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Abstract

A unified framework to optimally select the bandwidth and kernel function of spot volatility kernel
estimators is put forward. The proposed models include not only classical Brownian motion driven
dynamics but also volatility processes that are driven by long-memory fractional Brownian motions or
other Gaussian processes. We characterize the leading order terms of the mean squared error, which
in turn enables us to determine an explicit formula for the leading term of the optimal bandwidth.
Central limit theorems for the estimation error are also obtained. A feasible plug-in type bandwidth
selection procedure is then proposed, for which, as a sub-problem, a new estimator of the volatility of
volatility is developed. The optimal selection of the kernel function is also investigated. For Brownian
Motion type volatilities, the optimal kernel turns out to be an exponential function, while, for fractional
Brownian motion type volatilities, easily implementable numerical results to compute the optimal kernels
are devised. Simulation studies further confirm the good performance of the proposed methods.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The estimation of the diffusive coefficient o, of the dynamical stochastic system dX;, =
wedt + o,dW;, driven by a Brownian motion W, has received some renewed attention in the
last few years. This research has partly been pushed by the advent of high-frequency data
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(HFD) in several fields but more predominantly in finance. In the latter context, o; is called
the spot volatility of the price process S; = exp(X;) of a risky asset and, in addition of being
a local measure of the asset’s riskiness at the time ¢, it is also needed for many problems of
finance such as option pricing and portfolio selection.

In this work, we revisit the problem of spot volatility estimation by kernel methods. Kernel
estimation has a long history and extensive treatments of the method can be found in many
textbooks. The selection of the bandwidth and the kernel function are of great importance
for the performance of the kernel estimator in a finite sample setting. The problem has been
extensively studied for density estimation and kernel regression (cf. [4,9,13]). However, in the
context of spot volatility estimation, the literature related to this problem is much scarcer. In
this work, we put forward a unified framework to the problem that allows us to deal not only
with well studied Brownian driven volatilities but also those driven by other Gaussian processes
such as fractional Brownian motions.

Literature review. Foster and Nelson [6] studied a rolling window estimator, which can be
seeing as a kernel estimator with a compactly supported kernel function. Under a number of
stringent conditions, they established the point-wise asymptotic normality of the estimator, and
drew some conclusions about the optimal window length (i.e., bandwidth) and the optimal
weight functions (kernel functions). However, in spite of the non-parametric model setting,
the volatility was constrained to have a Brownian-like degree of smoothness (see Assumption
A (vii) and (viii) therein) and the selection of bandwidth and kernel function was not
systematically studied, since it was assumed the strict relationship' 4, =< n~'/? between
the window’s length A, and the sample size n (see Assumption D therein). Under such a
relationship, they obtained the optimal kernel weights and separately determine the optimal
constant ¢ appearing in the formula 4, = cn~'/2, but only for the flat-weights or uniform
kernel case (see Theorem 4 therein). Fan and Wang [5] also showed a point-wise asymptotic
normality for a general kernel estimator under a specific constraint on the rate of convergence
of the bandwidth (Condition A4 therein), which allowed them to neglect the error coming
from approximating the spot volatility by a kernel weighted volatility (we refer the reader to
Section 6 for details), but the achieved convergence rates are suboptimal. For a continuous
Itd semimartingale with volatility driven by a Brownian motion and jumps, Alvarez et al. [2]
considered the estimation of o by taking forward finite differences of the realized power
variation process of order p, which is equivalent to a forward-looking kernel estimator with
uniform kernel. CLTs were also developed therein, which allowed them to argue that the best
possible rate of convergence of the estimation error is n~ /% and that this is attained when
n'’2h, — ¢ € (0, 00), as n — o0o. More general results along the same vein (i.e., with uniform-
type kernels) have also been developed in the monograph of Jacod and Protter [7] (see Chapter
13 therein). More recently, Mancini et al. [11] have developed asymptotic normality for a more
general class of spot volatility estimators, which includes kernel estimators.

Besides Foster and Nelson [6], the only work we know that studied the problem of
optimal bandwidth selection of spot volatility kernel estimators is that of Kristensen [10],
who also obtained asymptotic normality of the estimators. However, this work imposes a
strong path-wise smoothness condition (see Remark 2.1 for details), which has several practical
and theoretical drawbacks. Indeed, even for simple volatility processes, it is not possible to
verify the pathwise Holder continuity needed for a central limit theorem with optimal rate.
Furthermore, even though an ‘optimal’ bandwidth formula is deduced in closed form therein,

1 As usual, a, < b, if ma, <b, < Ma,, for all n and some 0 <m < M < o0.
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this is not well-defined if we want to attain optimal convergence rates for the estimation error
(see Remark 2.1).

Our contributions. Having discussed some previous work, we now mention some motivating
factors and objectives of the present work. To begin with, we wish to impose easily verifiable
and general enough conditions to cover a wide range of frameworks without restricting the
degree of smoothness of the volatility process. From a theoretical point of view, we also aim
to provide a formal justification of the optimal convergence rate of the kernel estimator and to
establish central limit theorems (CLT) and asymptotic estimates of the mean square errors
with optimal rates. From the practical side, the two factors that affect the performance of
the estimator, bandwidth and kernel function, ought to be optimized jointly, not separately,
and meanwhile, the proposed method should remain feasible and sufficiently efficient to be
implementable for HFD.

The key assumption to our unifying treatment of the problem is a mild local scaling property
of the covariance structure of the volatility process. This assumption covers a wide range of
frameworks including deterministic differentiable volatility processes and volatilities driven by
Brownian Motion, long-memory fractional Brownian Motion, and, more generally, functions of
suitable Gaussian processes. Under the referred assumption, we characterize the leading order
terms of the Mean Squared Error (MSE) and, as a byproduct, we derive, in closed form, the
leading order term of the optimal bandwidth. From this, the theoretical optimal convergence
rate for the estimation error is identified. We then proceed to show that our optimal bandwidth
formulas are feasible by proposing an iterated plug-in type algorithm for their implementation.
An important intermediate step is to find an estimate of the Integrated Volatility of Volatility
(IVV), for which we propose a new estimator based on the two-time scale realized variance
of Zhang et al. (2005). Consistency and convergence rate of our vol vol estimator are also
established. The estimation of the IVV has also been addressed in [3,15].

Equipped with an explicit formula for the asymptotically optimal MSE, we proceed to
set up a well-posed problem for optimal kernel selection. Concretely, for Brownian motion
driven volatilities, we prove that the optimal kernel function is the exponential kernel K (x) =
2~ 'exp(—]|x|). Such a result formalizes and extends a previous result of Foster and Nelson [6],
where only kernels of bounded support were considered. We also show that, due to the nature
of the data we are analyzing (namely, HFD), exponential kernel function enjoys outstanding
computational advantages, as it reduces the time complexity for estimating the whole path of the
volatility on all grid points from O(n?) to O(n). We also consider the volatility processes driven
by the long-memory fractional Brownian motion and, in such a case, we provide numerical
schemes to compute the optimal kernel function.

To complement our asymptotic results based on MSE, asymptotic normality of the kernel
estimators is also established for two broad types of volatility processes: Itd processes and
continuous function of some Gaussian processes. In this way, our results cover volatility
processes with flexible degrees of smoothness. The results are consistent with the leading order
approximation of the MSE, so that CLT’s with the optimal convergence rate are obtained.
By contrast, as mentioned above, the CLT’s of Fan and Wang [5] and Kristensen [10] have
suboptimal convergence rate, while the analogous result of Foster and Nelson [6] is limited to
a specific smoothness order and strong constraints on the kernel function and bandwidth. In
the case of It6 volatility processes, we generalize the CLT of Alvarez et al. [2] and Jacod and
Protter [7], from uniform to general forward looking kernels.

Paper Outline. The rest of the paper is organized as follows. In Section 2, we introduce the
kernel estimator and our assumptions, and verify that common volatility processes satisfy our
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assumptions. In Section 3, we deduce the leading order approximation of the MSE of the kernel
estimator and solve the 0pt1mal bandwidth selection problem. Then, in Section 4, we deal with
the optimal kernel function selection problem for different types of volatility processes. A
feasible implementation approach of the optimal bandwidth is discussed in Section 5, where
we also introduce the two-scale estimator of the IVV. Central Limit Theorems of the kernel
estimator are discussed in Section 6. Finally in Section 7, we perform Monte Carlo studies.
The proofs of the main results are provided in Appendix A while the proofs of some technical
lemmas and supporting propositions are deferred to the supplemental material to this article
available online.

2. Kernel estimators and assumptions

In this section, we first introduce the classical kernel estimator for the spot volatility. We
then discuss some needed smoothness conditions on the volatility processes and verify that most
common volatility processes used in the literature indeed satisfy our assumptions. Finally, we
discuss some regularity conditions on the kernel function.

