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Abstract: Volatility estimation based on high-frequency data is impor-
tant for accurate measurement and control of financial asset risks. A Lévy
process with infinite jump activity and microstructure noise is considered
one of the simplest models for financial data at high-frequency. Utilizing
this model, we propose a “purposely misspecified” posterior of the volatility
obtained by ignoring the the process’ jump-component. The misspecified
posterior is further corrected by a simple estimate of the location shift and
re-scaling of the log likelihood. Our main result establishes a Bernstein-von
Mises (BvM) theorem, which states that the proposed adjusted posterior
is asymptotically Gaussian, centered at a consistent estimator, and with
variance equal to the inverse of the Fisher information. In the absence of
microstructure noise, our approach can be extended to make inferences for
the integrated variance of general It6 semimartingales. Simulations are pro-
vided to demonstrate the accuracy of the resulting credible intervals, and
the frequentist properties of the approximate Bayesian inference based on
the adjusted posterior.
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1. Introduction

In the past decade, jumps have played an increasingly important role in asset
price modeling. The necessity of jumps is supported by both empirical and
realistic considerations such as (i) sudden and relatively large changes observed
in real stock prices; (ii) the implied volatility smile phenomenon, which is more
pronounced for short maturity options; and (iii) the proper management of risk
[43, 9]. When jumps were first incorporated in the literature (e.g., Merton’s
model) the attention was centered on finite-jump activity models (i.e., those
exhibiting finite jumps in finite time intervals). However, infinite-activity models
are now considered more realistic as suggested by many studies based on real
asset returns [4, 36, 42, 47, 46]. Here we consider a one-dimensional Lévy process
X = {X:}+>0 defined on some probability space (2, F, (Fi)i>0, P) over a fixed
time horizon t € [0, 7], which is a fundamental and widely-used tool to model
506
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jump processes with infinite activity. Concretely,
X, = pt 4+ 0Y2W, + Jy., (1)

where 1 € R and € € [0,00) are the drift and the variance parameters, respec-
tively, W = {W,};>0 is a Wiener process, and J = {J;};>¢ is an independent
pure-jump Lévy process. In financial applications, X; typically represents the
log-return or log-price process log(S;/So) of an asset with price process {S;}+>o0.
In that case, the parameter o = 6'/2 is called the volatility of the process and
contributes to the total “variability” of the process X. Constant volatility can
be generalized to a general It6 semimartingale (see § 7). Further details about
the model and its components are given in § 2.

With improvements in computational power and the advent of electronic-
based financial markets, intraday high-frequency data (every minute, second, or
even nanosecond) has become widely available. While exploiting the convenience
of massive data, analyses must also deal with market microstructure frictions
(e.g., serial autocorrelation, price discreteness, and temporary demand-supply
imbalance) caused by the nature of trading at high frequency. In an attempt to
explain the nature of tick-by-tick data, [51] and [48] suggested the concept of
microstructure noise, in which the observed transaction log-price Y; at time t is
a noisy measure of an underlying “efficient” log-price X;:

}Q:Xt+6t:/,bt+91/2wt+;]t+€t. (2)

Our purpose is to estimate the variance parameter  based on high-frequency
sampling observations Y;,,Yy,,..., s, (0 =1y < --- <t, = T) of the process
over a fixed period of time [0, T']. From the perspective of frequentist point esti-
mation, when there is no microstructure noise, [37] proposed a consistent estima-
tor by eliminating those increments of the process, A;Y :=Y;, —Y;., |, which are
larger in absolute value than a suitably chosen threshold. The asymptotic effi-
ciency of the estimator with the restriction of a bounded variation jump process
J is proved later in [10]. For a jump component of unbounded variation, there
exists a rate efficient estimator introduced by [27] based on the empirical charac-
teristic function. [33] also introduced a closely related estimator and established
a central limit theorem for its estimator. When the microstructure noise is taken
into account but jumps are not present, several estimators have been proposed.
The two-scale estimator in [48] considered two different estimation scales of the
process to estimate and eliminate the effect of the noise. It was generalized by
[49] to achieve the optimal convergence rate n~1/%. The preaveraging approach
in [25] replaced the increments A;Y with a weighted summation over a small
window. The realized kernel (RV) method in [2] utilized the weighted realized
autocovariances. A quasi-maximum likelihood estimator (QMLE) approach is
proposed by [1, 18, 45]. The stochastic volatility is first misspecified as locally
constant, independent with the previous state, or even constant, which allows
construction of a quasi-likelihood and derivation of the maximum likelihood es-
timator (MLE). [11] showed that the estimator is robust to a microstructure
noise following an MA(co) process, and proposed a tuning-free procedure to
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select the order of noise using the Akaike information criterion (AIC). Then, [§]
achieved efficient asymptotic variance reduction for non-constant volatility by
aggregating a local version of an RV estimator or QMLE estimator. [19] and [34]
propose bootstrap methods to approximate the distribution of realized volatility.
A second-order refinement is achieved over the limiting normal approximation.
When both noise and jumps are present, [40, 41] introduced the modulated
bipower variation estimator using the bipower variation of the weighted average
of the increments. The estimator is consistent, but cannot achieve the efficient
convergence rate n~'/4, which represents the best rate that can be achieved for
this estimation problem in the presence of noise and jumps. [7] proposed two
quantile-based realized volatility estimators by employing empirical quantiles
of the averaged returns. The estimators are both consistent and asymptotically
efficient, but only applicable for processes with finite jumps. More recently, [30]
combined the preaveraging method of [25] and the thresholding ideas of [37] to
construct a consistent estimator of the integrated variance that is robust to both
noise and infinite jump activity. The estimator proposed by [5] is the same as
[30] under our settings. [5] considers the estimation of a functional of volatility
under a general setting where the interaction of the noise and the underlying
process is not merely additive. Consistency and efficiency are also proved. The
details of this estimator are explained in § 6.

Whereas there are numerous frequentist estimators available, the develop-
ment of an explicit and efficient Bayesian approach which can accommodate
high-frequency data remains a largely open problem. Genuine Bayesian infer-
ence for a parameter of interest can only be based on the corresponding marginal
posterior distribution, which is a conditional distribution on the parameter space
of the interest parameter, and the conditioning is on the observed data. A fully
Bayesian approach requires that the joint posterior of all parameters must be
constructed based on the full likelihood function and a joint prior distribution
over all the parameters. Then, integrating the joint posterior over the nuisance
parameters (in our case, the parameters related to the jump component J and
microstructure noise ) yields a marginal posterior distribution for the param-
eter of interest. Since analytic derivation of the joint or marginal posterior is
often intractable, Markov Chain Monte Carlo (MCMC) methods are typically
used to sample from the joint posterior, and then numerical integration over the
nuisance parameters is achieved by simply ignoring the corresponding MCMC
output for those parameters. MCMC-based Bayesian methods have been ap-
plied to the volatility estimation problem by several previous authors. [6] and
[13] used MCMC for a diffusion process augmented by a Poisson jump process.
More recently, additional model complexity has been accommodated by taking
infinite activity into consideration. [47] proposed an MCMC estimation method
using both spot and option prices. Their jumps are assumed to follow either a
variance gamma process or an a-stable process. [28] developed an automated
sequential Monte Carlo algorithm by adding an additional re-sampling step for
variance gamma jumps. [22] applied a slice sampling approach with a similar
variance gamma assumption. [20] incorporated realized variation and realized
power variation into an MCMC procedure, and analyzed a generalized variance
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gamma process. [46] considered both returns and the Chicago Board of Options
Exchange (CBOE) Volatility Index (VIX) to obtain the posterior for the jump
part. The variance gamma process and normal inverse gamma process were
considered.

Although the papers mentioned above considered Bayesian inference derived
from the joint posterior, they all require strong assumptions about the structure
of the jumps, which severely limit the practical value of these methods. Without
these simplifying assumptions, it is quite challenging to write down the full
likelihood function under the semi-parametric setting (1), which means that
it is also difficult to obtain the full joint posterior without such assumptions.
One of these assumptions is the choice of a particular specification of the jump
process J, among many possible jump processes. However, empirical results in
[36], [47], and [35] suggested that different jump assumptions lead to different
estimation results for volatility. The posterior depends heavily on the structure
of the jumps. Thus, sticking to just one jump type increases the possibility of
misspecification and, therefore, can lead to inaccurate estimation and inference.

Moreover, specifying and calculating the distribution of the jump compo-
nent may incur heavy computational costs, especially when working with high-
frequency data. For this reason, nearly all of the aforementioned studies consider
only daily returns data. Some authors, such as [28] and [20], did apply their
methods to hourly data and 5-minute data, respectively. However, both studies
fixed one of the parameters of the jump process as constant, in order to reduce
the computational load.

The difficulties of deriving the posterior and the associated heavy computa-
tional costs are primarily caused by the jumps, which are only related to the
nuisance parameters in the present context of inference for volatility. Our tar-
get of estimation, the variance or volatility, is not affected by the jumps, and
is modeled by a simple Gaussian process, for which Bayesian inference can be
more easily obtained. Based on this observation, one plausible idea to tackle the
problem is to ignore the nuisance parameters in the nonparametric part of the
process, replace the nuisance parameters in the parametric part by their con-
sistent estimators, and construct a posterior only for the parameter of interest.
The advantages of such an approach are that one need not specify a prior on
the jump process, and it is not necessary to obtain samples from the full joint
posterior. By contrast, we will directly obtain an approximation to the marginal
posterior for the volatility, which we will show can be used for accurate Bayesian
inference. This approach was recently used by [38]. They derived a ‘purposely
misspecified’ posterior for a jump-diffusion model with constant volatility, finite
jump activity and without microstructure noise, which targets the parameter of
interest, the volatility, directly. Using a misspecified model on purpose, the in-
herent difficulty of specifying the likelihood function in a nonparametric model
is tackled by omitting the complicated nuisance component of the model. The
bias and the inaccurate variance caused by the misspecification are later cor-
rected by applying a location shift and rescaling the likelihood using a Gibbs
posterior. They showed that the adjusted posterior possesses good asymptotic
properties, as guaranteed by a Bernstein-von Mises theorem.
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In this paper, we study a ‘purposely misspecified’ posterior for the variance 6
of the model (2), either with or without microstructure noise, which is a consider-
ably more difficult and realistic setting in comparison to the finite jump activity
model without microstructure noise that was studied by [38]. Our main result
is a Bernstein-von Mises Theorem for the adjusted posterior for the volatility
parameter, which shows that the proposed posterior is asymptotically normal
and centered at a consistent estimator, and with variance shrinking at rates
n~1/2 and n~!, respectively, depending on whether a microstructure noise is
incorporated or not in the model.

The novel contributions of this paper can be summarized as follows. First,
we allow the jump process to be any Lévy process, i.e., there is no parametric
assumption about the nuisance component, and no assumption of finite jump
activity. We also allow for an additive microstructure noise in the data. These
relaxations of the stronger assumptions made in the existing literature help
to alleviate inaccuracies introduced by model misinterpretation, and also avoid
expensive computational costs. In fact, we also show that in the situations when
the microstructure noise can be ignored (e.g., when working with medium-range
frequencies), our approach can be extended to the estimation of the integrated
variance of a general Itd semimartingale X. In particular, we allow stochastic
volatility and a general pure-jump semimartingale component J.

It is important to remark that our proposed inference procedure is among
the first Bayesian approaches that can accommodate truly high-frequency data;
due to high computational costs and the lack of theoretical performance guaran-
tees, most of the existing literature involves methods which are only applicable
to low frequency data, such as daily observations. Finally, our results suggest
that, under certain circumstances, misspecification on purpose can serve as a
vehicle for accurate approximate Bayesian inference about low-dimensional in-
terest parameters in complex models with possibly infinite-dimensional nuisance
parameters.

