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Abstract

In this paper, we propose a new threshold-kernel jump-detection method for jump-diffusion processes, which
iteratively applies thresholding and kernel methods in an approximately optimal way to achieve improved finite-
sample performance. As in Figueroa-Lépez and Nisen (2013), we use the expected number of jump misclassifications
as the objective function to optimally select the threshold parameter of the jump detection scheme. We prove that
the objective function is quasi-convex and obtain a new second-order infill approximation of the optimal threshold
in closed form. The approximate optimal threshold depends not only on the spot volatility o;, but also the jump
intensity and the value of the jump density at the origin. Estimation methods for these quantities are then developed,
where the spot volatility is estimated by a kernel estimator with thresholding and the value of the jump density at the
origin is estimated by a density kernel estimator applied to those increments deemed to contain jumps by the chosen
thresholding criterion. Due to the interdependency between the model parameters and the approximate optimal
estimators built to estimate them, a type of iterative fixed-point estimation algorithm is developed to implement
them. Simulation studies for a prototypical stochastic volatility model, show that it is not only feasible to implement
the higher-order local optimal threshold scheme but also that this is superior to those based only on the first order
approximation and/or on average values of the parameters over the estimation time period.

1 Introduction

In this work, we study a jump diffusion process of the form

t t N
Xt = / ’Yudu + / Uuqu + Z Cja
0 0 =

where W is a Wiener process, N is an independent Poisson process with local intensity {A:}:>0, and {(;};>1
are i.i.d. variables independent of W and N. With the presence of jumps, several statistical inference problems,
including volatility estimation and jump detection, can be addressed by the thresholding approach developed by
Mancini (2001, 2004, 2009). The basic idea is to introduce a threshold tuning parameter B so that whenever the
absolute value of an increment AX := X;, — X;, , exceeds B, we conclude that an unusual event (aka a “jump”)

has happened during the interval (¢;,_1,%;], based on which we can then proceed to estimate the volatility and other

i—1

parameters. Many works have been conducted to further extend the threshold method to various statistical inference
problems. For an It6 semimartingale with finite or infinite jump activity, jump detection and integrated volatility
estimation was studied by Mancini (2009) and Jacod (2007, 2008). We also refer to Corsi et al. (2010), Ait-Sahalia
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and Jacod (2009b,a, 2010), Cont and Mancini (2011), Figueroa-Lépez (2012), Jing et al. (2012), and others for
further applications of the threshold method.

One of the key issues that we have to address in order to have a good performance of the jump detection
procedure is the selection of the threshold B. Ideally, we hope to select the best possible threshold under a suitable
criterion. Such a problem was studied by Figueroa-Lépez and Nisen (2013) using the expected number of jump
misclassifications as the estimation loss function and, more recently, by Figueroa-Lépez and Mancini (2018) using
the mean-square error of the threshold realized quadratic variation. Under the assumption of zero drift, constant
volatility o, and constant jump intensity, Figueroa-Lopez and Nisen (2013) showed that the first-order approximation
of the optimal threshold is given by y/3c2hlog(1/h) (cf. Theorems 4.2 and 4.3 therein), when h, the time span
between observations, shrinks to 0 (i.e., infill or high-frequency asymptotics). Based on this result, Figueroa-Lépez
and Nisen (2013) proposed a method to estimate time-dependent deterministic volatilities and, by simulation, showed
that its performance is good for smooth volatilities. In this work, we generalize this framework in three directions.
We first prove that the loss function is quasi-convex and admits a global minimum in the more general case of
non-homogeneous drift, volatility, and jump intensity. A simpler version of this result was stated without proof
in Figueroa-Lépez and Nisen (2013). We then proceed to obtain a second-order asymptotic approximation of the
optimal localized threshold, in closed form, which depends on the spot volatility o;, the local jump intensity A,
and the value of the jump density at the origin. We find out that, as expected, if the spot volatility is high, then it
is more preferable to have a larger threshold. However, when the jump intensity or the jump density at the origin
is large, the possibility of having smaller jumps is higher, which favors a smaller threshold to detect such jumps.
Although an explicit formula for the second-order approximation is derived, the method is not feasible unless we are
able to estimate all the unknown parameters appearing in this formula: the spot volatility, the jump intensity, and
the jump density at the origin. To this end, we apply kernel estimation techniques, as described below, to devise
feasible plug-in type estimators for the optimal threshold.

Kernel estimation has a long history and has been applied to a large range of statistical problems. In our work,
we use it to estimate the jump density at the origin. The problem we are facing differs from the usual density kernel
estimation in several ways. Firstly, the data we have is contaminated by noise, and to make things even worse, part
of the data may not contain any information at all about the density we want to estimate. Moreover, due to the
usage of a threshold, the data we have is at best drawn from a truncated distribution and, the point at which we
hope to estimate the density, is not even inside the support of the truncated data. Due to these reasons, we have to
adjust the standard method of kernel density estimation and select the threshold appropriately so that we can get
a satisfactory estimation of the jump density at the origin. It turns out that the optimal threshold that we should
use in such a situation is larger than the one we use for optimal jump detection (see Section 2.4 for the intuition
behind this).

Another quantity we have to estimate is the spot volatility, which can also be estimated by the kernel estimator.
One earlier research on this topic is Foster and Nelson (1996), where a rolling window estimator is analyzed, which is
similar to the idea of the kernel estimation with a uniform kernel. The kernel-based estimation of the spot volatility,
with general kernel, was studied by Fan and Wang (2008), Kristensen (2010), Mancini et al. (2015) and, more
recently, Figueroa-Lépez and Li (2017). See also the excellent monographs of (Jacod and Protter, 2012, Ch. 13)
and (Ait-Sahalia and Jacod, 2014, Ch. 8) for a general treatment of the problem of spot volatility estimation of Ito
semimartigales via uniform kernels (though Remark 8.10 in Ait-Sahalia and Jacod (2014) also briefly mentions the
case of a general kernel with support on [0, 1]). One of the key issues related to kernel estimators of spot volatility is
how to select the bandwidth. Kristensen (2010) proposed a leave-one-out cross-validation method, which is a general
method, but suffers from the loss of accuracy and computational inefficiency. In this work, we adapt and extend
the approach of Figueroa-Lépez and Li (2017) by applying a threshold-kernel estimator of the spot volatility rather
than just kernel estimation. The leading order terms of the MSE of the estimator are explicitly derived, based on
which we propose a procedure for optimal bandwidth and kernel selection. The CLT of the estimation error is also
given.

As explained above, the approximated optimal threshold depends on the spot volatility, jump intensity, and
the value of the jump density at the origin, while the approximated optimal estimators of these three quantities
depend on the threshold. Such an interdependency immediately suggests an iterative algorithm that starts with
an initial guess of these parameters and gradually converges to a fixed point result. Due to the nature of the



threshold estimator, the result is purely determined by whether the absolute value of each data increment exceeds
the threshold, so we can conclude convergence without any ambiguity based on whether each data increment is
included by the threshold or not.

The rest of the paper is organized as follows. Section 2.1 introduces the framework and assumptions. In Section
2.2, we analyze the optimal threshold and obtain the second order approximation thereof. The bias and variance of
the estimator are derived in Section 2.3. In Section 2.4, we consider the kernel estimation of the jump density at the
origin. The threshold-kernel estimation of the spot volatility is studied in Section 3. The three estimators are then
combined into an iterative algorithm presented in Section 4. Finally, the performance of the proposed methods are
analyzed through several simulations in Section 5. Conclusions and some thoughts about future work are provided
in Section 6. The proofs of the main results are deferred to an Appendix section.

2 The Optimal Threshold of TRV

In this section we extend the modelling framework and optimal thresholding results of Figueroa-Lopez and Nisen
(2013). Specifically, we will allow non-constant drift, volatility, and jump intensity, though we keep the jump
density constant through time. In the first subsection, we introduce all the assumptions that we need for the
optimal threshold results. However, we temporarily set the drift, volatility, and intensity to be deterministic, which
would subsequently be relaxed when we discuss the kernel threshold estimation of spot volatility. All the results
can be generalized to stochastic drift and volatility, and doubly stochastic Poisson process N, as long as we assume
that the Brownian motion and jumps of the semimartingale are independent from all these processes, since we can
always condition on the paths of the drift, the volatility, and the jump intensity of N. It is also important to point
out that, though our results in this section are derived under the just mentioned independence assumption, our
simulation experiments show that this is not essential as the proposed estimators perform well under prototypical
stochastic volatility models with leverage.

2.1 The Framework and Assumptions

Throughout, we consider an Itd semimartingale of the form:

t t Ny
X; = (/ Yo du —I—/ auqu> + ZCJ = X7+ Jy, (1)
0 0 j=1

where W = {W,}i>0 is a Wiener process, {(;};>1 are i.i.d. variables with density f, N ={N;};>0 is a non-
homogeneous Poisson process with intensity function {A:}:>0, and the continuous component {X/};>o and jump
component {J;};>0 are independent. The processes v and o satisfy standard conditions for the integrals in (1) to
be well-defined. In this section, we shall additionally assume the following conditions on «, o, and \!':

Assumption 1. The functions v : [0,00) = R, 0 : [0,00) = RT, and X\ : [0,00) — R are deterministic such that,
for any given fized t > 0,

g,:= inf 0, >0, &;:= sup o5 < 00,
0<s<t 0<s<t
:= inf >0, A := su < 00
lt Ogsgt% ) Yt OSSI%;YS ) (2)

A= inf Ay >0, A= sup A; < 0.
At 0<est s , t ogsI;t s

Furthermore, we assume that t — o, is continuous.

The following notation will be needed:

) 1 t+h ) 1 t+h _ 1 t+h
Tip = ﬁ/t oudu, Vg = E/t Yudw, App = E/t Audu. (3)

n Section 3, we will consider stochastic processes v and o.



Note that with these notations, our model assumptions imply that, for any ¢,A > 0 and k£ € N,
Xion — X§ =p N (W9, h07,),  P(Xepn — Xo € da|Nppn — Ny = k) = ¢, * 7 (2)da,

Jc_hWt,h

where ¢y 1, is the density of X7, — X7, i.e. ¢y n(x) = ﬁqﬁ ( =/ ) For these types of processes, the associated
t,h t,h

local characteristics are of the form (7, o, ), where the density of the local Lévy measure is given by v;(z) = Ao f(z).

Assumption 2. The jump density f has the form

f(@) =pfr (@)l + ¢f-(2) 1<), (4)

where p € [0,1] and ¢ : =1 —p, and fy : [0,00) = [0,00) and f_ : (—o0,0] — [0,00) are bounded functions such
that [~ f+(z)de = fi)oo f—(z)dx = 1. Furthermore, we assume that

fi(O) = lim fi(x) S (0,00).

xz—0%F

The following notations will also be needed:

.1 ff .
Colf) = Tim o [ f@)dr =pfi0)+ a7 (0), Calf) = Ipfe(0) = af-O)], Culf) =min{f+(0), 5 (O)}. ()
Note that Co(f) = f(0) and Cy4(f) = 0 if f is continuous at the origin. For some results, we also need the following
assumption:

Assumption 3. f; € C'([0,b)), f- € C'((a,0]), for some a € (—00,0), b € (0,00) and f/.(0) := lim,_,o+ f ()
exists.

