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Abstract Nonlinear Tikhonov regularization within a Bayesian framework is in-
corporated into a computer program called pyReSpect, which infers the contin-
uous and discrete relaxation spectra from oscillatory shear experiments. It uses
Bayesian inference to provide uncertainty estimates for the continuous spectrum
h(7) by propagating the uncertainty in the regularization parameter A. The new
algorithm is about 6-9 times faster than an older version of the program (Re-
Spect) in which the optimal A was determined by the L-curve method. About half
of the speedup arises from the Bayesian formulation by restricting the window
of X explored. The other half arises from the nonlinear formulation for which the

spectrum is a weak function of )\, allowing us to use a coarse mesh for A. The
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program is tested on three examples, a synthetic spectrum, a H-polymer, and an

elastomer with a nonzero terminal plateau.

Keywords relaxation spectrum - Bayesian inference - Tikhonov regularization -

algorithm - software

1 Introduction

The relaxation spectrum of a material h(7) is a fundamental property. All linear
viscoelastic functions such as time and frequency dependent moduli and compli-
ances can be calculated from it [12]. The utility of h(r) extends beyond the linear
viscoelastic regime; for example, it informs constitutive models for large or fast
deformation [20-22, 27].

Unfortunately, the relaxation spectrum cannot be measured directly; instead, it
has to be inferred from linear viscoelastic measurements, such as small amplitude
oscillatory shear experiments. These experiments yield the frequency-dependent
dynamic moduli, G*(w) = G'(w) +iG" (w), where G'(w) and G” (w) are the storage
and loss modulus, respectively, and w is the frequency of deformation.

Mathematically, G*(w) is related to the continuous relaxation spectrum (CRS)
or h(r) via,

W22
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G'(w) =Go + / T w22 h(7)dlog,
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14+ w272

G (w) = / YT h(r)dlogn, (1)
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where Gg is the terminal plateau. In gels, for example, Go # 0. Practically, a
nonzero Gg is also useful to model materials where a relaxation mode lies outside

the experimental observation window.
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1.1 Status and Scope

Extracting h(7) from G*(w) is a difficult inverse problem, and the determination
of a unique h(r) is challenging [11,29]. Nevertheless, the problem of deducing h(7)
from G*(w) has a rich history, due to the sheer importance of the problem in me-
chanical characterization of materials [1,3,4,7,9,10,18,26,30-32,40-42,45]. Most
of these attempts seek to constrain the spectrum by appealing to the principles of
parsimony and interpretability. Parsimony steers us away from complex and os-
cillatory solutions towards simple and smooth solutions. Interpretability discards
spurious solutions, such as negative values of the CRS. Although the “true spec-

trum” is elusive, meaningful approximations to it are within reach.

A cursory look at the software landscape reveals that while the number of al-
gorithms published in the literature on this topic is truly staggering, only a small
fraction of these have been translated into software that is simultaneously accessi-
ble and extensible [18,19,33,34,38,39,42-44]. In this context, accessibility implies
freely availability for experimentalists to use off-the-shelf on any operating system.
Extensibility implies sufficient transparency of the algorithm and implementation,
so that a developer interested in tinkering or modifying the code is not intimidated.
Our Matlab/Octave program, ReSpect, was an attempt in this direction [42]. Main-
taining a single program that worked with both Matlab and GNU Octave involved
uncomfortable trade-offs. Thus, we reimplemented a significantly improved ver-
sion in python, called pyReSpect. The program to extract h(7) from stress relax-
ation experiments which yield the stress modulus G(t) is called pyReSpect-time
and is available on GitHub (https://github.com/shane5ul/pyReSpect-time) [39].

This paper describes a companion program called pyReSpect-freq which brings
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the same advancements to the analysis of G*(w) (https://github.com/shane5ul/
pyReSpect-freq). When there is no room for confusion, we use the label pyReSpect
to refer to both these programs, since the underlying computational engines are

similar.

The principal goal of this work is to describe the significant new additions to the
algorithms underlying pyReSpect. Like ReSpect, and NLREG before it [19], it uses
nonlinear Tikhonov regularization to determine h(7). In Tikhonov regularization,
the optimal value of the regularization parameter A* can be found using a variety
of methods [14,15,24]. Earlier, we used a “L-curve” method that was layered with
complicated heuristics to account for difficult corner cases. Here, we propose a
Bayesian framework for determining \*; it is less arbitrary, provides uncertainty
estimates for h(7), and runs 6-9 times faster than the older version. A similar
criterion was championed by Hansen and conveniently made available for use as
a web-interface (bayesrelax.org) [16,17]. The key difference between pyReSpect
and BayesRelax is that the latter poses a linear Tikhonov regularization problem,
which leads to difficulties for some types of G*(w) described later. Furthermore,
BayesRelax cannot be used when Go # 0. Thus, pyReSpect can be thought of
as a nonlinear Tikhonov regularization algorithm (implemented in NLREG and
ReSpect) that uses a Bayesian criterion (implemented in BayesRelax) to determine
A* to characterize uncertainty in h(7). In addition, pyReSpect can also compute

