

Theorem 5.1. Fix a tb ∈ (0, T/2). Then, for the model (2.1) with µ and σ satisfying

Assumptions 1 and 2 and σ being a squared integrable Itô process as in Eq. (2.8) (thus

satisfying Assumption 3), and a kernel function K satisfying Assumption 4, (5.4) is a consistent

estimator of
∫ T −tb

tb
g2

t dt with b = tb/∆. Furthermore, the convergence rate is given by

Op( n1/4

k1/2 ) + Op(

√
k
n

).

Remark 5.1. Vetter [15] proposed a similar estimator for the IVV, but taking a right-sided

uniform kernel when computing the difference ∆i σ̂
2 of the estimated volatility and also

applying a different bias correction technique from ours. It is shown therein that his estimator

attains the optimal rate of convergence of n−1/4. Simulations, that are not shown here for

the sake of space, indicate that our TSRVV using the optimal exponential kernel has better

performance than Vetter [15] at least for the chosen parameter choices. This suggests that there

may be some room for improvement of the convergence rate stated in Theorem 5.1, which is

just O(n−1/8). On the other hand, the observed improved performance of our TSRVV may also

be a consequence of the fact that we are using an exponential kernel, while the estimator in

[15] uses the suboptimal uniform kernel.

To conclude, we summarize the proposed plug-in type implementation of the kernel-based

spot volatility estimation. First, using h = hini t
n as defined in (5.2), we compute the left- and

right-side estimators of σ 2
ti

as described in Eq. (5.3), at all grid point ti . These are then used

to estimate I V (σ 2) =
∫ T

0
g2(τ )dτ via (5.4). This estimator is then plugged in (5.1) to obtain

an updated estimate of the bandwidth h
a,opt
n , which can again be used in (5.3)–(5.4). This

procedure continues until, e.g., the value of h or ˆI V (σ 2)(tsrvv) do not change much. Once we

reached “convergence”, we use (4.7) to estimate σ̂ti with the final value of h.
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6. Central limit theorems

In this section, we aim to characterize the limiting distribution of the estimation error of

the kernel estimator by proving a Central Limit Theorem (CLT). All the proofs are given in

Appendix A.

To motivate the discussion below, let us start by noting the following natural decomposition:

σ̂ 2
τ − σ 2

τ =
(

n∑

i=1

Kh(ti−1 − τ )(∆i X )2 −
∫ T

0

Kh(t − τ )σ 2
t dt

)

+
∫ T

0

Kh(t − τ )(σ 2
t − σ 2

τ )dt + op (hγ ) ,

(6.1)

where the last term on the right-hand side above follows from Assumption 4. Two general type

of results can be found in the literature to deal with the estimation error:

(1) One approach consists of using a ‘suboptimal’ bandwidth so that the first error term

in (6.1), which, as shown below, is of order Op((∆/h)1/2), dominates the second

term, whose order is Op(hγ /2). This would be the case if, for instance, we choose

h = o(∆1/(γ+1)). Instances of this type of results can be found in [5,10,11].

(2) In the case that σ 2
t follows an Itô process, Foster and Nelson [6] obtained a CLT for

the kernel estimator σ̂ 2
τ with optimal convergence rate but under a number of stringent

conditions. In particular, only kernels with bounded support were considered. More

recently, under relatively mild assumptions in the Itô dynamics of X and σ , Alvarez

et al. [2] obtained a CLT with optimal convergence rate but only for the forward uniform

kernel function K (x) = 1[0,1](x). Jacod and Protter [7] was able to obtain the same

type of results for both forward and backward uniform kernels: K (x) = 1[0,1](x) or

K (x) = 1[−1,0](x).

The two previous approaches have some obvious limitations. The first approach can only yield

results with suboptimal convergence rates, while the second type of results only deal with one

level of smoothness in the volatility process and uniform one-sided kernels. In this section, we

obtain a CLT with optimal convergence rate in two broad frameworks: (i) Itô type volatilities

and (ii) deterministic functions of certain Gaussian processes. These cover all the examples

mentioned in Section 2.1. For the framework (i), we consider two cases: (1) A general kernel

but under the no leverage Assumption 1; (2) Leverage but only forward looking kernel as in

[2], even though the latter work only considers uniform kernels, while we consider here a

general forward-looking kernel function. The second framework (ii) covers a wide range of

models of different smoothness levels, though without leverage. In what follows, we replace

Assumption 1 with the following:

Assumption 5. The processes µ and σ are adapted cádlág.

We begin with an analysis of the first error term in (6.1), which, in the nonleverage case,

was already studied in [10]. Mancini et al. [11] (see Theorem 2.7 therein) also analyzed this

term, but, since the proof in [11] is for a more general class of estimators and requires more

technical analysis, we give a simpler proof in Appendix A.
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Theorem 6.1. For the model (2.1) with µ and σ satisfying Assumption 5, and a kernel function

K satisfying Assumption 4, we have, for any τ ∈ (0, T ),

(
∆

h

)−1/2
[

n∑

i=1

Kh(ti−1 − τ )(∆i X )2 −
∫ T

0

Kh(t − τ )σ 2
t dt

]
→D δ1 N (0, 1), (6.2)

where δ2
1 = 2σ 4

τ

∫
K 2(x)dx.

Next, we consider the second error term in (6.1), which only involves properties of the

volatility process σ and not the interaction between X and σ .

Theorem 6.2. Let K be a kernel function satisfying Assumption 4 and fix a τ ∈ (0, T ).

Additionally, suppose that either one of the following conditions holds:

(1) {σ 2
t }t≥0 is an Itô process given by σ 2

t = σ 2
0 +

∫ t

0
fsds +

∫ t

0
gsdWs with adapted cádlág

processes { ft }t≥0 and {gt }t≥0.

(2) σ 2
t := f (Z t ), t ∈ [0, T ], for a deterministic function f : R → R and a Gaussian process

{Z t }t≥0 satisfying all requirements of Proposition 2.3.