Throughout, we assume that we observe the process X at evenly spaced times,
ti:=1th,, 1=0,...,n, (6)

where h,, is the time span between observations and T := T,, := nh, is the time horizon. We will also use
AX = X,;, — Xy, , to denote the increment of the underlying process over [t;_1,t;), and when no ambiguity can
be brought, we will drop the superscript n. Finally, we introduce the jump detection procedure we consider in this
work. We first specify a vector of thresholds [B]%. = (BY, ..., B'), where we often drop the superscript n when no
confusion can be generated. Given [B]}.,, we would conclude that a jump had occurred during [¢;—1,¢;) whenever
|A;X| > B;. As a byproduct of this jump detection criterion, we can then devise the following natural estimators

of Nr, Jr, and the integrated variance IV := fOT agds:

n n

Nr =Y 1gaxisny Jr= (AX)lgaxispy, [Vr=TRV(X)BJ} =Y (AX)1gaxi<py (1)
i=1 i=1 i=1

These estimators were first studied in Mancini (2001), Mancini (2004). The estimator IV has extensively been
studied in the literature and is commonly called the truncated or thresholded realized quadratic variation (TRV) of
X.

2.2 Optimal Threshold and Its Approximation

In this subsection, we formulate the problem of optimal threshold selection. We adopt the approach in Figueroa-
Lépez and Nisen (2013), which we now briefly review for completeness. We seek to find a threshold [B]r =
(B1, ..., Bp) € R’ to minimize the loss function:

n n
L([B]r) :=E (Z L(ja,X[>B.AN=0) + Y 1{AiX|<Bi,A1N¢0}> : (®)

i=1 =1



The above loss function represents the expected number of “jump” mis-classifications (i.e., subintervals erroneously
classified as having jumps when in fact they do not, or not having jumps when in fact they do). The previous
formulation gives the same weight to both types of error, while a more general loss function is given by:

L([B]r;w) :=E (Z L(AX|>B,AN=0} TW Y 1{|A1-X§Bi7A,iN7£O}> - 9)

i=1 i=1

For our purpose, (8) is enough, but in certain applications, (9) may be useful. For instance, it is more likely that
market participants become more conservative when they erroneously identify a price change as an unusual event,
i.e., a jump. In this case, one may prefer to take w < 1.

In both (8) and (9), the loss function is additive. Therefore, we can optimize each B; separately. Indeed, we
define the following loss function for given t and h:

Lt’h(B;U}) = P(|Xt+h - Xt| > B,Nt+h - Nt = 0) + U)]P)(|Xt+h - Xt| S B,Nt+h - Nt 7é 0) . (10)

If we were able to devise a method to find B* = argmingL, ,(B;w) for any ¢ and h, then, by setting ¢t = ¢;,_; and
h =t; —t;_1, we would be able to specify the whole optimal [B]7. Obviously, the first issue that we have to address
is whether or not there is a global minimum point B*. As it turns out, the loss function (10) is quasi-convex? in
B, when h is small enough. This property was established in Figueroa-Lépez and Nisen (2013) for a driftless Lévy
processes (i.e., ¥ =0 and o and X are constants). Nonzero drifts create some nontrivial subtleties that are resolved

in the following theorem, which was stated without proof in Figueroa-Lépez and Nisen (2013).

Theorem 2.1 (Uniform Quasi-Convexity of the Loss Functions). Assume that we have model (1), and
Assumptions 1-8 are satisfied. Then, for any fixed T > 0, there exists hg := ho(T) > 0, such that, for all t € [0,T],
h € (0, hol, and w > 0, the function Ly (B;w) is quasi-convex in B, and possesses a unique global minimum point
Bf .

We proceed to give a fixed-point formulation of the optimal threshold By, which in turn enables us to find a
second-order asymptotic expansion for By, in a high-frequency asymptotic regime (h — 0). This characterization

will equip us with the theoretical basis for developing feasible estimation algorithms later. In what follows, we focus
on the case of w = 1 and for easiness of notation, we drop the variable w in Ly »(B;w).

Theorem 2.2 (Characterizations of the Optimal Threshold). Assume that we have model (1), and Assump-
tions 1-3 are satisfied. For each fivred T > 0, there exists hg := ho(T) > 0 such that, for anyt € [0,T] and h € (0, ho),
the optimal threshold By, based on the increment Xyip — Xy, is such that,

—2B7,7%
B;k,h = hﬁt’h + \/@ [ln (1 + exp <0—t2JLWL>>

t,h
1/2

< ()"
—In <\/27Thof7h;(k’!h) [¢t,h *f*k( th) +¢t,h*f*k(_ t*h)]>‘| . (11)

Furthermore, as h — 0, we have the asymptotics:
- 1/2 1
fn = Vhoun [3log (1/h) — 210g (V2r Co(Hawnden) | +o(h¥+®), (12)

for any « € (0,1/2). If, furthermore, o, \, € C*((0,T)) and continuous on [0,T], then the asymptotics in (12)
remains true if we replace o4 p, and j\t,h with oy and A, respectively.

Remark 2.3. The last assertion of Theorem 2.2 remains true if t — o7 is Holder continuous for any exponent
X € (0,1/2). In particular, this is the case for any volatility model driven by a Brownian motion (see (Revuz and
Yor, 1998, Ch.V, Exercise 1.20)). Recall that if a function is Holder continuous with exponent x, then it is Holder
continuous for any exponent x' < 1/2.

2A mapping g : D — R, for convex D, is quasi-convex if for any A € [0,1] and z,y € D, g(zX +y(1 — \)) < max{g(x), g(y)}.



The previous result extends the first-order approximation / 30?7 nhlog (1/h) of Figueroa-Lépez and Nisen (2013),

whose remainder is just of order O (hl/ 2 logfl/ 2 (1/ h)) However, with the second order approximation, the re-

mainder is o(h!™¢) for any € € (1/2,1). It is convenient to introduce the following notations for the first- and
second-order optimal threshold approximations, respectively:

_ 1/2
B, = oun[3hlog (1/R)]'?, Bi% = Vhou [3log (1/h) - 210g (V2rCo(Hownden) | - (13)

These tell us that, in a high-frequency sampling setting, the single most important parameter to determine a suitable
threshold level B is the spot volatility o, followed by the parameter v4(0) := \Co(f), which broadly determines
the likelihood of a small jump occurrence around time ¢. It is interesting to note that the optimal threshold Bt*2h
can differ substantially from B;} when o;\:Co(f) is large. This is intuitive since, for instance, if o; and Co(f) are
fixed, as the jump rate \; increa/ses7 the optimal threshold should decrease in order to account for an increase in the
appearance of “small” jumps. If the threshold is not adjusted, there would be more “false-negatives”, i.e., missed
jumps. On the other hand, as A; decreases, the optimal threshold should be larger in order to offset an increment
in the likelihood of false-positives (namely, wrongly concluding the occurrence of a jump during the small interva
[t,t + h]). Similarly, for fixed o; and A; as the likelihood for small jumps, approximately parameterized by Co(f),
increases (decreases) the optimal threshold decreases (increases) accordingly.

Although we have proved the asymptotic properties of (13), these optimal thresholds are not yet feasible, since
we still need to estimate the spot volatility o2, jump intensity );, and the mass concentration of the jump density
at the origin, Co(f). We will introduce estimators to these quantities in Subsection 2.4 and Section 3, respectively.

Remark 2.4. Although the criterion (10) provides a reasonable approach for threshold selection, there is no guar-
antee that the resulting optimal threshold is the one that minimizes the mean-square error of the truncated realized
quadratic variation I/‘\/T introduced in (7). We refer to Figueroa-Ldpez and Mancini (2018) for some results regard-
ing the latter problem.

2.3 Bias and Variance

We conclude with the following asymptotic result of the estimation error of the TRV, which generalizes a result of
Figueroa-Lépez and Nisen (2019) to non-homogeneous drift, volatility, and jump intensities. As usual, the notation
ap, ~ by, as h — 0, means that lim_,¢ ap /by = 1.

Proposition 2.5. Suppose that the assumptions of Theorem 2.2 are enforced and that B = (By)n>1 is set to be
Bl = \/BUfihn log(1/hy,). Then, as n — oo,

T T T
E[TRV(X)[B]}] — / o2ds ~ hy, / (v2 — \s02)ds, Var (TRV(X)[B]%) ~ 2hy, / olds.
0 0 0
Furthermore, the asymptotic behavior above also holds with any threshold sequence of the form

Bu s = \/eni0? hn0g(1/hn) + o(y/ By 10g(1/ 7).

provided that ¢ := liminf,_, inf; ¢, ; € (2,00).

Proof. Let us write B, ; of the form \/302 hylog(1/hy,). The bias of the TRV estimator can be decomposed as the
following:

S

TRV (X)BJ}, — /O ' o2ds

(|A?X|21[A;w:0] - hnai,l,hn) + ) IATXPLyarx|<n, annz0) — O IATXP1jarx B, arn=o-  (14)

n n n
=1 i=1 i=1

i



Using Lemmas C.1 and C.2 in Figueroa-Lépez and Nisen (2019) as well as Assumption 1, for any 0 < € < 1/2; we
have:

5 3
E[|[A?X[*1janx|<B, ,.an 0] = O(B; ihn) = O(hi [log (1/h,)]?), (15)
5 _¢ 1
B [|A7X P11 a7 158, . arn=0] = OW/hnBaid(Bui/3t,, V) = O (ha~“llog (1/h)]*) . (16)
where the O() terms are uniform in ¢. These would imply that the second and third terms of (14) are of orders

Op(h3/? [log (1/h)]3/2) and Op(h3/?~¢ [log (1/h)]1/2)7 respectively. Both of these terms are then o(h,,). For the first
term therein, note that

E[IA2X PLjapveo) = ha0h i, | = PAAIN £ 0o,y +PIAIN = OR2FE .,
=h ('th . )\ti—l’hnﬁifl,hn) +O(h}),
E [(|A;L)(|21[MNO] - hnafihh“)z} =P(A}N #0)h25) . +P(AIN =0)2h25; .
T O(hf;).

Calculating the summation of the above and noticing the independence of different terms, we conclude the first part
of the desired result. For B, ;, the term (16) will instead be of order Op(h'*%/2~¢ [log (1/h)]1/2). Therefore, as long
as ¢ > 2, the asymptotic behavior does not change. This proves the second part of the desired result. O

Remark 2.6. The motivation for considering the threshold Bnl in Proposition 2.5 comes from the fact that the
true value of o is not available and, in practice, we have to use an estimate 6% of it. Suppose we have an estimator

of o7 denoted by 67, and we use the corresponding estimated threshold Bxl = \/3[7% hnlog(1/hy). The second part
of Proposition 2.5 tells us that if, for instance, the estimator is such that liminf, . 67 /o7 = ¢ > 2/3, we would
have BX' = \/30’t hnlog(1/hy) > \/3(c — €)o7 hy log(1/hy,), for n large enough and € € (0,¢—2/3). This will result
in an estimator such that the asymptotics of the expectation and variance of Proposition 2.5 hold.

