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Abstract Nonlinear Tikhonov regularization within a Bayesian framework is in-

corporated into a computer program called pyReSpect, which infers the contin-

uous and discrete relaxation spectra from oscillatory shear experiments. It uses

Bayesian inference to provide uncertainty estimates for the continuous spectrum

h(τ) by propagating the uncertainty in the regularization parameter λ. The new

algorithm is about 6-9 times faster than an older version of the program (Re-

Spect) in which the optimal λ was determined by the L-curve method. About half

of the speedup arises from the Bayesian formulation by restricting the window

of λ explored. The other half arises from the nonlinear formulation for which the

spectrum is a weak function of λ, allowing us to use a coarse mesh for λ. The
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program is tested on three examples, a synthetic spectrum, a H-polymer, and an

elastomer with a nonzero terminal plateau.

Keywords relaxation spectrum · Bayesian inference · Tikhonov regularization ·

algorithm · software

1 Introduction

The relaxation spectrum of a material h(τ) is a fundamental property. All linear

viscoelastic functions such as time and frequency dependent moduli and compli-

ances can be calculated from it [12]. The utility of h(τ) extends beyond the linear

viscoelastic regime; for example, it informs constitutive models for large or fast

deformation [20–22,27].

Unfortunately, the relaxation spectrum cannot be measured directly; instead, it

has to be inferred from linear viscoelastic measurements, such as small amplitude

oscillatory shear experiments. These experiments yield the frequency-dependent

dynamic moduli, G∗(ω) = G′(ω)+ iG′′(ω), where G′(ω) and G′′(ω) are the storage

and loss modulus, respectively, and ω is the frequency of deformation.

Mathematically, G∗(ω) is related to the continuous relaxation spectrum (CRS)

or h(τ) via,

G′(ω) = G0 +

∞
∫

−∞

ω2τ2

1 + ω2τ2
h(τ) d log τ,

G′′(ω) =

∞
∫

−∞

ωτ

1 + ω2τ2
h(τ) d log τ, (1)

where G0 is the terminal plateau. In gels, for example, G0 6= 0. Practically, a

nonzero G0 is also useful to model materials where a relaxation mode lies outside

the experimental observation window.
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1.1 Status and Scope

Extracting h(τ) from G∗(ω) is a difficult inverse problem, and the determination

of a unique h(τ) is challenging [11,29]. Nevertheless, the problem of deducing h(τ)

from G∗(ω) has a rich history, due to the sheer importance of the problem in me-

chanical characterization of materials [1, 3,4,7,9,10,18,26,30–32,40–42,45]. Most

of these attempts seek to constrain the spectrum by appealing to the principles of

parsimony and interpretability. Parsimony steers us away from complex and os-

cillatory solutions towards simple and smooth solutions. Interpretability discards

spurious solutions, such as negative values of the CRS. Although the “true spec-

trum” is elusive, meaningful approximations to it are within reach.

A cursory look at the software landscape reveals that while the number of al-

gorithms published in the literature on this topic is truly staggering, only a small

fraction of these have been translated into software that is simultaneously accessi-

ble and extensible [18,19,33,34,38,39,42–44]. In this context, accessibility implies

freely availability for experimentalists to use off-the-shelf on any operating system.

Extensibility implies sufficient transparency of the algorithm and implementation,

so that a developer interested in tinkering or modifying the code is not intimidated.

Our Matlab/Octave program, ReSpect, was an attempt in this direction [42]. Main-

taining a single program that worked with both Matlab and GNU Octave involved

uncomfortable trade-offs. Thus, we reimplemented a significantly improved ver-

sion in python, called pyReSpect. The program to extract h(τ) from stress relax-

ation experiments which yield the stress modulus G(t) is called pyReSpect-time

and is available on GitHub (https://github.com/shane5ul/pyReSpect-time) [39].

This paper describes a companion program called pyReSpect-freq which brings
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the same advancements to the analysis of G∗(ω) (https://github.com/shane5ul/

pyReSpect-freq). When there is no room for confusion, we use the label pyReSpect

to refer to both these programs, since the underlying computational engines are

similar.