The paper is organized as follows. A detailed description of the setting and
model are provided in § 2. Differences between finite and infinite activity when
deriving the ‘purposely misspecified’ posterior are highlighted in § 3. This anal-
ysis reveals the importance of proposing a modified version of the Bernstein-von
Mises theorem, which is stated in § 4. The misspecified model is presented in
§ 5, and further extended in § 7. The main results are stated in § 5.2 and § 6.
Simulation results given in § 8 illustrate the performance of our procedures.
Discussion and concluding remarks are in § 9. The proofs and further technical
details appear in the Appendix.

2. Model setup

As mentioned in the introduction, we consider a one-dimensional continuous-
time process of the form (1), X = {Xy;t € [0,T]}, defined on some probability
space (Q,F, (Fi)e>0,P). It consists of constant drift and diffusion coefficients
€ Rand 6 € Ry, respectively, as well as a pure jump part J = {J;}+>0. The
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parameter space for @, denoted as O, is assumed to be a bounded and open
subset of (0, +00) such that 0 ¢ ©.

The jump component J is assumed to be a pure jump Lévy process, which
is used in many fields of science. In mathematical finance, a Lévy process is
widely recognized to provide a better fit to intraday returns than plain Brownian
motion or even some stochastic volatility models. A comprehensive overview of
the applications of Lévy processes can be found in [3] and [9]. A Lévy processes
is defined as a cadlag, real valued stochastic process which has independent and
stationary increments, and is stochastically continuous. It is known that a Lévy
process X takes the general form (1) with J defined as

¢
Ji = Jie + Jo, Jltz// x p(dx,ds),
0 Jlz|>1
) ¢ (3)
B [ [ a(utdnds) — old)is),
0 Jo<|z|<1

where p is a Poisson random measure on R4 x R\{0} with mean measure v(dx)dt
such that fR\{o} (Jz|?A1)v(dz) < oo. This is the so-called Lévy-Itd decomposition
of X and v is called the Lévy measure of X.

We also consider the possibility that the observations of the process may be
contaminated by random errors. Specifically, we assume that our observations
take the form

Kj:th+€tj7 J=0,...,n, (4)

with equally-spaced discrete times 0 = tg < t; < ... < t, = T such that
t; —tj—1 = A, = T/n. To summarize, the data is assumed to be generated
by the model (2)-(4) with true volatility value 6*, which is the target to be
estimated. The Lévy model with microstructure noise (2) is considered one of
the simplest models for financial data at high-frequency (see [15] for an empirical
assessment of the model and [39] for a survey of on parametric inference of Lévy
models). Constant volatility is a strong assumption, but, as shown in §7, it can
be relaxed to stochastic volatility when the microstructure noise can be ignored.

The process Y satisfies the following assumptions (see Remark 2.1 below for
further comments about these):

Assumption (N).

1. The microstructure noise components, ¢ = {&¢, };‘:1, are independent and

identically distributed (i.i.d.), and follow a A(0,02) distribution. In the
Bayesian framework, we assume the i.i.d. property holds conditionally on
the unknown parameter o.

2. The processes € and X are independent.

Assumption (JD). The Blumenthal-Getoor index of .J, defined by

a = inf {p>0:/ |z|Pv(dx) <oo} <2, (5)
|z|<1

satisfies one of the following two scenarios:
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1. a<1, or

2. a> 1, and Lévy measure v is such that

lv((z,00)) =27 < g(x), forz € (0,1],

where g(z) is a decreasing function satisfying fol 2" lg(x)dxr < oo, for
some r < 1.

Assumption (JF). The process J has a finite 16th moment. Equivalently, we

have [

o>1 216 v (dr) < oo.

Remark 2.1.

1. [21] suggested that the independence assumption for € and X is reason-

able for moderate intraday frequency (e.g. 1 minute). The i.i.d. normal
assumption is used in §5.1 in order to give an explicit representation of
the likelihood function, which will allow us to prove a local asymptotic
normality (LAN) property. It may be possible to relax it as in the quasi-
likelihood method of [1], but this is beyond the scope of this work.

. For a Lévy process, the Blumenthal-Getoor index a controls the small

jump activity of the process: it becomes larger as the small jumps are
more persistent. The assumption that @ < 1 means that the paths of
the process J are of bounded variation, almost surely. This assumption is
widely used in the literature (see, e.g., [7], [10], [27], and [30]), and is used
later in §6 to apply a central limit theorem (CLT) for the realized quadratic
threshold estimator of the volatility. When o > 1, [27] concluded that there
is no CLT in general for such an estimator and its rate of convergence to
the integrated variance is much slower than n~'/2. The characteristic-
function-based estimator [27] fills this gap and motivates scenario 2 of
Assumption (JD). The restrictions on « with the Lévy measure therein
are in fact inherited from [27] (see also [33]). The estimator is actually
robust with o = 1, but the asymptotic variance for the estimator when
a = 1 is not the same as when o # 1 (see Remark 4 of [27]). Therefore,
for consistency and simplicity, we omit the scenario when o = 1.

In the absence of microstructure noise, we can accommodate a stochastic
volatility model and much more general pure-jump semimartingales J (see
§ 7). We also don’t require Assumption (JF).

For future reference, recall the following common notation for the increments
and jumps of an arbitrary continuous-time cadlag process {U; }¢>o:

AZU - A?U = Uti - Uti—l? AUt - Ut - Ut—.

3. Comparison with finite jump activity models

In this section, we present a motivating example using a simple finite jump
activity model, in order to illustrate the usefulness of the approximate Bayesian
inference obtained via purposeful misspecification. [38] proposed this approach,
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but did not make comparisons to the true marginal posterior for the volatility
parameter. We then explain what issues will arise when considering the more
complicated and realistic setting of infinite jump activity.

3.1. An illustration through simulation

We first empirically compare the “purposely misspecified” posterior from [38]
with a genuine marginal posterior derived from the full joint posterior. The
goals of this comparison are to assess the accuracy of the former method in
a situation where the full joint posterior and genuine marginal posterior are
tractable, and also to motivate our proposed procedures. Model (1) is used with
a compound Poisson jump process J; = ZZN;O &;. Here, N = {N,; };>¢ is a Poisson
process with rate A, and {&};>1 are i.i.d. random variables independent of N
and W. We assume that {;};>1 follow a uniform distribution U(—1,1). This
assumption enables us to derive a joint posterior and perform Gibbs sampling
for the parameters © = (u, 6, A). The other parameter values are taken from [38]:
A=5pu=1,0=10, n = 5000, and T = 1. In what follows, we approximate
the Poisson process by a Bernoulli process; namely, N is assumed to be a point
process such that P[Ny, — Ny, , = 1] = AA,, and P[Ny, — Ny, _, = 0] =1-)A,,.
The joint posterior density based on the data X (™) = (A;X,..., A, X) can then
be written as

1 _ (AZX - NAn)z

L 7oA, P 20A,,
-t 1 (A X —y — ul,)?
rll /_1 Nz {_ 20,

p(O1X M)

n
1=

} (1 - AA)p(0)

} dy - \ALp(O).

The priors chosen for u, 8, A are a standard Gaussian distribution, an inverse
gamma distribution, and a beta distribution, respectively. The posterior for 6
is estimated by two methods: (i) Gibbs sampling from the full joint posterior,
followed by numerical integration to yield the marginal posterior (i.e., we simply
ignore the MCMC output for the nuisance parameters p and A); and (ii) a direct
posterior for f obtained by misspecification on purpose. We emphasize that the
Gibbs sampling approach, which is exact modulo finite simulation error, is only
available here because of the very strong assumptions made regarding the jump
process. This method is not available for the more complicated and realistic
settings we consider in this paper, whereas the second method works quite well
under those settings (as shown later). The direct posterior proposed by [38] is
an approximation using a misspecified model to directly obtain a posterior for
0 without the need first to obtain the full joint posterior, and then marginalize.
Figures la—1b compare the two approaches. Figure 1a shows the posteriors for
10 different simulations. The ‘purposely misspecified’ posterior typically resem-
bles quite well the genuine marginal posterior obtained from Gibbs sampling
from the joint posterior. Both posteriors are centered around the true volatility.
The 95% highest posterior density intervals are shown in Figure 1b. The close
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(a) Posteriors (b) Credible Intervals

F1c 1. Comparison with empirical posterior. (a) Ten different processes distinguished by
ten different colors are generated, and the corresponding posteriors are plotted. FEach color has
two distributions. The one formed by the triangle is the misspecified posterior, while the other
represents the Gibbs sampling results. (b) The red lines represent the 95% highest posterior
density (HPD) intervals calculated from the MCMC samples from the joint posterior. The
blue lines are the 95% HPD intervals for the ‘purposely misspecified’ posterior.

similarity of the direct posterior to the genuine marginal posterior, and also the
corresponding credible intervals, demonstrates the accuracy of the ‘purposely
misspecified’ posterior, and therefore, its validity for approximate Bayesian in-
ference.

In general, it is quite complicated to perform fully Bayesian analysis for
infinite jump activity models based on high-frequency data because the joint
posterior is analytically intractable, and even MCMC-based procedures can be
computationally demanding and may require additional assumptions about the
underlying process in order to possess good properties. These additional assump-
tions can limit the flexibility of the analysis or lead to greater risk of misspecifi-
cation. Moreover, when inference is only required for a low-dimensional interest
parameter, it may be wasteful or cumbersome to construct the computationally-
demanding full joint posterior. To perform MCMC sampling from the joint pos-
terior, some studies (e.g., [36]) consider the unobserved jump increments A;J as
a latent parameter. However, with high-frequency data, this may cause numeri-
cal difficulties. Indeed, most of the previous Bayesian studies on high-frequency
data that incorporate an infinite jump activity component in the model impose
strong parametric restrictions in order to conduct MCMC sampling.

3.2. Theoretical challenges

[38] applied their purposely misspecified approach to the simpler model setting
of an uncontaminated jump-diffusion model with constant volatility and finite
jump activity. They first constructed a misspecified model by omitting the jump
part J. Under this misspecified model, the resulting misspecified posterior was
shown to be asymptotically normal conditionally on a given path of J. Since the
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result works for all possible J, it can be generalized to a version that does not
depend on J. Even though such an asymptotic normality does hold for a suitably
centered and scaled misspecified posterior for the volatility, the misspecification
of the model has the adverse effect of causing this misspecified posterior to
center in the wrong place and to have an inefficient variance compared to the
true marginal posterior obtained by marginalizing the full joint posterior over
the drift and jump parts of the model. Therefore, [38] proposed to correct for
the bias and inefficiency of the misspecified posterior by, respectively, shifting
the center by an estimate of the bias, and rescaling the log likelihood using a
properly chosen temperature parameter. Since the Bernstein-von Mises theorem
involves convergence in total variation norm, and this norm is invariant with
respect to location shifts, the resulting corrected posterior for volatility still
admits a Bernstein-von Mises theorem but with a correct center and efficient
variance equal to the Cramér-Rao lower bound.

In a model with infinite jump activity, we can similarly ignore the jump
part and consider a misspecified model, but it is impossible to conclude an
unconditional Bernstein-Von Mises theorem from the analogous result for the
conditional posterior given a fixed path of the jump process J. The main rea-
son is that for a jump process with infinite activity, the realized quadratic
variation [J], := Y.I_, A;J? does not converge to the quadratic variation
[J] := Y p<cser(AJs)? for almost every path of J (i.e., a.s. convergence does
not hold but merely convergence in probability). Almost sure convergence is
necessary to prove local asymptotic normality of the likelihood and an optimal
convergence rate for the posterior mean. The latter two conditions are required
to apply a Bernstein-von Mises theorem under misspecification established in
[31], which is the main tool behind the result of [38].

For a general semimartingale, it is well-known that [.J],, does converge to [J]
in probability (cf., [26]). Furthermore, for Lévy processes, a rather good rate
of convergence of O,(n~1/2) can be obtained (see Lemma A.2). We find that
this weaker convergence is enough to prove the desired properties of the poste-
rior by applying an unconditional version of the Bernstein-Von Mises theorem
and skipping the intermediate results under the conditional probability mea-
sure given the jump part. In addition to the issues created by the presence of
infinite jump activity, the parametric part is also affected by the presence of
the noise €. To deal with this, we treat the variance of the noise, O’?, as an ad-
ditional nuisance parameter and prove a semiparametric type of Bernstein-von
Mises theorem under misspecification. The adjusted posterior for volatility, and
the associated Bernstein-von Mises theorem, must now include corrections for
deliberately ignoring the presence of microstructure noise.