2.4 A Threshold-Kernel Estimation of the Jump Density at 0

In this section, we investigate the estimation of the jump density at the origin, which is needed in order to implement
the second order optimal threshold Bt* ; given by (13). We propose a method based on kernel estimators. For a
related method, but for a more general class of It6 semimartingales, see Ueltzhofer (2013). The main difference
between the method proposed below and the one proposed in that paper is the thresholding technique.

We impose the following regularity conditions, which in particular imply that Co(f) = f(0).

Assumption 4. f € C?([a,b]) for some a <0 < b. Also, f(0) #0 and f"(0) # 0.

Remark 2.7. It is possible to relax the previous assumption. For instance, if the density f merely satisfies As-
sumption 2, the estimation of f(07) and f(07) would have to be done separately using one-sided kernel estimators.
The basic idea is the same as what we present below, but the convergence rate and the choice of bandwidth will be
different.

As mentioned above, we wish to construct a consistent estimator for Co(f) = f(0), which is not feasible during
a fixed time interval [0,7]. Hence, in this part, we consider a high-frequency/long-run sampling setting, where
simultaneously
hn:ti—ti_lﬁ(), Tn:tn%OO,

as n — oo. Throughout, we also assume that «, o, and A are constant so that the distribution of A; X does not
depend on 1.

In the spirit of threshold estimation, the basic idea is to treat the “large” increments A; X, whose absolute values
exceed an appropriate threshold, as proxies of the process’ jumps. These large increments can then be plugged into



a standard kernel estimator of f(0). Concretely, we consider the estimator:

A 1
2£(0) := Ks(|A; X| - B), 17
O = sy, X, KX (17)

under the convention that 0/0 = 0 in the case that {i:|A;X| > B} = 0. As usual, Ks(z) := K(2/4)/d, where
K :[0,00) — [0,00) is a right-sided kernel function such that [;° K(z)dz = 1 and § is the bandwidth parameter.
We also use |A| to denote the number of elements in a set A. We expect that the estimator (17) will have poor
performance if |{i : |[AX;| > B}| is small, but, since we assume that ' — oo and f(z) # 0 in a neighborhood of {0},
for large-enough n, we have P({|A;X| > B} = () ~ e=*T — 0. For our implementation of (17) in the Monte Carlo
studies of Section 5, we will set f(0) = 0 if |{i : |[A;X| > B}| < 5, which simply makes the second order threshold
to be the first order threshold.

In what follows, f* stands for the density of |A;X|, which depends on n, while fI*AXIHAX|>B stands for the
density of |A;X| conditioning on |A;X| > B. To analyze the performance of the estimator (17) and choose a
suitable thresholding level B and bandwidth ¢, we decompose the estimation error into the following two terms:

() Br = qaxsoy Liacxss Ks(|2iX] = B) = fiax)jax>s(B):
(ii) B2 = fiax)ax|>s(B) —2f(0).

Next, we follow a “greedy” strategy to determine suitable values for the threshold B and bandwidth 6. Specif-
ically, we minimize E5 to obtain an “optimal” threshold B, and with that given, we minimize F; to obtain an
“optimal” bandwidth . Minimizing E; + E> directly will be a much more involved problem, and requires more
assumptions. However, we believe solving such a problem does not significantly improve the performance of the
proposed estimator. Therefore, we leave it as an open problem.

Minimizing F over § given B is closely related to the standard theory of kernel density estimation, so we can
directly apply the general theory for such a problem. We only need to ensure that |{|A;X| > B}| — oo, which
follows from Proposition 2.8 below with the additional assumption that T — co. Two widely used methods are
plug-in method and cross-validation, which both have pros and cons. These methods are beyond the scope of this
paper and, for simplicity, we instead use the well-known Silverman’s (1986) rule of thumb for bandwidth selection:

6 =1.06L/sd, (18)

where “sd” is the standard deviation of {A;X : |A;X| > B} and L is the number of observations, i.e. |[{A;X :
|A;X| > B}|. Such a rule of thumb works the best with Gaussian kernel function and Gaussian density function.
However, the method is known to be robust for other kernel and density functions.

We now proceed to show that B* = y/4ho?log(1/h) minimizes the leading order terms of the second error Es.
The proof of the following two results are given in Appendix A.

Proposition 2.8. Suppose that Assumption 4 is satisfied and 7y, o, and A are constant. Further assume that B — 0
and B/vVh — co. Then, Ey converges to 0 as h — 0 if and only if h=3/% exp (—;,?;) — 0. Under this condition,

we have

2

2 B
 \W2rh302 P <_ 2ho?

Furthermore, if Eo converges to 0, then P(JA;X| > B) = A+ o(h), as h — 0.

Es ) +2f(0)B + o(B) + o(h_g/Qe_%). (19)

In addition to providing us conditions for the error E5 to vanish, Proposition 2.8 implies that, in that case,
E[{i:|A:;X|> B}|] = AT +o(T), as T — oo and h — 0. Therefore, the average sample size that can be used for
the estimation of f(0) is approximately constant with respect to B. Heuristically, this suggests that the selection
of B will not affect significantly the selection of § that minimizes E;. We are now ready to obtain an approximate
optimal threshold B, which minimizes the leading order terms of Fs.

Corollary 2.9. The approximate optimal threshold B* that minimizes the leading order term of Eo given by (19)

B* = \/4ho?1og(1/h) + O(y/hloglog(1/h)), (20)

is such that



It is interesting to notice that the “optimal” threshold here is not the same as the one identified in the previous
section. Indeed, if we do use the optimal threshold B*! or B*? in (13), E; would diverge. It is interesting and
important to get some sense why the optimal thresholds differ from each other. Indeed, in the previous section, we
optimize the expected number of jump misclassification. In that case, we are minimizing the sum of unconditional
false positive (mistakenly claim a jump) and unconditional false negative (miss a jump). However, since the prob-
ability that a jump occurs is so small, proportional to the length of the time increments, the probability of having
a false negative, by nature, cannot be too large. Therefore, by having the expected number of misclassification as
the objective function, we would choose a threshold in favour of having a much smaller unconditional false positive
rate. As it turns out, if we choose B*! or B*?) conditioning on |AX| > B, the probability that no jump occur
is comparable to the probability that a jump occurs, both O(h). That is, the conditional false negative rate does
not vanish. Such a situation would minimize the expected number of misclassifications, but would not enable us
to distinguish the distribution of the jump from the noise. Using y/4ho?log(1/h), on the other hand, makes the
conditional false negative vanishing and, thus, enables us to get consistent estimation of jump density.

3 Threshold-Kernel Estimation of Spot Volatility

In this section, we consider the estimation of the spot volatility of a jump-diffusion process, which is needed to
implement the approximate optimal threshold formula (12), but is also an important problem on its own. Unlike
Section 2, here we also work with certain stochastic volatility models. The precise conditions are given below.

The idea of kernel estimation of spot volatility is to take a weighted average of the squared increments (see, e.g.,
Foster and Nelson (1996) and Fan and Wang (2008)):

52 =KW (r,n,6) =Y Ks(ti-1 — 7)(AiX)?. (21)

i=1

Here, K () is a kernel function with [ K(z)dz = 1, Ks(z) = K(x/d)/d, and § > 0 is the bandwidth. However,
when jumps do occur, the estimator above becomes inaccurate. A natural idea is to combine (21) with the threshold
method. Concretely, given a threshold vector [B]%. = (BY,..., B}'), we consider the local threshold-kernel estimator:

62 := TKW(r,n,?) ZK(; = 7)(AX)? 1A, x1<B;}- (22)

In what follows we will investigate the properties of (22). In order to do this, we will have to deal with the
randomness of the volatility, for which we extend some of the results in Figueroa-Lépez and Li (2018). We will
mention the assumptions on {0, };>0 and K in Subsection 3.1, and then discuss the asymptotic properties of (22)
in subsequent subsections.

3.1 Assumptions on the Volatility Process

The first assumptions are some non-leverage and boundedness conditions, which enable us to condition on the whole
path of the volatility and drift and use estimates from Figueroa-Lépez and Nisen (2019):

Assumption 5. In (1), (v,0) are locally bounded cddlig independent of the Brownian motion W and the jump
component J. Furthermore, there exists a deterministic My < oo for which 1 and % defined in (2) satisfy
Ar < Mrp and 6% < Mrp. The intensity X is still assumed to be deterministic such that A, := info<s<¢ As > 0 and
A 1= SUPg<s<t As < 00.

We now introduce the key assumption on the volatility process.
Assumption 6. Suppose that for w > 0 and certain functions L : Ry — Ry, Cp : R xR — R, such that Cy, is

not identically zero and

Cw(hr,hs) = hZCy(r,s), forr,seR heR,, (23)



the variance process V := {V; = o2 : t > 0} satisfies
E[(Vigr = Vi) (Vigs — Vi) = L(1)Cos(r, 5) + o((r* + 5*)%/%), 1,58 = 0. (24)

An additional assumption on the kernel function K is the following:

Assumption 7. Given w > 0 and Cx as defined in Assumption 6, the kernel function K : R — R satisfies the
following conditions:

(1) [ K(z)dx =1;

(2) K is Lipschitz and piecewise C1 on its support (A, B), where —o0o < A <0 < B < o005

(3) (i) [|K(2)||z["dzx < oo; (ii) K(z)z® Tt = 0, as |z| = oo; (iii) [|K'(z)|dz < oo, (iv) V3, (JK'|) < oo, where
Voo (+) is the total variation;

(4) [| K(z)K(y)Cx(z,y)dzdy > 0.

We refer to Figueroa-Lépez and Li (2018) for more details on Assumptions 5, 6 and 7. We just mention here that
Assumption 6 covers a wide range of frameworks such as deterministic and smooth volatility, Brownian motion and
fractional Brownian motion driven volatility, etc. In the following subsection, we will establish asymptotic properties
of (22) based on Assumption 5, 6 and 7.

3.2 Asymptotic Properties of Threshold-Kernel Estimator

Figueroa-Lépez and Li (2018) proves the following result under Assumption 5, 6, and 7 (c.f. Section 3 therein):

E (i K(;(ti,1 — T)(AZ‘XC)Q — 0‘3)

i=1

(25)
= z%}E[o—;ﬂ /KQ(x)dx + 6% L(T) //K(x)K(y)Cw(x,y)dxdy +o0 (Z) +0(6%),

where X¢ is the continuous part of X defined in (1). The key result to extend the theory of kernel estimators, as
developed in Figueroa-Lépez and Li (2018), to the threshold-kernel estimators (22) is the following.