The principal goal of this work is to describe the significant new additions to the

algorithms underlying pyReSpect. Like ReSpect, and NLREG before it [19], it uses

nonlinear Tikhonov regularization to determine h(τ). In Tikhonov regularization,

the optimal value of the regularization parameter λ∗ can be found using a variety

of methods [14,15,24]. Earlier, we used a “L-curve” method that was layered with

complicated heuristics to account for difficult corner cases. Here, we propose a

Bayesian framework for determining λ∗; it is less arbitrary, provides uncertainty

estimates for h(τ), and runs 6-9 times faster than the older version. A similar

criterion was championed by Hansen and conveniently made available for use as

a web-interface (bayesrelax.org) [16, 17]. The key difference between pyReSpect

and BayesRelax is that the latter poses a linear Tikhonov regularization problem,

which leads to difficulties for some types of G∗(ω) described later. Furthermore,

BayesRelax cannot be used when G0 6= 0. Thus, pyReSpect can be thought of

as a nonlinear Tikhonov regularization algorithm (implemented in NLREG and

ReSpect) that uses a Bayesian criterion (implemented in BayesRelax) to determine

λ∗ to characterize uncertainty in h(τ). In addition, pyReSpect can also compute

the discrete relaxation spectrum (DRS); that, however, is not the focus of this

paper.
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2 Methods

Experimental data {ωi, G
′

e(ωi), G
′′

e (ωi)} are available at a set of n discrete frequen-

cies ωi, where i = 1, · · · , n. We stack the storage and loss moduli into a (2n × 1)

column vector D, and the frequencies into a n × 1 vector ω. The top half of D

contains the storage modulus Di = G′

e(ωi), while the bottom half contains the

loss modulus Dn+i = G′′

e (ωi). Here, and elsewhere, bold symbols denote vectors

and matrices, while regular symbols with subscripts denote components of these

quantities (e.g., D and Di).

We follow the nonlinear Tikhonov regularization strategy of Honerkamp and

Weese used in ReSpect [19,42]. We substitute h(τ) := eH(τ) in eqn. 1, which makes

the problem nonlinear and harder to solve. Nevertheless, the substitution confers

three advantages: (i) it allows us to deal with data defined over a large frequency

range, (ii) it automatically ensures h(τ) ≥ 0 [19], and, as shown later, (iii) provides

a recipe for speeding up the determination of λ∗.

We discretizeH(τ) by dividing the domain between τmin to τmax into nτ equally

spaced grid points (on a logarithmic scale) by,

τi = τmin

(

τmax

τmin

)

i−1

nτ−1

. (2)

By default, we set τ1 = τmin = e−π/2/ωmax and τnτ = τmax = eπ/2/ωmin, where

ωmin and ωmax define the frequency window over which G∗

e(ω) is acquired. Strictly,

the domain of τ over which H(τ) is reliable is smaller by a factor of eπ on either

end, i.e, eπ/2/ωmax ≤ τ ≤ e−π/2/ωmin [11]. However, the smoothness imposed on

H(τ) may increase the apparent range.

The nτ × 1 column vector H = [H1, H2, ..., Hnτ ]
T is used to store the value

of the discretized spectrum at [τ1, ..., τnτ ]
T . Typically, we set nτ so that there are
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5 - 10 grid points per decade. For a given H, the resulting G∗(ω) is numerically

evaluated by integrating eqn. 1 as,

G′(ω;H) ≈ G0 +
nτ
∑

j=1

wje
Hj

ω2τ2j

1 + ω2τ2j
,

G′′(ω;H) ≈
nτ
∑

j=1

wje
Hj

ωτj

1 + ω2τ2j
, (3)

denote the storage and loss moduli that are computed from H. The quadrature

weights wi incorporate the trapezoidal rule,

wj =























(∆ log τ)/2 for j = 1 and nτ

(∆ log τ) elsewhere,

(4)

and ∆ log τ = (log τmax − log τmin)/(nτ − 1). In pyReSpect, the kernel matrix K is

a 2n×nτ matrix where the storage (K′) and loss kernel matrices (K′′) are stacked

vertically. The (i, j) element corresponding to (ωi, τj) for the kernel matrices K′

and K′′ are, respectively,

K′

ij = wj

ω2
i τ

2
j

1 + (ωiτj)2
, K′′

ij = wj
ωiτj

1 + (ωiτj)2
, (5)