4. A semiparametric version of the misspecified BvIM Theorem

As explained in the previous section, the misspecified Bernstein-von-Mises The-
orem of [31] plays a crucial role in proving the asymptotic properties of the pur-
posely misspecified posterior. To accommodate the more complicated setting of
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our model, the result needs to be generalized to a semiparametric version, which
is stated next.

Theorem 4.1. Consider the space Q™ = Q"™ x Q, := R" x D([0,00)) (D
represents the Skorokhod space of all cadlig R-valued functions) and a collection
of semiparametric models on Q)

(n) .
{P((f),n),v) :(0,n) €O,v e U},
where © is an open subset of RxR? and U is an open subset of an infinite dimen-
sional topological space F. Let Po(n) = P(((Zl 7)) and let 2 = (Zy,...,2Z,)
and {Y;}1>0 be the canonical processes on Q") defined for w = (wi,ws) €
an) x Qo as Z;(w) = wy; and Yi(w) = wa(t), respectively.

Define ® = g(0,n,Y.) and ®F = g(0*,n*,Y.), where Y. denotes the sample
path of J and g : © x D([0,00)) — ©" C R is a known deterministic function.
Our data consists of X := (X1,...,X,,) := T(Z™,Y.), where the function
T :R"™ x D([0,00)] = R™ is known. 3
_ Suppose there are purposely misspecified models for X™) denoted as Py(-) ==
P(:19), 9 € ©', which are distributions on R™ parameterized by ¥ with densities

Dy. Let 11 be a prior distribution with a density m that is continuous and positive
on ©'. Define the misspecified posterior distribution based on Il and Py(-) as

Hn((p c B|X(n)> _ fBﬁLP<X(n))7T(90) dp Be B(@/)

[ pe(XM)7(€) dE

Assume {Py, 9 € ©'} satisfy a stochastic local asymptotic normality (LAN)
condition relative to a given sequence 6, — 0 as norming rate, i.e. there exist
some random quantities A, and V,, such that for every compact set K € R and
e>0,

Pé") <sup
heK

1og%(X(”)) — Vot Ay, pth — %V@fﬂ‘ > e> —0, asn — oo.
(6)

Also, for any sequence of constants M, — oo, the posterior II" is assumed to

satisfy

" (| — @7 > 8,M,| X)) 50, 0o oo (7)

Then, II™ converges to a sequence of normal distributions in total variation:

Pé") <s1};p ’H” ((cp - o%)/5, € B|X(”)> —NA |, y- (B)’ > e) =0, n— oo.

1
n, @tV gt

The proof of the above result follows the original proof in [31]. The main modi-
fications are changing the almost sure convergence to convergence in probability,
and adding a nuisance parameter which does not affect the proof. The nuisance
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parameters, both in the parametric and nonparametric parts, can be omitted on
purpose by using a misspecified model P. Thus, the theorem can be used with
high flexibility. The theorem has two main assumptions: the LAN property (6),
which defines the local smoothness of the model around a given point, and the
posterior concentration property (7), which, in particular, determines the rate
of convergence of the posterior distribution. Sufficient conditions for (7) can be
found in Section 3 of [31]. Under these assumptions, we conclude that the poste-
rior distribution of the parameter of interest can be approximated by a normal
distribution. As the sample size grows, the posterior shrinks to a point which
minimizes the Kullback-Leibler divergence within the model. It shares the same
consistency property as the random quantity A, in the LAN assumption. We
will see later that A,, can be taken as the MLE of the misspecified model.

Remark 4.1. Condition (6) above is equivalent to

Pé") [Pén) (sup

D, 1
log ZM — V@T A,,Lq)fh — —Vqﬂ— h2
heK 2

Pot

>C‘Y.>>e]—>0,

for all ¢,e > 0. This is weaker than the misspecified Bernstein-von-Mises The-
orem in [31] when applying their theorem with PO")(~| Y), which implies for
almost all paths Y.,

pim <sup
heK

D 1
log M — VqﬁAn’qy{h — §Vq>1‘h2
Dot

>77’Y.)—>07 for all € > 0.

5. The misspecified model

Our methodology starts with a misspecified model ignoring the drift and the
jump component. Namely, Y; is assumed to follow

Y;/j = th + Etj7 where Xt = 91/2Wt. (8)

This means that we first misinterpret the increments of the underlying process
X as independent Gaussian variables, with mean zero, and variance 6.

Under the misspecified model (8), our target of estimation is still 8, but what
it represents changes because of the misspecification. In the absence of jumps,
0 measures the total variation of the underlying process X per unit time and,
hence, it can be efficiently estimated by the scaled realized quadratic variation,

X i= 7 (A, )
i=1

which coincides with the MLE of the parameter 6 in the underlying misspecified
model X; = 0'/2W,. However, under the model X; = 0Y/2W, + J,, 6 merely
controls the variation of the continuous component and, in the infill limit, the
realized quadratic variation (9) will aggregate both the true volatility, 8*, and
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the scaled variation introduced by the jump process J, T~![J], recalling that
[J] = Y.< (AY,)2 Throughout, this total variation is denoted as

0" .= 0" + T 1J], (10)
which takes values on the random parameter domain
0 :={0+T""'J];0€0}.

For any sample path of J, ©’ is an open set in (0, +00), and 0 ¢ ©’. Furthermore,
there exists some deterministic constant dg > 0 such that © C (g, +00) and,
hence, ©" C (dg, +00).

In § 5.1, we explicitly write the misspecified likelihood function and the cor-
responding MLE for 6 under the model (8). Bayesian inference under this mis-
specified model is proposed in § 5.2. We will show that, given that the data Y
is misinterpreted by the model (8), the posterior of # can be approximated by
a normal distribution. Further extensions are subsequently considered.

5.1. Misspecified likelihood function and MLE

Let us first note that, because of the presence of the noise €, the increments
AY =Y, =Yy, , j = 1,2,...,n, are not independent. To deal with the
dependence and write an explicit likelihood function, we follow [17] (see also [1])
and transform the observed data {A;Y};<,, into independent random variables
{R;}j<n viaR = (P,)(AY), where R = (R1,..., R,), AY=(A1Y,...,A)Y),
and P, is a symmetric orthogonal matrix with entries

P ::\/Lsin T , L,i=12 ..., n.
I n+1 n+1

[17] showed that, under the misspecified model (8), R; is Gaussian distributed,
with mean zero, and variance equal to

Aj(0) == A7 (0) == 0A,, + 202 (1 — cos n]—:—rl) ., j=12,...,n

For future reference, note that under the true model (2), the conditional distri-
bution of R; given J is

=1

Based on these Gaussian variables, the likelihood function of the parameters
0 and o2 given the data {A;Y},;<, can be explicitly written under the mis-

specified model. However, note that only 6 is the parameter of interest, while

2

oZ is merely a nuisance parameter. Instead of writing the likelihood function

based on )\;’(9) and maximizing it over a two dimensional space, we replace the
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nuisance parameter, o2, with its consistent estimator 62 = - > A;Y?, and
thereby obtain a pseudo-likelihood function for §. The properties of 62 and the
rationale of the replacement are further demonstrated in Lemmas B.3 and B.5.

Then, it is natural to consider the following misspecified log likelihood function
l, of # given the data AY7, AYs, ..., AY,:

Z{log)\ 62) + J(?]gz)} (12)

where we set \;(0,z) = £ + 22 (1 — cos njfl) The corresponding MLE 6, is

l\JM—A

In(0) =

the root of the score functlon

i(e)——in LR (13)
SRRTPAA RO RSVl

We further assume that the MLE 6, is unique.

Remark 5.1. The misspecified likelihood function (12) can be simplified and
directly applied to a model without microstructure noise (i.e., ¥ = X in (2))
by taking 02 = 0 and 62 = 0. Then,

Z(e)——lzn: log OA,, + —2- i —lzn:
TS 0A,, 2

j=1

)

In this case, the MLE can be obtained in closed form as

- 1 &
9n:f;? TZAY TZAX (15)

Thus, the misspecified model is consistent with the one in [38] and, hence, the
model with finite jump activity can be viewed as a special case of our results.

5.2. Bernstein-von Mises Theorems

We assume that the prior distribution II for 8 possesses a continuous and positive
density 7 on (dg,+00). Denote P, as the distribution of the process {Y;}i>0
under the true model (2), and E, as the corresponding expectation. Based on
the prior IT and the likelihood function (12), we introduce the Gibbs posterior
II"™ with temperature parameters s, ([50, 29]) as

11, (4) = L@/ w(0) d0
" Jo ln(QVrnm(¢) d¢

where A is a Borel set of R*. The Gibbs posterior increases the flexibility of
the Bayesian procedure, which allows us to further correct for misspecification.

; (16)
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Specifically, the type of misspecification we deliberately utilize is to assume a
model with only the interest parameter, ignoring the high-dimensional nuisance
parameter. This causes the posterior for volatility to contract too quickly (rela-
tive to the correct, high-dimensional parameter model), making the Bayes esti-
mator (e.g., the posterior mean) superefficient. Rescaling the likelihood flattens
out the likelihood and also the posterior, slowing down the contraction of the
posterior. Choosing the temperature parameter optimally will make the poste-
rior contract at the efficient rate established by frequentist asymptotic analysis.
We assume that x,, converges in probability to a random variable ' as n — oo
under the true measure P,. Note that x,, may be data-dependent, and therefore
it is possible that the random variable s also depends on the data under P,.

Our main result states that, as the sample size n increases, the misspecified
posterior based on prior IT and the misinterpreted data {AY;} will be approx-
imately normal and centered at the MLE 6,, obtained from the misspecified
likelihood (12) under the true measure P.. The asymptotic variance is equal
to the temperature parameter ! times the inverse of the Fisher information of
the misspecified likelihood. We establish our results in two broad settings. The
first result covers situations where the microstructure noise can be ignored. This
is the case when, for instance, with intermediate frequencies such as 5-minute
or daily observations. In that setting, our procedure achieves the standard n=!
convergence rate. The second result covers the more realistic setting where the
microstructure noise is explicitly incorporated. This is needed when working
with ultra-high frequencies, and comes at the cost of a slower n~'/2 rate.

Theorem 5.1. Suppose that the data Yy, ...,Ys, is generated according to (2)-
(4) with e, = 0. Then, the misspecified posterior defined in (16) with l,, given

as in (14) and Ky i kT, for some positive r.v. k', can be approzimated by a
normal distribution in the sense that

TV (Hn, N(0,, 2/@T9T2n_1)) By 0, asn— oo,
where TV represents the total variation distance, 0, is the MLE (15), and 0% is
defined in (10).

Theorem 5.2. Under the framework and assumptions (N), (JD)-1, and (JF)
above, the misspecified posterior II" defined in (16) with l,, given as in (12) and

Kn i kT, for some positive r.v. k', is such that
vV (Hn, N (0, 8I€T9T3/206n71/2)) Rt 0, asn— oo,
where 0, is the corresponding MLE (i.e., the root of the score function (13))
and 07 is defined in (10).
Proofs of these theorems are given in the Appendix.

Remark 5.2. It is worth noting that Theorem 5.1 holds without any restriction
on the Blumenthal-Getoor index «. In fact, this result holds for a large class of
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pure-jump semimartingales J and even quite general stochastic volatility models
(see §7). The restrictions on « and v stated in Assumption (JD) are only needed
when correcting the posterior as shown in the following section.