Proposition 3.1. Suppose that Assumptions 2, 5, 6, and 7 are satisfied, and take a bandwidth sequence 9§, such

that hy /8, — 0. Let B; := By, i(c) =, /cc‘rfhhhlog(l/h) + o(y/hlog(1/h)), with ¢ > 0. Then, we have:

n

Eui= 3 Ks(tio1 —7) [(AX%)? — (AX)*1{a,x1<8,] = Op (max{h, hel? 10g1/2(1/h)}) . (26)

i=1

Furthermore,

B h2 h1+§ 5
E(E) =0 (6) +0 ( 3 [log(l/h)P) + O (h¢log(1/h)). (27)
Proof. Let & = (A X)*1{a,x|<B;} — (A;:X°)? and observe that

Ei = —(AX P 1a,nz0) + (AiX)*1a,x |88 200 — (AiX) 18, x B, a,8=0) = Eip + Eia + &z (29)

Now, conditioning on the paths of ¢ and v and applying Lemmas C.1-C.2 in Figueroa-Lépez and Nisen (2019), the
following holds:

(AiX)*1a, x|<B,.a,520 = Op (B}h) = Op (h5/2[10g(1/h)]3/2)’

(A X)*1a,x15B,,8,8=0) = Op (VB i¢(Bn.i /54, b, \/hn)) = Op (hHC/Q[lOg(l/h)]l/Z)’ (29)
(A X)L a,nz0) = Op(h?).
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From Assumption 5, the above holds uniformly over 1 < i < n. Therefore, by Assumption 7, we have:

n

> Kt = ) [(AiX)*1a,xi<m, — (X)) = Op (max{h, i/ log"*(1/R)} )

i=1

For the second assertion of the theorem, first note that

E ()

|

N
Il
-

Ks(tic1 —T)E[Ei1+ Eio+ &3]

I
NE

Ks(ti1 = 7) [0(0?) + 0 (h¥[log(1/m)]}) + O (n*+E log(1/m)]} ) |
1

—0(h)+0 (h%[logu/h)]%) .

.
I

Similarly,
Var (gn) = Z Kg(ti,1 — T)Var ((AiXC)Q — (AiX)zl{lAiX\SBi})
i=1
<4y KF(tion —7) [B(E2)) + E(E7,) + E(E75)]
i=1
=Y K3t — 1) [0 + 0 (n*+E log(1/m)) |
i=1
h? itz 3
=0(—)+0 [log(1/Rh)]2 | .
6 6
We then conclude the result. O

With Proposition 3.1, we get the following proposition, which characterizes the leading order terms of the MSE
of the threshold-kernel estimator (22). This allows us to perform bandwidth and kernel function selection.

Proposition 3.2. Assume that Assumptions 2, 5, 6, and 7 are satisfied, and take the threshold vector to be By, ;(c) =

\/ €07 phlog(1/h) + o(y/hlog(1/h)) for any ¢ € (ZF7,00). Then, we have that, for each T € (0,T),

E[(TKW(r.n.6) ~ %)’ = 2%15[03] / K2(2)dz + 6% L(7) / / K (2) K (y)Co (2, y)dady + 0 (Z) +o(57). (30)

Proof. We consider the following decomposition:

> Es(tion — 7)(AiX9)? o2

TKW(T,’H,,&) - 0'72_ == ZKé(ti—l - T) [(AiX)zlﬂAiX\gBi} - (AyXC)Q] + ] (31)
i=1 i=1

=:(I)+ (I1).

From (25), we have that the second moment of (II) above converges with rate O (%) + O (6%). The optimal rate of
(IT) is given by h®/(14%) and is attained with § ~ h'/(®+1) Therefore, by Proposition 3.1, as long as ¢ > w/(1+w),
(I) is of higher order than (II), in which case, (I) will be either of o (%) or 0 (6%). This completes the proof. O

Remark 3.3. The leading order term of the MSE of (22) does not depend on the threshold. However, by selecting
the optimal threshold or its approximations, we are able to optimize the sub-order part of the error, which enhances
the performance of the estimator in practice. Also, since taking ¢ € (2,00) does not change the asymptotic rate of
convergence, we have a certain degree of robustness of this method.

With some further assumptions, we are also able to obtain the CLT of the threshold-kernel estimator. The
proof of the following result is similar to that Proposition 3.2, but taking advantage of Theorems 6.1 and 6.2 in
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Figueroa-Lépez and Li (2018) which deal with the analogous results without jumps.

Theorem 3.4. Assume that Assumption 1, 2, 5, 6 and 7 are satisfied, and take the threshold vector to be By, ;(c) =
ca}, ,hlog(1/h) 4 o(y/hlog(1/h)) for any c € ( o0). Then, for each T € (0,T),

()

where 63 = 202 fK2 Ydx. Furthermore, suppose that either one of the following conditions holds:

_w
w+1?

T
TKW(1,n,0) —/ K(;(t—T)Utht] —p 61N (0,1), (32)
0

(1) {02}i>0 is an Ité process given by o7 = o3 + fo fsds+ fo 9sdBs, where B is a Brownian motion independent of
W and we further assume that sup,epo ) E[| fi|] < 00, supye(o 7 Elg7] < 00, and E[(gr+n — g-)*] = 0 as h — 0;

(2) 02 = f(t,Z;), for a deterministic function f : R x R — R such that f € CY2(R), and a Gaussian process

{Z}i>0 satisfying Assumption 6 and some mild additional conditions®.

Then, on an extension (,.7,P) of the probability space (Q,.%,P), equipped with a standard normal variable &
independent of {o1}i1>0, we have, for each T € (0,T),

where, under the condition (1) above, 63 = g(t,w)? [[ K(z)K (y)C(z,y)dzdy, while, under the condition (2), 63 =
[fo(T, Z)PL D) (1) [[ K (2) (Z)(x y)dxdy. Here, fa(t, z) 6£ (t, 2).

It is interesting to realize the difference between the range of ¢ allowed here and the one allowed for the integrated
volatility. Indeed, for w € (0,00), the range for spot volatility estimation is strictly larger than the range for the
integrated volatility estimation. The reason is that the estimation of spot volatility is much less accurate than the
integrated volatility. Therefore, we may conclude that even with a bad estimation of spot volatility, we are still able
to get a threshold that is accurate enough for us to apply the threshold estimation and obtain another estimation
of the spot volatility.

3.3 Bandwidth and Kernel Selection

With the leading order approximation we obtained from the previous subsection, we are now able to develop a
feasible plug-in type bandwidth selection method. Furthermore, we can derive the optimal kernel function when
the volatility is driven by Brownian motion. In this subsection, we describe all related results, which are direct
consequences of Proposition 3.2, and are parallel to results given by Figueroa-Lépez and Li (2018). We refer to
Figueroa-Lépez and Li (2018) for the details of the proofs.

The first result is the theoretical approximated optimal bandwidth, which can be obtained by taking the deriva-
tives of the leading order terms in (30) with respect to the bandwidth .

Proposition 3.5. With the same assumptions as Proposition 3.2, the approzimated optimal bandwidth, denoted by
80Pt which is defined to minimize the leading order term of MSE in (30), is given by

(34)

1/(w+1)
Jwort —p=1/(w+1) [ 2TE[o fK2 ]

T ffK w(m,y)dmdy

while the attained global minimum of the approximated MSE is given by

1+w w/(1+w) 1/(14+w)
My = o=/ 04 L (QTE[U;%] / K2(x)da:> <wL(T) / / K(m)K(y)Cw(x,y)dacdy> . (35)

3We refer the reader to Figueroa-Lépez and Li (2018) for more details. In Figueroa-Lépez and Li (2018), we assume o7 = f(Z;), but it
is actually trivial to generalize to the case that of = f(t, Z;) for f € CH?(R).

12



As shown in Figueroa-Lépez and Li (2018), the resulting bandw1dth obtained by replacing E[o#] and L(7) in

the formula (34) with their integrated versions, fOT o?ldr and fo 7)dT, is asymptotically equivalent to the
optimal bandwidth that minimizes the integrated MSE, fo [ 62 — at) ] dt. In the case of a volatility process
driven by Brownian motion, as in the setup (1) of Theorem 3.4, Figueroa-Lépez and Li (2018) showed that w = 1,
Ci(z,y) = min{|z|, |y|}1sy>0, and L(t) = E(g?), which leads to the formula:

1/2
OTE[f, ofdt] [ K*(x)da 1 /
7 .
Elfy gidt] [] K(x)K(y)Ci(z,y)dady
Furthermore, since, at best, we only have one realization of the path of o and we are Worklng with a nonparametric

setting for o, it is natural to use [ ofdt and [ g2dt as proxies of E[[) odr] and E[[) g2dt], respectively. These
considerations suggest the following bandwidth selectlon method:

62,0pt :n—1/2 (36)

T 1/
54 opt _,,—1/2 2Tf 4dth2 )
" fOT 2dt [[ K(z)K(y)Cq (:U y)dxdy

Alternatively, by virtue of the independence condition in Assumption 5, we can see (37) as an approximation of the
optimal bandwidth that minimizes the conditional integrated MSE, E [fg(&f —0?)%dt|os, 75 : 0 < s < T]

(37)

However, the bandwidth (37) is not yet feasible, since it depends on the unknown random quantities fOT otdt
and fOT g?dt. A well-known estimator of fOT o}dt is the truncated realized quarticity, which is defined by I/@ =
(3R)~1 32 (A X)*1{a, x|<B, ,;} (see Proposition 1 in Mancini (2009) for consistency). The estimation of fOT gidt
is more involved. This quantity is sometimes called the integrated vol of vol (or vol vol for short) and is essentially
the quadratic variation of the volatility process. Figueroa-Lépez and Li (2018) introduced an estimator based on
the Two-time Scale Realized Quadratic Variation introduced in Zhang et al. (2005). Concretely, let ffﬁti and 67,
be the left and right side estimator of otzi, respectively, defined as the following:

o > isi Ks(tj—a *ti)(A?X)21{|A;lX|§Bj} 2 dj<i Koltj—1 — ti)(A?X)21{|A§"X|§Bj}

Ot = o Opt, = (38)
! hljsi Ks(tj—1 = T)ljjanx|<B;} ! hdlj<iKs(tj—1 —T)ljjanx|<B;}
Next, we define the following two finite differences: A;6% = c}f’tﬂl — &l%tiv Agk)c}2 = 63%% — &l2,t,' Finally, we can
construct the following estimator:
n—k—b n—k—b
/\(th‘VV 1 (k) 2 n—k+1 ~2\2
vV, z_; (A} - 4_12,1(&0 )2 (39)

Here, b is a small enough integer, when compared to n. The purpose of introducing such a number b is to alleviate
the boundary effect of the one sided estimators, since, for instance, it is expected that O’l ¢, will be more inaccurate
as 1 gets smaller. The consistency of the TSRVV estimator can be proved by Proposition 3.2 and the corresponding
results from Figueroa-Lépez and Li (2018).

The final result that we will mention in this subsection is about the optimal kernel function. Indeed, as was
proved in Figueroa-Lépez and Li (2018), when the volatility is driven by Brownian motion, the optimal kernel
function is given by the double exponential function.