for 1 ≤ i ≤ n, 1 ≤ j ≤ nτ . Thus, the dynamic moduli corresponding to H at

frequencies ω is given by the 2n× 1 column vector,

G = G0u+Kh, (6)

where h = [eH1 , · · · eHnτ ]T , and u = [1, · · · , 1, 0, · · · , 0]T is a 2n × 1 vector, with

ui = 1 for 1 ≤ i ≤ n, and ui = 0 for n < i ≤ 2n. For G0 = 0, G = Kh yields G∗(ω)

at ω, which is comparable with D. For G0 6= 0, the G0u term in eqn. 6 adds the

terminal plateau to the storage modulus.
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2.1 Tikhonov Regularization

We seek a CRS for which G ≈ D. To measure the distance between G and D, we

define ρ2, a sum of squared residuals,

ρ2(H) =
2n
∑

i=1

r2i (7)

where the residuals ri are given by,

ri =

(

Di −Gi(H)

Di

)

, 1 ≤ i ≤ 2n. (8)

ρ2 represents the mismatch between the experimental and inferred G∗(ω). Due to

ill-conditioning, simply minimizing ρ2 leads to spurious oscillations in H. In order

avoid such over-fitting, we incorporate a curvature penalty term that penalizes

oscillations,

η2(H) = ||LH||2, (9)

where L is a nl × nτ tridiagonal matrix that encodes the difference operator for

the second derivative,

Lij =











































−2 j = i

1 j = i± 1

0 elsewhere.

(10)

The curvature condition is applied at only the nl = nτ − 2 internal points H2, ...,

Hnτ−1. η
2 is small for smooth H, and is equal to zero when H is linear in τ .

In Tikhonov regularization, the relative importance of ρ2 and η2 is controlled

by the regularization parameter λ. For a given λ, we find the optimal Hλ by

minimizing the cost function V = ρ2 + λη2,

Hλ = min
H

V (H, λ) = ρ2(H) + λη2(H). (11)
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When λ is too large, the smoothness condition dominates the cost function, and

we get an overly smooth CRS that fits the experimental data poorly (small η2, and

large ρ2). When λ is too small, the smoothness condition is essentially ignored,

and we end up with the original non-regularized problem, which is ill-conditioned.

This leads to an oscillatory H that is sensitive to noise in the data (large η2, and

small ρ2).

The idea behind Tikhonov regularization is to choose an optimal λ = λ∗ that is

approximately midway between these extremes. There are several different meth-

ods of choosing λ∗ [14,15,24]. While the value of λ∗ depends on the method used;

the estimates of H(τ) are often similar. One of these methods, called the L-curve

method, is employed in ReSpect. We plot η2 versus ρ2 obtained by solving the

minimization problem (eqn 11) for a range of λ between λmin and λmax. Often,

this yields an “L-shaped” curve (see inset in fig. 3). In the L-curve method, a suit-

able point near the corner of the “L” is used to determine λc ≈ λ∗. The subscript

“c” stands for “corner”. When a clear corner cannot be discerned (see inset in

figure 5), additional heuristics are required to determine λc.

In pyReSpect, we solve the minimization problem (eqn. 11) using the nonlinear

least-squares minimizer “least squares()” from scipy, which uses a trust-region re-

flective method [8,25]. This requires us to furnish subroutines that supply residuals

and the Jacobian. A detailed description of these quantities is provided because

they are also useful in Bayesian analysis.

Before that, it is useful to consider the size of the computational problem.

When G0 = 0 the number of unknowns (H1, ..., Hnτ ) is nτ . When G0 6= 0 also has

to be determined, the number of unknowns increases to nτ + 1. The number of

residuals, 2n+ nl, is the same in either case. The size of the Jacobian matrix for
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G0 = 0 is (2n+nl)×nτ . When G0 6= 0, it has an extra column (2n+nl)× (nτ +1)

to account for the additional unknown (G0).