6. Correcting for misspecification

The main conclusions of Theorems 5.1 and 5.2, namely, as n — oo,

TV (Hn, N (B, Vasynw)) P,

where VasynQB = 81£T9T3/208n_1/2105¢0 + QKTOTQn_llgEZO, state that the mis-
specified posterior II,, is approximately normally distributed, and centered at
én, which is a biased estimator of 8* in the presence of jumps. Furthermore, the
asymptotic variance may not be the most efficient either since we ignored the
drift and the jump components on purpose. To adjust the bias and variance,
what we need is a consistent estimator for the true parameter 8*, which admits
a feasible central limit theorem with the right rate of convergence. In what fol-
lows, we will first propose a general correction procedure and the corresponding
Bernstein-von Mises theorem for any estimator with these two properties. Con-
crete instances of these estimators for both the no-noise and the general cases
are presented thereafter.
Suppose we have an estimator 0,, of 8* such that

0, & 0%, n (0, —0%) 5 N(0,V), asn— oo, (17)

where, in accordance with Theorems 5.1 and 5.2, the rate of convergence 3 is
—% when o, # 0, and —% when o, = 0.

Our goal is to adjust the posterior so that it centers at 6,, and matches the
asymptotic variance of 6,,. For the center, we simply shift the posterior by the
right amount, while for the asymptotic variance, we adjust the temperature
parameter. Concretely, define the estimator

o~

[J], == T(0, — 0,). (18)

n
The notation [/J\]n comes from the fact that this is a consistent estimator for
the quadratic variation of the jump component .J, because, as shown in the
Appendix (see (30) and (60)), ,, converges to 07 = 0* + T~'[J] and 6, is a
consistent estimator of 8* by construction. We will then adjust the location of

o~

the posterior by subtracting T—1[.J |,, (this operation will necessarily center the

posterior at 6, — T~'[J], = 6,). To adjust the variance, we adopt a sequence
of temperature parameters and its limit of the form:

v
Vasy ’

Kp = — and kT =

asy,n

(19)
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where V,, and Vasym are suitable consistent estimators of V' and V,,, respec-
tively. The choice of these estimators will be specified below in § 6.1-§ 6.2.

Finally, we can define the adjusted misspecified posterior II,, as one having
the density function

Fo(0) = 70 (79 + T—lmn) : (20)

where 7, is the misspecified posterior obtained in Theorems 5.1 and 5.2 with
#n, and k! defined in (19). Asymptotic normality of the adjusted posterior is
established by the following result.

Theorem 6.1. With the same conditions as in Theorem 5.2 or Theorem 5.1
except for the temperature parameter k., defined as in (19), the adjusted posterior
I1,, defined above can be approzimated by a normal distribution in the sense that,

TV (ﬁn, N (én, Vnw)) K0 asn— oo (21)

A location shift in Theorem 5.1 or Theorem 5.2 with x,, defined in (19) gives
us the proof of Theorem 6.1.

This theorem illustrates that any type of 1 — « credible interval (Clp ) of
II,, is asymptotically the same as a 1 — « confidence interval for 6 based on
N(0,,,Vn?P). The upper and lower bounds of the CIp , can then be approx-
imated by 6,, + VVn?8z,,9 as n — oo, where z, /o is the /2 quantile of the
standard normal distribution. Since én satisfies a central limit theorem with
asymptotic variance V', we have that

P00 €Clpa)~ P00 €0, £VVn2z,,5) = P(0, € 0£VVnPz, ) ~1—a.

Therefore, the 1 — « credible interval has approximately the correct repeated
sampling coverage under P,, which indicates frequentist validity of the Bayesian
inference based on the adjusted posterior.

6.1. Correction for a model without microstructure noise

When the variance 2 of the noise is 0 and (JD)-1 holds, we can use the thresh-
olded realized quadratic variation of [37],

R 1 & )
0, = T ZAZ»Y LA,y <o s (22)

i=1

to correct the misspecified posterior. Above, 7, is a threshold proportional to
n~% for some suitable exponent w. Consistency of 0, is established in [37]
for any w € (0,1/2) when J consists of the superposition of a general finite-
jump activity process and an independent Lévy process. [10] showed that 0,
satisfies a central limit theorem (CLT) with asymptotic variance 20*?n~! under

Assumption (JD)-1 provided that w € (ﬁ, %)
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Under Assumption (JD)-2, we can adopt the estimator proposed by [27] (see
also [33] for a closely related estimator) based on the empirical characteristic
function. The corresponding CLT is established in Theorem 5 of [27] with asymp-
totic variance 20*2n~! and rate n~ /2. The data is divided into k,, nonoverlap-
ping blocks, each of length v,,. In addition, we also need a scaling sequence u,,.
It is then assumed that k,, and wu,, satisfy

1 1
2 -0, k,n“2—>00, u,$—D0,

kn, <
sup 00
n uty/n

for any € > 0 as n — oo. The estimator is defined as

A A Un)n — Un )n 2
Gy = o (OGO
. \_T/UHJ_l 9 9
C(u)y = vy z (Cj(u) R (sinh (u*C;(u)/2)) ) , (23)
3=0 "
2 1 1 e
Cj(u) = ﬁlog (Lj(u) V kn 2) , = Z cos (vVnulji, 1141X)

where the notation |a] defines the largest integer that is smaller than a, and ¢
can be taken as any fixed value larger than 1. In fact, according to Theorem 3
of [27], the intermediate statistic C(u), is a consistent and efficient estimator
when r < 1. It is asymptotically equivalent to the threshold estimator (22), and
therefore can be used under Assumption (JD)-1 instead of (22).

With the estimator 6, described in different scenarios as above, we apply
Theorem 6.1 with 8 = —1/2, V = 20*2, and the temperature parameters

0.\’ %
K = <0~—n> and k' = <H_T> . (24)

By Slutsky’s Theorem, x,, — &' in P,-probability. We then obtain the following.

Corollary 6.2. Using the same conditions as in Theorem 5.1 except for the
temperature parameter Kk, defined as in (24), and assuming (JD), the adjusted
posterior " with density (20) can be approzimated by a normal distribution in
the sense that,

TV (ﬁn, N (0, 29*27171)) %0 asn— oo

Remark 6.1. As we will show in §7 below, the result above also holds for
stochastic volatility models and more general pure-jump processes J.

6.2. Correction for the general model

When the variance of the noise, o2, is not zero (the noise is present), one possible

solution is to adopt the estimator 3, proposed in [30] (see also [5]), which
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combines the thresholding approach of [37] with the pre-averaging method of
[25] (see also [26] for a detailed exposition of the theory). The pre-averaging
method is used to mitigate the effect of the noise €. Utilizing this method, we
formulate several overlapping blocks of increments, and calculate proxies of the
increments of the uncontaminated process X by taking the weighted average
of the increments of Y within each block. Then, the estimator is defined as
the sum of the squares of those new quasi-increments that are less than some
threshold, and is further debiased using an estimator of the variance of the noise.
This estimator meets our requirements, when we include both infinitely many
jumps with bounded variation and normally distributed microstructure noise.
For completeness, we describe the key aspects of this estimator below.

The estimator depends on two parameters: the length of the block k,, and
the weight function g. The latter satisfies the following regularity conditions:

e g is continuous on [0, 1], piecewise C'! with a piecewise Lipschitz derivative
g', and
e g(0)=g¢g(1)=0,and g = fol g%(s)ds < oco.

One simple and common choice is g(s) = s A (1 — s). Next, for some constant c,
let k,, = |en'/?|, ¢1 = cg, c3 = fol (g'(s))? ds/c, and also define

Sp = (AU g)n - 6?).

=

n—~n

UY,9)n = (A%, Y(9) A2, Y(9)] < un},
1

o
Il

=
—

n

i Y(9) = 9(i/kn)Aiy;Y,
J

Il
-

where we recall that 62 = ;- Z?:l A;Y? and the threshold u,, satisfies
Upn®t = 0, up,n? — 0o, asn — oo,

for some 0 < wy < wg < 1/4 and wy > 1/(8 — 43). The estimator is consistent
and admits a central limit theorem. More specifically, by Theorems 1 and 3 in
[30], (17) holds with @,, = %,,, = —1/4, and

0.4

2
g [}
Q12 + 0—4‘1’11 ;

260
V= Vnoise = TCQ 402@22 + ;-
g C

where ®;; = [} ¢i(2)¢;(x)dz, ¢1 = [, g'(y)g'(y — x)dy, and ¢s(z) =

1
Je 9W)g(y — x) dy.
The temperature parameters in (19) can be defined as

(4(P222n + 2?#2’}/263 + %&g) T Vnoise
0% wh e g @

lal\\]h

Rp =



Bayesian volatility inference for semimartingales with noise 525

The convergence of &, to kT can be established through the consistency

of 3, and 62 for * and o2, respectively, as well as the property that when

X, = Op_(1) and Y, 5 0, then X,,Y, 23 0.
Then, we have the following corollary of Theorem 6.1.

Corollary 6.3. With the same conditions as in Theorem 5.2 and with the
temperature parameter k,, defined as in (25), the adjusted posterior II,, defined
above can be approzximated by a normal distribution in the sense that,

- R 20 2 4
v (Hn, N (En, g% [492<I)22 + cge Do + Z—Z‘I)n} n1/2>> P4 0, asn—oo.

7. Extension to more general semimartingales without noise

Thus far, we have assumed constant parameters for both the drift and diffusion
components and a Lévy process for the jump component J. In this section, we
show that, in fact, when the microstructure noise can be ignored, the purposely
misspecified posterior approach can also be applied to stochastic volatility mod-
els and more general jump processes J. As mentioned before, it is generally be-
lieved that the microstructure noise is relatively negligible when using medium
range frequencies such as 5-minute or daily observations.
We consider the model

dXt = 6tdt + O'tth + th, for t € [O,T], (26)
where W is a Wiener process, J is a suitable pure-jump semimartingale, and

B ={Bi}t>0 and o = {04 }+1>0 are cadlag adapted processes. The parameter of
interest is the scaled integrated variance

1 T
0" = f/o o2 dt. (27)

We again use the misspecified model (8) for X with ¢ = 0. The corresponding
log likelihood function would then be the same as in Remark 5.1 with MLE

M|

0, = ! > AKX (28)
i=1

An analysis of the proof of Theorem 5.1 reveals that the key for the result
therein is the CLT stated in Lemma A.2. Specifically, what is needed is that the
misspecified MLE (28) converges to (27) at the rate O,(n~1/2) (see Eq. (31) in
the proof). [24] (see Theorem 2.12 and Remark 2.13 therein) shows an analogous
CLT to that of Lemma A.2 (with the same rate of convergence) under the more
general setting (26) when o and J are of the form:

t t t
oy :ao+/ bsds+/ 5SdWS+/ &LdW!
0 0 0
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t ~
+/0 /5(57x)1{|5(s,m)\§1}(“(dsvdx) — v(ds,dx))

t
+/0 /5(5’m)1{|5(s,z)\>1}ﬂ(dsvdx)’

t
J = / / 5(5, )1 5(o.0 <1 ((ds, dr) — w(ds, d))
0

t
+/ /(5(8,m)l{w(s’m)bl}u(d&dl‘),
0

where W’ is a Wiener process independent of W and p is a Poisson random
measure on R XR with predictable compensator v(ds, dx) = dsdz, independent
of (W, W"). The coefficients of o and J (including 6 : @ x R x R — R\{0} and
6:Q xRy xR — R\{0}) are random processes satisfying standard conditions
for the integrals therein to be well defined.

As explained in §6, correcting the center and variance of the misspecified
posterior II,, requires an estimator 6, of 6* enjoying a CLT with a rate of
n~1/2. For bounded variation jumps (Assumption (JD)-1), it turns out that
the thresholded realized quadratic variation of [37], defined in (22), once again
does the job. Specifically, [24] (see Theorems 2.4 and 2.11 therein) establishes a
feasible CLT for (22) under the same framework as above.

For the extension to unbounded variation jumps (Assumption (JD)-2), more
regularity conditions are required. We summarize them below.