Theorem 3.6. With the same assumptions as Proposition 3.2 and assuming Cg(r,s) = min{|r|, |s|} 1550y, we
have that the optimal kernel function that minimizes the approximated optimal MSE given by (35) is the double
exponential kernel function:

1

K (x) = 567&‘, z €R.
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4 Full Implementation Scheme of The Threshold-Kernel Estimation

In this section, we propose a complete data-driven threshold-kernel estimation scheme. We consider several versions,
depending on whether we treat the volatility to be constant or not and whether we use the first- or second-order
approximation formula. One of our main interests is to investigate whether or not local and/or second-order thresh-
olding can improve the performance of threshold estimation.

Let us recall that the key problem at hand is jump detection; i.e., we hope to determine whether A;N = 0 or
not. We are, of course, also interested in estimating the volatility, jump intensity, and jump density, but we are
operating under the premise that effective jump detection leads to good estimation of the other model features. In
Section 2.2, we introduced the expected number of jump misclassification as the objective function and obtained
the theoretical first and second order infill approximations of the optimal threshold, respectively given by

B = [30?hlog (1/m)]*,  Bi2 = Vho, [3log (1/h) - 21og (vVanCa(fain )] . (40)

where, with certain abuse of notation, we denote o? := ofi and A; := Ay,. Although we have assumed that Co(f)
remains constant as the time evolves, we do allow non-constant volatility o; and jump intensity ;.

Since estimating spot values is typically less accurate than estimating average values, a simple first approach to
implement (40) is to substitute o2 and \; by their average values, 52 fo 02ds/T and \ := fOT Asds/T, respectively.
This simplification leads us to consider the following threshold sequences:

B! = [352hlog (1/h)]"/*, B2 = \fo[Slog(l/h)—Qlog(rCo() )}1/2, (41)

where the superscript ¢ above is used to denote “constant” volatility and jump intensity. In light of (7), natural
estimates of A and &2 are given by

n

N X 1
=7 Z Ljax|>p}, 00 = T Z(AiX)Ql{mingi}, (42)
=1

i=1
respectively. The estimator of Co(f) = f(0), as developed in Section 2.4, is given by

— 1

Co(f) := MAX[> B} A);bBi Ks(|Ai X[ = By), (43)

where the bandwidth ¢ is set according to Silverman’s rule of thumb (18) and, for the threshold B;, we could use the
same threshold as in (42) or an estimate of B; = \/4ho?log(1/h) as suggested in Corollary 2.9. In the algorithms
below and in the simulations of Section 5, we use the former threshold. Putting all together, the Algorithms 1 and 2
below detail the implementation of the 1st and 2nd order constant thresholds (41). Algorithm 1 is the same as that
proposed in Figueroa-Lépez and Nisen (2013) and, because it generates a nonincreasing sequence of thresholds and
volatility estimates, is guaranteed to finish in finitely many steps. See the end of this section for more information
about the stopping criteria for Algorithm 2.

We now consider the implementation of the local or non-constant thresholds (40). First of all, since Theorem
2.2 establishes that o7 has a much greater effect on the approximated optimal threshold than that of \;, we simplify
the problem by estimating \; with \ as defined in (42). The estimation of o2, per our discussion in Section 3, is
given by the kernel estimator:

ZKé -1 = 8)(A5X) 18, X<, (49)
Above, we could try to calibrate the bandwidth § using an approach similar to that described in Section 3.3.

However, for simplicity, in the simulations we set § = hy/ 2, which, per (36), is rate optimal at first order. Based on

the 627, 5\, and Co(f) as defined in (43), we can then compute estimates of the first and second order approximation
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Algorithm 1 Iterative (Constant) 1st-Order Threshold Kernel Algorithm

Calculate 63, by (42) setting B; =
Initialize BCl [362hlog (1/h)} yfori=1,...,n;
Calculate 6%, as in (42) with B; replaced with B¢
while 6%, # 6%,; do
OA’(%ld = &ZQVew’
Update B! = [363,,hlog (1/h)] yfori=1,...,n;
Calculate 6%, as in (42) with B; replaced with B¢
end while
Use final B¢! for jump detection;

Algorithm 2 Iterative (Constant) 2nd-Order Threshold Kernel Algorithm

Calculate 62 by (42) setting B; = oo

Initialize B{? = [362hlog (1/h)] 1/2, fori=1,...,n

while “Stoppmg Criteria” not satisfied do
Calculate A and 62 as in (42) with B; replaced with B¢,

Estimate m by (43) with B; = B

)

Update B2 by (41) with 2 = 62, A= A, and Cy(f) = a(?), based on newly estimated parameters;

end while
Use final BZ-C2 for jump detection.

of the optimal thresholds as follows:

B = [362hlog (1/h)]*, B2 = fol{?)log(l/h)—Qlog(\ﬁCo() )}1/2,

where above the superscript n stands for non-constant volatility estimation.
tails of the implementation of the non-constant thresholds (40).

[363hlog (1/h)]1/2, where 6§ is an initial estimate of 6% := [;

the “stopping criteria” of the algorithm.

(45)

Algorithm 3 below gives the de-

Therein, the initial threshold is taken as B! =

r 02ds/T such as those obtained from the previous

Algorithms. In the simulations of Section 5, we take that from Algorithm 1. See also below for more details about

Algorithm 3 Tterative Threshold Kernel Algorithm

Initialize B = [363hlog (1/h)] 12 (or B = [363hlog (1/h)]
while “Stoppmg Criteria” not satisfied do

when using 2nd order approx.), fori =1,...

Calculate 67 as in (44) with B; replaced with B (or B*? when using 2nd order approximation);
Calculate A and Co(f) by (42)-(43) with B; replaced with BI"' (or BI"? when using 2nd order approximation);

Update BZ”1 (or Bgﬁ when using 2nd order approximation) by (45) based on newly estimated parameters;

end while
Use B (or B"?) as the final threshold value.

) T4

Note that, in (41) and (45), B2, and B™? may not be well defined, under a finite sample setting. Indeed, for a fixed
time period and a fixed sample size, it is possible to have 3log (1/h) < 2log (\/ mCo(f)5: ) in which case the square

root in (45) is not well defined. Of course, asymptotically this is never an issue since we only need to consider a small
enough h. As to implementation, however, it is natural to use B*? whenever 3log (1/h) > 2log (v21Co(f)oiN;),
and use B*!, otherwise.

We now briefly discuss some stopping criteria for the Algorithms 1 and 3. Typically, most iterative algorithms
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are stopped when the updated value is “close” enough to the old value. However, for the threshold estimator, we
note that there are only 2" possible threshold vectors after the initial set up. Therefore, there are only two possible
situations for the “while” loop in Algorithm 3:

1. After a few iterations, the algorithm comes to a fixed threshold vector [Br].
2. After a few iterations, the algorithm comes to a loop of threshold vectors given by [BL], ..., [BX].

As we will see at the end of Subsection 5.1, generally the threshold vector converges within 2 iterations.

5 Monte Carlo Study

In this section, we investigate the performance of our proposed methods. Specifically, in Section 5.1, we will
compare the four different threshold methods given by (41) and (45) and detailed in Algorithms 1-3. In Section 5.2,
we investigate the performance of the threshold-kernel estimation of the jump density at the origin.

Throughout, we consider the jump-diffusion model given by (1), with the continuous part {X/};>¢ following a
Heston model:

dXtc = /Ltdt + v ‘/tdBtv

(46)

dVy = k(0 — V)dt + £/ VidWy.

Here, V; = o2 is the variance process. The parameters of (46) are selected according to the following setting also
used in Zhang et al. (2005):

k=5, 0=004, £=05 pu;=0.05-V;/2. (47)

As to the initial values, we use X§ = 1 and Vo = 02 = 0.04. The unit of time in this study is 1 year and, thus,
the parameter values above are annualized. Although the properties of the threshold-kernel estimators studied in
this work were derived under a non-leverage setting (i.e., p = 0, where p is the correlation between B; and W), we
run simulations on both the non-leverage setting and a negative leverage setting (p = —0.5) in order to check the
robustness of the method against the leverage effect.

As to the jump component, we consider Merton type of jumps:

1 x?
fnormal (37) = \/W exp <_2192> . (48)

The intensity of the jump component is set to be a constant value, i.e., Ay = A for all ¢ > 0. For the values of A\ and
¥, we consider the following scenarios:

1. A =50 and ¢ = 0.03, which gives an average annualized volatility of about 4/0.04 4+ 50(0.03)% ~ 0.29;

2. A =100 and ¥ = 0.03, which gives an average annualized volatility of about 1/0.04 + 100(0.03)2 == 0.36;

3. A =200 and ¥ = 0.03, which gives an average annualized volatility of about 1/0.04 + 200(0.03)2 ~ 0.46;

4. A= 1000 and ¥ = 0.01, which gives an annualized volatility of about 1/0.04 + 1000(0.01)2 ~ 0.37.

The reason for choosing these \’s is to investigate how large levels of jump intensity can affect the performance of
the estimators, while ¥ is selected accordingly so that the annualized volatility is reasonable.

We assume that there are 252 trading days in a year and 6.5 trading hours in each day. We focus on 5-minute
data, which is standard in the literature to avoid microstructure noise effects. Furthermore, the length of the data
is set to be 1 month (21 trading days), 3 month (63 trading days), and 1/2 year.

5.1 Comparison of Different Thresholds

We now proceed to examine how the different “optimal” threshold approximation methods introduced in Section
4 affect the number of jump misclassifications. In Tables 1, we report the average total number of jump mis-
classifications corresponding to the four threshold approximation methods B¢', B2, B™! and B™?, as well as an
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#0OfDays | #Obs./Hr | p A sd(f) | £t L£e? Lt Lr? L2
21 12 0 50 0.03 0.848 0.864 0.835 0.795 0.678
21 12 -0.5 | 50 0.03 0.844 0.884 0.856 0.829 0.690
21 12 0 100 0.03 1.669 1.591 1.623 1.382 1.259
21 12 -0.5 | 100 0.03 1.628 1.643 1.584 1.381 1.272
21 12 0 200 0.03 3.384 2.967 3.318 2.603 2.529
21 12 -0.5 | 200 0.03 3.372 2.882 3.284 2.577 2.487
21 12 0 1000 | 0.01 51.301 32.673 49.700 31.087 30.218
21 12 -0.5 | 1000 | 0.01 51.547 32.937 49.895 31.361 30.480
63 12 0 50 0.03 2.660 4.217 2.531 2.174 2.098
63 12 -0.5 | 50 0.03 2.590 4.137 2.466 2.125 2.051
63 12 0 100 0.03 4.952 6.688 4.741 3.876 3.739
63 12 -0.5 | 100 0.03 4.914 6.822 4.737 3.937 3.820
63 12 0 200 0.03 10.195 11.518 9.842 7.651 7.491
63 12 -0.5 | 200 0.03 10.001 11.144 9.658 7.515 7.339
63 12 0 1000 | 0.01 148.661 | 107.325 | 143.339 | 89.477 87.434
63 12 -0.5 | 1000 | 0.01 149.923 | 107.895 | 144.979 | 90.393 88.293
126 12 -0.5 | 100 0.03 10.106 18.243 9.636 7.890 7.624
126 12 -0.5 | 200 0.03 20.129 27.433 19.353 15.036 14.605
126 12 -0.5 | 1000 | 0.01 298.656 | 241.770 | 285.045 | 177.588 | 173.745

Table 1: Average total number of jump mis-classifications for Normal Jumps based on 1000 Samples.

oracle threshold, where we use the second order approximation B;? in (40) with all the true parameter values
plugged in. In each case, we compute the average number of jump misclassifications:

L §m f 1 + f 1 (49)
T om (x5 =X 1> By NP =N =03 T - (I =X 1B NP =N 0} |0
i

j=1 \i=1

where m is the number of simulations, X9 and NO are the jth simulated paths of X and NN, respectively, and
a € {cl,c2,n1,n2,+2}, depending on the used thresholding method. For the non-constant methods, we use an
exponential kernel K (z) = e~1*/2 to estimate the spot volatility, which, as shown in Theorem 3.6, is optimal. We
ran only 4 iterations of the iterative algorithms described in Section 4. As shown below, this typically suffices to
reach convergence.