2.1.1 Residuals and Jacobian

The objective function (eqn 11) can be written as a sum of squared residuals,

V (H, λ) =
2n+nl
∑

i=1

r2i =
2n
∑

i=1

r2i +
2n+nl
∑

i=2n+1

r2i ,

where the first 2n residuals correspond to ρ2 (eqn. 8). The subsequent nl residuals

correspond to λη2, and are given by,

r2n+i =
√
λ (Hi+1 − 2Hi +Hi−1) , 2 ≤ i ≤ n− 1. (12)

These can be conveniently built from the vector LH.

The Jacobian J is defined as Jij = ∂ri/∂Hj . Let us first consider the simpler

case with G0 = 0. For the first 2n rows (eqn. 8),

∂ri
∂Hj

= − 1

Di

∂Gi(H)

∂Hj
= −∇Gij

Di
. (13)

From eqn 3, the derivative of the kernel can be computed; all the terms in the

summation, except the particular Hj , drop off. The 2n× nτ matrix ∇G is,

∇Gij = eHjKij . (14)

Note that apart from the additional eHj factor, ∇G is identical to the kernel

matrix K. Thus, the derivative of the residual is,

Jij =
∂ri
∂Hj

= −eHjKij

Di
, 1 ≤ i ≤ 2n, 1 ≤ j ≤ nτ . (15)

The last nl rows of the Jacobian are are simply a rescaled form of L.

J2n+i,j =
√
λLij , 1 ≤ i ≤ nl, 1 ≤ j ≤ nτ . (16)
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If G0 6= 0, then the Jacobian has an additional column, which is zero every-

where, except,

Ji,nτ+1 =
∂ri
∂G0

= − 1

Di

∂Gi(H)

∂Hj
= − 1

Di
, 1 ≤ i ≤ n. (17)

2.2 Bayesian Inference

In a Bayesian framework, we treat λ as a random variable characterized by a proba-

bility distribution function π(λ). The posterior distribution π(λ|D) is proportional

to the product of the likelihood or evidence π(D|λ) and the prior,

π(λ|D) ∼ π(D|λ)π(λ).

Here, we assume a simple exponential prior π(λ) = e−λ. The evidence is the

integral over all possible spectra H,

π(D|λ) =
∫

π(D|H, λ)π(H|λ) dH. (18)

The components of the objective function in eqn 11 and the evidence (eqn 18)

are closely related. In particular, the first term in the integral, π(D|H, λ) can be

related to ρ2 via,

π(D|H, λ) ∼ e−ρ2

= N (G,D/
√
2). (19)

This asserts that the observed data are normally distributed around the predicted

values G(H) with a standard deviation proportional to D (see eqn. 8). Note that

this term does not depend on λ explicitly, and the prefactor or normalization

constant is independent of H.

The second term in eqn 18, π(H|λ) corresponds to the regularization constraint

or η2,

π(H|λ) = e−λη2(H)

Zη2

(20)
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where the curvature penalty term, η2(H) = ||LH||2. Zη2 is the normalization con-

stant, which is determined shortly.

In Tikhonov regularization, the cost function is V (H, λ) = ρ2(H) + λη2(H).

Thus, eqns. 19 and 20 imply that the evidence can be written as,

π(D|λ) =
∫

e−V (H,λ)

Zη2

dH. (21)

We can use the saddle point or Laplace approximation to estimate the normaliza-

tion constant. This means that if Hλ is the optimal solution at a given λ, we can

integrate over all spectra H,

∫

e−V (H,λ)

Zη2

dH ≈ e−V (Hλ)

Zη2

√

(2π)nτ

det(λA+B)
, (22)

to obtain the evidence for D at a particular λ. In the expression above, the Hessians

A := ∇∇η2 and B := ∇∇ρ2 are evaluated at the optimum Hλ. We can define the

Hessian corresponding to the cost function as C := ∇∇V = λA+B.