Throughout the paper, we consider the following stochastic differential equation (SDE):

dX, = wdt + o,dB,, 2.1)

where all stochastic processes (1 == {,u,},>0, o = {0y}1>0, B :== {B;}:>0, etc.) are defined on a
complete filtered probability space ({2, %, F, P), with F = {.%,},59. We also assume that u and
o are adapted to the filtration F and B := {Bt} ¢>0 1s a standard Brownian Motion (BM) adapted
to F. We assume that the process X is observed at the times #; :=t;,, :==i4,, 0 <i < n, where
A, =T/n. We will use A?Z .= AZ, | = Z, — Z,_, to denote the increments of a process
Z and A, = T/n to denote the time increments. For notational simplicity, we sometimes omit
the subscript n in A, and the superscript in A?Z

In this paper, we study the problem of estimating the spot volatility o;, at a given time
7 € (0, T), by the kernel estimator (cf. [5,10]),

CEE Z Kn(tior — T)(A] XY, 22)
i=1
where K, (x) = K(x/h)/h. Again, for simplicity, we sometimes omit the subscript n and/or i
in the notation 67, . As is often the case with kernel estimation, the selections of the bandwidth
h and kernel function K of (2.2) are of great importance in practice, especially for the finite
sample settings commonly encountered in econometric applications.

We now proceed to give the required assumptions on the volatility process that allow us to
examine the rate of convergence of the kernel estimator defined in (2.2). Our first assumption,
which is also imposed in [10], is a non-leverage condition. For Brownian-driven volatilities
and weak convergence results, this assumption will be relaxed in Section 6, hence allowing
correlation between the Brownian motions driving the volatility and the price processes.
However, for more general volatilities, including those driven by fractional Brownian motions,
such an assumption would allow us to treat the bandwidth and kernel selection problems in
a unified manner under a mean-squared loss function, which, as stated in the introduction, is
one of our main objectives in this work.

Assumption 1. (u, o) are adapted cadlag processes independent of B.

Next, we impose some mild moment boundedness assumption on u and o.
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Assumption 2. There exists M7y > 1 such that IEJ[/L;l + 0,4] <Mr,forall0<t<T.

The following is our key assumption, which at the end of this section is shown to be satisfied
by a large spectrum of volatility models.

Assumption 3.  Suppose that for y > 0 and certain functions L : R, — R, and
C, : R xR — R, such that C,, is not identically zero and

C,(hr,hs) =h"C,(r,s), forr,seR,heRy, 2.3)
the variance process V = {V, = 0,2 .t > 0} satisfies
E[(Vitr = VO)(Vigs = VOl = LOC, (r, 5) + o((r* 4+ s*)7),  r,s > 0. 24)

A function C, satisfying the condition (2.3) is said to be homogeneous of order y. The
index y determines the degree of smoothness of the volatility paths ¢t — o;. It is easy to check
(see details in the supplemental material to this article available online) that C,(r, s;t) =
L(t)C,(r, s) is unique and satisfies the following non-negative definiteness property:

// Kx)K(y)C(x, y)dxdy = 0. 2.5)

We shall see in the next section that most volatility processes that are studied in the literature
satisfy Assumption 3 with a function C, of the form:

1
Cy(r,s) = E(Irly + Isl” = Ir = s1"), (2.6)

for some y € [1,2]. The case of y = 1 covers volatility processes driven by BM, while
y € (1,2) corresponds to volatility processes driven by fractional Brownian Motions (fBM)
with Hurst parameter H > 1/2. Deterministic and sufficiently smooth volatility processes can
also be incorporated by taking y = 2. In the following section, we cover these cases and other
more general models.

Remark 2.1. We now draw some connections with the work in [10]. Therein, the variance
process {V;};>0 is assumed to satisfy the following pathwise condition

[Vigs = Vil < L@, 18DISI” + 0(18]), 8 — 0, 2.7)

where § — L(t,8) is a slowly varying random function. Under this condition, Kristensen
[10] shows, via a central limit theorem, that the rate of convergence of the kernel estimator is
Op(n~7/1+7)) To gain some intuition about the usefulness of this approach, let us suppose that
{V;} is a Brownian motion. In that case, the above holds for all y < 1/2, but such choices of y
can only produce suboptimal convergence rate of the kernel estimator. Furthermore, in light of
Lévy’s modulus of continuity, the condition (2.7) holds for y = 1/2, but only if I:(t, §) — oo,
as § — 0. But, in that case, the optimal bandwidth selection formulas proposed by Kristensen
[10] are not well defined as they require that lim;_, i(t, 8) =: L(t, 0) is finite.

Finally, we introduce the assumptions needed on the kernel function.
Assumption 4. Given y > 0 and C,, as defined in Assumption 3, we assume that the kernel
function K : R — R satisfies the following conditions:

(D fK(x)dx =1;
(2) K is Lipschitz and piecewise C! onits support (A, B), where —00 < A <0 < B < o0;
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3) () [IK@)I|x]"dx < o005 (ii) K(x)x? ™ — 0, as [x| — oo; (iii) [ |K'(x)ldx < o0, (iv)
VoL (UK']) < 0o, where V22 () is the total variation;
@) [ Kx)K(Cy(x, y)dxdy > 0.

2.1. Common volatility processes

In this subsection, we demonstrate that many volatility processes studied in the literature
satisfy Assumption 3. We consider three fundamental cases. The proofs of the results in this
part are relatively simple and for the sake of space are deferred to the supplemental material to
this article available online. Let us start by considering the solutions of a standard SDE driven
by BM, which are widely used in practice.

Proposition 2.1.  Suppose that the process V; = o>(t, w) satisfies the SDE

where {W,};>¢ is a standard Wiener process adapted to F. Assume that f(t, w) and g(t, w) are
adapted and progressively measurable with respect to F, E [ f2@, a))] < M, fort € [0,T],
and E [gz(t, a))] is continuous for t € [0, T]. Then, Assumption 3 is satisfied with y = 1,
Ci(r,s) = min{|r|, |s|}1 >0, and L(t) = E[g%(t, w)]. Furthermore, C\(r,s) is an integrable
positive definite function; i.e., we have strict inequality in (2.5) for all K : R — R such that
S IK(x)|dx > 0.

Next, we show that some processes defined as integrals with respect to a two-sided fBM
B = (B : 1 € R} (see [14] for a detailed survey of fBM) satisfy Assumption 3. A proto-
typical example is the fractional Ornstein-Uhlenbeck process ¥\ = o [* o€ A B,
which is frequently used to model volatility processes. It is worth mentioning that, when
H # 1/2, the fBM is not a semimartingale and the problem of defining the stochastic integral
with respect to fBM is more subtle. In our paper, we only focus on integrals of deterministic
functions f for which the integral can be defined on a path-wise sense under the following
condition (cf. [14]):

/Oo foo | f @) f )| |u — v 2dudv < . (2.9)

Proposition 2.2. Let YI(H) = fi o JSw)d B where f(-) is a deterministic continuous function
that satisfies (2.9) and {B,(H)},G]R is a (two-sided) fBM with Hurst parameter H € (%, 1)
defined on a filtered probability space (12, F,F = {Z}i=0, P). Then, the processes Y') and
{exp(Y,(H))},Zo satisfy Assumption 3 with y =2H € (1, 2) and C,, given by (2.6).

For our final case, we show that if a Gaussian process satisfies Assumption 3, so does a
suitable smooth function of the process.

Proposition 2.3.  Assume that (Z,);>0 is a Gaussian process that satisfies Assumption 3
uniformly over (0, T),> with y(z) e [1,2), L(-), and C}(,Z)(-, -) defined as in (2.4). For each
fixed T € (0, T) and a function f € C*(R), further assume the following:

2 The Assumption 3 is satisfied uniformly over (0, T') if suprE(O_T)(r2 + Sz)’y/z\E[(VHr — Vo) (Vigs — Vo)l
— L()Cy(r,s)| — 0, as r,s — 0, and, also, supre(O’T)lL(r)l < oo. This implies the existence of a positive
constant C such that E[(Z, — Z,)*] < C|t — s|?, for all ¢, s € (0, T).
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(a) BEl(Zeyr — Z0)Z:1 = O(r)), E[Z:4,] — E[Z.] = O(r]), as r — 0.
(b) E[(f'(Z))*] < oo, E[supte(r_e,ﬂre)(f”(z,))4] < 00 for some € > 0.

Then, the process V, = f(Z,), t > 0, satisfies Assumption 3 with yV) = y, L(t) =
E[(f"(Z))*1Lz(t), and C}) = C?.

3. MSE decomposition and bandwidth selection

In this section, we first deduce an explicit leading order approximation (up to 0(%) and
O(h?) terms) of the MSE of the estimator. In what follows, we omit n in the notations A,
h,, and &fw The proof is deferred to Appendix A.