The conclusion is that the jump detection method based on the second order approximation with non-constant
volatility estimation (“n2” method) performs the best among all the four methods. Although, as it should be
expected, this is slightly worse than the oracle one, it is remarkably close to the latter. Even for a relatively low
value of A\ = 50, where is typically hard to estimate A and Cy(f) because of relatively few jumps, the 2nd order local
method is still a bit better than those based on constant threshold. For instance, for a time horizon of 1 month, the
n2 method only misses about 1 jump out of the expected 4 jumps during the month. The difference between the
constant and local thresholds becomes more crucial as the intensity of jumps increases. For an intensity of 200, the
method will only miss about 3 of the expected 16 jumps.

As mentioned above, the results of Table 1 were based on 4 iterations of the Algorithms of Section 4. To assess
the convergence of the algorithm, in Table 2, we show the results of the average number of jump misclassifications
L%, as defined in (49), for each of the first 4 iterations of Algorithm 3 based on the 2nd order approximation. As it
can be seen, convergence is typically reached after the 2nd iteration.
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#OfDays | #Obs./Hr | p A sd(f) | Lr2lterl | fn2lter2 | fn2.lterd | fn2Iterd
21 12 0 50 0.03 0.795 0.795 0.795 0.795
21 12 -0.5 | 50 0.03 0.830 0.829 0.829 0.829
21 12 0 100 0.03 1.383 1.382 1.382 1.382
21 12 -0.5 | 100 0.03 1.384 1.382 1.381 1.381
21 12 0 200 0.03 2.602 2.603 2.603 2.603
21 12 -0.5 | 200 0.03 2.586 2.577 2.577 2.577
21 12 0 1000 | 0.01 31.855 31.216 31.121 31.087
21 12 -0.5 | 1000 | 0.01 32.080 31.482 31.385 31.361
63 12 0 50 0.03 2.183 2.174 2.174 2.174
63 12 -0.5 | 50 0.03 2.126 2.125 2.125 2.125
63 12 0 100 0.03 3.875 3.874 3.876 3.876
63 12 -0.5 | 100 0.03 3.952 3.938 3.937 3.937
63 12 0 200 0.03 7.680 7.653 7.651 7.651
63 12 -0.5 | 200 0.03 7.544 7.517 7.515 7.515
63 12 0 1000 | 0.01 91.283 89.747 89.526 89.477
63 12 -0.5 | 1000 | 0.01 92.324 90.722 90.411 90.393
126 12 -0.5 | 100 0.03 7.929 7.892 7.889 7.890
126 12 -0.5 | 200 0.03 15.097 15.036 15.035 15.036
126 12 -0.5 | 1000 | 0.01 181.403 178.022 177.677 177.588

Table 2: Average total number of jump mis-classifications for the first 4 iterations of the nonhomogeneous Algorithm
3 based on 2nd order approximations. Again, we use 1000 Samples for all values of T

5.2 Estimation of Jump Density at the Origin and Spot Volatility

We now study the performance of the kernel estimator of the jump density at the origin that we proposed in
Section 2.4. Since we have already confirmed that the second order approximation of the optimal threshold with
non-constant volatility estimation outperforms other thresholds, we will only consider this threshold in this and
later subsections.

The results are shown in Table 3. These basically confirm what we expect that the performance of the estimator
improves as the time-horizon and intensity become larger (for the same level of jump variance). It is hard to
compare the performance of the estimators when ¥ = 0.03 to those when ¥ = 0.01 and A = 1000 because, though
we expect more jumps in the latter case, those will also be much harder to detect since 1 is smaller. Finally, an
interesting phenomenon is that we usually underestimate the jump density at the origin. This is acceptable for our
purpose. Indeed, if we /Qenote B2 as the estimated second order threshold, we generally have B! > B? > B2. This
is better than having B2 < B2, in which case we might suffer significantly from false positives (i.e., mis-classifying
the increments of the continuous component as jumps).

We finally give some illustrations about the performance of the the kernel/threshold spot volatility estimator
(44). We apply 4 iterations of the local Algorithm 3 based on the 2nd order approximation of the optimal threshold.
In Figure 1, we show a prototypical realization of the variance process {V;};>¢ defined in (46) together with the
estimated spot variance process resulting from the 1st iteration (red dotted), from the final iteration 4 (long-dashed
blue), and from the oracle (green double-dashed), which uses B}! in (40) with the true values of 0? = V;,, Co(f),
and A. We take A = 200, ¢ = 0.03, 7' = 6 months, and h = 5 minutes. The three spot variance estimates are close
to each other and are able to fit well the overall level of the volatility through time. The Sum Of Square Errors,

SSE =Y (67 —07.)’,
=1
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#OfDays | #Obs./Hr | p | A 9=sd(f) | F0) | BG"2(0) | sd(772(0)) | \/MSE(f2(0))
21 12 0 100 0.03 13.30 | 8.6965 5.4797 7.1567
21 12 -0.5 | 100 0.03 13.30 | 8.8117 5.6950 7.2510
63 12 0 100 0.03 13.30 | 11.6005 2.1668 2.7537
63 12 -0.5 100 0.03 13.30 11.4145 2.2175 2.9107
126 12 -0.5 100 0.03 13.30 11.9558 1.6286 2.1116
21 12 0 200 0.03 13.30 | 11.2759 2.6362 3.3236
21 12 -0.5 | 200 0.03 13.30 | 11.1900 2.7161 3.4393
63 12 0 200 0.03 13.30 | 11.9714 1.6997 2.1582
63 12 -0.5 | 200 0.03 13.30 | 11.9234 1.6539 2.1518
126 12 -0.5 | 200 0.03 13.30 | 12.4776 1.3081 1.5451
21 12 0 1000 | 0.01 39.89 | 37.9363 4.5286 4.9321
21 12 -0.5 | 1000 | 0.01 39.89 | 37.8582 4.2041 4.6693
63 12 0 1000 | 0.01 39.89 | 41.4335 2.9176 3.3007
63 12 -0.5 | 1000 | 0.01 39.89 | 41.5071 3.0726 3.4722
126 12 -0.5 1000 | 0.01 39.89 | 41.8874 2.4255 3.1420

Table 3: MSE of Jump Density Estimation at the origin 0 for Normal Jumps based on 1000 Samples.

for the 1st, 4th, and oracle estimates are respectively given by 1.6525, 1.4457, and 1.4450. Figure 2 shows the same
results corresponding to A = 1000 and ¥ = 0.01. The SSE are in this case 2.0015, 1.5069, and 1.4006 for the 1st,
4th, and oracle estimates, respectively.

6 Conclusion and Future Work

In this paper, we study the problem of jump detection via the thresholding method, which is obviously closely related
to the problem of spot volatility estimation. We extend the approximated optimal threshold of Figueroa-Lopez and
Nisen (2013) by considering a second-order approximation and a non-homogeneous parameter setting. The result
is of theoretical interest since the remainder of the second order approximation is much smaller and, at the same
time, the resulting threshold estimator is time-invariant, which makes more sense in reality. Monte Carlo studies
also demonstrate the superior performance of the second-order approximation.

The higher accuracy comes with the price of more parameters to estimate. We first managed to build a threshold-
kernel estimator of the jump density at the origin. We propose a different “optimal” threshold for this purpose and
demonstrate the reason why this should be different from the original “optimal” threshold. The intuition is that we
have to be more accurate when claiming that an increment contains a jump in order to have a good estimation of
its density at the origin. We also put forward a modified version of the threshold-kernel estimator of spot volatility
where increments that exceed the threshold are filtered out.

In order to implement the proposed methods, we need to resolve some key obstacles. Concretely, estimates of
the optimal threshold, the jump density at the origin, and the spot volatility depend on each other. To resolve
the issue, we propose an iterative threshold-kernel estimation scheme. Although we are not guaranteed that the
iterative algorithm always converges, Monte Carlo studies show that this rarely creates any problem in reality.

The spirit of jump detection by threshold method is to claim that a jump occurs whenever the absolute value of
the increment of the process exceeds the threshold, which, by definition, is a binary outcome. In this case, when an
increment is close to the threshold, a small difference in the increment can lead to totally different results. One way
to alleviate such a problem is to estimate the probability that a jump happens during a specific time interval, which
is similar to the idea of Logistic regression. This suggests an alternative approach to threshold-based classification.
Given a non-decreasing function F' : [0,00) — [0, 1] and an increment |A; X|, we can postulate that the probability
that a jump occurs during [t;—1,t;] is F(JA;X|). We can then adopt the following loss function, that is frequently
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Figure 1: Variance process {V; }1>0 (jiggling dotted black curve) and the estimated spot variance process (44) resulting
from the 1st iteration (red dotted) and 4th iteration 4 (long-dashed blue) of Algorithm 3 based on B™?. We also plot
the oracle variance process (44) (green double-dashed) replacing B; with the true B in (40). The oracle and the 4th
iteration variance estimates overlap. We take the parameter values in (47) as well as p = —0.5, A = 200, and the
Merton jumps (48) with ¥ = 0.03. Estimation based on 5-minute observations during 6 months.

used in classification problems:
Lin(F) = E (F(IXt4n — Xil) 1N, —ni=oy) +E (1= F(IXern — XL, -, 20}) -

Indeed, it could be cumbersome to optimize over all continuous functions F'. However, we can try to limit ourself
to a suitable, relatively small, class of possible functions F'. One possible direction is to consider Fg(x) = F(x/B),
which is a generalization of what we have done in this paper. Another possible direction is to consider F(x) =
Fin(2)110<a<B} + Fon(2)1{,>p), where F1, and Fy, are two functions that can depend on n. This can potentially
provide insight on how the shape of F' should look like around the “optimal” threshold.

A  Proof of the Main Results

Let us start by giving a lemma necessary for the proof of Theorem 2.1.