Unlike the normalization constant for ρ2, Zη2 cannot be neglected because it

depends on λ. Nevertheless, we can use the saddle point approximation again to

estimate it. From eqn. 20,

Zη2 =

∫

e−λη2(H)dH = e−λη2(H0)

√

(2π)nτ

det(λA)
(23)

For λ ≫ 1, the H that maximizes e−λη2

, H0, corresponds to η2 = 0. Thus, it is

safe to assume that e−λη2(H0) = 1. In pyReSpect, the level of discretization nτ is

held fixed throughout; therefore, the saddle point approximation for the posterior

can be written as,

π(λ|D) ∼ π(D|λ)π(λ) ∼ e−V (Hλ)

√

det(λA)

det(C)
e−λ (24)

Since det(λA) = λnτ det(A) where nτ is the size of matrix A,

log π(λ|D) ∼ −V (Hλ) +
1

2
[log det(A) + nτ log λ− log det(C)]− λ, (25)
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2.2.1 Hessians

We now seek to explicitly resolve the matrices A and B, starting with A = ∇∇η2.

η2(H) = (LH)T (LH) = H
T
L
T
LH. (26)

The Hessian of the quadratic form is a square (nτ × nτ ) matrix,

A = ∇∇η2 =
∂2(HTLTLH)

∂H ∂HT
= 2LT

L. (27)

Note that A is constant and does not depend on λ.

To compute B = ∇∇ρ2, we start by considering the jth element of the vector

∇ρ2,

∂ρ2

dHj
=

2n
∑

k=1

∂

dHj
r2k =

2n
∑

k=1

2rk
∂rk
∂Hj

, 1 ≤ j ≤ nτ . (28)

The derivative of the residual was previously evaluated (eqn. 15) to determine

the Jacobian, ∂rk/∂Hj = Jkj , for 1 ≤ k ≤ 2n, 1 ≤ j ≤ nτ . Thus, eqn. 28 may be

simplified as,

∂ρ2

dHj
= 2

2n
∑

k=1

rk
∂rk
∂Hj

= 2
2n
∑

k=1

rkJkj (29)

To find the Hessian B = ∇∇ρ2, we take the partial with respective to Hi,

Bij =
∂

∂Hi

∂ρ2

∂Hj

= 2
∑

k

(

∂rk
∂Hi

Jkj + rk
∂Jkj
∂Hi

)

= 2
∑

k

(

JkiJkj + rkJkiδij
)

. (30)

The Kronecker delta function in the second term of the summation ensures that

it is only active along the diagonal of the Hessian (i = j). Note that size of the
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matrix B = ∇∇ρ2 is also nτ × nτ . In matrix form, we can write,

A = 2LT
L

B = 2
(

J
T
J+ diag(rTJ)

)

, (31)

where J is the 2n×nτ part of Jacobian matrix, and r is the 2n× 1 residual vector

that corresponds to ρ2. The advantage of expressing A and B in matrix form is

that the equations translate seamlessly even when G0 6= 0.

2.2.2 Algorithm in pyReSpect

We precompute the matrix A = LTL. The prefactor of two (eqn 31) can be thrown

away from both A and B since it cancels out eventually. We scan through a range

of λ ∈ [λmin, λmax]. At each λ,

(i) compute Hλ by minimizing V (H, λ) and store it.

(ii) compute ρ2, η2, V (λ) = ρ2 + λη2.

(iii) compute the residual r and Jacobian J.

(iv) compute B =
(

JTJ+ diag(rTJ)
)

and hence C = λA+B.

(v) compute log posterior probability,

log πλ = −V (Hλ) +
1

2
[log |A|+ nτ log λ− log |C|]− λ

We normalize log πλ to get the posterior π(λ) (the dependence on D in π(λ|D)

is dropped henceforth for brevity), and find the mean (subscript “m”)

λ∗ ≈ λm = E[λ] = exp

(

∑

λ

log λ · log πλ
)

. (32)

Finally, we compute the mean spectrum

H̄ = E[Hλ] =

∫

Hλ π(λ) dλ, (33)
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(i) Synthetic Data from Spectrum with Unequal Peaks: This dataset is

fashioned after the example used in Honerkamp and Weese (their figure 1a)

[19]. The underlying spectrum is given by a weighted sum of two quadratic

components,

H1(τ) = 8− 2 (log10 τ + 2)2

H2(τ) = 5− 0.5 (log10 τ − 3)2

He(τ) = w(τ)H1(τ) + (1− w(τ))H2(τ), (35)

where the weight function w(τ) = 1/(1 + eH2−H1) preferentially overweights

the component (H1 or H2) with the larger magnitude at any given τ . The

spectrum is shown in figure 1. The first (taller) peak corresponds to H1 while

the second (shorter) peak corresponds to H2. Synthetic data is generated by

adding 2.5% noise to the G∗(ω) computed numerically from He(τ) using eqn.