Theorem 3.1. For the model (2.1) with u and o satisfying Assumptions 1-3, and a kernel
function K satisfying Assumption 4, let

A
MSES , ;= ZEE[Uj]||K||§ + hY L(1) // K@x)K()Cy(x, y)dxdy. 3.1
Then, for any T € (0, T) and A, h — 0 such that A/ h — 0, we have:
A
MSE. ., = B[(67 — 0})’] = MSE?, , + 0 (ﬁ) +o0(h"). (3.2)

It is not hard to see from the proof of the previous result that all o(-) terms are uniform on
T € (0, T) if the condition given by (2.4) is satisfied uniformly in #. Then, we readily get the
following:

Corollary 3.1. ForO<a <b <T, let

b b
MSE, ,(a,b) = 2%/ E[af]dtllKIl% +h”/ L(t)dt // Kx)K(»y)Cy(x, y)dxdy.
(3.3)

Then, for the model (2.1)) with n and o satisfying Assumptions 1-3, so that the term
o((r* + 52"y in Eq. (2.4) is uniform in t, and a kernel function K satisfying Assumption 4,
we have

b A
IMSE, ), := / E[(6} — 0})*1dt = MSE ,(a, b) + 0 <Z> + o(h"). (3.4)

Based on the approximations above, it is natural to analyze the behavior of the approximated
MSE of the kernel estimator. We focus on the integrated MSE (3.4) but an analogous
analysis can be made for the local MSE (3.2). Note that, by Assumption 4, we have that
J[ K(x)K()C,(x, y)dxdy > 0. We then obtain the following:

Proposition 3.1.  With the same assumptions as Corollary 3.1, the approximated optimal
homogeneous bandwidth, denoted by hy”', which is defined to minimize the approximated

IMSE given by (3.3), is given by

3.5)

by 4 ’ 1/(r+1)
T /W)[ 27T [ Blo1dt [ K*(x)dx }

y [P L@tydt [[ Kx)K(y)Cy(x, y)dxdy
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while the attained minimum of the approximated IMSE is given by

1 b y/(1+y)
IMSEZ”””(a, b) = n=v/(+y) (1 + _> (2T/ E[of]dt / Kz(x)dx>
14 a

b 1/(14y)
X <y/ L(t)dt // K(x)K(y)Cy(x,y)dxdy) .

A direct consequence of the previous result is the following proposition about the optimal
convergence rate.

(3.6)

Proposition 3.2.  With the same assumptions as those in Corollary 3.1, the optimal
convergence rate of the kernel estimator is given by n~V/*V). This is attainable if the
bandwidth is chosen as h, = cn="Y*Y for some constant c € (0, 00).

An important problem is to formalize the connection between the approximate optimal
bandwidth Aj "' (respectively, hy°""), which is defined as the minimizer of the MSE (3.3)
(respectively, (3.1)), and the “true” optimal bandwidth, whenever it exists, which is denoted
by ﬁ: (respectively, h) and is defined as a value of the bandwidth that minimizes the actual
IMSE (respectively, MSE) of the kernel estimator. In the supplemental material to this article
available online, we show that, under a mild additional condition, they are equivalent in the
sense that 1* = hy ™" + o(hy ") and h* = hy "' + o(hy ™).

4. Kernel function selection

As an important application of the optimal bandwidth selection problem defined in Section 3,
we now study the problem of selecting an optimal kernel function by minimizing the optimal
IMSE attained by (3.5). As shown therein, the optimal kernel function only depends on the
covariance structure, C, (-, ). There are two possible situations. The first one is when C, is
positive definite. In such a case, we cannot improve the rate of convergence of the IMSE, but
we can attempt to minimize the constant appearing before the asymptotics of the IMSE in (3.6)
or, equivalently, minimize the functional:

y
I(K) = (/ Kz(x)dx> // Kx)K(y)Cy(x, y)dxdy. “.1)

Another situation is when C, is simply non-negative definite. In such a case, if we relax (4)
of Assumption 4, it is possible to improve the rate of convergence of the IMSE by choosing
a so-called “higher order” kernel function. An important instance of this case is when the
volatility is deterministic and sufficiently smooth (see Remark 4.1 for more information).

In this section, we focus on the covariance function C, defined in Eq. (2.6) with y < 2,
which is actually positive definite. This is because C, admits the integral form C,(x,y) =
[ Fy(x,u)F,(y, u)du with

y=1 y=1
FyGr.y) i=m (e = 317 sgnx = )+ y['7 sen())

and a certain constant m (see [12] for details). We can then easily check that f f Kx)K(y)
C,(x,y)dx = [(J K(x)F,(x,u)dx)’du > 0, for an arbitrary nonzero kernel function K :
R — R. Furthermore, it also follows that its symmetrization, K (x) := (K(x) + K(—x))/2, is
such that

/f K(x)K(y)Cy(x, y)dxdy — // K (x)K(y)Cy (x, y)dxdy = 0. (4.2)
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The previous relation implies that in order to minimize the constant appearing before the
asymptotic IMSE in (3.5), it suffices to consider symmetric kernel functions K.

Remark 4.1. In the accompanying material to this article available online, we give some new
results regarding optimal kernel selection for smooth deterministic volatilities. Concretely, by
using the calculus of variation with constraints, we obtain optimal kernel functions of higher
orders. The second order optimal kernel is exactly that of Epanechnikov [4] kernel, while, for
higher order cases, we provide ways to calculate those optimal kernel functions.

4.1. Optimal kernel selection for BM driven volatilities

Consider a BM type volatility with y =1 and C(r, 5) = 1{;s~0, min(|7[, |s]|). We will show
that the exponential kernel function is the optimal kernel function. Foster and Nelson [6] argued
that this is the case, but their proof lacks rigor, due to their bounded support assumption on
the kernel function.

From (4.1) and the relation (4.2), the objective function that we need to minimize is

foc K?(x)dx /Oo /oo K (x)K (y) min(x, y)dxdy.
0 0 0

In terms of U(x) = fxoo K(y)dy, we can write this as

I*(U) = / oo[U’(x)]zdx / Oo[U(x)]zdx. 4.3)
0 0

The problem is then changed to minimize /*(U) for functions U that are continuous and piece-
wise twice differentiable on R, such that U(0) = % and lim,_, ;o U(x) = 0. Next, using
Cauchy—Schwarz inequality, note that

2

00 2 o) 2 0
") > </ U’(x)U(x)dx) = (/ U(x)dU(x)) = </ udu) = l,
0 0 12 64

where the first inequality becomes equality if and only if there exist non-zero constants C|
and C, such that C1U’(x) + C,U(x) = 0, for all x € R,. We have two possible cases: (1)
there exists xo > 0, such that U(x) > 0, for all x € [0, xo) and U(xg) = 0; (2) U(x) > 0, for
all x € R,. For the first case, we have that U'(x)/U(x) = —C,/C}, for x € (0, xg), whose
solution is U(x) = %eBX and it is then impossible that U(xy) = 0. Therefore, only the second
case is possible and, by solving the same differential equation, we have the following.

Theorem 4.1. For the model (2.1) with w and o satisfying Assumptions 1 and 3, where C,, is
given by (2.6) with y = 1, and for a kernel function K satisfying 4, we have that the optimal
kernel function that minimizes the first order approximation of the IMSE of the kernel estimator
is the exponential kernel function KP(x) = %exp(—|x|).

Remark 4.2. We can easily demonstrate to what extent the exponential kernel decreases the
MSE. As seen from (3.6), IMSE;”" = C/T*(K), where the constant C does not depend
on the kernel function K. Below, we show the value of [*(K) := I*(U) for the exponential,
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uniform, triangular, and the Epanechnikov kernels:

1 1
I"(5e ")y = — ~0.0138, I*(51,-1) = — ~ 0.0416,
(.5e™) 7 (.5 Tgpei<1p) 7
297

1
I*(|1 = x|1jp <) = — ~0.0333, I*(.75(1 — x)1jy-1) = —— = 0.036.
(11 = x| Tjx<1p) 30 (75 = x)jx<1y) 2240

In Section 8 of the supplemental material to this article available online, we show some Monte
Carlo experiments to illustrate the superior performance of the exponential kernel.

Let us finish by noting that the exponential kernel function not only minimizes the MSE of
the kernel estimator, but also enables us to substantially reduce the computational complexity
of the volatility estimation. The idea is using the decomposition

n
6f2,exp = Z Klfxp(tifl - T)(Aix)z = 6'T2+ + &TZ* + 5’3_, “4.4)
i=1

where, fixing ig such that #;,_; < 7 < 1,

62 =) KTty — D)(AXY,

i<ig
62, = Ky (ti-1 — (A, X)%, 4.5)
&2, = Z K (i — 1A X)%

i>i0

The computational reduction arises from the fact that 83 _and 83 + can actually be computed
iteratively as follows:

6lia- = M6+ K (1 — (A X

~2 A/h a2 2
Oripny =6 / [Ot,+ — KZXP(Z‘,'O — T)(A,'O_HX) ]

(4.6)

It is now clear that, in order to estimate {0y, }i—o,...», Using an exponential kernel, we need a
time of O(n), instead of the orders O(n?) or O(n*h) needed for general kernels of unbounded
or bounded support, respectively.