Lemma A.1. Fori=1,2 let f; € C([0,00)) be strictly positive and differentiable on (0,00). Further suppose that
f1 is non-increasing while fo is non-decreasing and limy_o+ | f1(x) + fo(x)] exists. If there exists zo € (0,00) such
that

(@) [fi@)] > |fol2)| for all x € (0,m) () [f2(@)] > [fi(@)] for all @ € (x0,00), (50)

then, f:= f1+ f2 is quasi-convex on [0, 00).

Proof. From (a) in (50) and since f;(z) < 0 and fy(z) > 0, f'(z) = f1(z)+fo(z) < 0for all z € (0, x). Furthermore,
this implies lim,_,o+ f () < 0. On the other hand, from (b) in (50) f () = f1(x) + fo(z) > 0 for all z € (z0, 00).
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Figure 2: Variance process {V; }1>0 (jiggling dotted black curve) and the estimated spot variance process (44) resulting
from the 1st iteration (red dotted) and 4th iteration 4 (long-dashed blue) of Algorithm 3 based on B™?. We also plot
the the oracle variance process (44) (green double-dashed) replacing B; with the true B in (40). The oracle and the
4th iteration variance estimates almost overlap during the whole domain except at the end. We take the parameter
values in (47) as well as p = —0.5, A = 1000, and the Merton jumps (48) with ¢ = 0.01. Estimation based on 5-minute
observations during 6 months.

From the well known sufficient conditions for the quasi-convexity of continuous real-valued functions of a real variable
(see Boyd and Vandenberghe (2004) pg. 99 (3.20) therein for more details), it follows that f is quasi-convex on
[0, 00). O

Proof of Theorem 2.1. Throughout, we assume w = 1 and 7, > 0 (the cases of 7, ,, < 0 and w # 0 can be
proved in a similar way). For simplicity we omit the argument w in Ly ,(B;w). Let F, L*ﬁ denotes the distribution of
the density ¢; 5 * f**. Conditioning on the number of jumps Ny — Ny, the loss function Ly 4 is split as follows:

1 2
Liyn(B) = Li,})L(B) + Lz(er (B),

where
- B—-h7y —B —h®
(1) Y ’Yt,h ’Vt,h
L7 (B)=P(|Xty4n—X¢| > B,Niyp — Ny =0)=e " |1 -0 ————— |+ ———— ||,
bR " ' " ' FinVh FinVh
(2) —hX - (hxt;h)k «k «k
L (B) =P (| Xe4n — Xe| < B, Ny — Ny £0) = e 00 E T [Fih(B) — Fa(=B)] -
k=1 :

Here, ®() is the cdf of standard normal distribution. Note that by definition, Lgl}z is strictly decreasing while Liz,z

is strictly increasing. It is also clear that for each h > 0 and ¢ € [0,T], Lgl,z € C*® (R*) and 8BL£712L (B) < 0 for all
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B € R*. For the differentiability of LS,E, since

sup sup |¢p % [ (x)| < sup f(z) = M(f) < oo, (51)
keN zeR z€R

it follows that sup,enSUPpe(0,00) |¢t7h * f**(B) + ¢y * f*k(—B)| < 2M(f) and, thus, by Bounded Convergence
Theorem, ng is differentiable. Similarly, since sup,, ey SUPgen SUPBe(0,00) gbin;) * f**(B) + (m) x f*k(=B)| <
2M(f), we can further prove that ng E C> (R") by Bounded Convergence Theorem.

We observe that Ltl,z( B) # 0 and L ( ) # 0 for all B > 0, so we now proceed to study the ratio

95 L (B)
Rt h( ) #
—0pL; ;,(B)
Let us start by noting that
—hen B-h7y B+ h7y
apL(B) = ¢ ¢ Bh) g =L )] 52
5 Lo(B) Vha GenVh GenVh (52
hA
3BLt A(B) = e '”Z () th) [pen* [*5(B) + ¢un [ (=B)] . (53)
k=1

An immediate consequence is that Ry ;(B) is continuous for B € [0,00). R; ), may now be written as:

— \k
— (hAn TenVh (b [*(B) + b x [*(=B)
Ron(B) = MJ} ni(B), where Iy (B):= ( B o ),

k=1 ki ¢ ( E:,hx/i ) t¢ ( Et,h\/ﬁ )

By definition of convolution, I; j  can be written as:

& (thﬁtyh7w> +6 <B+h7t1h+w>
_ wk L oenVh enVh
Iini(B) = [ gin(w, B) f*(w)dw, where g;n(w,B):= B—h%, B+h7e.n
¢ ( Et,h\/’ﬁ ) +¢ ( Et,h\/’ﬁ )

Plugging in the normal p.d.f., g; 5 can be factorized to be:

w? + 211’th,}1> exp (B(}Wt,h + w)/hag,h) + exp (—B(/ﬁt,h + w)/haii«) 1)

(2)
ge.n(w, B) = exp | — —— — =: g, (W) g, j, (w, B).
< 2h0t h eXp (B'Vt,h/JtQ,h) + exp (_B'Vt,h/o—f,h) b b

It is not hard to prove the following properties of g( ).

1< gl (w) < T/ Tin we (<217,,,0), and 0<gl)(w) <1, we (~2h7,,,0). (54)

gt(%z( ) is a function of type t(z) = ¢t , where 2 € [0,00), a = |(hyy., + w)/h57,,| and b = |7, ,,/7} | Note

ebx +e—b:r I
that the derivative t'(x) can be written as

4T | g—ax eaT _ g—ax ebz o efba:

t'(x) =

a _
ebx + e—bac ear 4 e—aw eba: + e—bw
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When a > b > 0, t(x) is an increasing function from 1 to +oco0 and

_b(l — e 1)2ba, z <

ax br _ _—bx _
€ € € (a‘ b) 6(a—b)w 1 — e—2b:p) >

t ——(a — >
(@) 2ebz (a )ebf +e bz = 4 ( =

Y

SIS

b1 —eN(a—bz, z>

- (a —b)(1 — e 1)min(a — b,2b)
- 4

x.

For the third inequality, when 0 < z < 1/2b, we use 1 — e~ 2** > (1 — e7!)2bz, and when = > 1/2b, we use
e(@=0% > (g — b)z and 1 — e~ 2% > (1 — e~ ). Specifically, when a > 3b, we have

t'(x) > b*(1 — e . (55)

When b > a > 0, t(z) is a decreasing function from 1 to 0 and

ebw _ e—bx

()] < < b, (56)

ebz _|_e—bn: —

where we use the property that tanh’(z) < 1.
Here we notice that a < b < w € (—=2h7, ;,,0). Based on this, for each fixed k € N, we decompose I; , 1 into two
parts:

Ix(B) = ( / +f )gﬁi( ) 91w, B w)dw = 15, (B) + I3,(B). - (57)
(=207, ,0)  J(=2h7, 5,0)°

In what follows, We shall prove that there exists hg > 0, which may depend on T, such that for all ¢ € [0, T] and
h € (0, ho), there exists By, > 0, such that

Ry n(B) <1, for B€(0,Bf,), and R,(B)>1, forB € (B;,00).

These two conditions, together with the signs of 83L 5, and 83Lt 5> will imply that B — L ,(B) is quasi-convex
(see Lemma A.1 below) for h small enough. To do thls we will prove the following:

(i) For any h > 0, limp_,oc Ry n(B) = +o00.
(11) limh_,o supte[o’T] Rt7h(0) =0.

(iii) There exists hg > 0, which may depend on T, such that for all ¢t € [0,7] and h € (0,hg), Ren(:) is strictly
increasing.

For (1), it is clear that It(lh) x = 0, and by Fatou’s Lemma, for k large enough 4 It@h) i, satisfies

lim inf I(h) (B) > /( hmlnfgt( }2( ) t(zh)(w, B) f**(w)dw = 4oo0.

B—oo 2h7, 1,,0)¢ B—oo

These two relationships imply (i).
For (ii), since gﬁz (w,0) =1,

e_(w+h71,h,)2/2hﬁf,h
V QWhEt’h

Note that the right-hand side converges to zero as h — 0, and does not depend on k. By Assumption 1, the
convergence is uniformly in ¢, so (ii) follows.
Now we proceed to consider (iii). Indeed, for any given ¢ € [0, T], by the upper bound of gt(liz (w) given by (54)

I ,1(0) = /gﬁlg( )f*k(w)dw = VQWhEt,hehﬁh/%%h f*k(w)dw < \/27rh6t,heh7§,h/25ihM(f).

L has to be large, since now we are not assuming small h, so it is possible that f**(w) =0 for w € (—2h%; 4, 0)".
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and the upper bound of ‘ﬁBgﬁz (w, B)’ given by (56), we have

ERB+0) =10, = [ gfw) g, B +8) = 9w, B) x 1 (w)du
(—=2h7,; 1,,0)

=2 =3
< / T2 5 T (B 4 §)5 s R (w)dw < 2hLER T/ 2TEn M(F)(B + 6)6.
(=207, 5,0) Tt,h Ot.h

Furthermore, for 1’ h) » note that for w € (—2h7, ;,,0)¢ gt(}z(w B) is increasing in B, and for w € [—4h7, ,, 4h7, ],

we have |(h7, ), + w)/hot nl > 3[7:.1/7% 4| Thus, we have

I6) (B +6) = I3 (B) = /( e oy S () X (0151w B+ 8) = g5\ (w. B) < 1 (wheo
—2Y¢ ns

1—e 172
> / gt(lh)(w) X %35 x [ (w)dw
[—4h7, p 407, 5,]€ ' Ot,h

(1—e 77, (1) k — 2, /25
> 02 Tty ([ gyt — 3, T 7))

Ut,h

Putting these two inequalities together, we have that for any B > 0 and 0 < § < B:

k
) (10, (540~ 12,(3) | < a0 (50 1) T omarmtans ) = 002), h 0,

Uth

and

where the last equality can be justified by fgil,z (w) f(w)dw > V2whT, 5, exp ( 'Y‘ h ) C"”T(f) +O(h) for small h, where
Crn(f) is defined in (5), since the following holds:

2 = =2 =~ \2
(1) . w* + 2why, ), . _ h’Yt,h 1 (w+ h7y, n)
exp | —————— | = V27ho,ex exp| ————— .
9o (W) = oxp ( 2he2,, L P Vet T 2he?,,

Also note that both convergences do not depend on B and §, and by Assumption 1, both the convergences can all
be made uniform in ¢. This proves (iii). O

Proof of Theorem 2.2. For simplicity, we use the notation ft*Z = Qpp * f*F where recall that G p(z) =

1 z—h7, h . . . .
o Th (Et,h\;é) is the density of X, , — Xy. We start by demonstrating that the optimal thresholds (B;h)tﬁ

converge to 0 uniformly on ¢t € [0,7], as h — 0. Let us first note that the loss function (10) can be written as

<B>

Next, by partitioning E := {|7, ,, + 7., VhZ + S5, G| < B} into EN{|h¥,,, +7,nVhZ| < B} and EN{|h7,, +