Then, on an extension (Ω̄ , F̄ , P̄) of the probability space (Ω , F ,P), equipped with a standard

normal variable ξ independent of gτ in (1) or Zτ in (2), we have:

h−γ /2

(∫ T

0

Kh(t − τ )(σ 2
t − σ 2

τ )dt

)
→D δ2ξ, (6.3)

where, under the condition (1) above, δ2
2 = g2

τ

∫∫
K (x)K (y)C1(x, y)dxdy, while, under the

condition (2), δ2
2 = [ f ′(Zτ )]2L (Z )(τ )

∫∫
K (x)K (y)C (Z )

γ (x, y)dxdy.

As a byproduct of Theorems 6.1 and 6.2 and in accordance with our former Proposition 3.2,

we deduce that the optimal convergence rate is n−γ /(1+γ ) and that this would be attained if

hn = c∆
1/(γ+1)
n for any constant c ∈ (0, ∞). In that case, the following result shows a CLT for

σ̂ 2
τ under the non-leverage Assumption 1.

Corollary 6.1. Suppose the assumptions of Theorems 6.1 and 6.2 are satisfied as well as

the nonleverage Assumption 1. Then, for the bandwidth selection hn = ∆
1/(γ+1), we have

∆
− γ

2(1+γ )
(
σ̂ 2

τ − σ 2
τ

)
→D

√
δ2

1 + δ2
2 ξ̄ , where δ1 and δ2 are defined in Theorems 6.1 and 6.2,

respectively, and ξ̄ is a standard normal random variable independent from gτ , under the

setting (1) of Theorem 6.2, or from Zτ under the setting (2) of Theorem 6.2.

Our final result is a CLT when hn = cn−1/(γ+1) for general Itô volatilities (as in the setting

(1) of Theorem 6.2), but only forward looking kernels. This generalizes results of Alvarez et al.

[2], where only uniform forward kernels were analyzed.

Theorem 6.3. Consider the model (2.1) with a cádlag process µ and an Itô process σ given

by σ 2
t = σ 2

0 +
∫ t

0
fsds+

∫ t

0
gsdWs , where W is a Brownian motion such that E(d Bt ·dWt ) = ρdt

and { ft }t≥0 and {gt }t≥0 are adapted cádlág processes. Let K be a kernel function satisfying

Assumption 4 and, in addition, K (x) = 0 for all x < 0. Then, the conclusion of Corollary 6.1

holds true with γ = 1.
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7. Simulation results

In this section, we show some simulations to further investigate the performance of the

plug-in method that we developed in Sections 3 and 5 and compare it with the cross-validation

method proposed in [10]. Throughout, we will consider the Heston model:

d X t = µt dt +
√

Vt d Bt , dVt = κ(θ − Vt )dt + ξ
√

Vt dWt , (7.1)

where Vt = σ 2
t is the variance process. Regarding the parameters values, we adopt the setting

used in [16]:

κ = 5, θ = 0.04, ξ = 0.5, µt = 0.05 − Vt/2.

The initial values are set to be X0 = 1 and σ 2
0 = 0.04. We also assume both a non-leverage

setting (ρ = 0) and a negative leverage situation (ρ = −0.5) to investigate the robustness of

our method against non-zero ρ values. We will consider several different sampling scenarios

with 6.5 trading hours per day (the time unit is one year) and 252 trading days during the year.

In order to alleviate boundary effects, we use the estimator (4.7) throughout all the

simulation. For each simulated discrete skeleton {X ti : 0 ≤ i ≤ n}, with ti = iT/n, we

estimate the corresponding discrete-skeleton of the variance process {σ 2
ti

: 0 ≤ i ≤ n}, and

calculate the average of the squared errors, ASE = 1
n−2l+1

∑n−l
i=l (σ̂ 2

ti
−σ 2

ti
)2, for each simulation.

We use l = [0.1n] to focus on evaluating the performance of the estimator without boundary

effects. Then, we take the sample average of such ASE’s to estimate the mean ASE, defined

as MASE = E

[
1

n−2l+1

∑n−l
i=l (σ̂ 2

ti
− σ 2

ti
)2
]
.

In Table 1, we report the MASE obtained by different methods based on 2000 paths. The

first column reports the performance of the plug-in method proposed in Section 5, where we

use the approximated homogeneous optimal bandwidth (3.5) together with the vol vol estimator

described in Eqs. (5.3)–(5.4) (we fix b = n/10 therein and run only two iterations after the

initial initialization (5.2) of the bandwidth). In the second column, we report the results for the

leave-one-out cross validation as proposed in [10]. In the third column, we give the results for

an oracle plug-in method, where the true path of {σt }t∈[0,T ] and ξ are used to compute
∫ T

0
σ 4

t dt

and
∫ T

0
g2(t)dt = ξ 2

∫ T

0
σ 2

t dt in the formula (3.5). The final column shows a “semi-oracle”

result, which only assumes the knowledge of the volatility of volatility ξ of the Heston model,

but not the path of {σt }t∈[0,T ], which is estimated using kernel-based estimation.

As expected, the plug-in method runs significantly faster than cross validation. As to

the accuracy of the kernel estimator, simulation results show that, in almost all sampling

frequencies, the plug-in method outperforms the cross-validation method. It is worth to notice

that, in all cases, there is still significant loss of accuracy for the plug-in method compared

to the oracle ones. From the two oracle results, it can be easily observed that such a loss of

accuracy is mainly due to the estimation error of the volatility of volatility. In Section 8 of the

supplemental material to this article available online, we show some Monte Carlo experiments

to illustrate the performance of the vol vol estimator proposed in Section 5.

We now proceed to test the TSRVV estimator introduced in (5.3)–(5.4) with b = n/10. We

use one month data as demonstration, and, in order to see how the estimator performs with

different sampling sequence, we consider 5 min and 1 min data. Since we are considering the

Heston model, we will not report the integrated volatility of volatility, but instead, we report

the following estimator of IVV parameter ξ of the Heston model:

ξ̂ :=

√
Î V V

tsrvv

Î V
.
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Table 1

Comparison of Different Bandwidth Selection Methods (MASE, 2000 simulations). For the 5-days data, T = 5/252

(in years), while “5-min" frequency means that ∆ = 5/(60 · 6.5 · 252) (in years), and the number of observation

n = 12 ·6.5 ·5 = 390. “1 min" frequency means that ∆ = 1/(60 ·6.5 ·252) (in years), and n = 60 ·6.5 ·5 = 1950. For

21 days (1 month) data, T = 1/12 (in years), in which case the number of observations is n = 12 · 6.5 · 21 = 1638

for 5-min frequency and means ∆ = 5/(60 · 6.5 · 252) (in year), and n = 60 · 6.5 · 21.