In practice, kernel estimators suffer of biases at times closer to the boundary. As proposed
in [10], this can be corrected by using the following estimator:

6b  — Z?:] Kp(tic1 — T)(A?X)z.
ot A Ku(tiog — 1)

where the superscript denotes boundary effect. The denominator above can still be efficiently
calculated similarly as (4.4) except that all (A; X)? are replaced by 1.

4.7

4.2. Optimal kernel function for a fBM driven volatility

In this section, we now consider a general fBM covariance structure, i.e. y € (1,2) and
C, given by (2.6). From (4.1) and the relation (4.2), and since C,(x,y) + C,(x, —y) =
[x]” + |y]¥ — %|x +y|¥ — %lx — y|” for x, y > 0, our goal is to minimize

o0 Y [ee) o0
I'*(K) = (/ Kz(x)dx> f / Kx)K(y)A(x, y)dxdy. 4.8)
0 0 0

where A(x, y) = |x|” + |y|¥ — %Ix +yr — %|x — y|”. Unfortunately, the problem of solving
the calculus of variation problem associated with (4.8) and finding an explicit form for the
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optimal kernel function is more challenging. Therefore, we instead seek a numerical method
to find the optimal kernel function, for which, we consider a two-step approximation procedure.
First, since all unbounded support kernels can be approximated by a kernel with bounded
support and the optimization problem is unchanged with K(x) scaled by a small bandwidth,
we will limit the support of K(x) to be [0, 1]. Second, we approximate the kernel function
K by step functions of the form Km(x) = # Zlm:, aill%.,’,,é)(x)’ with x € [0, 1], a; € R
(i =1,...,n), as well as approximate J/m A(x, y)dxdy with A((i —0.5)/m, (j —

(1 l)/m —1)/m
0.5)/ m) = A;;. Using the just described appr0x1mat10n we seek to minimize:

m m m m —2y=2
fla)=m" (Z al-) Y aiaA; (Za,) : 4.9)
i=1 i=1

i=1 j=1

over all valid values of (ay, ..., a,), for which we use gradient descent. In spite of the high
dimensionality of the optimization problem, this is still tractable, since the gradient can be
calculated explicitly as

af _ —\v—1
8_cz,~:C(a)2y+2(a2) 2a;y ZZ“’“J ij +a2 ZZaJ ij

i=1 j=1

_ (2]/ +2) (E)ZV-H (a_Z)y i iaiajA[j s

i=1 j=1

where @ == Y |_ a;/n, a® :== Y_!_ a?/n, and C is a constant that depends on n but not on
the a;’s

Fig. 1 shows the resulting optimal kernels for y = 1.0, 1.3, 1.6, 1.9. Note that the resulting
approximated optimal kernel for y = 1 is consistent with true optimal kernel that was proved
to be exponential in Section 4.1. We also observe from Fig. 1 that, as y increases, the optimal
kernel function becomes flatter and less convex. This indeed makes sense, since a higher y
indicates less chaos of the volatility, and thus more weights should be given to data farther
from the estimated point.

5. Plug-in bandwidth selection methods

In this section we propose a feasible plug-in type bandwidth selection algorithm, for which,
as a sub-problem, we also develop a new estimator of the volatility of volatility based on
the kernel estimator of the spot volatility and a type of two-time scale realized variance
estimator. We shall focus on the case of a BM type volatility as described in Proposition 2.1,
while similar methods can be developed for other types of volatility structures. To implement
the approx1mated optimal bandwidth formula (3.5), it is natural to estimate fo E[o/*]dt and
f L(td:r = f E[g?(1)]dt with the 1ntegrated quarticity of X, 1Q(X) = fo otdr, and
the quadratic variation of o2, IV(0?) = fo g*(t)dt. A popular estimate for fo otdt is
the realized quarticity, which is defined by 7Q = (34)~!'Y_7_ (A; X)*. The estimation of
fo g(t)dt is a more subtle problem and, below, we propose an estimator, which is termed
two-time Scale Realized Volatility of Volatility (TSRVV) and is hereafter denoted by
IV (02)srvy)- With these estimators, the final bandwidth can then be written as

o Z[ _ 2T1Q(X) [ K>(x)dx }'/2.
nIV(GZ)(tsrvv) ff K(X)K(y)cl(X, y)dxdy

5.1
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Fig. 1. Optimal Kernel Functions for Different y.

The previous bandwidth estimator involves the spot volatility itself, through IV(U\Z)QSM),
which, of course, we do not know in advance. To deal with this problem, we propose to use
an iterative algorithm in the same spirit of a fixed-point type of procedure. Concretely, we start
with an initial “guess” for the bandwidth such as

init |: 2T [ K*(x)dx :|1/2
htt =
n [[ Kx)K(y)Ci(x, y)dxdy

With such a bandwidth, we can obtain initial estimates of the spot volatility agll\the grid points.

5.2)

Such an initial spot volatility estimation can then be applied to compute 7V (62) ), Which,
in turn, can be used to obtain another estimation of the optimal bandwidth. This procedure is
continued iteratively until a predetermined stopping criterion is met. Our simulations show that
one or two iterations are typically enough.

We are now ready to define our estimator 1V (62 of 1V (6?) = fOT g(t)dt, which is
often referred to as the Integrated Volatility of Volatility (IVV) of X. The idea is to note that,
at each observation time #;, the estimated spot volatility can be written as &tf = otf +e;;, where
e;; is the estimation error. This suggests to make an analogy with the problem of estimating the
realized quadratic variation of a semimartingale Y based on discrete observations of Y exposed
to market microstructure. So, we can apply any of the different techniques to tackle this problem
such as the Two-time Scale Realized Volatility (TSRV) estimator of Zhang et al. [16]. However,
note that, unlike the problem in [16], our estimation errors are correlated and such a correlation
becomes more significant when we take the difference A;6% = 6&
a problem, we propose to use one-sided kernel estimators and take the difference between
the right and left side estimators to find A;6°. Concretely, let 67, and 67, be the left- and

. — 6.2 To alleviate such
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right-side estimator of 0,12, respectively, defined as
o e Kni = )(ATX Y Kt — 6)(AX)?
OLy = v Oy = .
! Az,iii Kh(l‘j,1 — 1) o AZj>i Kh(lj,1 — 1)

Next, we define the following two difference terms: 4,62 = 62, — 67, AV6? = &7
- ol ;- Finally, we can construct the estimator

T U 20 — k1S
IV =7 D (A6 ——— 3 (A% (5.4)
i=b i=b+k—1

Here, b is a small enough integer, when compared to n. The purpose of introducing such a
number b is to alleviate the boundary effect of the one sided estimators. More specifically,
since we are using left- and right-side estimators of the spot volatility, we are not able to
estimate, for example, &lz,to and 6frn. Therefore, in practice, we suggest to select an appropriate
b to avoid such a problem. Theoretically, we will establish our asymptotic properties to the
estimator of fth*t” gz(r)d 7 for some small but fixed #, € (0, T/2). Similar to Zhang et al. [16],
we can take k = n%? in our case. There is some work to do if one wants to optimize such a
TSRVV estimator, by selecting better » and k to improve the convergence, but this is outside
the scope of the present work.

The result below shows the consistency of (5.4) and shed some light on its rate of conver-
gence. Its proof is provided in Appendix A.

Theorem 5.1. Fix a t, € (0,T/2). Then, for the model (2.1) with u and o satisfying
Assumptions 1 and 2 and o being a squared integrable Ito process as in Eq. (2.8) (thus
satisfying Assumption 3), and a kernel function K satisfying Assumption 4, (5.4) is a consistent
estimator of f =% 2a’t with b = t,/A. Furthermore, the convergence rate is given by

(1/2)+0(f>

Remark 5.1. Vetter [15] proposed a similar estimator for the IVV, but taking a right-sided
uniform kernel when computing the difference A;62 of the estimated volatility and also
applying a different bias correction technique from ours. It is shown therein that his estimator
attains the optimal rate of convergence of n~'/4. Simulations, that are not shown here for
the sake of space, indicate that our TSRVV using the optimal exponential kernel has better
performance than Vetter [15] at least for the chosen parameter choices. This suggests that there
may be some room for improvement of the convergence rate stated in Theorem 5.1, which is
just O(n~'/%). On the other hand, the observed improved performance of our TSRVV may also
be a consequence of the fact that we are using an exponential kernel, while the estimator in
[15] uses the suboptimal uniform kernel.