1 at n = 100 logarithmically equispaced points. It extends over 11 orders

of magnitude, and is chosen to represent a polymer in terminal, plateau,

transition, and glassy regions (see figure 2).

For a similar example, Honerkamp and Weese showed that using a linear

least squares method (like FTIKREG) results in serious difficulties due to

the contributions corresponding to the two peaks. At small τ , the higher

peak contributes significantly to G∗(ω) in the transition and glassy regions,

while at large τ , the lower peak contributes modestly to the linear rheology

in the terminal and plateau regions. It is difficult for FTIKREG to resolve

both peaks simultaneously.

(ii) H-polymer: This is the H3A1A polystyrene H-polymer which was synthe-

sized, and first studied by Roovers and co-workers [36, 37]. The nominal
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molecular weight of the arms and the backbone are 132 kDa and 123 kDa,

respectively. The linear viscoelasticity was restudied by Lentzakis [28], using

a more advanced rheometer and resolving low-frequency measurements more

carefully.

This data is presented in figure 4. It was used by Ankiewicz et al. to discuss

the advantages of using a CRS to identify power-laws and relaxation regimes

that are not distinctly visible in the experimental G∗(ω) [2]. In particular,

they were able to recognize a τ−1/2 Rouse regime at short time scales in the

spectrum (not visible in G′′(ω) due to contamination from glassy modes),

and τ−1/4 regime at intermediate time corresponding to the relaxation of

the arms, prior to terminal relaxation.

(iii) Elastomer with Terminal Plateau: This test case (shown in figure 6) cor-

responds to Sorbothane 70, a cross-linked polyurethane rubber, at 20◦C, by

superposing data obtained at 16 different temperatures [13, 27]. The elas-

tomer has good shock-absorption properties because high energy dissipation

occurs in the transition zone between rubbery and glassy behavior at fre-

quencies (102 − 104 Hz) that are typical of impacts.

There are two reasons for selecting this as a test case: (i) G∗(ω) data extends

over 18 orders of magnitude, and (ii) nonzero terminal plateau, G0 6= 0, which

is visible as a plateau in G′(ω) at low frequencies.
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The Fortran 77 computer program which carries out these calculations is also avail-

able at that site. Like pyReSpect, BayesRelax uses Bayesian analysis to obtain a

distribution of π(λ), from which h(τ) is determined. Unlike pyReSpect or NLREG,

however, it solves a linear least squares problem to determine h(τ). As a result the

spectrum is not guaranteed to be positive, and suffers from limitations similar to

FTIKREG. Nevertheless, in this particular case, the spectrum generated closely

matches the H(τ) obtained by pyReSpect, except perhaps at short τ .

The G∗(ω) corresponding to the spectra obtained using pyReSpect and BayesRe-

lax are compared with the experimental data in figure 4. The fits agree with the

data everywhere, except at large frequencies (corresponding to short τ), where the

mismatch between the data and G∗(ω) obtained from BayesRelax is more pro-

nounced. Even the G∗(ω) obtained using pyReSpect shows some deviations from

the last G′′(ω) data-point. It is unclear whether this arises from a break-down of

Kramers-Kronig relationship, that is sometimes observed when data from several

different experiments are superposed to obtain a master curve. Ankiewicz et al.

did not report the fit with G∗(ω) in their paper [2], but we expect the outcome to

be similar.

The η2 versus ρ2 curve is shown in the inset to figure 5. Over the range of λ

explored, it is a monotonically decreasing curve. Since there is no obvious corner

on this “L-curve”, the original version of pyReSpect used a series of complicated

heuristics to determine λc. For this example, λc = 2.81, which is quite close to

λm = 4.92, determined from the posterior distribution π(λ). Due to the proximity

of λc and λm, they yield very similar H(τ). Nevertheless, the criterion used to

determine λm is simpler, easier to articulate and comprehend, and generalizes

quite well. When the L-curve has a corner (fig 1), λm is close to it. In other cases,
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criterion [39]. The relationship between the DRS and G∗(ω) is given by,