5 days data

Frequency ρ M ASEP I M ASECV M ASEoracle M ASE semi
oracle

5 min 0 1.0796E−07 1.3386E−07 9.1266E−08 9.0402E−08

1 min 0 7.1439E−09 8.0542E−09 6.7286E−09 6.7074E−09

5 min −0.5 1.0296E−07 1.4180E−07 9.2620E−08 9.2009E−08

1 min −0.5 7.3872E−09 8.2567E−09 6.9356E−09 6.9060E−09

21 days data

Frequency ρ M ASEP I M ASECV M ASEoracle M ASE semi
oracle

5 min 0 1.9088E−08 2.1221E−08 1.8265E−08 1.8178E−08

1 min 0 1.7064E−09 1.6868E−09 1.5984E−09 1.5961E−09

5 min −0.5 1.9039E−08 1.9495E−08 1.7587E−08 1.7506E−08

1 min −0.5 1.6652E−09 1.6011E−09 1.5509E−09 1.5505E−09

Table 2

Estimation of Volatility by TSRVV (1 month data, 10000 sample paths). See the caption in Table 1 for more

information about the data.

Frequency ρ ξ Bias Std
√

M SE

5 min 0 0.2 −0.0006 0.0990 0.0990

5 min 0 0.5 −0.0584 0.1979 0.2063

1 min 0 0.2 −0.0122 0.0772 0.0782

1 min 0 0.5 −0.0411 0.1549 0.1603

5 min −0.5 0.2 −0.0002 0.0987 0.0987

5 min −0.5 0.5 −0.0571 0.1984 0.2065

1 min −0.5 0.2 −0.0138 0.0779 0.0791

1 min −0.5 0.5 −0.0443 0.1551 0.1613

Generally, ξ = 0.5 is a rule of thumb value, but we will use ξ = 0.2 and 0.5 to test the

estimator.

The result is reported in Table 2 and as we can see, the estimator performs better when the

sampling frequency increases or the value of ξ is small. However, it is also clear that estimation

error is quite large, so further development of estimation of IVV should be possible.

Finally, in Table 3, we compare the estimation performance for different kernels. As shown

therein, the exponential kernel performs the best in all cases. As the calculation we had in

Remark 4.2, we can see that the second best kernel is the triangle kernel, since its shape is

more similar to exponential kernel. Similarly, the uniform kernel performs the worst, since it

is the farthest to the optimal exponential kernel.
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Table 3

Comparison of Different Kernel Functions (5 min data, 2000 sample paths)

Length ρ Exponential Uniform Triangle Epanechnikov

5 days 0 2.5974E−05 2.8721E−05 2.6441E−05 2.7085E−05

5 days −0.5 2.5233E−05 2.8252E−05 2.5759E−05 2.6490E−05

21 days 0 2.3406E−05 2.8047E−05 2.4988E−05 2.5914E−05

21 days −0.5 2.3692E−05 2.8603E−05 2.5248E−05 2.6173E−05
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Appendix A. Proofs of main results

Proof of Theorem 3.1. Let us start by writing the MSE as follows:

MSE = E
[
(T1n + T2n)

2
]
,

where

T1n :=
n∑

i=1

Kh(ti−1 − τ )((∆i X )2 − ∆σ 2
τ ), T2n :=

(
n∑

i=1

Kh(ti−1 − τ )∆ − 1

)
σ 2

τ .

Applying Lemmas 3.1 and 3.2 of the supplemental material to this article available online

with f (t) ≡ 1, it follows that
∑n

i=1 Kh(ti−1 − τ )∆ − 1 = O (∆/h) + O(hγ ) and, thus, by

Assumption 2, E
[
T 2

2n

]
= o (∆/h) + o(hγ ). Furthermore, since

|E [T1nT2n] | ≤
⏐⏐⏐⏐⏐

n∑

i=1

Kh(ti−1 − τ )∆ − 1

⏐⏐⏐⏐⏐E
[
T 2

1n

]1/2
E
[
σ 4

τ

]1/2
,

to conclude (3.2), it suffices to show that

E
[
T 2

1n

]
= 2

∆

h
E[σ 4

τ ]∥K∥2
2 + hγ L(τ )

∫∫
K (x)K (y)Cγ (x, y)dxdy + h.o.t. (A.1)

For simplicity, in the rest of the proof, h.o.t. refers to terms of order o (∆/h) + o(hγ ).

To show (A.1), let us start by applying Lemmas 3.1 and 3.2 of the supplemental material

to this article available online, together with Assumptions 1 and 2, to write E
[
T 2

1n

]
as

n∑

i, j=1

Kh(ti−1 − τ )Kh(t j−1 − τ )E[((∆i X )2 − ∆σ 2
τ )((∆ j X )2 − ∆σ 2

τ )]

=
n∑

i, j=1

Kh(ti−1 − τ )Kh(t j−1 − τ )E[((∆i M)2 − ∆σ 2
τ )((∆ j M)2 − ∆σ 2

τ )] + h.o.t., (A.2)

where Mt =
∫ t

0
σsd Bs is the martingale part of X (see Lemma 2.1 and Remark 2.1 in the

supplemental material to this article for details). By Assumption 1, it follows that

E
[
T 2

1n

]
= 2

n∑

i=1

K 2
h (ti−1 − τ )E

⎡
⎣
(∫ ti

ti−1

σ 2
t dt

)2
⎤
⎦
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+
n∑

i, j=1

Kh(ti−1 − τ )Kh(t j−1 − τ )

∫ ti

ti−1

∫ t j

t j−1

E[(σ 2
t − σ 2

τ )(σ 2
s − σ 2

τ )]dtds + h.o.t.