Assumption (JI).

e When o > %, we assume J is symmetric in the sense that J; and —J; have
the same law.

e We have a sequence 7, of stopping times increasing to infinity, a sequence
a, of numbers, and a nonnegative Lebesgue-integrable function H on R,
such that the processes 3, o, and § are cadlag adapted, the coefficients
0, ¢ are predictable, the processes b, ¢’ are progressively measurable,
and

t<t, = [6(t2))> A1 <a,H(2),
t<Tn, V=p80b575,6 = |V|<an,
V=p06,0 =
TE(Vitts)arn = Vinra [Fe)| +E(Vigrs)ar, — ‘/t/\'rn|2‘ft) < ans.

Theorem 5 of [27] established a CLT of the characteristic-function-based es-
timator (23) with robustness under assumption (JI). Then, the misspecified
posterior for the unbounded variational jumps can be corrected again by (23).

When the microstructure noise is taken into account, the extension is not as
direct as for the no noise case, because after applying an orthonormal transfor-
mation to remove the autocovariance introduced by the noise, similar to that at
the beginning of Section 5.1, the distribution of the transformed data does not
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depend anymore only on the target parameter §* = T~1 fOT o2 dt. Instead, the
variance of each transformed data depends on a weighted sum of the ‘volatility’
of each increment. Analyzing the transformed data using the same procedure as
before can only provide us an estimator of some value larger than the integrated
volatility, but not the exact parameter 6*.

8. Simulation

This section discusses the finite sample performance of the adjusted posterior
defined in Theorem 6.1. We aim to show the plausibility of the limit (21) at
a large sample size. This is demonstrated by comparing the empirical coverage
probability of the credible interval derived from the adjusted posterior and the
confidence interval from its corresponding asymptotic normal distribution in the
theorem. We also aim to compare the “purposely misspecified” method with the
frequentist central limit theorem (CLT) (17).

8.1. Infinite jump activity without noise

The jump component is set to be a variance gamma process
Jt = aGt + bBG“ (29)

where a = —0.2, b = 0.2, {G;};>0 is Gamma process such that Gj, ~ T'(A, /¢, ¢),
with ¢ = 0.23, and {B;};>0 is an Wiener process independent of the Wiener
process W. For the drift and diffusion components, let x = 0.1 and § = 0.3.
All parameter values are taken from [37]. For simplicity, we adopt the widely-
used threshold n, = n=", where w € (0,0.5) and n is the sample size. This is
a possible and conventional choice in terms of consistency and efficiency. The
threshold 7,, can also be calibrated using one of the iterative schemes proposed
in [16]. These schemes were applied to the same model considered here (i.e.,
a Lévy process with variance Gamma jump component) and produced good
results. For simplicity in what follows we fixed 1, = n~% with w = 0.39.

For the prior of 6, an inverse gamma distribution is assumed with shape
and scale both equal to one. Since the temperature parameters do not affect
conjugacy, the misspecified posterior and the adjusted posterior both follow
inverse gamma distributions.

First, 5000 equally spaced observations are simulated based on the parameters
defined above (sample size n = 5000). The adjusted posterior IL, is constructed
as in Corollary 6.2. The results are shown in Figure 2. The adjusted posterior for
one possible sample path is plotted as the dashed line and compared with the
corresponding asymptotic normal distribution N (6,,260*2n~1) (the solid line).
These two lines can hardly be distinguished from one another. Moreover, they
are both roughly centered at the true volatility 0.3. This true volatility also lies
between the dashed vertical lines which correspond to the 95% highest posterior
density (HPD) interval of the adjusted posterior.
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Fic 2. Comparison of adjusted posterior and asymptotic normal distribution for one
sample path. The solid line represents the asymptotic normal distribution in Corollary 6.2.
The dashed line is the adjusted posterior. 95% HPD interval lies between the two black dashed
lines.

That the adjusted posterior is well-approximated by the asymptotic normal
distribution is an illustration of Corollary 6.2. This indicates that the adjusted
posterior will be centered at an efficient estimator with optimal variance when
the sample size is large enough.

Next, we consider Bayesian point estimators associated with the adjusted
direct posteriors for volatility. The biases of the means of two distributions de-
fined in Corollary 6.2 are compared: the mean of the adjusted posterior II,,, and
the mean of the asymptotic normal distribution 8, = 6,, — T~'[J], , which is
also the threshold estimator in [37]. We further consider the misspecified poste-
rior adjusted by the latgrlt realized quadratic variation of the jump component
T—1[J], instead of T'[J], . The corresponding asymptotic normal distribution
has mean é,"; =0,-T1 [J],,- The analysis of these four point estimators is based
on 1000 simulations. For each simulation, 5000 equally spaced observations are
generated and used to calculate the biases.

The distribution of the biases is plotted in Figure 3. The solid line is formed
by the biases of the threshold estimator, while the dashed line is formed by the
biases of the mean of the adjusted posterior II,,. The dotted line represents the
bias of é: The bias of the mean of the adjusted posterior using the realized
quadratic variation is represented by the dashed-dotted line.

The similarity of the solid and the dashed lines as well as the similarity of
the dotted and the dashed-dotted lines suggest that the posterior mean and the
mean of the asymptotic normal distribution have similar behavior in terms of
their difference with the true volatility. The biases are relatively small since the
volatility is 0.3 while most of the biases are within +0.01 of zero.

Remark 8.1. It may be possible to improve the accuracy of the adjusted pos-
terior II,, by using a better estimator of the quadratic variation of the jump
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Fic 3. Bias of point estimators. The biases of the mean of the asymptotic normal distri-
bution in Corollary 6.2 form the solid lines. The dashed line is the distribution of the mean
of the adjusted-posterior. The dotted and the dashed-dotted lines represent the distributions
of the means of asymptotic normal distribution and posterior in Theorem 5.1 with location
shift equal to the realized quadratic variation of the jumps.

[J] to correct the misspecified posterior II,, defined in Theorem 5.1. While the
dashed and the solid lines have higher probability for the positive values, the
dotted and the dashed-dotted lines are more symmetric. This suggests that the
right-skewed tendency of our posterior mean might be be due to poor estimates
for the jump component.

We next consider frequentist properties of the posterior credible intervals ob-
tained by, respectively, our proposed direct posterior and its large-sample normal
approximation established by our theoretical results. Specifically, we study the
frequentist accuracy of these credible intervals in the sense of nominal 95% cred-
ible intervals achieving the same repeated sampling coverage probability (0.95).
This accuracy property is important because, while our Bernstein-von Mises
theorems indicate large-sample frequentist validity of the posterior credible in-
tervals (as n — 00), it is important to assess whether this validity property is
approximately true for finite samples, and also if the posterior credible intervals
tend to have frequentist coverage which is larger than the nominal level, which
could indicate a lack of precision in the approximate Bayesian inference. In addi-
tion to assessing frequentist accuracy for these credible intervals, we also include
a comparison of the frequentist coverage of nominal 95% frequentist confidence
intervals derived using the CLT for the threshold estimator. For notational con-
venience, in this section, we use “CI” to represent both a credible interval and
a confidence interval, with the meaning being clear from the context. For this
simulation study, we increase the sample size n to 105,000, which is approxi-
mately the sample size corresponding to 5-minute observations during a 1-year
time horizon. The empirical coverage probabilities of the 95% CIs based on 1000
repetitions are listed in Table 1. For each repetition, we simulate a sample path
with 105,000 observations.
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TABLE 1
Empirical coverage probabilities of Bayesian and frequentist interval estimates.
Empirical
coverage | Distribution used to obtain 95% interval estimate
probability

0.943 | Asymptotic normal approximation N (6y,20*?n~1) from BvM Theorem
0.944 | HPD interval based on posterior 7, (0) = mn (6 + [J],,)

0.940 | Equal-tail credible interval based on posterior 7, () = mn (6 + [J],,)
0.940 | Frequentist CLT for threshold estimator and variance from [37]

In our simulations, the HPD interval has the highest coverage probability
among all the Cls derived from various distributions defined above. However,
all of the empirical coverage probabilities are slightly less than 0.95. Further
studies are needed to ascertain whether this undercoverage phenomenon occurs
in general, and to investigate the possible causes. Based on preliminary results,
we conjecture that using a more refined frequentist estimator én to serve as the
center of the posterior, or utilizing a less-misspecified model, may reduce the
observed undercoverage. A complete analysis is beyond the scope of this paper.

Remark 8.2. Another issue which can affect the accuracy of the adjusted pos-
terior or its asymptotic normal approximation is that the MLE is not actually
approximating the posterior mean, and the Fisher information is not approx-
imating the posterior variance. Asymptotically the effect of this non-Bayesian
centering and scaling is negligible for finite-dimensional parameters in regular
models, when considering errors of order smaller than the error incurred in
the first-order normal approximation given by the Bernstein-von Mises The-
orem (BvM). This is essentially because the BvM Theorem and asymptotic
normality of the MLE are first-order approximations having the same order of
approximation error. However, [32] show that centering the random parameter
at the MLE instead of the posterior mean, and scaling by the Fisher information
rather than the posterior standard deviation, can have substantial finite-sample
effects on the properties of the centered and scaled posterior (e.g. the posterior
cumulants), and can also make the first-order normal approximation given by
the Bernstein-von Mises theorem less accurate in finite samples.

It is not necessary to use a conjugate prior as we have done in our simu-
lations. Using certain non-informative priors (e.g. uniform) or an exponential
distribution can be easily implemented in the simulations based on the same
model. The results for these other priors are comparable with those we have
reported for the inverse-gamma prior.

8.2. Lévy Model with microstructure noise

In order to illustrate the results in the presence of both infinitely many jumps
and microstructure noise, we conduct simulations for the following model from
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[30]:
Xe=Wit i, Yipn =Xin+€im, €iyn ~N(0,0.01%),

for i = 1,2,...,n. The jump part J; is a trimmed symmetric S-stable process
with 8 = 0.5. The trimmed process means that after we simulate the increments
of all the jumps, the largest 2% of them (ranked by absolute values) will be
discarded to match the behavior of high-frequency tick-by-tick data. To allow
a comparison, simulations are conducted based on exactly the same parameters
described in the paper except one constant ¢, which determines the length of the
preaveraging blocks according to k, = [cA, L/ 2J. The choice of ¢ is not clearly
stated in [30]. Therefore, we choose the same ¢ = 1/3 as in the original work
[25]. The sample size is set as n = 15,600 and we have A,, = 1/7800 as in [30].

For the adjusted posterior, the data is divided into two parts. The first half
is used to evaluate the estimator 3, in [30], which is used in the prior, and
the remainder is used to make inference. The prior is chosen to be a truncated
normal distribution with lower boundary 0, centered at 3, obtained using the
first half of the data, and standard deviation 0.06. We generate 25,000 MCMC
samples and use the last 20,000 samples to construct the adjusted posterior (the
first 5000 being discarded as burn-in samples). We repeat the experiment 1000
times, and hence we construct 1000 posteriors, each based on 20,000 MCMC
samples.

To compare the point estimators, we compute the average bias and standard
error of, respectively, the frequentist estimator f)n, and the maximum a posteri-
ori (MAP) point estimator defined as Orap = arg maxg I1,,(0). Both the average
bias and the standard errors are similar and small, providing some evidence of
the accuracy of both the frequentist and Bayesian point estimators.

TABLE 2
Comparison of frequentist and Bayesian point estimators.

Average Bias  Standard Error
Yn 0.0131 0.0440
MAP | 0.0110 0.0631

We also consider frequentist accuracy of interval estimates. The empirical
coverage probability of the 95% credible interval of the adjusted posterior is
slightly better than the that for the confidence interval derived from the CLT
of the estimator 3,.

TABLE 3
Empirical coverage probabilities of interval estimates for the model with noise.
Empirical
Coverage
Probability | Distribution used to obtain 95% interval estimate
0.945 CLT for the estimator %,
0.953 HPD interval based on the adjusted posterior
0.952 Asymptotic normal approximation from BvM Theorem
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Fic 4. Comparison with CLT for the model with noise. (a) 10 different processes distin-
guished by 10 different colors are generated and the corresponding posterior are compared.
FEach color has two distributions. The one formed by little triangle is the misspecified poste-
rior, while the other represents the Gibbs sampling results. (b) The red lines represent the
95% credible intervals calculated from the Gibbs sampling results of the joint posterior. The
blue lines are the 95% HPD interval for the adjusted posterior.