G′(ω) = G0 +
N
∑

i=1

gi
ω2τ2i

1 + ω2τ2i

G′′(ω) =
N
∑

i=1

gi
ωτi

1 + ω2τ2i
(36)

Figure 7 depicts the CRS and DRS for this example. The fit of the G∗(ω)

corresponding to these spectra are shown in figure 6. For this case, λm = 7.39 is

smaller than λc = 178 obtained using the older method. However, it turns out that

Hλ is somewhat insensitive to λ for this example. This is evident in figure 7; in

addition to the CRS determined at λ = λm (shown by the thick red line), Hλs for

λ ∈ [0.4, 1000] are shown by thin gray lines. These curves essentially superpose,

except near the ends, outside the region demarcated by the dashed gray lines,

where they flare out mildly. Thus, for this example, the inferred CRS at λm and

λc are essentially indistinguishable. However, this remarkable insensitivity of Hλ

to λ is not a general feature. In the appendix, figure 8 shows a similar plot for the

H-polymer, where somewhat greater dispersion in Hλ can be observed.

Here, the DRS has N = 27 modes, and closely mimics the shape of the CRS.

In ref. 27, the authors fit a N = 14 and N = 15 mode DRS, in conjunction

with a viscous mode, to selectively fit the data at frequencies between 10−2 − 104

rad/s. Since the primary object of investigation in their study was the impact

response of elastomers in drop tests, matching G∗(ω) for frequencies higher than

105 rad/s was deemed unnecessary. The duration of impact is of the order of several

milliseconds, and modes faster than 105 rad/s contribute little to the viscoelastic

impact response [27]. Nevertheless, the DRS inferred from pyReSpect offers a

compelling description of the entire G∗(ω) response with a sparse mode density of

approximately 1.4 modes/decade.
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Bayes Old

sample total λ-scan total λ-scan

synthetic spectrum 3.2 1.5 10.1 8.8

H-polymer 3.4 1.4 14.2 12.1

elastomer 3.1 1.8

Table 1 Computational time in seconds to run pyReSpect with (Bayes) and without (old)

the Bayesian framework, for the three cases studied here. The old method cannot be used for

the last case since G0 6= 0.

Intel i7-6700 3.4GHz CPU. The total cost of the calculation, which includes the

overhead: I/O, setup, initialization, printing and plotting, is shown in addition to

the cost of the most expensive step, viz., scanning a range of λ to determine λ∗.

The overhead cost is about 1.5–2s for both the old and new methods. However, we

observe a significant speedup in the computational cost for scanning λ. For the first

two cases (synthetic spectrum and H-polymer), speeds ups in the range of 6-9x

are obtained with the Bayesian formulation. The old program was not geared to

handle nonzero terminal plateau (G0 6= 0), and hence a direct comparison cannot

be made for the last case.

The efficiency arises from both the Bayesian, and the nonlinear formulation of

Tikhonov regularization. The Bayesian framework allows us to limit the range of

λ explored, and the nonlinear formulation allows us to use a sparse distribution of

λs within this limited range. Let us explore both these advantages in more detail.

By default, pyReSpect scans λ ∈ [10−10, 103], starting from large values, with

a density of 3 modes per decade. As seen in figure 3, log π(λ) initially increases

as λ decreases registering a maximum (between λ ≈ 100 − 101, in this case),

before decreasing further. In the program, once π(λ) falls sufficiently below the
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maximum (8 orders of magnitude), we truncate the λ-scan. Smaller values of λ

are associated with negligible probabilities. Compared to the older method, this

results in significant computational savings, since the entire η2 versus ρ2 curve does

not have to be constructed. In figure 3 for example, the λ-scan is terminated after

λ = 7.8 × 10−2, instead of going all the way to λmin = 10−10. This implies that

only a third of the potential ≈ 40 discrete values of λ ∈ [10−10, 103] are explored.

This directly results in savings of a factor of ≈ 3, over the original program.