=: 2V1 + V2 + h.o.t. (A.3)

We now proceed to analyze V1 and V2. Firstly, for V1, note that

E

(∫ ti

ti−1

σ 2
t dt

)2

= ∆
2E[σ 4

τ ] + 2∆

∫ ti

ti−1

E[(σ 2
t − σ 2

τ )σ 2
τ ]dt + E

(∫ ti

ti−1

(σ 2
t − σ 2

τ )dt

)2

=: ∆2E[σ 4
τ ] + Bi + Ci .

To analyze the contribution of each of the three terms above to V1, we use Lemmas 3.1 and

3.2 of the supplemental material to this article available online with ‘kernel’ function K 2 and

the following three different functions f :

f (t) = 1, f (t) =
√
E[(σ 2

t − σ 2
τ )2]E[σ 4

τ ], f (t) = E[(σ 2
t − σ 2

τ )2],

respectively. It then follows that

∆
2

n∑

i=1

K 2
h (ti−1 − τ ) = ∆

h

n∑

i=1

K 2(
ti−1 − τ

h
)
∆

h
= ∆

h

∫
K 2(x)dx + h.o.t.,

n∑

i=1

K 2
h (ti−1 − τ )Bi ≤ 2

∆

h

n∑

i=1

K 2(
ti−1 − τ

h
)
1

h

∫ ti

ti−1

√
E[(σ 2

t − σ 2
τ )2]E[σ 4

τ ]dt = h.o.t.,

n∑

i=1

K 2
h (ti−1 − τ )Ci ≤ ∆

h

n∑

i=1

K 2(
ti−1 − τ

h
)
1

h

∫ ti

ti−1

E[(σ 2
t − σ 2

τ )2]dt = h.o.t.,

where the second line above follows from the fact that E[(σ 2
t − σ 2

τ )2] = O(|t − τ |γ ). Putting

together the previous relationships, we conclude that

V1 =
n∑

i=1

K 2
h (ti−1 − τ )E

⎡
⎣
(∫ ti

ti−1

σ 2
t dt

)2
⎤
⎦ = ∆

h
E[σ 4

τ ]

∫
K 2(x)dx + h.o.t.

Next, applying directly Lemmas 3.1 and 3.2 of the supplemental material to this article available

online together with Assumption 3, V2 can be written as

V2 = hγ

∫ ∫
K (x)K (y)Cγ (x, y; τ )dxdy + o

(
∆

h

)
+ o(hγ ).

The asymptotics for V1 and V2 above together with (A.3) implies (A.1), which, as argued at

the beginning of the proof, leads to (3.1). ■

Proof of Theorem 5.1. The tb here is basically to rule our boundary effects and for brevity

of notation, we will write tb = 0 and assume we have a left side estimator near t = 0 and a

right side estimator near T = t , with the same convergence rate. Define the error terms from

the left and right side estimators as li = σ̂ 2
l,ti

− σ 2
ti

and ri = σ̂ 2
r,ti

− σ 2
ti

, respectively. We will

consider the following slightly different estimator:

Î V V
(tsrvv)

T = 1

k

n−k∑

i=0

(∆
(k)
i σ̂ 2)2 − 1

k

n−1∑

i=0

(∆i σ̂
2)2. (A.4)
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In terms of the error terms ri and li , this can be written as

Î V V
(tsrvv)

T = 1

k

[
n−k∑

i=0

(∆
(k)
i σ 2)2 −

n−1∑

i=0

(∆iσ
2)2 − 2

n−1∑

i=n−k+1

σ 2
ti

li − 2

k−1∑

i=1

σ 2
ti

ri

+ 2

n−1∑

i=k+1

(σ 2
ti

− σ 2
ti−k+1

)ri+1 − 2

n−k∑

i=0

(σ 2
ti+k

− σ 2
ti+1

)li + 2

k−2∑

i=0

σ 2
ti

ri+1

+ 2

n−1∑

i=n−k+1

σ 2
ti+1

li −
n−1∑

i=n−k+1

l2
i −

k−1∑

i=1

r2
i − 2

n−k∑

i=0

liri+k + 2

n−1∑

i=0

liri+1

]
.

Now, for each pair of similar terms, we consider the convergence rate of only one of them.

The others have the same convergence rate. Indeed, from Proposition 3.1, we have that

E[r2
i ] = O(n−1/2), since we are dealing with Brownian motion type volatility. Thus,

E

⏐⏐⏐⏐⏐

n−1∑

i=k

(σ 2
ti

− σ 2
ti−k+1

)ri+1

⏐⏐⏐⏐⏐ ≤

√
n−k∑

i=0

E[(σ 2
ti+k

− σ 2
ti+1

)2]

n−k∑

i=0

E(r2
i+1) = O(k

1
2 n

1
4 ),

E

⏐⏐⏐⏐⏐

n−1∑

i=n−k+1

σ 2
ti

li

⏐⏐⏐⏐⏐ ≤

√
n−1∑

i=n−k+1

E(σ 4
ti

)

n−1∑

i=n−k+1

E(l2
i ) = O(

k

n1/4
),

E

n−1∑

i=n−k+1

l2
i = O(

k√
n

), E

⏐⏐⏐⏐⏐

n−k∑

i=0

liri+k

⏐⏐⏐⏐⏐ ≤

√
n−k∑

i=0

E(l2
i )

n−k∑

i=0

E(r2
i+k) = O(

√
n).

Similarly, we can see that the difference between (5.4) and (A.4) is Op(∆). Putting all these

together, we get

TSRVV −
n−k∑

i=0

(∆
(k)
i σ 2)2 −

n−1∑

i=0

(∆iσ
2)2 = Op

(
n1/4

k1/2

)
. (A.5)

On the other hand, with similar assumptions and proofs as Theorem 2 and 3 of Zhang et al.