To conclude, we summarize the proposed plug-in type implementation of the kernel-based
spot volatility estimation. First, using 4 = h'"’ as defined in (5.2), we compute the left- and
right-side estimators of Ut? as described in Eq. (5.3), at all grid point ;. These are then used
to estimate IV (0?) = fOT gz(r)dt via (5.4). This estimator is then plugged in (5.1) to obtain
an updated estimate of the bandwidth hjy ", which can again be used in (5.3)=(5.4). This
procedure continues until, e.g., the value of & or IV (02)yy, do not change much. Once we
reached “convergence”, we use (4.7) to estimate &;, with the final value of /.
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6. Central limit theorems

In this section, we aim to characterize the limiting distribution of the estimation error of
the kernel estimator by proving a Central Limit Theorem (CLT). All the proofs are given in
Appendix A.

To motivate the discussion below, let us start by noting the following natural decomposition:

n T
62—l = (Z Ky(tiy — (A X)* — / Kyt — t)a,zdt)
0

i=1

. 6.1)
+/ Kyt — )0} — oD)dt + o0, (h),
0

where the last term on the right-hand side above follows from Assumption 4. Two general type
of results can be found in the literature to deal with the estimation error:

(1) One approach consists of using a ‘suboptimal’ bandwidth so that the first error term
in (6.1), which, as shown below, is of order O,((4/ h)'/?), dominates the second
term, whose order is Op(hy/z). This would be the case if, for instance, we choose
h = o(AY*D)_ Instances of this type of results can be found in [5,10,11].

(2) In the case that 0,2 follows an Itd process, Foster and Nelson [6] obtained a CLT for
the kernel estimator 62 with optimal convergence rate but under a number of stringent
conditions. In particular, only kernels with bounded support were considered. More
recently, under relatively mild assumptions in the Itd dynamics of X and o, Alvarez
et al. [2] obtained a CLT with optimal convergence rate but only for the forward uniform
kernel function K(x) = 1jo,1;(x). Jacod and Protter [7] was able to obtain the same
type of results for both forward and backward uniform kernels: K(x) = 1o 1j(x) or
K(x) =1_1,0(x).

The two previous approaches have some obvious limitations. The first approach can only yield
results with suboptimal convergence rates, while the second type of results only deal with one
level of smoothness in the volatility process and uniform one-sided kernels. In this section, we
obtain a CLT with optimal convergence rate in two broad frameworks: (i) Itd type volatilities
and (ii) deterministic functions of certain Gaussian processes. These cover all the examples
mentioned in Section 2.1. For the framework (i), we consider two cases: (1) A general kernel
but under the no leverage Assumption 1; (2) Leverage but only forward looking kernel as in
[2], even though the latter work only considers uniform kernels, while we consider here a
general forward-looking kernel function. The second framework (ii) covers a wide range of
models of different smoothness levels, though without leverage. In what follows, we replace
Assumption | with the following:

Assumption 5. The processes u and o are adapted cadlag.

We begin with an analysis of the first error term in (6.1), which, in the nonleverage case,
was already studied in [10]. Mancini et al. [11] (see Theorem 2.7 therein) also analyzed this
term, but, since the proof in [11] is for a more general class of estimators and requires more
technical analysis, we give a simpler proof in Appendix A.
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Theorem 6.1. For the model (2.1) with u and o satisfying Assumption 5, and a kernel function
K satisfying Assumption 4, we have, for any t € (0, T),

A

—-1/2 n T
(Z) |:Z K(ti—1 — (A X)* — / Ky(t — r)olzdtj| —p 8N, 1), (6.2)
i=1 0

where §7 = 20 [ K*(x)dx.

Next, we consider the second error term in (6.1), which only involves properties of the
volatility process o and not the interaction between X and o.

Theorem 6.2. Let K be a kernel function satisfying Assumption 4 and fix a t € (0, T).
Additionally, suppose that either one of the following conditions holds:

(1) {6250 is an It6 process given by o2=02+ [! wds + tgdes with adapted cddldg
 Jr= t 0 0 0
processes { fi}i>0 and {g:}:>o0.
2) 6% = f(Z,), t €0, T), for a deterministic function f : R — R and a Gaussian process
(2) o; p
{Z,};>0 satisfying all requirements of Proposition 2.3.

Then, on an extension (2, F, P) of the probability space (2, F, P), equipped with a standard
normal variable & independent of g, in (1) or Z; in (2), we have:

T
hor? ( / Kt — (07 — of)dt) —p b, (6.3)
0

where, under the condition (1) above, §2 = g% ff Kx)K(y)Ci(x, y)dxdy, while, under the
condition (2), 6% =[f'(ZHPLP(1) ff K(x)K(y)C](/Z)(x, y)dxdy.

As a byproduct of Theorems 6.1 and 6.2 and in accordance with our former Proposition 3.2,
we deduce that the optimal convergence rate is n~7/0+7) and that this would be attained if
h, = cA,l/ U for any constant ¢ € (0, 0o). In that case, the following result shows a CLT for
62 under the non-leverage Assumption 1.

Corollary 6.1. Suppose the assumptions of Theorems 6.1 and 6.2 are satisfied as well as
the nonleverage Assumption 1. Then, for the bandwidth selection h, = AYVYED e have

A_Z(ly+r) (63 — GTZ) —D 8% + 8% §, where 81 and &, are defined in Theorems 6.1 and 6.2,
respectively, and & is a standard normal random variable independent from g., under the
setting (1) of Theorem 6.2, or from Z. under the setting (2) of Theorem 6.2.

Our final result is a CLT when &, = cn~!/*D for general Ito volatilities (as in the setting
(1) of Theorem 6.2), but only forward looking kernels. This generalizes results of Alvarez et al.
[2], where only uniform forward kernels were analyzed.

Theorem 6.3. Consider the model (2.1) with a cddlag process u and an Ité process o given
by 0,2 = 002+f01 fsds +f0t gsdWs, where W is a Brownian motion such that B(d B;-dW,) = pdt
and {f;};>0 and {g,};>0 are adapted cddldg processes. Let K be a kernel function satisfying
Assumption 4 and, in addition, K(x) = 0 for all x < 0. Then, the conclusion of Corollary 6.1
holds true with y = 1.
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7. Simulation results

In this section, we show some simulations to further investigate the performance of the
plug-in method that we developed in Sections 3 and 5 and compare it with the cross-validation
method proposed in [10]. Throughout, we will consider the Heston model:

dX, = pdt +/VidB,, dV,=k(® — V))dt + £/ V,dW,, (7.1

where V, = o7 is the variance process. Regarding the parameters values, we adopt the setting
used in [16]:

k=5 06=004, £=05 pu =0.05-1V,/2

The initial values are set to be Xo = 1 and o = 0.04. We also assume both a non-leverage
setting (p = 0) and a negative leverage situation (p = —0.5) to investigate the robustness of
our method against non-zero p values. We will consider several different sampling scenarios
with 6.5 trading hours per day (the time unit is one year) and 252 trading days during the year.

In order to alleviate boundary effects, we use the estimator (4.7) throughout all the
simulation. For each simulated discrete skeleton {X;, : 0 < i < n}, with ; = iT/n, we
estimate the corresponding discrete-skeleton of the variance process {ot% :0 <i < n}, and
calculate the average of the squared errors, ASE = ﬁ Z:’;l[(éf—at%)z, for each simulation.
We use [ = [0.1n] to focus on evaluating the performance of the estimator without boundary
effects. Then, we take the sample average of such ASE’s to estimate the mean ASE, defined
as MASE = E [ﬁ Y62 — o2 ].

In Table 1, we report the MASE obtained by different methods based on 2000 paths. The
first column reports the performance of the plug-in method proposed in Section 5, where we
use the approximated homogeneous optimal bandwidth (3.5) together with the vol vol estimator
described in Egs. (5.3)—(5.4) (we fix b = n/10 therein and run only two iterations after the
initial initialization (5.2) of the bandwidth). In the second column, we report the results for the
leave-one-out cross validation as proposed in [10]. In the third column, we give the results for
an oracle plug-in method, where the true path of {o;};¢[0,7] and & are used to compute fOT oltdt
and fOT g>(dt = g2 fOT a,zdt in the formula (3.5). The final column shows a “semi-oracle”
result, which only assumes the knowledge of the volatility of volatility & of the Heston model,
but not the path of {o;};c0,7], Which is estimated using kernel-based estimation.

As expected, the plug-in method runs significantly faster than cross validation. As to
the accuracy of the kernel estimator, simulation results show that, in almost all sampling
frequencies, the plug-in method outperforms the cross-validation method. It is worth to notice
that, in all cases, there is still significant loss of accuracy for the plug-in method compared
to the oracle ones. From the two oracle results, it can be easily observed that such a loss of
accuracy is mainly due to the estimation error of the volatility of volatility. In Section 8§ of the
supplemental material to this article available online, we show some Monte Carlo experiments
to illustrate the performance of the vol vol estimator proposed in Section 5.