5 S 5
Lin(B) = e~MAnp (‘fﬁt,h + a’h\/ﬁz‘ > B) +ehAen Z (% <‘h~yt o+ FenVhZ + Zg

k=1
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Et,h\/ﬁZ\ > B} and simplifying,

Lon(B) < P (|17 + 7 VAZ] > B) + e i (hxen)* (v

5 +Et,h\/ﬁz‘ < B)

< 23>

where we have used that v} := sup,<, |7s], 07 = sup,<; 05, and A} := sup,, A are finite for any ¢. Next, consider a
sequence of thresholds given by B,};‘c’w := ch® for a € (0,1/2) and ¢ > 0. Thus, using that P (|¢1| < 2B) ~ 4Co(f)B

and P (|24, Gl < 2B) = O(B) as B 0,

(hyT+h+aT+hf|Z| >B) +Z T+h (’ZQ

sup Ly (Bh o) < 4eColf)Npynh' ™ + o(h'T).
te[0,T]

Now suppose that € := limsupy, o+ sup,cjo,r) B, > 0. Then, there exists subsequences (hy,), and (t,), such that
inf, Bf ;, > €/2. In that case,

Lt o (B n, ) > €7h>\*T+hhAT+hP ( hnﬁtmhn + 0t b, V hnZ + Cl’ < 6/2) ,
but, also Lt b, (Bf, , ) < Lt,,h, (Bj°w) and, since P (|h e, oy + Tt ha VA Z + (1| < €/2) 5 P(IG1] < €/2) >0,°

as n — 0o, we would have that
4eAppCo(HRT +o(hH) = hApy, +o(h),

which leads to a contradiction. Hence, it is necessary that the optimal thresholds converge to 0 uniformly on [0, T7].

Now we will show the asymptotic characterization of the optimal thresholds. From Theorem 2.1, there exists
ho > 0, depending on T, such that, for all ¢t € [0,T] and h € (0, hol, the loss functions L, j, possess a unique critical
point. By equating the first-order derivative of the loss function to zero, from (52)-(53) it follows that the unique
optimal threshold, By, must satisfy the equation given by

By, — W By, + W > h)\t h £
¢ < N ) + ¢ (\/EUt,h )] 2 F(BL) + fih(=Biy)] - (58)

1
\/Eﬁt,h

A rearrangement of this equation shows

Bt*’hihit’h = T 2B}, 7..1/T5 0 Iy (hxt’h)k *
¢<\/}»m)—\/ﬁ0t,h[1+e 2BenTe, } ;T[tk( )+f h(— th)] (59)

Upon taking the log on both sides of (59), we arrive at the fixed point equation (11). From (51) together with
Assumption 1, we conclude that limj,_,g+ B;‘,h/hl/2 = oo, uniformly for ¢t € [0, T, i.e.,
Bin

%E)r%)tel[%fT] \/E = tee

A further modification of this equation indicates that

1/2
1 m(ft*jm(Bz,h)+ft*,%z(7Bz(,h)) N /
B h V2ha, , logt/? 1 1 ° Le 2PLnTen/Tin log (1 + St’h(Btvh))
fn=h, + T1.p 10 = + —— + =
th Ttn th 108 (Ut,h)\t,hh?’ﬂ) log (Et,h/\t,hh3/2) log (Et,h/\t,hh3/2)

°Tt is necessary to have Co(f) > 0. Otherwise, B — 0 is not optimal.
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where above, we have defined

ft*,l}i(B) + ftf]fcz(fB)
fin(B) + £5(=B)

From this, a direct consequence is that B}, = O(y/hlog(1/h)), so we have

Nor ( L (Bry) + fZ%(—Bt*,h))

14+ e_QB:,hit,h/E%,h

= V21Co(f) + O(Bfh),  Sin(Biy) = O(R?).

The second relationship above is because ft*’fL are bounded by M(f) and f; %L(B,zk 5) is bounded away from zero. We
prove the first relationship above now. Indeed, by our assumption on the smoothness of f, there exists € > 0, such
that f € C*((0,¢)) and f € C*((—¢,0)). Then, we have:

t*,}L(Bt*,h) = ff,}l(o) +O(B; )

0 +oo
fZ‘,i(O)—Co(f)=fZ‘,i(0)—(f(O—) | sutian+ s00) | ¢t,h<y>dy)+0<¢ﬁ>

0 —+o0
- / (F(5) — FO-))brn(y)dy + / () = FO4))den(y)dy + OVR)
o e (60)
- / (F@) — FO0-))ben(y)dy + / (F@) — FO00) b y)dy + O(VR)

—€

0 1 (J)re 1
[ [ rdwony+ [ [ 5 aodognnds + 0h)
—eJo o Jo
= O(Vh).
Above, the first equality uses f0+oo be.n(y)dy = 1/2+ O(vVh) and fi)oo be.n(y)dy = 1/2+O(Vh). The third equality

uses f:oo den(y)dy = o(h) and [~ ¢ (y)dy = o(h). From this, we have fin(0) = Co(f) + O(Vh). We then have
Sh(Big) + fin(=Bfy) = 2Co(f) + O(B; ). Therefore, for any a € (0,1/2),

log [ Y2TUih(BLI+IL (- BL)
g 1+e—23:,h7t,h/312,,h, _ log (\/ 27TCO(f))
log (Et,hxt,hhs/z)  log (Etyhxtyhhi"/?)

log (1+ Suu(Bys))
log (Et,hxt,hh?)/z)

+o(h?),

= o(h®).

For the last assertion of the theorem, if we further note that @;, = o7 + O(h) and A, = A + O(h) under the
specified smoothness of t — o2 and t — )¢, then we conclude the following approximation of By y:

1/2
1 log(\/ﬂco(f)) 1
“ /2, log"? () 1+ ™ + o(hi+e
th Gt,h log SV log (o) of )

= Vo, [3105 (1/h) ~ 2108 (Varco(Hoin )| + o(h3+),

for any o € (0,1/2). O

Proof of Proposition 2.8. First, note that
P(|AX|> B) = e "Pp (|h’y +Vhoz| > B) +hAe™MP (]m +VhoZ + g‘ > B) +O(h). (61)

Let ¢, (x) be the density of hy + vhoZ and note that, for k > 1, hy + VhoZ + Zle ¢; has density ¢y * f**,
which is bounded by M(f) := sup, f(z). Therefore, we have ‘8%]? (|h’y +VhoZ + Zle G| > B) ’ < 2M(f) and,
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furthermore,

0 (h)\)k k B (h)\)k o k B ,
@kzy i P(‘h7+\/EaZ+;Q >B> —]%:2 X @P (‘h7+\/ﬁaZ+;gi >B> = O(h?).
We then have
f1(B) = *%PUAX‘ > B) = e " ¢n(B) + ¢n(—B)] + hhe " g(B) + g(—B)] + O(h?), (62)

where ¢ denotes the density of hy + vhoZ + ¢. Combining (61) and (62), the conditional density is such that

p B s e (S5 e (W) +o(B) o)
[AXIIAXI>BA2) = p(IAX|> B) &P (|h7+\/ﬁch| >B) +P(’h7+\/ﬁgZ+<’ >B>

+O(h).

Now, by g = ¢ * f and the smoothness of f near 0, we have that if = is close enough to 0,

o(x) = (@) = ( Lo +>> (F@) = F@)én(y = )dy

= U@ 5 70— )y — )y +ofh) = O,

where 6, is between  and y and € is a fixed positive number such that f € C?((z — €,z + €)). Such an € exists due
to Assumption 4. Above, we have used the following facts:

[ eymady=o), [ y-a)enly - a)dy = b+ olh)
(z—e,x+€)C (z—e€,2+€)
o @ e < Mo
r—e,r+€
Note that the above holds uniformly in x near 0, so we have g(B) = f(B) + O(h) for h small enough. This also

implies
- P(‘h’ﬁ—\/ﬁUZ—FC‘ < B) —29(0)B + o(B) = 2f(0)B + o( B).

Therefore, we have the following:

B—h~v)? B+hy)?
Fxnaxion(B) = ot fexp (5295 ) 4 exp (- BHAE )| +2£(0) + O(h) + O(B?) o
AX|||AX|>B -
LP (|h7 +VhoZ| > B) +1-2£(0)B + o(B)

2

2
-9 s _b
F0)+ e exp( s

> +2f(0)B + o(B) + o(h*3/ze—%),

where we used the following:

1 o B? 1 (B — hv)? 1 B?

=P (|h hoZ|>B) ~ ——— - , — ~ — )

h (‘ v * fo' ‘ ) B\/27‘(‘h xp < 2h0’2> \/27rh30'2 exp < 2h0’2 V27Th30'2 exp 2h0'2
This completes the proof. O

Proof of Corollary 2.9. Denote the leading order term of (19) as:

1 B?
F(B) = —Af(()) P exp (_QhU2> + B.
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Set a = 1/(Af(0)V2nh302), b = 1/(2ho?). For h small enough, we do have avb > 1/(1 — exp(—1/2)), and
log(2ab) < b. By the Lemma A.2 below, the minimum of F' is in (\/ 2ho?, \/2h02 log(1/v 27rh506)> and satisfies

Bexp (7%) = V27mh506. Taking logarithms on both sides and rearranging terms, we get

B2

)

for some constant C'. Note that since B lies in (\/ 2ho?, \/thr? log(1/v 27Th506)> ,log(B) = $1log(h)+O(loglog(1/h)).

Thus, we get the approximation of the optimal B as

B* = +/4ho?log(1/h) + O(\/hloglog(1/h)).

This completes the proof. O

Lemma A.2. Suppose a,b > 0 and a/b > 1/(1 — exp(—1/2)), and log(2ab) < b. Define F(zx) = aexp(—bx?) + =
where > 0. Then, the minimum point of F is in (1/v/2b, \/log(2ab)/b) and satisfies 2abx exp(—ba?) = 1.

Proof. Taking derivative twice, we get F'(z) = —2abx exp(—bz?) + 1 and F"(z) = 2ab(2bx? — 1) exp(—bz?). By
studying the sign of F", we have that F” is decreasing in (0,1/+/2b) and increasing in (1/v/2b, c0), and we also have
F'(1/v/2b) = —av/2bexp(—1/2)+1. Now since av/2b > 1/(1—exp(—1/2)) > exp(1/2), F'(0) = F'(+00) = 1, we have
that F’ has a root 71 in (0,1/+/2b) and another root ro in (1/v/2b,00). All these further imply that F' is increasing
in (0,7r1) and (re,c0) and decreasing in (r1,72). Notice that F’(1/log(2ab)/b) = 1 — \/log(2ab)/b > 0, since we have
assumed that log(2ab) < b, so we have that ro € (1/v/2b, \/log(2ab)/b). Also notice that F(1/v/2b) = aexp(—1/2)+
1/v/2b < a = F(0), since we have assumed that av/b > 1/(1 — exp(—1/2)). Therefore, 0 is not the minimum point.
In summary, the minimum point of F is in (1/v/2b, /log(2ab)/b) and satisfies 2abx exp(—bx?) = 1. O
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