[16], we have the following:

1

k

[
n−k∑

i=0

(∆
(k)
i σ 2)2 −

n−1∑

i=0

(∆iσ
2)2

]
−
∫ T

0

g2(t)dt = Op

(√
k

n

)
. (A.6)

Therefore, we have

TSRVV −
∫ T

0

g2(t)dt = Op

(
n1/4

k1/2

)
+ Op

(√
k

n

)
,

which implies the consistency and also yields that the optimal k is given by Cn3/4, in which

case the convergence rate is n−1/8. ■

Proof of Theorem 6.1. In what follows, we are going to assume that the relevant processes

(such as σ , µ, and, in the case of Brownian driven volatilities, the coefficients driving the

dynamics of σ 2) are bounded. This can be justified by localization as in Section 4.4.1 in [7]
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and Appendix A.5 in [1]. Let

An =
(
∆

h

)−1/2
[

n∑

i=1

Kh(ti−1 − τ )(∆i X )2 −
∫ T

0

Kh(t − τ )σ 2
t dt

]
.

Let us start with the approximations:

n∑

i=1

Kh(ti−1 − τ )(∆i X )2 =
n∑

i=1

Kh(ti−1 − τ )

(∫ ti

ti−1

σsd Bs

)2

+ Op(∆1/2)

∫ T

0

Kh(t − τ )σ 2
t dt =

n∑

i=1

Kh(ti−1 − τ )

∫ ti

ti−1

σ 2
t dt + op

(
(∆/h)1/2

)
.

The first approximation above follows from the fact that
∫ ti

ti−1
σsd Bs = OP (∆1/2) and ∆

∑n
i=1

|Kh(ti−1 − τ )| →
∫ T

0
|K (x)|dx , while the second one follows from the proof of Lemma 3.1

and Remark 3.1 in the supplemental material to this article available online and the fact that

σ is bounded. For an alternative proof see Lemma A.1 in [11]. We can then write:

An =
(
∆

h

)− 1
2

n∑

i=1

Kh(ti−1 − τ )

⎧
⎨
⎩

(∫ ti

ti−1

σsd Bs

)2

−
∫ ti

ti−1

σ 2
t dt

⎫
⎬
⎭+ oP (1) (A.7)

=: Sn + oP (1).

Clearly, Sn can be written as a sum
∑n

i=1 αn,i of martingale differences relative to {Fn,i :=
Fti }i=1,...,n with

αn,i :=
(
∆

h

)−1/2

Kh(ti−1 − τ )

⎧
⎨
⎩

(∫ ti

ti−1

σsd Bs

)2

−
∫ ti

ti−1

σ 2
t dt

⎫
⎬
⎭ .

To obtain the CLT, we first need to show the following (see Theorem IX.7.28 in [8]):

Bn :=
n∑

i=1

E[α2
n,i |Fn,i−1]

P−→ 2σ 4
τ ∥K∥2

2. (A.8)

First note that, by Itô’s lemma,

Bn = 4

(
∆

h

)−1 n∑

i=1

K 2
h (ti−1 − τ )

∫ ti

ti−1

E

⎡
⎣
(∫ s

ti−1

σud Bu

)2

σ 2
s

⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ ds.

By the Cauchy–Schwarz and the BDG inequalities,

E

⎡
⎣
(∫ s

ti−1

σud Bu

)2 (
σ 2

s − σ 2
ti−1

) ⏐⏐⏐Fn,i−1

⎤
⎦

2

≤ E

⎡
⎣
(∫ s

ti−1

σud Bu

)4 ⏐⏐⏐Fn,i−1

⎤
⎦E

[(
σ 2

s − σ 2
ti−1

)2 ⏐⏐⏐Fn,i−1

]

≤ CE

⎡
⎣
(∫ s

ti−1

σ 2
u du

)2 ⏐⏐⏐Fn,i−1

⎤
⎦E

[(
σ 2

s − σ 2
ti−1

)2 ⏐⏐⏐Fn,i−1

]
= OP (∆2+γ ),
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uniformly on i , due to Assumption 3. Therefore,

(
∆

h

)−1 n∑

i=1

K 2
h (ti−1 − τ )

∫ ti

ti−1

E

⎡
⎣
(∫ s

ti−1

σud Bu

)2

(σ 2
s − σ 2

ti−1
)

⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ ds

= OP (∆(2+γ )/2)h

n∑

i=1

K 2
h (ti−1 − τ ) = OP (∆γ /2),

since ∆h
∑n

i=1 K 2
h (ti−1 − τ ) → ∥K∥2

2. We then have that:

Bn = 4

(
∆

h

)−1 n∑

i=1

K 2
h (ti−1 − τ )

∫ ti

ti−1

σ 2
ti−1

E

⎡
⎣
(∫ s

ti−1

σud Bu

)2
⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ ds + oP (1)

= 4

(
∆

h

)−1 n∑

i=1

K 2
h (ti−1 − τ )

∫ ti

ti−1

σ 2
ti−1

E

[∫ s

ti−1

σ 2
u du

⏐⏐⏐⏐⏐Fn,i−1

]
ds + oP (1)

= 4

(
∆

h

)−1 n∑

i=1

K 2
h (ti−1 − τ )σ 4

ti−1

∫ ti

ti−1

(s − ti−1)ds + oP (1)

= 2h∆

n∑

i=1

K 2
h (ti−1 − τ )σ 4

ti−1
+ oP (1)

P−→ 2σ 4
τ ∥K∥2

2.

The following is the final identity needed to conclude the CLT:

n∑

i=1

E[α4
n,i |Fn,i−1]

P−→ 0,

for which it suffices to show that

T1n :=
(
∆

h

)−2 n∑

i=1

K 4
h (ti−1 − τ )E

⎡
⎣
(∫ ti

ti−1

σsd Bs

)8
⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ P−→ 0,

T2n :=
(
∆

h

)−2 n∑

i=1

K 4
h (ti−1 − τ )E

⎡
⎣
(∫ ti

ti−1

σ 2
s ds

)4
⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ P−→ 0.