We now proceed to test the TSRVV estimator introduced in (5.3)—(5.4) with b = n/10. We
use one month data as demonstration, and, in order to see how the estimator performs with
different sampling sequence, we consider 5 min and 1 min data. Since we are considering the
Heston model, we will not report the integrated volatility of volatility, but instead, we report
the following estimator of IVV parameter £ of the Heston model:

———1[Srvv
- |1vv
= _

1v
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Table 1

Comparison of Different Bandwidth Selection Methods (MASE, 2000 simulations). For the 5-days data, T = 5/252
(in years), while “5-min" frequency means that A = 5/(60 - 6.5 - 252) (in years), and the number of observation
n=12-6.5-5=390. “1 min" frequency means that A = 1/(60-6.5-252) (in years), and n = 60-6.5-5 = 1950. For
21 days (1 month) data, 7 = 1/12 (in years), in which case the number of observations is n = 12-6.5-21 = 1638
for 5-min frequency and means A =5/(60- 6.5 -252) (in year), and n =60 - 6.5 - 21.

5 days data

Frequency P MASEp; MASEcy MASE racie MASE
oracle

5 min 0 1.0796E—07 1.3386E—07 9.1266E—08 9.0402E—-08

1 min 0 7.1439E—-09 8.0542E—09 6.7286E—09 6.7074E—09

5 min —-0.5 1.0296E—07 1.4180E—-07 9.2620E—08 9.2009E—-08

1 min -0.5 7.3872E—09 8.2567E—09 6.9356E—09 6.9060E—09

21 days data

Frequency P MASEp; MASEcy MASE,;qcie MASE .
oracle
5 min 0 1.9083E—08 2.1221E-08 1.8265E—08 1.8178E—08
1 min 0 1.7064E—09 1.6868E—09 1.5984E—09 1.5961E—09
5 min -0.5 1.9039E—08 1.9495E—08 1.7587E—08 1.7506E—08
1 min —-0.5 1.6652E—09 1.6011E—09 1.5509E—09 1.5505E—09
Table 2

Estimation of Volatility by TSRVV (1 month data, 10000 sample paths). See the caption in Table | for more
information about the data.

Frequency P 3 Bias Std vVMSE
5 min 0 0.2 —0.0006 0.0990 0.0990
5 min 0 0.5 —0.0584 0.1979 0.2063
1 min 0 0.2 —0.0122 0.0772 0.0782
1 min 0 0.5 —0.0411 0.1549 0.1603
5 min -0.5 0.2 —0.0002 0.0987 0.0987
5 min -0.5 0.5 —0.0571 0.1984 0.2065
1 min -0.5 0.2 —0.0138 0.0779 0.0791
1 min —0.5 0.5 —0.0443 0.1551 0.1613

Generally, £ = 0.5 is a rule of thumb value, but we will use £ = 0.2 and 0.5 to test the
estimator.

The result is reported in Table 2 and as we can see, the estimator performs better when the
sampling frequency increases or the value of £ is small. However, it is also clear that estimation
error is quite large, so further development of estimation of IVV should be possible.

Finally, in Table 3, we compare the estimation performance for different kernels. As shown
therein, the exponential kernel performs the best in all cases. As the calculation we had in
Remark 4.2, we can see that the second best kernel is the triangle kernel, since its shape is
more similar to exponential kernel. Similarly, the uniform kernel performs the worst, since it
is the farthest to the optimal exponential kernel.
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Table 3

Comparison of Different Kernel Functions (5 min data, 2000 sample paths)
Length P Exponential Uniform Triangle Epanechnikov
5 days 0 2.5974E—05 2.8721E—05 2.6441E—05 2.7085E—05
5 days —0.5 2.5233E—-05 2.8252E—05 2.5759E—-05 2.6490E—05
21 days 0 2.3406E—05 2.8047E—05 2.4988E—05 2.5914E—05
21 days —0.5 2.3692E—05 2.8603E—05 2.5248E—05 2.6173E—05
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Appendix A. Proofs of main results

Proof of Theorem 3.1. Let us start by writing the MSE as follows:
MSE = E[(Tix + T21)*],

where

Ty, = Z Ky(tioy — DA X)? — Ac?), T, = (Z Kp(tioy —1)A — 1) or.

i=1 i=1

Applying Lemmas 3.1 and 3.2 of the supplemental material to this article available online
with f(r) = 1, it follows that Y | K;(t;i-y — 1)A — 1 = O (A/h) + O(h?) and, thus, by
Assumption 2, E [Tfn] =0 (A/h) + o(h?). Furthermore, since

E[T0 T2l < |3 Kaltimr — DA - 1| E[12] P E[01]",

i=1

to conclude (3.2), it suffices to show that

E[T%] = 2§]E[of]||Kl|% + h” L(7) /f K(x)K(y)C,(x, y)dxdy + h.o.t. (A.1)

For simplicity, in the rest of the proof, h.o.t. refers to terms of order o (A/h) + o(h?).
To show (A.1), let us start by applying Lemmas 3.1 and 3.2 of the supplemental material
to this article available online, together with Assumptions 1 and 2, to write E [T7] as

Y Kaltio =DK1 — DEI(AiX) — Ao))(A,;X)* = Aa)]

i,j=I

= Y Kultio1 — DKu(tj—1 — DEI(AM)” — As)(A;M)* — Ac))] +hot., (A2)
i,j=1

where M, = fol osd B is the martingale part of X (see Lemma 2.1 and Remark 2.1 in the
supplemental material to this article for details). By Assumption 1, it follows that

n i 2
E[T]] = 22 K;(ti-y — TE (/ a,zdt)
i=1 i
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+2Kh(11 1 — DKR(tj- 1—7)/ / El(o} — 02 (02 — o)]dtds + h.o.t.
i,j=1

=2V, + V> + ho.t. (A.3)

We now proceed to analyze V; and V,. Firstly, for Vi, note that

i 2 " 2
E ( / a,zdt> = A’E[o] 424 E[(o? — 02)o?1dt + E ( / (o} — oz)dt>
ti li—1

= A’E[oc!1+ B; + C;.

To analyze the contribution of each of the three terms above to Vi, we use Lemmas 3.1 and
3.2 of the supplemental material to this article available online with ‘kernel’ function K2 and
the following three different functions f:

fo=1, f@O= \/IEI[(Ut2 —o2Elof]l,  f(1) = El(o] — o),

respectively. It then follows that

AZZK,f(ti_, - ZKZ(” L= 02 o —/Kz(x)dx+hot

ZKh(t, L —T)B; <2= ZK(I’1 )— / \/E[(a,—az)z]E[ Hdt =h.o.t,
i=1

ZKh(t, 1—t)C<—ZK(I'1 )— / E[(6? — 62)*dt = h.o.t.,
i=1 i

where the second line above follows from the fact that ]E[(a, — 03)2] = O(|t — t|"). Putting
together the previous relationships, we conclude that

n ri 2
= Z Kﬁ(t,-,l —7E (/ otzdt) = %E[Uf] / K*(x)dx + h.o.t.
1,

i=1 i1

Next, applying directly Lemmas 3.1 and 3.2 of the supplemental material to this article available
online together with Assumption 3, V, can be written as

Vo =h? / / KXx)K()Cy(x,y; T)dxdy + o <§> + o(h?).

The asymptotics for V| and V, above together with (A.3) implies (A.1), which, as argued at
the beginning of the proof, leads to (3.1). W

Proof of Theorem 5.1. The ¢, here is basically to rule our boundary effects and for brevity
of notation, we will write #, = 0 and assume we have a left side estimator near t = 0 and a
right side estimator near 7 = ¢, with the same convergence rate. Define the error terms from
the left and right side estimators as /; = &fzi — a,? and r; = 6fti — atf, respectively. We will

consider the following slightly different estimator:

—k nfl
A(tsrvv) (k) 2.2 A2\2
vy =+ ?O(A — ;(Aia 2. (A4)
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In terms of the error terms r; and /;, this can be written as

—k n—1 n—1 k—1
——(tsrvv) 1 . (k)
Vv, = [Zm,. o) =) (Ao =2 37 ol —220,,%
i=0 i=0 i=n—k+1 =
n—1 n—k
+2 Z (Ut? - Ut?—k+l)ri+l - ZZ(G;H( - f+1)l +ZZG Fit
'—k+1 i=0 i=0
n—1 k—1 n—k
D NENED WS WEE) WEAEE) LA
i=n—k+1 i=n—k+1 i=1

Now, for each pair of similar terms, we consider the convergence rate of only one of them.
The others have the same convergence rate. Indeed, from Proposition 3.1, we have that
E[r?] = O(n~"/), since we are dealing with Brownian motion type volatility. Thus,

2 2
Ol i1

n—k
Y Elo,, —oi, Y] ZE(r,+.> = O(k2n?),

i=0
n—1
E| > ol =< Z E(o}) Z E@?) = o~ )
i=n—k+1 i=n—k+1 i=n—k+1
n—1 n—k n—k n—k
E > z?=0(f Zlmk < | DEE) ) ECP) = 0(/n).
i=n—k+1 i=0 i=0