In figure 3, green circles indicate the values of λ explored using the default

setting in pyReSpect. The blue line depicts log π(λ) obtained with a higher reso-

lution of λ. The λm inferred from the (default) coarse spacing of λ is remarkably

consistent with that obtained using the finer resolution. Interestingly, and fortu-

nately, this turns out to be a general observation that arises from the nonlinear

formulation of the problem. In general, we observe that for λ1 ≤ λ ≤ λ2,

Hλ(τ) ≈ (1− sλ)Hλ1
(τ) + sλHλ2

(τ), (37)

where sλ = (log λ− log λ1)(log λ2− log λ1). Differentiating eqn 37, we find that the

first derivative is independent of λ,

∂Hλ

∂ log λ
≈ Hλ2

−Hλ1

log λ2 − log λ1
. (38)

In other words, the second derivative ∂2Hλ/∂(log λ)
2 ≈ 0. This is depicted in figure

7 by the solid purple lines using a centered difference formula to approximate the

second derivative at λ = λj ,

∂2Hλ(τ)

∂(log λ)2
≈ H(τ, λj+1)− 2H(τ, λj) +H(τ, λj−1)

(∆ log λ)2
, (39)

with ∆ log λ = log λj+1 − log λj . Despite minor oscillations, the second derivative

(fig. 7) is negligible. This implies that the spectrum Hλ(τ) is approximately linear
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in log λ. Practically, this means that the density of λs can be quite sparse. Often

about 10 different values of λ are sufficient to determine λm, compared to 30-100

values for BayesRelax [17]. Appendix 5 explores the origin of ∂2Hλ/∂(log λ)
2 ≈ 0

using a toy model.

Thus, the combination of the Bayesian (clip the range of λ) and nonlinear

(sparse distribution of λ) formulations greatly reduce the effort required to find

the optimal λ∗. Each of these steps contributes a 2-3x cost saving, leading to a

combined savings of 6-9x. Since this is the slowest step in the algorithm, it reduces

the computational effort greatly.

4 Summary

We developed a computer program called pyReSpect to infer the continuous and

discrete relaxation spectra from oscillatory shear experiments. An older version of

this program used nonlinear Tikhonov regularization with a complicated heuristic

to determine the optimal amount of regularization. In this work, we replaced it with

a method based on Bayesian inference. The new and improved program provides

uncertainty estimates for H(τ) by considering the distribution of π(λ) that arises

from Bayesian analysis.

The Bayesian formulation improves the performance by a factor of 2-3x by

focusing on a limited window of λ for which π(λ) is non-negligible. The nonlinear

formulation results in ∂2Hλ/∂(log λ)
2 ≈ 0. This linearity allows us to consider

a coarse mesh of λ, thereby improving the performance by an additional factor

of 2-3x. For the examples considered, combined efficiency gains of order 6-9x are

observed, consistent with these sources.
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For simplicity, and without loss of generality, suppose that H is a variable

rather than a function H(τ). Let, V (λ,H) = ρ2(H) + λη2(H) be a cost function

that is linear in λ, but nonlinear in H. Furthermore, suppose

H+ = min
H

V (λ,H)

H∗ = min
H

V (λ∗, H),

where λ∗ is any particular λ, not necessarily the optimal λ. Let R(H) = dρ2(H)/dH

and N(H) = dη2(H)/dH, be the first derivatives. Optimality conditions imply,

R(H+) + λN(H+) = 0

R(H∗) + λ∗N(H∗) = 0.

Let R+ = R(H+), N+ = N(H+), R∗ = R(H∗), and N∗ = N(H∗). For slowly

varying functions, a Taylor series expansion implies,

R+ = R∗ + (H+ −H∗)
dR

dH

∣

∣

∣

∣

H∗

+O(∆H2) (40)

N+ = N∗ + (H+ −H∗)
dN

dH

∣

∣

∣

∣

H∗

+O(∆H2) (41)

Ignoring quadratic and higher order terms, and setting c1 = dR(H∗)/dH and

c2 = dN(H∗)/dH,

R+ + λN+ = R∗ + λN∗ + (H+ −H∗)(c1 + λc2)

0 = (λ− λ∗)N∗ + (H+ −H∗)(c1 + λc2).

If c2λ ≫ c1, then (H+ −H∗)/(λ− λ∗) = ∆H/∆λ ≈ −N∗/(c2λ). Thus,

∆H

∆ log λ
≈ −N∗

c2
= constant. (42)
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