By BDG inequality, for some constant C < ∞,

T1n ≤ CT2n = OP (∆2)h2

n∑

i=1

K 4
h (ti−1 − τ ) = OP

(
∆

h

)
,

since ∆h3
∑n

i=1 K 4
h (ti−1 − τ ) →

∫
K 4(x)dx . The final ingredient to apply the CLT for

martingale differences, as in Theorem IX.7.28 in [8], is to show that

n∑

i=1

E
[
αi∆i H |Fn,i−1

] P−→ 0,

where H is either W or an arbitrary bounded martingale orthogonal (in the martingale sense)

to W . This is done in the same way as in the proof of Theorem 2.7 in [11]. ■
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Proof of Theorem 6.2. (1) As it is standard in the literature, by virtue of localization (as

in Jacod and Shiryaev, section 5.4, p.549), we assume without loss of generality that the

coefficients driving the dynamics of σ are bounded on [0, T ]. For simplicity, we will use the

following notations: Vt = σ 2
t = σ 2

0 +
∫ t

0
fsds +

∫ t

0
gsdWs and vt = σ 2

0 +
∫ t

0
gsdWs . It is easy

to see from Proposition 2.1 that V and v both satisfy Assumption 3 with γ V = γ v = 1 and

C V
γ = Cv

γ . Now, since

h−1/2E

⏐⏐⏐⏐
∫ T

0

Kh(t − τ )

∫ t

τ

fsdsdt

⏐⏐⏐⏐ ≤ sup
s∈[0,T ]

| fs |h−1/2

∫ T

0

|Kh(t − τ )||t − τ |dt,

which is Op(h1/2) = op(1), we can conclude that the drift term of V has a negligible

contribution to the final error. Therefore, it suffices to work with the process v and only to

consider the weak convergence of

Īh := h−1/2

(∫ T

0

Kh(t − τ )(vt − vτ )dt

)
.

For the sake of clarity, we will first assume a right-sided kernel function (i.e., K (x) = 0 for

all x < 0), so that Īh = h−1/2
(∫ T

τ
Kh(t − τ )(vt − vτ )dt

)
=: Ih . Applying the integration by

parts formula, we have that

Ih = −h−1/2U

(
T − τ

h

)
(vT − vτ ) + h−1/2

∫ T

τ

U

(
t − τ

h

)
gt dWt =: R + S,

where U (t) =
∫∞

t
K (u)du so that d

dt
(U ((t −τ )/h)) = −Kh(t −τ ). Since our assumptions on K

imply that x1/2U (x) → 0, as x → ∞, we have R = oP (1). For the other term S, let us consider

the following approximation S̃ := h−1/2gτ

∫ T

τ
U
(

t−τ
h

)
dWt , and note that S − S̃ = oP (1) since,

by Assumption 4,
∫∞

0
U 2(x)dx < ∞ and

E

[(
S − S̃

)2
]

= 1

h

(∫ τ+
√

h

τ

+
∫ T

τ+
√

h

)
U 2

(
t − τ

h

)
E
[
(gt − gτ )

2
]

dt

≤ sup
t∈[τ,τ+

√
h]

E
[
(gt − gτ )

2
]
∥U 2∥1 + 4∥g2∥∞

∫ ∞

1/
√

h

U 2(s)ds,

which is clearly o(1), as h → 0. We also observe that conditional on Fτ , S̃ is Gaussian with

mean 0 and variance:

g2
τ h−1

∫ T

τ

U 2

(
t − τ

h

)
dt = g2

τ

∫ t−τ
h

0

U 2(s)ds → g2
τ

∫∫
K (x)K (y)C1(x, y)dxdy.

Therefore, S̃|Fτ →D N (0, δ2
2), where δ2

2 = g2
τ

∫∫
K (x)K (y)Cγ (x, y)dxdy. This suffices for

(6.3) since, by the dominated convergence theorem,

E

[
exp

(
iu S̃

)]
= E

[
E

[
exp

(
iu S̃

) ⏐⏐⏐Fτ

]]
= E

[
exp

(
−u2g2

τ

2h

∫ T

τ

U 2

(
t − τ

h

)
dt

)]

h→0−→ E

[
exp

(
−u2g2

τ

2

∫
U 2 (s) ds

)]
,

where recall that
∫

U 2 (s) ds =
∫∫

K (x)K (y)C1(x, y)dxdy.
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We now consider the general two-sided kernel case. To this end, let Ū (t) =
∫∞

t
K (u)du1{t>0}

−
∫ t

−∞ K (u)du1{t≤0} and note that, by the integration by parts formula, Īh = h−1/2
∫ T

0
Kh(t −τ )

(vt − vτ )dt is such that

Īh = −h−1/2Ū

(
T − τ

h

)
(v0 − vτ ) + h−1/2

∫ τ

0

Ū

(
t − τ

h

)
gt dWt + Ih + oP (1)

=: R̄ + S̄ + Ih + oP (1).

Same as in the one-sided kernel case, R̄ = oP (1) and Ih = S̃ + oP (1). For S̄, we consider the

following approximation:

˜̄S := h−1/2gτ

∫ τ

0

Ū

(
t − τ

h

)
dWt = h−1/2gτ

(∫ τ−
√

h

0

+
∫ τ

τ−
√

h

)
Ū

(
t − τ

h

)
dWt

=: ˜̄S1 + ˜̄S2.

We still have S̄ − ˜̄S = oP (1). It is also true that ˜̄S1 = oP (1), as h → 0, which can be justified

by considering its second moment. Therefore, we have

Īh = ˜̄S2 + S̃ + oP (1) = h−1/2gτ−
√

h

∫ T

τ−
√

h

Ū

(
t − τ

h

)
dWt + oP (1) =: ˜̄I h + oP (1),

where the second equality holds since ˜̄S2 + S̃ − ˜̄I h = oP (1), which again can be justified by

considering the second moment and Cauchy–Schwarz’ inequality. To conclude (6.3), note that,

by conditioning on Fτ−
√

h ,

E

[
exp

(
iu˜̄I h

)]
= E

[
exp

(
−

u2g2

τ−
√

h

2

∫ T −τ
h

−h−1/2

Ū 2 (s) ds

)]
,

which converges to E

[
exp

(
− u2g2

τ

2

∫∫
K (x)K (y)C1(x, y)dxdy

)]
and we conclude (6.3).