9. Conclusion

In this paper, we consider an infinite activity model with microstructure noise
over a fixed time horizon. A “purposely misspecified” posterior is proposed for
the volatility, the variation of the diffusion component. We prove that the pos-
terior can be approximated by a normal distribution centered at a suitable
estimator with the optimal variance. Simulation experiments illustrate the ac-
curacy and frequentist validity of our proposed approximate Bayesian inference.
Compared to [38], we generalize the feature of finitely many jumps to infinite
jump activity, propose an extension to handle stochastic volatility and general
It6 jump processes, and allow for microstructure noise.

Misspecification on purpose is an unusual idea, but we have shown that it can
be an effective strategy to directly obtain a posterior on a parameter of interest
in this complex model setting for which fully Bayesian inference is currently
unavailable or intractable. Our proposal for Bayesian inference on volatility is
the first procedure which can provide Bayesian inference on volatility with high-
frequency data, while allowing infinite jump activity and microstructure noise.
Moreover, our proposed direct posterior completely avoids the need to specify
a prior on the complex nuisance component of the model, and does not require
computationally-demanding construction of the full joint posterior to obtain the
marginal posterior for volatility.

The recentering and rescaling procedure is also highly flexible. Any consistent
and efficient estimator can be used as a correction. Furthermore, the variance
can be adjusted in response to new information. For example, when the variance
of the volatility 6* is known, the temperature parameter can be set to achieve
the optimal, efficient variance.
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Appendix A: Proof of Theorem 5.1

Before we prove Theorem 5.1, we give some preliminary lemmas regarding the
rate of convergence of the realized quadratic variation [J], = Y | A;J? =
S (Je; — Ji,,)? of a Lévy process J toward its quadratic variation [J] =
> .y AJZ. Without loss of generality, we assume 7' =1 and let A, = 1/n.

The first result shows that, for bounded variation processes J, [J], —[J] =
Op(n~'/?). The proof is classical and can be found in [44].

Lemma A.1. Under Assumption (JD)-1,
E.|[J],~[Jll = O(n~/?).

The following lemma gives the rate of convergence of the realized quadratic
variation of a general Lévy process with nonzero Brownian component (6 > 0).
The results is due to [23] (see Theorem 2.6 and Remark 5 therein). Related
results for general semimartingales can be found in [24].

Lemma A.2. Let
[t/An]
QVi= > (AFX)?, t>0,
i=1

be the realized quadratic variation of the process X defined in (1) with 6 > 0
(i.e., X is a Lévy process). Then,

1
An

Qv —1vi) B U, (30)

ﬁ

where IV; = 0t + 3, (AJs)? and

¢
Uy = V20W/ + 2\/5/ / xZsp(ds,dx),
0 JR\{0}

with W' being a Wiener process independent of W and {Zs}s>o being i.i.d.
N(0,1) variables, independent of W and W'.

Proof of Theorem 5.1. We apply Theorem 4.1 with

Zi = NY —NjJ =0Y2N W, Yi=J, n=0, Py=P,
d=0+[J], o =0"+[J] =0 6,=n"Y2 logp(Y™M|9) o I,,(9) 5.

We shall prove next that the two condition (6) and (7) are satisfied.
We start with the condition (7), which requires that, for every sequence of
constants M, — oo,

I, <|19 — 0t > nl/zMn’Y(”)> %0, n— oo
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Using Markov’s inequality,

IT,, (19 — 07 > n_l/QMn‘Y(")> <nM,%En, (9 — 072

Since 6, is the unique MLE, we could approximate the right hand side expec-
tation by the Laplace approximation ([12]):

En, (9 —01)? = (0, — 01)*{1+O0(n"1)}.
Since M,, — oo, for condition (7), it suffices to show that, for n — oo,

|0n — 07| = Op, (n™1/?). (31)

Since 6, is the realized quadratic variation of the Lévy process X, this directly
follows from Lemma A.2. Second, the models should satisfy the stochastic local
asymptotic normality (LAN) condition (6). That means that, for every e > 0,

P, (sup > e) = o(1).
heK

Let Vi = (26701%)7! and A, 41 = nl/? (én — OT). Using Taylor expansion to
approximate the log likelihood and plugging in the first and second derivatives,
the left hand side of the LAN condition can be written as

P, (Sup

h wt .
__ _ v _ ot
SUp | =5 (1 Hn) vn <9n 0 )
h? 2kt ~ k't
|2 _of _
+4mm2 [emn\/ﬁ(en 9)+<1 nn>H>€>'

Noted that P, (|k, — f| > §) — 0 when n — oo for arbitrary § > 0 and, from
the result obtained in Lemma A.2, the LAN condition holds. O

I (ot
ilo 1, (67 + 0,h)

1
_ — Vi A, gth — =V h?
o g ln(HT) ot Rn ot B ot

Appendix B: Proof of Theorem 5.2

As in the proof of Theorem 5.1, we apply Theorem 4.1 with
Zi=NY — N J=0"PAW v e, —ey, ,, Yi=Ji, n=02 Py=P,
d=0+1[J], d=0"+[J]=0" 6,=n"1 logp(Y ™ 9) I, (9)/ 5",

As before, there are two conditions that need to be satisfied. The first is the
LAN property (6), which will be proved in § B.4. The second condition is (7).
By applying the same Markov inequality and Laplace approximation as in the
proof of Theorem 5.1, we can conclude that a sufficient condition for (7) is

|§n - GT‘ = OP* (n71/4)7

which will be proved in § B.3. Before we give some preliminary lemmas in § B.1.
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The following notations are often used throughout the proof:

1. a, < by, indicates that there exists a constant C' such that |a,| < Clby|
for every n large enough. If a,, < b, and b, < a,, then we write a,, < b,.
2. To simpify the notation, in what follows, we use p;; to represent p};, and

Aj to represent A7

B.1. Preliminary lemmas

Without loss of generality, we assume E,[A;J] = 0 (otherwise, the drift  can
be redefined to p+ E,[A;J]/A,. We start we collecting some useful properties
of the orthogonal matrix P,, defined in § 2.1 (the proof can be found in [44]):

Lemma B.1. We have the following relationships:

szzj = prj =1, Zpijpkj =0, i#k, (32)
Jj=1 i=1 j=1

> )= Zp”pkj = > pispitprsput| = O(1), (33)
— 2(n+1) n+1’ i)

(34)

1
Zpispitpkspkt = n—4r17 (ZPzg)

i£k

The limiting behavior of the moments of the jump increments will be fre-
quently used later in the proof. We summarize it in the following lemma.

Lemma B.2. Under Assumptions (N)-(JF), fork =1,...,16, andi=1,...,n

: _ y I~ k _
(i) B, [|JAJF] = 0(nY), (i) E[(E +> A T) | = 0w (35)
j=1
J & A 4 o _9
(iii) E. Kn + jz_:lp”AjJ) ] =0(n""). (36)
The first statement directly follows from Theorem 4.3 of [14]. The proofs of
the second and the third statements can be found in [44].

Recall that o2 is the variance of the noise, which can be estimated using
62 = % S A;YZ. The following result states some needed properties of 6.

Lemma B.3. Under assumption (JF), we have
o2
P (!63—o§| > 7) =0(n™), and E.|62-02[=0(n ')

Proof. Let H = \/n (a -0 ) When H has finite 8th moment, by Markov’s
inequality, we have
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2 16 8 8
Pt otz B ) =p (ot 2w ) < ZE I oy

E, UU2 —o?| } E.[H?] /n=0(n"").

Then, it suffices to demonstrate that H has finite 8th moment. We prove this
by analyzing the moment generating function (m.g.f.) of H conditioned on J,
and showing that the 8th derivative of that m.g.f. is finite at zero.

Because P, is an orthogonal matrix, we have 62 = % ?:1(AjY)2 =

3= >i—y R3. Then, H can be written as ﬁ > iy R} — y/no?. Using (11) and

the m.g.f. of a noncentral y2-distribution, the m.g.f. of H conditioned on J is

n
iti —1 At
My (t) = e‘ﬁggtil;[lexp (Ji—%) (1—2t;) 3, where t; = N
It is not hard to see that its kth-derivative M*) (t) := jTiMH(t) takes the form:

M(8>( t) = —vno? M+

n

ZC Z k+1 ATt N z": 1 WA YT
k (1 = 2t,)*+2 (2, /n)k+1 — (1 = 2t,)*+1 (2, /n)k+1 )

=

for some constants Cj. Let H = > 1 1( + 201 PijA J) Afand AR =
S AF. Defined ¢, = M®*)(0)2¥n*/2. As it turns out ¢, g can be expressed
as

8 8
e = (6" + Ho)™ T ((k+ D)Hx+A)™ < (67 + Ho)™ ] (Ho+A*)™
k=2 k=2

= En 85

where Zk 1 kmy, =8, my, € N. By (35)-(36), and following a similar procedure
as that for proving (35), for any 1 < k <8,

pmtl = 2 [(3 (4 Y rea))] = o)

Thus, all the terms in ¢, s have expectations of O(n*). The rate n* can be only
achieved when mg = 4,m; = 0,5 = 1,3,4,...,8. Thus, E.[c,s] = O(n?). This
implies that H has 8th finite moment and completes the proof. O
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The following Lemma will be used later to prove the asymptotic properties
of the log likelihood function (12), and its derivative.

Lemma B.4. For any fixed constants a > 0,b >0, and p > 1,

. ! =n2.
2 Vo

j=1 (a + 2bn(1 — cos L=

=

n+1

Proof. For the lower bound, note that since sinx < z,

;( ‘ >)”ZZ

P
a + 4bn(sin 2(n+1)) )

/N

> /.

|\/\/\
Mﬂ

p ~
j=1 (a+4bn4(n+l)2) = a+b7r2

For the upper bound, we divide the summation into two parts. For j < /n,
o 1 S
)p < z:l o SVn
j=

j=1 (a + 2bn(1 — cos Jj:l)

For j > \/n, since sinz > 2z for 0 < z < 3,

. . 2 .

jm o gm j*n J

1 ) > 9 > .
"< Cosn+1> P T ) T 12 ntl

2

Then,
Z Z <n+ ) / (%) dz < V/n.
j=vm (a + 2bn(1 — cos ]_:1)) = 2b;? Ji—1 \ 2bz

O

Recall that A;(0) = £ + 202 (1 — cos n+1) Applying Lemma B.4 with a = 0
and b = o2, and since () ¢ O, we get

n

1
su —— =0(n'?), =2,3,... 37
2 gy - 00 0

B.2. Likelihood functions

In this section, we introduce several properties of the misspecified likelihood
function [,, defined in (12). In the misspecified model (8), when the variance of
the noise is assumed to be known, the likelihood function of 6 is given by

n R2
Z{log)\ (0,02) + AJ(TJJ%} (38)

l\')l»—l
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where recall that \;(6) := \;(6,02) := % + 202 (1 — cos njjrrl) In what follows,
we denote the correqupding first and second derivatives of [,, and l~n with respect
to 0 as in, an, ln7 and l~n7 respectively.

The moments of the variable R; are frequently used below. We summarize
them here. From (11) and (35)-(36), the moments of R; are such that

E.R} = \;(0") +O(n™), (39)
E.R; Sn2 407t A(07) + A5 (0%) S A3(07) + O(n ™). (40)

The last inequality holds because n™! < X;(6*)/6*.

The following result aims to control the difference between l and [ and their
correspondlng derivatives. Recall that [ uses the true variance o2, while [ adopts
62 to replace o2.

Lemma B.5. Let [ and [ be given as in (12) and (38), respectively. If assump-
tions (N) and (JF) hold true, then for any integer k > 1,

d*1,(0)  d*1,,(6)
doF ok

— Op.(1). (41)

sup
fco’

Proof. The expressions inside the absolute values in (41) can be expressed as

n

> [95(62) = gi(02)]+> _nR3 [hj(62) — hj(02)] = > a;+Y B =t Gu+Hy,
j=1 j=1 j=1

Jj=1

where
(—1)F g

2nk+1/\§+1(0,z).