Similarly, we can see that the difference between (5.4) and (A.4) is O,(A). Putting all these
together, we get

n—k n—1 1/4
n
TSRVV — > (AP0?? = > (Ai0?) = 0, (W) : (A.5)
i=0 i=0

On the other hand, with similar assumptions and proofs as Theorem 2 and 3 of Zhang et al.
[16], we have the following:

n—k n—1 T
1 k
. [Z(Aﬁ“#)z - Z(Aioz)z] - / (ndt = 0, <\/;> . (A.6)
i=0 i=0 0
Therefore, we have
T ) nl/4 \/?
TSRVV —/0 g (t)dt = (k1/2> + 0, p

which implies the consistency and also yields that the optimal k is given by Cn-
case the convergence rate is n —178, |

3/4 in which

Proof of Theorem 6.1. In what follows, we are going to assume that the relevant processes
(such as o, u, and, in the case of Brownian driven volatilities, the coefficients driving the
dynamics of o%) are bounded. This can be justified by localization as in Section 4.4.1 in [7]
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and Appendix A.5 in [1]. Let

AN-12 [ T
A, = (E) |:Z Ku(tioy — T)(A X) —/ Kt — T)Uzzdt:| .
i=1 0

Let us start with the approximations:

n n t :
D Kt — D(AX) = ZKh<r,-_1 ) ( / osst) +0,(4"%)

i=1
/ Ky(t — 1)oldt = ZK,,(I, - r)/ oldt + o0, ((A/1)'?).
0 i=1
The first approximation above follows from the fact that f:L 1 osdB; = Op(A'/?) and A Y

|Kp(ticy — 1) — fOT |K (x)|dx, while the second one follows from the proof of Lemma 3.1
and Remark 3.1 in the supplemental material to this article available online and the fact that
o is bounded. For an alternative proof see Lemma A.1 in [11]. We can then write:

3 4 2 4
( ) ZZKha,l (/ osst) - / o7dt { +op(1) (A7)
L1 ti—1

2 S, +op(1).

Ap

Clearly, S, can be written as a sum » ._, &, of martingale differences relative to {F,; =

th}ll

.....

—1/2 ) 2 .
A / ti t
Oy = (—) K,(ti—1 — 1) (/ Usst> —/ atzdt
’ h
i1 ti—1

To obtain the CLT, we first need to show the following (see Theorem IX.7.28 in [8]):
- P
By =Y Elay ;| Fpi1] — 2071K|3. (A.8)

i=l1

First note that, by Itd’s lemma,

s 2
B, _4< ) ZKh(t, 1—1:)/ (/ aMdBu> JSZ Fni-1 | ds.

By the Cauchy—Schwarz and the BDG inequalities,
) 2

E (/{;1 audB,,) (O’SZ — G,il) Fri-i
4
<E </f1 o'udBu> ‘]—",,,,«_1 E |:(02 — o} ) ‘]—",,, 1}

i

< cE (/

i—

2
laidu) [Fic E[(az_a ) e 1}=OP(A2+V),
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uniformly on i, due to Assumption 3. Therefore,

2
A -1 n t; s
<;> ZK,%(ti_l — ‘L')f E </ U,,dB,,) (O’SZ —a[?_l) Fni-1|ds
i=1 li—1 li—1

= 0p(APDR Y Kii(tio1 — 1) = 0p(A7/),

i=1

since AhY ! K}(ti-1 — t) — [|K||3. We then have that:

2
A -1 n t; N
B, =4 (z) S KA - r% oE (/ loudBu) Foict | ds +op(1)
i—1 i- i-
A —1 n t; s
=4 (z) Z K}%(tifl - T)[ 1 G[?_IE /; 1 auzdu
i=1 = !

A\ I
—4 (Z) Z:]: Ki(tio — T)o; /I”(s —t;_1)ds + op(1)

=2hAY  Ki(tiy =)o, +op(l)

i=1

P 4 2
— 20, |K]|l5.

fn,i1:| ds +op(1)

The following is the final identity needed to conclude the CLT:
n . P
> Elay | Fnici] — 0,

i=1

for which it suffices to show that

A\ 2 l
Ty, = (Z) Z_; K}t —0)FE (/,
N5 i ) P
T, = (ﬁ) ;Kh(t,-_l —1E (/; o ds) Foic1| — 0.

By BDG inequality, for some constant C < oo,

. A
Tin < CToy = Op(ADR* Y K11 — 1) = Op (ﬁ) ,

i=1

since AR*Y " | K}tioy — 1) — [ K*x)dx. The final ingredient to apply the CLT for
martingale differences, as in Theorem IX.7.28 in [8], is to show that

ZE [ AiH| Fpizi] = o,

i=1
where H is either W or an arbitrary bounded martingale orthogonal (in the martingale sense)
to W. This is done in the same way as in the proof of Theorem 2.7 in [11]. W
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Proof of Theorem 6.2. (1) As it is standard in the literature, by virtue of localization (as
in Jacod and Shiryaev, section 5.4, p.549), we assume without loss of generality that the
coefficients driving the dynamics of o are bounded on [0, T']. For simplicity, we will use the
following notations: V; = o = of + fot fods + f(; g:dW; and v; = o + fot gsdWy. Tt is easy
to see from Proposition 2.1 that V and v both satisfy Assumption 3 with ¥V = y¥ = 1 and
C)‘,/ = C}. Now, since

T t
/ Kyt — r)/ fsdsdt
0 T

which is 0,,(h1/ ) = op(1), we can conclude that the drift term of V has a negligible
contribution to the final error. Therefore, it suffices to work with the process v and only to
consider the weak convergence of

T
I_h = h71/2 (/ Kh(t - T)(vt - v‘:)dt>~

0

h~'E

T
< sup Ifxlh“”/ Kt = Ollt — Tldt,
s€[0,T] 0

For the sake of clarity, we will first assume a right-sided kernel function (i.e., K(x) = 0 for
all x < 0), so that I, = h~'/? (fTT Kn(t — )(vy — v,)dt) =: I;. Applying the integration by
parts formula, we have that

T — T
I, = —h~'2U ( . T) (v — u,)+h—'/2/ U

T

t—t
( A )gtdW, =R+ S,
where U(t) = ftoo K (u)du so that %(U((t —1)/h)) = —K;(t —1). Since our assumptions on K
imply that x'2U(x) — 0, as x — oo, we have R = op(1). For the other term S, let us consider
the following approximation S := h~'/2g, fTT U ('5%) dW,, and note that S — S = op(1) since,
by Assumption 4, [;¥ U?(x)dx < oo and

E [(S - §)2] = % ([WEJF /:ﬁ) U? (FTT) E[(g — g:)*]dt

o0
sup  E[(g — g)*] U1 + 4l18% oo / U(s)ds,
telr,t+vh] 1/vh

IA

which is clearly o(1), as h — 0. We also observe that conditional on F, S is Gaussian with
mean 0 and variance:

-t

T _ =t
gfh_lf U? (t ; T) dt = gff " U%(s)ds — gf // Kx)K(y)Ci(x, y)dxdy.
T 0

Therefore, S|F; —p N(0,83), where 67 = g2 [ K(x)K(y)C,(x, y)dxdy. This suffices for
(6.3) since, by the dominated convergence theorem,

& [exp (i05) | =B [ [exp (,-usz) \f]] = fewp (-5 [0 (50 ) )]
ﬂE[exp (—%/W (s)ds)],

where recall that [ U? (s)ds = [[ K(x)K(y)Ci(x, y)dxdy.
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We now consider the general two-sided kernel case. To this end, let Ut) = ftoo K@u)duly o)
— fioo K (u)duly <o) and note that, by the integration by parts formula, I, = h’l/szT K,(t—1)
(v, — v;)dt is such that

- _ (T — T (t—
I = —h 20 <Tr> (Vo — v7) +h’1/2/ U <TT> @dW, + I + op(1)
0

= R+S+1,+0p(1).

Same as in the one-sided kernel case, R = op(1) and I, = S+ op(1). For S, we consider the
following approximation:

~ T _(t—1 = T _(t—1
S:=h"12g, / U ( )dw, =h"12g, f +/ U < )dW,
0 h 0 VI h

~

= 31 +§2.

We still have S — S = op(1). It is also true that S| = op(1), as h — 0, which can be justified
by considering its second moment. Therefore, we have

= 3 i~ T -1 ~
Iy =85+ S+o0p(l)= hfl/zgr—fh/ N/ v <T) dW; +op(l) = I, +op(),
T—/h

where the second equality holds since S, + S — I, = op(1), which again can be justified by
considering the second moment and Cauchy—Schwarz’ inequality. To conclude (6.3), note that,
by conditioning on F__ s,

T uzgz—«/ﬁ " 72
E [exp (iulh)] =FE |:exp <—T /7;’71/2 U~ (s) ds>:| ,

2,2
which converges to E [exp (—% [ Kx)K»)Ci(x, y)dxdy)] and we conclude (6.3).
(2) In the whole proof, the superscript (Z) refers to a quantity corresponding to the process
Z, while quantities without such a superscript corresponds to the process 2. Let us start by

noting that, since Z is a Gaussian process, hv/? (fOT Kyt —1)(Z; — Zf)dt) —p Sé/zN(O, 1),
where

5y =L(1) f f K@KC x, y)dxdy.