(2) In the whole proof, the superscript (Z ) refers to a quantity corresponding to the process

Z , while quantities without such a superscript corresponds to the process σ 2. Let us start by

noting that, since Z is a Gaussian process, h−γ /2
(∫ T

0
Kh(t − τ )(Z t − Zτ )dt

)
→D δ̄

1/2

2 N (0, 1),

where

δ̄2 = L (Z )(τ )

∫∫
K (x)K (y)C (Z )

γ (x, y)dxdy.

Indeed, this follows from the facts that the limit in distribution of Gaussian r.v.’s is Gaussian

and that h−γ /2
∫ T

0
Kh(t −τ )(Z t − Zτ )dt is centered Gaussian (being the limit of Riemann sums

of the form h−γ /2
∑m−1

j=0 Kh(t j − τ )(Z t j
− Zτ )(t j+1 − t j )dt , which is Gaussian) with variance

h−γ

∫ T

0

∫ T

0

Kh(t − τ )Kh(s − τ )E[(Z t − Zτ )(Zs − Zτ )]dtds

= h−γ

∫ (T −τ )/h

−τ/h

∫ (T −τ )/h

−τ/h

K (x)K (y)E[(Zτ+xh − Zτ )(Zτ+yh − Zτ )]dxdy,

which converges to δ̄2 above.

Now, for any ϵ ∈ (0, min(τ, T − τ )), and for any t ∈ (τ − ϵ, τ + ϵ), there exists

st ∈ (min(t, τ ), max(t, τ )), such that σ 2
t − σ 2

τ = f ′(Zτ )(Z t − Zτ ) + 1
2

f ′′(Zst )(Z t − Zτ )2.
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Then, I :=
∫ T

0
Kh(t − τ )(σ 2

t − σ 2
τ )dt is such that

I =
∫ τ+ϵ

τ−ϵ

Kh(t − τ )[ f ′(Zτ )(Z t − Zτ ) + 1

2
f ′′(Zst )(Z t − Zτ )2]dt + o(hγ /2).

Indeed, to justify the term o(hγ /2) above, note that, due to (3)-(ii) of Assumption 4,

E

⏐⏐⏐⏐
∫ T

τ+ϵ

Kh(t − τ )(σ 2
t − σ 2

τ )dt

⏐⏐⏐⏐ ≤
∫ T

τ+ϵ

|Kh(t − τ )|dt

(
T

∫ T

τ+ϵ

E(σ 2
t − σ 2

τ )2dt

)1/2

≤ C

(∫ ∞

ϵ/h

K (x)dx

)1/2

= o(hγ /2).

We can similarly deal with the integral from 0 to τ − ϵ. For the second term, once we select

ϵ small enough such that

E[( f ′′(Z t ))
2] < M2, E[(Z t − Zτ )4] = 3E[(Z t − Zτ )2]2 ≤ 3M |t − τ |2γ ,

for all t ∈ (τ − ϵ, τ + ϵ) and some M , we can then apply Cauchy–Schwarz’s inequality to get

E

⏐⏐⏐⏐
∫ τ+ϵ

τ−ϵ

Kh(t − τ ) f ′′(Zst )(Z t − Zτ )2dt

⏐⏐⏐⏐ ≤ 3M2

∫ τ+ϵ

τ−ϵ

|Kh(t − τ )||t − τ |γ dt,

which is O(hγ ) = o(hγ /2). Now for the first term, we have

h−γ /2

∫ τ+ϵ

τ−ϵ

Kh(t − τ )[ f ′(Zτ )(Z t − Zτ )]dt →D f ′(Zτ )δ̄
1/2

2 N (0, 1).

where the standard normal N (0, 1) appearing above is independent from Zτ . Indeed, (X, Y (h))

:= (Zτ , h−γ /2
∫ τ+ϵ

τ−ϵ
Kh(t −τ )(Z t − Zτ )dt) is bi-variate normal for all h > 0 and, thus, whenever

the limit (X, Y (h)) → (X, Y ) exists, (X, Y ) is a bivariate normal variable. There exist α(h)

and β(h) such that Y (h) = α(h)X + β(h)Z (h), such that X is independent of Z (h) and

Z (h)
D= N (0, 1). Note that α(h) and β(h) are given by

α(h) = E[XY (h)]

E[X2]
, β2(h) = E[Y 2(h)] − α2(h)E[X2].

By our assumption on Z stated in the statement of the theorem, we have E[XY (h)] = o(1)

and, thus, α(h) = o(1), while

β2(h) = L (Z )(τ )

∫∫
K (x)K (y)C (Z )

γ (x, y)dxdy + o(1).

With such representations, we have:

f ′(X )Y (h) = α(h) f ′(X )X + β(h) f ′(X )Z (h) = op(1) + β(h) f ′(X )Z (h),

which converges to β f ′(X )Z . ■

Proof of Corollary 6.1. We show the result in the first setting (1) of Theorem 6.2 (the second

can be handled similarly). Let Un and Vn be the first and second terms of the decomposition

σ̂ 2
τ − σ 2

τ =
(

n∑

i=1

Kh(ti−1 − τ )(∆i X )2 −
∫ T

0

Kh(t − τ )σ 2
t dt

)

+
∫ T

0

Kh(t − τ )(σ 2
t − σ 2

τ )dt + op (hγ ) ,

(A.9)
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Let us start by noting that

E

[
eiuh−γ /2(Un+Vn )

]
= E

[
E

[
eiuh−γ /2(Un+Vn )

⏐⏐⏐F(σs : s ≤ T )
]]

= E

[
eiuh−γ /2VnE

[
eiuh−γ /2Un

⏐⏐⏐F(σs : s ≤ T )
]]

.

From Theorem 6.1,3

E

[
eiuh−γ /2Un

⏐⏐⏐F(σs : s ≤ T )
]

→ e−u2σ 4
τ

∫
K 2(x)dx ,

so it suffices to show that

E

[
eiuh−γ /2Vn−u2σ 4

τ

∫
K 2(x)dx

]
→ E

[
e
− u2

2

(
δ2

1
+δ2

2

)]
.