(=D*(k = 1)!

WA ) =
20k AR (0, x) (@)

g;(z) =

We first derive an upper bound for the first and second derivative of g and
h. Fixed a 7 > 0, and consider all x > 7. Noted that 2n (1 — cos ]:1) <
nA;(0,x)/x < nA;(0,x)/T, we have

z": ogm 1 z": 2Mmp™ (1 — cos Jfl)m
m k m+k
i=1 Oz nk)‘ j=1 (nA;( )) *
1 n n; (0 z)>0
<
- rm Z:: )) — Tmekt 1 Z n)\
By (37),
1/2 nl/2 49
sup su ), sup su ,
eeglwgg 195(x)| = O(n eegwggl ) (42)

1 1
AT < —5——, sup|h(2)| < .
| j( )|Nn2A§(0,T) I>E‘ ]( )| n2)\?(977_)
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Next, let 7 = 0. Noted that A;(¢,2) > A;(6,2) > £, and

92 1 22n2(1 — cos 1%-)2 2
022 nFNE(O 7)) 24(rk 2+k n+1) S egﬂc =0(n?),
22 nFAF (0, ) nArRATT(O, x)
we have
supsup |g7 (z)| = O(n?), supsup|hf(z)| = O(n?). (44)
€O >0 0€© >0

Now, we are ready to prove the boundedness of G,, and H,, uniformly for
0 € ©'. Let D,, be the interval between 62 and 2. By Taylor expansion, a; =
9j(62) — g;(c2) can be bounded:

n n n

A 1
> logl <62 = o213 lgi(a2)[ + 5 D sup |gj ()| - |62 = o2
=1 =1 2 =1 €Dy

The first term is Op, (1) by Lemma B.3, and (42) with 7 = ¢2/2. For the
second term, we break up D,, into two sub—regions {x >02/2} N D, and {z <
02/2} N D,,. Then, > =1 8UWpgep, |97 (2)] - |62 — 02|?, can be bounded by

n

sup |gj(z)] - 62—0“+Z sup |gj/(z)] - I&f—0§|21{

(72 N *
< 0>02/2 —~ <022 ngwzfag\grz}

Jj=

In the first sub-region, x is bounded away from zero, so we can still apply

Lemma B.3, and (42) with 7 = 02/2, and obtain Op, (1). For the second sub-

region, z < ¢2/2, which means x lies far away from the true variance, o2. If

thib sub-region is not empty, then, 0 < 62 < ¢2/2. This is covered by the region
% <162 — 02| < 02. Thus, we can bound |62 — 02| using o2. By (44),

n

E[Z sup |gj(x )l'|&§_U?|21{ﬁ<|&2—02§02|}]

—1 z<o02/2

AN
=
M= -
3
[V}
O
S
M
iy
Q
N
N
|
[\]
3
w
q
[UINS
9
N
3
m
|
)
oo
\Y%
IR
~_
|
S
3
\—’l_A

The last equality is based on Lemma B.3. Therefore, G,, = Op,(1). For H,,
similarly, using Taylor expansion,

Zlﬂg|<2|h' | InR3 (62 — o2)| + 5 Z sup. [P} ()] - InR5 (62 — 02)?].

we

(45)

For the first term of (45), recalling that 62 = % " R?, in order to obtain the
expectation of R?(&? — 02), we take expectation of R? and 62 — o2 seperately,

subtract the term (E*R?)2 /(2n), and then add back the term E,R}/(2n):

E|nR2070)|<nER E|U 702|+nER2 ER2+ ER4
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All the three terms above can be bounded applying Lemma B.3, (39), and (40):

nE,R? - E,

1 . _
nE.R; - 2—ER2<(/\ (0*) +n N2 SN (0%) +n 2,

62 — a2 Sn((0) +nHn Y2 <nEx(0%) 40 R,

E.R; =X (0%)+n"> SN (0%) +n?
The last inequality is because \;(6) < 6+202. We then have E, |nR§ (62 —-02)|<
n2\;(6*) +n"z. By (43),

- 2052 _2\(11/ (+2)] < - n? n= 37
E*j;thj(Ua O-E)Hh](o's)‘ ~ Z (712)\ ( ) + 712)\?(9)) O( )

Jj=1

The expectation of the first term of (45) is bounded.
Similarly to the proof of the second term of G,, = Y., ||, we derive the
limiting behavior of the second term of (45) by dividing D,, into two sub-regions:

E. sup |hf(z)|-2n R2 62 —0)? < E, sup |hf (x -2nR%*(6% — 02%)?
j\Ve

j= I"KED j= 1z>02/2

+ E, Z sup |k (x )|.2nR?(6?—og)21{ﬁ<‘ e }
5 < —0o o

j= 1;C<0'2/2
By Lemma B.3 and (40), for j € {1,2,...,n},
2E,R3(62 — 02)? < E.R;j + E,.(62 — 02)* S X} (%) +n 2.

Then, using (43),

n

E. Z sup |} (x)[2nR3 (62 — o7 2§Z

= 1x>02/2

3=

1 — 1 (37)
— = 1).
T Z n2\3(0) oQ)

Jj=1 Jj=1

Noted that when %= < |62 — 02| < 02, we have (62 —02)? < o2 and Z =
2n62 < 4no?. Then,

n

E.Y sup [W(2)] - 2nR3(67 - 02)’1

asor) {F<io2-021202]
(44)
2 2(~2 2\2
< E*Zn -QTLRj(UE—UE) 1{%5<|&2_02‘<02}
.j:1 — € el—="¢€
4 6 ~92 2 0’? Lemma B.3
< 8n‘o P | |6z — 0| > > = ""0(1).

Thus, H, = Op, (1). Because equations (37), (42) and (44) all hold uniformly
for 6 € ©’, we have supycg G = Op, (1) and supyce Hy, = Op,(1). O
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The following lemma states a property of the jump component that will be
used in Lemma B.7 below. The proof is classical and hence, it is omitted.

Lemma B.6. Let g and h be known deterministic functions such that the ex-
pectation below is finite. Then, for any a,b,c,d € {1,2,...,n}, a < b < c <d,

B, [9(Aad, Ay, Acd, AaJ)A([J])] = Eu [9(A1T, Az, AgJ, Ay J)R([J])] .-
The following result will be needed in Lemmas B.8 and B.9.
Lemma B.7. Recalling that 6" = 0% + [J] and A;(6) = £ + 20 (1 — cos nﬂjl)
for p =23, under the assumptions (N), (JD)-1, and (JF), we have

" n)(07) — nR? L
B I /4

Proof. Denote Ej(-) = E,(:]J) and recall (11). Our first step is to take the
conditional expectation of the expanded square given J:

5 " n\;(07) — nR? n ;(07) — nRz)
J Z np N2 (07) Z n2p)\2p (61)
=t =t (46)
B Z nA;(07) — nR3 n), (1) — nR?
Jj — XD nP AL (61)

We compare (46) with the following equation:

2
"o (01) —nEsR2\ s (nA;(07) — nEsR?)’
Z HCD) B Z n2 X3P (01)

j=1 j=1
Z nA;(07) — nE; R n)\,(0T) — nE;R2
porrd np N2 (07) np AP (01)
(47)

By the mutually independence of R;s, the second term of the right-hand side
of (46) is equal to the second term of (47). Then, the absolute value of the
difference between the left-hand sides of (46) and (47) is
2 n — —1\2
n’E;Rj —n? (E;Rj) (39);(40) n*(A3(0) +n=2)+n? (X;(0) +n7")
n2 \2P (01) ~o 4 n2 2P (01)

Jj=1

)

j=1

whose square root is O(n'/*) because of (37). Then, to prove the result, it
suffices to show

" n\;(07) — nE;R?
B, = / 1l = 1/4y,
Z ) Op,(n"/7)

j=1
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By expanding E;R7, note that

2 = AZ R ___n
Bo< S| 2 (A 2o |t |2
j=1 =1 j=1 j=1 J
nzwgkpszij JARJ 2#21 1pUA J
+ Zl PN (607) ZW ' (48)
i=

By Lemma A.1, the first term is such that:

- U] = > (AiJ)2 —1/2 - 1 37
1= < - O
2|20 ey - On ()
]:1 J j:l J
Similarly, for the third term of (48) can be shown to be Op, (n~'/?). For the
fifth term of (48), by (35) and |p;;| < v/2(n+1)~!

20300 i AT 2000 Ipig| |AJ]
E* L=l 7 <KL E* 1=
> b < p 3 BEL R

<z”: S V2 + 1) E\AJ|<Z n=1/2
™ nP N2 (6%) nPN(0%)

Jj=1

which is bounded by (37). For the second term of (48), note that

n ) noq _np?j 2 n noq_ np” 2

=1 =1 j*l
A e (3 ) (s 1_npzf 19
F 2 ADHAD X S |\ X |- @9

2
Next, applying Lemma B.6 with g(z, v, u,v) = * and h(x) = (Z};l%) ,
J
the expectation of the first term of (49) is

2 2
n n 2 n n

E At [SOAEP5 ) g (A L=np
-2 () ,Zlnmg?(m) e Z ang(m)
J= J=

=1

By (35), to achieve the convergence rate n'/2, we need to prove

2
(- Ly 3
g i = /2
ess sup g (g 1 n@é}’(@*)) = 0(n’'?). (50)
J:
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In fact, we can expand the square of the left-hand side, and then interchange

" 717@1% )2 can be written as
y— p
7j=1 nl’)\j (61)

i Z 1-— QTLpZ] +n p” Z Z npzj npzk: + n pljpzk
n2p)\2p D) nQP)\p (6T)N(01)

the summations. The expression Z?Zl (Z

i=1 j:l i=1 j#£k
_ Z — 2np}; +npj) Z Siy (1= np?; — npdy, +n°pi;pfy)
n2pA2p(9T) ik n2P P (0T) AL (0F) :

By the orthogonality of matrix P,, we have Y " | p;; =1, Y1 pl; = O(n™"),
and Y1 priph, = n+-1 (see Appendix D in [44] for the detailed derivations).

Then, since 6* < 67,

n 2 n 2
Z 1, 1 szj +n ng)| S Z 22 1p1] < Z . (37) O(TL%)7
o n# A" (07) o n?P AP (6) n2r\ p(ﬁ*)
3 |25 (1 =y — oy +n*pEpl)| (z": 1 )2 ) o)
; n2P AL ()AL (01) - nPAP(6*) :
j#k J k =1 J

These imply (50), and thus the first term of (49) is Op, (n'/?).
For the second component of (49), applying Lemma B.6 with g(z,y,u,v) =

lfnp?» 1—np?. .
2%y? and h(z) = (Z?zl m) (Z?Zl Wegz))’ the expectation of (49)
can be written as

2 2 - 1*711012‘ ~ 1*”?7%‘
E*[#Zk(AiJ) (A57) (waﬁ))(wa%ﬂ
— np? " S 1 —np? N2
{(Al‘] (A7) KZZ nP AL ( mj) _; (;nmg(mj)) H
By (32), ie. 20 pf = 1, Yoy 200 (1 — npiy) /nPAL (1) = 0, combined
with (50) and (35), the second component (49) is Op(n'/?). This finishes the

proof to bound the second term of (48). To analyze the fourth term of (48),
consider

7 Dk PisPrs AT ARTNE SN n?Y2() n25(s)2(1)
(X nPAY (1) ) _Zyﬂmjp(m) +§n2pxg(mw(m)’ (51)

Jj=1

where X(j) = Z#kpijpijiJAkJ. We will show that the two components of

the right-hand side of (51) are both Op, (n'/?). For the the first, note that, since
E.A;J =0, the expectation of the numerator is bounded since

En®S2(j) = n? Y ppi; Bl EJ(ArT)?]) < = (pr>

i#k
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Then, for the first component of (51), we have

E*Z Z 2p(])T < E*Z 721 2p(])* :an = (i) 52 .
o PP (01) o PP (6%) o A (6%) n2 A’ (6%)

The last term is O(n'/?) by (37). For the second component of (51), we first
note that expansion ¥(s)X(t) results in three different types of terms:

pispk:sputpvtAiJAkJAuJA'UJ, fori<k<u< v,
pispkspitput(AiJ)2AkJAuJa for 1 <k< u,v = iv
pispkspitpkt(Ai'])Q(Ak'])2a for 4 < kvu = i)” =k.