Indeed, this follows from the facts that the limit in distribution of Gaussian r.v.’s is Gaussian
and that h~7/2 fOT Ky (t —t)(Z; — Z,)dt is centered Gaussian (being the limit of Riemann sums
of the form h=7/2 Z;’:Ol Ki(tj — ©XZ:; — Z:)(tj41 — t;)dt, which is Gaussian) with variance

T T
h_y/ / Kyt — 0)Kn(s — DE(Z, — Z:)(Zs — Z;)]dtds
‘ 0 (T—1)/h (T—1)/h
=h" / K(X)K(Y)E[(Zr+xh - Zr)(Zrerh - Zr)]dXdy’

t/h —t/h

which converges to &, above.
Now, for any € € (0,min(z,T — 7)), and for any ¢t € (r — €, T + €), there exists
s, € (min(t, T), max(t, ), such that 0> — 02 = f(Z)NZ, — Z.) + %f”(ZS,)(Zt — Z.)2.
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Then, I = fOT Kj(t — t)(0} — 02)dt is such that

T+€ 1
I = / Kyt — OLf(ZNZ — Z0) + 5f”<zs,><zt — Z.)*ldt + o(h?'?).

—€

Indeed, to justify the term o(h?/?) above, note that, due to (3)-(ii) of Assumption 4,

T T 1/2
< f |Ku(t — 7)|dt (T/ E(o? — af)%lz)
T+€ T+e€

00 1/2
<C ( K(x)dx) = o(h"'?).
€/h

T
E / Kt — t)(0? — o2)dt

+e

We can similarly deal with the integral from O to T — €. For the second term, once we select
€ small enough such that

E[(f"(Z)] < M?, ENZ, — Z.)'1 = 3E(Z, — Z.)*]* <3M|t — 7|7,

forall t € (r —€, T 4+ €) and some M, we can then apply Cauchy—Schwarz’s inequality to get

T+e€
E < 3M2/ |K,(t — 0)||t — t|7dt,

—€

T+€
/ Knlt — 1) f"(Zy)(Zs — Z2Ydt

—€

which is O(h?) = o(h?/?). Now for the first term, we have

T+e€
L / Kilt = DU (Z)Zi — ZONdt = f'(ZOSY N, 1).

where the standard normal N (0, 1) appearing above is independent from Z. Indeed, (X, Y (h))
= (Z,, h™v/? f:f: Ku(t —t)(Z, — Z,)dt) is bi-variate normal for all # > 0 and, thus, whenever
the limit (X, Y(h)) — (X, Y) exists, (X, Y) is a bivariate normal variable. There exist a(h)
and B(h) such that Y(h) = a(h)X + B(h)Z(h), such that X is independent of Z(h) and
Z(h) 2 N(0, 1). Note that a(h) and B(h) are given by

E[XY (h)]
hy=— 2
a(h) E[X7]
By our assumption on Z stated in the statement of the theorem, we have E[XY (k)] = o(1)
and, thus, a(h) = o(1), while

B2y = LO(x) / f KOKG)CD(x, ydxdy +o1).

., B*h) = E[Y*(h)] — «*(WE[X?].

With such representations, we have:
XY () =ah) f'(X)X + Bh) f(X)Z(h) = o,(1) + B(h) f(X)Z(h),
which converges to 8f'(X)Z. N

Proof of Corollary 6.1. We show the result in the first setting (1) of Theorem 6.2 (the second
can be handled similarly). Let U, and V), be the first and second terms of the decomposition

n T
62 —ol = (Z Ky(tiy — (A X)? — / Kyt — r)afdt)
i:lT 0 (A.9)
+ f Kyt — )0} — oD)dt + o, (W),
0
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Let us start by noting that
E[e PO | g [B [ e 0| Foy 15 < 7))

—F [eiuh_V/2VnE |:eiuh_y/2Un ]:'(O—S iy < T)]] .

From Theorem 6.1,

E [eiulrWUn

Flog:s < T)] — oulod [ K2
so it suffices to show that

2
E [eiuh*V/an—uzaffKz(x)dx] N ) |:e—”2(6|2+8%):| .

For this, first note that, since o, _ Jh = Oz, a8, and, o is bounded (by virtue of localization),
we have

E [eiuh’)’/zvn—uza?sz(x)dx:I —E |:eiuhV/an—uznjﬁsz(x)dx}

Finally,
A . W2
E [el”h y/2v,,7u2aj7ﬁ(/ Kz(x)dx] o F [62(8]2+a§):|

along the same arguments as those used in the proof of Theorem 6.2. W

)

Proof of Theorem 6.3. By virtue of localization (as in [8], Section 5.4, p. 549), we can (and
will) assume that the relevant processes (such as o, u, and the coefficients driving the dynamics
of o) are bounded. We again consider the decomposition (6.1) and call the first and second
terms on the right-hand side A;, and A, ,, respectively. As stated in the theorem, we take
A = h?, in which case, the two terms attained the optimal rate 4!/, Let us start by noting the
below decomposition, which was already obtained in (A.7):

2
n l 4
h’l/zAI,n:h*l/zZKh(ti_]—r) f o,d B, —/ oldt ¢ +op(1)
i1 1,

i=1 i— i—1

=Y ani+op(l).

i=l

For A, ,, by similar arguments as those used in the proof of Theorem 6.2, we have

T t—1 -
W2 Ay, =h""g, | f U (T) AW, +op(1) =Y _ Bui +op(1),
fj—1

- i=1

where t;_; = min{t; : T <} and

P 0 i<j
S g, T U (5 AW iz

3 Theorem 6.1 obviously holds when {0} is deterministic, which is the process we will get when conditioning
U, on F(og;:s <T) due to the nonleverage condition.
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Next, we consider the following sum of martingale differences relative to {F, ; := F, }i=1,...at

Sy = ZSnt = Z Uy i +ﬂn,i) .
i=1

To apply the CLT for martingale differences (see Theorem IX.7.28 in Jacod and Shiryaev), we
first need to show that:

S B IR D 20fiK I + g2 [ [ KRG yyandy.
i=1

To this end, we prove that

B, =) Ela; | Fpi-il 25 20t K12 (A.10)
i=1

Cn .—ZE[ﬂn,lfn, il gf//K(x)K(y)Cl(x y)dxdy (A.11)
i=1

D, :=ZJE[an,,-ﬂn,,-|fn,,~_1] - 0. (A.12)

i=l1

The proof of (A.10) is embedded in the proof of Theorem 6.1. For (A.11), note that

T t — oo
C, :h_lg§71/ U2( - )dl—)gI/O U*(s)ds,
i

J

and it is easy to see that [~ U(s)ds = [ [ K(x)K(y)Ci(x, y)dxdy. It remains to show (A.12).
To this end, note that, in terms of U;; = fl‘ll 0,dBy, for i > j, Elo, ;Bn.ilFni—1] can be

written as
fi s—71
UisquB U dW |~Fn.i—1
1

43
Zl’lilKh([i_l — 'L')gtj_]E |:/
1
s —
Ui‘vO’sU( ds|fnt l:|
Z )ds.

By Cauchy—Schwarz inequality, the expectation inside the integral can be shown to be Op(A),

i—1

t
=2h""Ky(tio — T)E [ /
;

4
= 2h_lth(l‘ifl - t)/ E [Uis(as — Oy 1)|fnl 1] (
ti—1
uniformly in i. Thus, since A Z?:j |Kp(tiy — 1) — f |K (x)|dx, as n — oo,
s—T
U
()

<208, 0p(A%)p Y IKn(tios — T)l = Op(A/h) = Op(h).

i=j

ds

n t
D, <2h7'g,  0p(A)p Y [Kn(tioy — )| /
i=j li—1

Please cite this article as: J.E. Figueroa-Lépez and C. Li, Optimal kernel estimation of spot volatility of stochastic differential equations, Stochastic
Processes and their Applications (2020), https://doi.org/10.1016/j.spa.2020.01.013.




28 J.E. Figueroa-Lopez and C. Li / Stochastic Processes and their Applications xxx (xxxx) xxx

The final identity needed to conclude the CLT is Z;’zl IE[E;‘J Fni-1] —P> 0, for which it
suffices to show that

n ti
Tiw=h"2Y K}t — OF / 0,dB, | | Fuici | 2> 0,
1

i=l i-1

n ti
Tow = h"2Y K}t — O / ods | | Frisr | = 0.
1

i=l i-1

n 2
2,4
T3, =h gtj—l E E /t
i=j

4

t_
U( hr)th Foio | 55 0.
1

i—

The previous limits can be shown by applying BDG inequality and using the fact that o is
bounded. W

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/
j-spa.2020.01.013.
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