For this, first note that, since στ−
√

h → στ , a.s., and, σ is bounded (by virtue of localization),

we have⏐⏐⏐⏐E
[
eiuh−γ /2Vn−u2σ 4

τ

∫
K 2(x)dx

]
− E

[
e

iuh−γ /2Vn−u2σ 4

τ−
√

h

∫
K 2(x)dx

]⏐⏐⏐⏐ → 0.

Finally,

E

[
e

iuh−γ /2Vn−u2σ 4

τ−
√

h

∫
K 2(x)dx

]
→ E

[
e
− u2

2

(
δ2

1
+δ2

2

)]
,

along the same arguments as those used in the proof of Theorem 6.2. ■

Proof of Theorem 6.3. By virtue of localization (as in [8], Section 5.4, p. 549), we can (and

will) assume that the relevant processes (such as σ , µ, and the coefficients driving the dynamics

of σ ) are bounded. We again consider the decomposition (6.1) and call the first and second

terms on the right-hand side A1,n and A2,n , respectively. As stated in the theorem, we take

∆ = h2, in which case, the two terms attained the optimal rate h1/2. Let us start by noting the

below decomposition, which was already obtained in (A.7):

h−1/2 A1,n = h−1/2

n∑

i=1

Kh(ti−1 − τ )

⎧
⎨
⎩

(∫ ti

ti−1

σsd Bs

)2

−
∫ ti

ti−1

σ 2
t dt

⎫
⎬
⎭+ oP (1)

=:
n∑

i=1

αn,i + oP (1).

For A2,n , by similar arguments as those used in the proof of Theorem 6.2, we have

h−1/2 A2,n = h−1/2gt j−1

∫ T

t j−1

U

(
t − τ

h

)
dWt + oP (1) =:

n∑

i=1

βn,i + oP (1),

where t j−1 = min{ti : τ ≤ ti } and

βn,i =
{

0 i < j

h−1/2gt j−1

∫ ti
ti−1

U
(

t−τ
h

)
dWt , i ≥ j.

3 Theorem 6.1 obviously holds when {σt } is deterministic, which is the process we will get when conditioning

Un on F (σs : s ≤ T ) due to the nonleverage condition.
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Next, we consider the following sum of martingale differences relative to {Fn,i := Fti }i=1,...,n:

Sn =
n∑

i=1

ξn,i =
n∑

i=1

(
αn,i + βn,i

)
.

To apply the CLT for martingale differences (see Theorem IX.7.28 in Jacod and Shiryaev), we

first need to show that:

n∑

i=1

E[ξ 2
n,i |Fn,i−1]

P−→ 2σ 4
τ ∥K∥2

2 + g2
τ

∫ ∫
K (x)K (y)C1(x, y)dxdy.

To this end, we prove that

Bn :=
n∑

i=1

E[α2
n,i |Fn,i−1]

P−→ 2σ 4
τ ∥K∥2

2 (A.10)

Cn :=
n∑

i=1

E[β2
n,i |Fn,i−1]

P−→ g2
τ

∫ ∫
K (x)K (y)C1(x, y)dxdy (A.11)

Dn :=
n∑

i=1

E[αn,iβn,i |Fn,i−1]
P−→ 0. (A.12)

The proof of (A.10) is embedded in the proof of Theorem 6.1. For (A.11), note that

Cn = h−1g2
t j−1

∫ T

t j−1

U 2

(
t − τ

h

)
dt → g2

τ

∫ ∞

0

U 2(s)ds,

and it is easy to see that
∫∞

0
U 2(s)ds =

∫ ∫
K (x)K (y)C1(x, y)dxdy. It remains to show (A.12).

To this end, note that, in terms of Uis :=
∫ s

ti−1
σud Bu , for i ≥ j , E[αn,iβn,i |Fn,i−1] can be

written as

2h−1 Kh(ti−1 − τ )gt j−1
E

[∫ ti

ti−1

Uisσsd Bs

∫ ti

ti−1

U

(
s − τ

h

)
dWs |Fn,i−1

]

= 2h−1 Kh(ti−1 − τ )E

[∫ ti

ti−1

UisσsU

(
s − τ

h

)
ds|Fn,i−1

]

= 2h−1 Kh(ti−1 − τ )

∫ ti

ti−1

E
[
Uis(σs − σti−1

)|Fn,i−1

]
U

(
s − τ

h

)
ds.

By Cauchy–Schwarz inequality, the expectation inside the integral can be shown to be OP (∆),

uniformly in i . Thus, since ∆
∑n

i= j |Kh(ti−1 − τ )| →
∫

|K (x)|dx , as n → ∞,

Dn ≤ 2h−1gt j−1
OP (∆)ρ

n∑

i= j

|Kh(ti−1 − τ )|
∫ ti

ti−1

⏐⏐⏐⏐U
(

s − τ

h

)⏐⏐⏐⏐ ds

≤ 2h−1gt j−1
OP (∆2)ρ

n∑

i= j

|Kh(ti−1 − τ )| = OP (∆/h) = OP (h).
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The final identity needed to conclude the CLT is
∑n

i=1 E[ξ 4
n,i |Fn,i−1]

P−→ 0, for which it

suffices to show that

T1n := h−2

n∑

i=1

K 4
h (ti−1 − τ )E

⎡
⎣
(∫ ti

ti−1

σsd Bs

)8
⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ P−→ 0,

T2n := h−2

n∑

i=1

K 4
h (ti−1 − τ )E

⎡
⎣
(∫ ti

ti−1

σ 2
s ds

)4
⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ P−→ 0,

T3n := h−2g4
t j−1

n∑

i= j

E

⎡
⎣
(∫ ti

ti−1

U

(
t − τ

h

)
dWt

)4
⏐⏐⏐⏐⏐⏐
Fn,i−1

⎤
⎦ P−→ 0.

The previous limits can be shown by applying BDG inequality and using the fact that σ is

bounded. ■

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/

j.spa.2020.01.013.
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