For these different terms, we apply Lemma B.6 with corresponding g and h
functions. Then, the expectation of the second component of (51) can be upper
bounded, in absolute value, by the summation over s and ¢ from 1 to n (s #t)
of the following three types of terms:

E.IA JA JA JA J ’Zz;&k;ﬁu;ﬁ; PisPksPutPut
W A1 T Do A3 T AL | n2p/\€(9*))\]tg(0*) ,
Zi;ﬁk;ﬁu PisPitPksPut| (35) n=3
2B, |(A1T)* A JA ‘ < 9
[(A1)" A2 J A3 J| n2P N2 (0F)\F(67) S R (GNP (G (52)
> itk PisPitDksPkt| (35) -3
E*|<A1J>2<A2J>2‘ o | ‘ (53)

<
NI N )

where we used that ‘Z#k#u PisPitPrsPut| = O(1) and |37, PisPitDrsPht :%ﬂ
(by Lemma B.1). For (52) and (53), we take summation over s,¢ from 1 to n,
and then multiply it by n2. The resulting expressions are both bounded by (37).
Combined with (35), to show that the second term of (51) is O(n'/?), it suffices
to show that

n n ’Zz;ékyéu;év PisPksPutPot
_ 1/2+4—-2\ _ 5/2
Sy e = O =0, (e

Indeed, let us start by noting that, since ZZ;I pfj =1,

2 2
<Z pw) (Z put) = Z(putpvt + puspvs) + Z puspvsputpvt+

uFv uFv
+4 Z PisPusPutPot + Z PisPksPutPot + 1.
1FUFV i£k#u#v

The second term and the third term are both O(1). Then,

2 2
Z PisPksPutPot ,S (Z pis> <Z put) +1+2 Zputp'ut + Zpuspvs .
u

i#£kFuFv % uFv uFv
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y (34), and A;(6) > 0/n, we have

szs < 'fL/S n n "n .
821”””* ane/n +Zs—2§n+/l 5ds=0(n).

s5=2
Then,
2
- - Z pzs Z put) " (Z'pis)Q 2
=[S ZaPel o)
22 )~ |2 )
Since [pu¢| = O(n=1/?),
n ‘Zu;ﬁv PutPot no n2.1 n 1 2
ZZ n22 E(0%)\P (6%) ;; n2P XGNP (0) " ; nPXE(0%) )

which is O(n?) by (37). Then, we proved (54), and thus, the third term of (48)
is Op, (n'/?). This completes the proof of the Lemma. |

In the following two lemmas, we establish some needed asymptotic properties
of the misspecified likelihood function under all the assumptions in § 2.

Lemma B.8. Let I'(6,() := %, recalling that o, is the standard devia-
tion of the noise. Then,

sup |0~ (1(6) = 1a(0)) = (07, O)l = 0p. (1), |0~ 41 (07)] = Op. (1),
(eo’

Proof. For any ¢ € ©', there exist a ¢* € O such that ¢ = ¢* + [J] and, noting
that 1 = 6* + [J], we have ¢ — 67 = ¢* — 6*. Hence, by the boundedness of ©,
for the first statement, it is enough to prove that, for any fixed 6 > 0,

sup |2, (01) — 1.(Q) = T(67, )| B 0

CeO:|¢—-0T|<§
By Lemma B.5,
su — < su — =0Op (1
e,ce@}?e;&c 60— C 0—¢ 968 do do p.(1)
(55)

Then, for every ¢ € ©' such that |¢ — 0] < 6,

0310 (0) = 1n(01) = 73 (1,(C) — 1, (61)) + Op, (n™3),
Hence, it suffices to show the statement for 1,,(¢) — 1,,(67). Next, recalling (38),

the difference of the log likelihoods can be rewritten as

1 T (6t (o
w000 1) =it S [ - 110 )

=1

20 N0
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L nR = n(01) (91— O (6)
LT N0

j=1

The second term is op, (1) uniformly for ¢ such that |¢ — 6| < §, which follows
from Lemma B.7 with p = 2, and

aj(or) 0+ 2002 (1—cos ) 07+ 2mo? (1-cos ) g

(56)

25 (0) ¢ + 2no? (1 — cos n+1> 8o + 2no? (1 — cos ]47:1) =5

where recall that §y > 0 is such that ® C (Jg,00). Then, it remains to prove
the following convergence:

m|>~

n-
CeO’: |C 9*\<6

3 [ og AJ(GT)} —ret,0 S0 (57
o i (€)

Based on (4.5) and (6.6) in [18] with a = ' and b = ¢, the uniform convergence
holds almost surely for ¢ € [1/C,C], where C is some constant. The result
can be generalized to ¢ € [6y,0" + 6] when we use convergence in probability
instead of almost surely convergence, because 87 can be treated as a constant
under measure P, (see more details in [44]). Hence, the first asymptotics of the
Lemma can be demonstrated. For the second, again, by Lemma B.5,

A 0D)] < 400D = L)+ [pH0D)] = [ H b0+ 0r. 1)

Then, it suffices to prove the boundedness of ‘n‘il'n(m) ‘, which follows directly

from Lemma B.7 with p = 2 since [,,(81) = =271 3" (\;(6) — R2)/nA3(01).
This completes the proof. O

Lemma B.9. Let 1(A) = 1/(80°/20.). Then, under all the assumptions in § 2,
n-%i P
21, (07) + 1(67) = 0,
and, for any sequence of nonnegative random variables {n,} such that n, L 0,

sup n=s i(g)—fn(g’) %0, asn — oo
¢,¢'€0: (¢! [<mm

Proof. By Lemma B.5, it suffices to prove the statements only for /,,. For the
first statement, we split /,, into two components:

L nR; n;(01) L — 1
a0 =—2m 2y L I e N
n ( ) n- ; ng)\?(m) n ; nQAf(HT)
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The first component is Op, (n"*/*) by Lemma B.7 with p = 3. The second
component converges to —I(6), which results from (3.1)-(3.2) in [17]. This con-
cludes the proof of the first assertion. For the second statement, without loss of
generality, let ( < ¢’ and note that

1 1 1 1 ¢, 1
2o x| C'( <<>A2<<>+m§<c>xj<<'>) = Ao
1 1 ,

¥ x| =N

Recalling that Zn(() =2 (202X3(Q)) 7 = Yoy R3/(n?A3(()), we have

= = n 1 " nR?
In(¢) = In(¢)] < 31" = ¢ ;”3/\?(04_;n4>‘?20
Then, because O C (dg, 00),
sup 0 [1n(¢) = 1a(¢)| < man Z 3A3 o B S PN
=’ <nn = o) 4= n*Aj(00)
By (39),

3
3
=y

o

3

-1 ¥ —1 1 1 (37)
B ;”4/\4(50) ~n Z{7”L3/\3(50) 714)\4(50) = o)

=1

—
<
<.

Then,

LN nR?
! j=1 n4)\?(50) P*( ) (59)

Applying Slutsky’s theorem, (59) and (37) to (58), the lemma can be proved. O

B.3. MLFE and its convergence rate

In this section, we prove that

= Op,(n71/%), (60)

which, as explained at the beginning of Appendix B, implies the condition (7)
of Theorem 4.1. .

Since 6,, is the maximum of the misspecified log likelihood function [,, defined
n (12), we then have

~1a(6") = (Bn — Ol (67) + (B, — 61) / (106" + w(B, — 61)) = 1(6)] dw
0
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Rearranging the terms, we obtain the following equation:

. 24 (@) . |
‘nf%in(m) + finh [mm +w(, — 01)) - Zn(m)} dw‘

6, — 9*‘ - (61)

1
n4

Next, we apply Theorem 1 of [45] with
Qn(z) = —n~1/? (l}(m) — Iz + [J])) , Qn(z) =T (0", 2+ [J]),

and 0, = 6, — [J], to conclude that 0, — [J] is a consistent estimator of §*.
This implies 0, — 67 % 0. Indeed, Lemma B.8 and the definition of T' yield
that the conditions are satisfied since the maximum of —T'(67, x4 [J]) is 0 when
x = 0 — [J] = 0*. The just stated consistency combined with Lemma B.9
(applied with 7, = |0,, — 87|) implies that the denominator of the right-hand
side of (61) converges to some constant value. The numerator is Op, (1) by
Lemma B.8. Then, the convergence rate of 6, to 01 is Op, (n~1), as claimed.

B.4. Local Asymptotic Normality (LAN)

The following LAN property is the condition (6) required in Theorem 4.1. For
notational simplicity, in this section, we write 1,,(0) as ly.

Theorem B.10. Recall that we assumed that K, — &' in P,-probability. As-
sume that k' is bounded away from zero and infinity in P, -probability, and (N),
(JD)-1, and (JF) hold true. Then, for every compact set K C R, [ satisfies

1 /- ~ 1 1 ~ 11
i | L oY = Lt ety — ety 4 L lp2ren| -
21612 Fon (l04f+n* /4h l9T> P hn 1(0 )(en 0 )+ P 2h’ 1(9 )‘ OP*(1)7
(62)
where 1(9) = 80”’%0'

Proof. Rewrite the the left-hand side expression in (62) as
1 /- ~ 1. ~ 11
il — _ ~_ hpi T _of —Zp271(pt
‘,‘{n <ZGT+n*1/4h lm) KThnALI(e )(Hn 9 )+ /{T2h 1(9 )‘

< ‘(i —~ i) (fmif(m)(én — 0" — %mwﬁ)’

Kn KT

1
+ —
K

n

lgt on-r/ap, — lgt — hni I(01)(6,, — 1) + %hQI(QT)’ .

By (60) (i.e. ‘én - QT‘ = Op, (n~Y%)), the fact that s, — &' in P,-probability,

and Slutsky’s Theorem, we only need to prove

- - - 1
Sup |lptn-1/ap, — lgt — hn T 1(07)(0, — 0T) + Zh21(0")| = 0p.(1).
heK 2
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Let us start by writing
~ ~ 1t 1 9 _1%
l97+n*1/4h — l@f = hn 4l9T =+ 5}?, n 2l9r —+ 7. (63)

For the first term of (63), since [ is continuous and differentiable w.r.t. 6, there
exists @, lying on the segment which connects 6% and 6,,, such that

1 _1z
n 4191 =N 4lgT —

N
|
N\b—‘
Nz
3
e
—
>
=
I
>
3
S~—

6, = (64)

Because 6, converges to A1 in probability and 0, lies on the segment joining
0,, and 0T, we conclude that 6, converges to 1 in probability. Then, applying
Lemma B.9 with ¢ = 6,,, ¢/ = 67, and n,, = |0, — 01|,

Al + 107 = 072, =0 Ay |+ [n g+ 1(6)] =op. (1), (65)

n

Thus, combining (64) and (65), the first term of the right-hand side of (63) can
be written as,

The second term of (63) converges to —3h?I(6") by Lemma B.9. For the re-
minder term of (63), r,, note first that by Lemma B.5, for all § € ©,

=Op.( Z
=1

Applying (37) and (39), the last term is Op, (y/n). The proof is the same as
n (59). We use E.nR3 = nX;(0*) + O(1) and cancel out one n);(6) from the
denominator (up to some constant) by (56), and then use (37) to obtain the
rate n'/2. Then,

do3  do3

do3

d3ly
o>

(k—1)! knR?
nEAT(O) R IATTL(O) |

|rn| < 1h3n7% sup &l op, (1)
nl < = —= | = op,(1).
6 06[91"01+n71/4h] d93
Combining all three terms, we can obtain the LAN property of L. O
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