the discrete relaxation spectrum (DRS); that, however, is not the focus of this

paper.
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2 Methods

Experimental data {w;, Gf(w;), Gr (w;)} are available at a set of n discrete frequen-
cies w;, where i = 1,--- ,n. We stack the storage and loss moduli into a (2n x 1)
column vector D, and the frequencies into a n x 1 vector w. The top half of D
contains the storage modulus D; = G.(w;), while the bottom half contains the
loss modulus D,,; = G (w;). Here, and elsewhere, bold symbols denote vectors
and matrices, while regular symbols with subscripts denote components of these
quantities (e.g., D and D;).

We follow the nonlinear Tikhonov regularization strategy of Honerkamp and
Weese used in ReSpect [19,42]. We substitute A(7) := ¢ (") in eqn. 1, which makes
the problem nonlinear and harder to solve. Nevertheless, the substitution confers
three advantages: (i) it allows us to deal with data defined over a large frequency
range, (ii) it automatically ensures h(7) > 0 [19], and, as shown later, (iii) provides
a recipe for speeding up the determination of \*.

We discretize H(7) by dividing the domain between Ty, t0 Tmax into nr equally

spaced grid points (on a logarithmic scale) by,

i—1
LT
Ti = Tmin (Tmax) R (2)

Tmin

By default, we set 71 = Tmin = 67”/2/wmax and Tp, = Tmax = e”/z/wmin, where
Wimin and wmax define the frequency window over which G¢(w) is acquired. Strictly,
the domain of 7 over which H(r) is reliable is smaller by a factor of e™ on either
end, i.e, e’r/Q/oumaX <r< efﬂ/z/wmin [11]. However, the smoothness imposed on
H(7) may increase the apparent range.

The n, x 1 column vector H = [Hy, Ha, ..., Hn.]T is used to store the value

of the discretized spectrum at [, ...,TnT]T. Typically, we set nr so that there are
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5 - 10 grid points per decade. For a given H, the resulting G*(w) is numerically

evaluated by integrating eqn. 1 as,

w27_2

G( Go+ij '71+w2 5

n,

G"(w;H) = ij Hy 975 (3)

14w 7'2 ’
denote the storage and loss moduli that are computed from H. The quadrature
weights w; incorporate the trapezoidal rule,

(AlogT)/2  for j=1and n,
wj = (4)

(AlogT) elsewhere,
and AlogT = (10g Tmax — 10g Tmin)/(nr — 1). In pyReSpect, the kernel matrix K is
a 2n x nr matrix where the storage (K’) and loss kernel matrices (K") are stacked
vertically. The (i,7) element corresponding to (w;,7;) for the kernel matrices K’

and K" are, respectively,

2 2
Wy Wi T4
Ki; YT R g, T
W= Wiy + (wiT5)?’ W= iy + (wiTj)?’ (5)

for 1 < i <n,1 < j < ny. Thus, the dynamic moduli corresponding to H at

frequencies w is given by the 2n x 1 column vector,

G = Gou+Kh, (6)

where h = [eff1...efln-]T and u = [1,---,1,0,---,0]7 is a 2n x 1 vector, with
u; =1 for 1 <4 <n, and u; =0 for n < i < 2n. For Gop = 0, G = Kh yields G*(w)
at w, which is comparable with D. For Gy # 0, the Gpu term in eqn. 6 adds the

terminal plateau to the storage modulus.
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2.1 Tikhonov Regularization

We seek a CRS for which G =~ D. To measure the distance between G and D, we

define p?, a sum of squared residuals,
2n
pP(H) = r} (7)
i=1

where the residuals r; are given by,

Ti:(Di%G}(H)), 1<i<2n. (8)

p? represents the mismatch between the experimental and inferred G*(w). Due to
ill-conditioning, simply minimizing p? leads to spurious oscillations in H. In order
avoid such over-fitting, we incorporate a curvature penalty term that penalizes

oscillations,

n”(H) = ||LH||*, (9)

where L is a n; X nr tridiagonal matrix that encodes the difference operator for
the second derivative,
-2 j=i

Lij=q1 j=i+1l (10)

0 elsewhere.

The curvature condition is applied at only the n; = nr — 2 internal points Ha, ...,
Hy 1. 772 is small for smooth H, and is equal to zero when H is linear in 7.

In Tikhonov regularization, the relative importance of p? and 72 is controlled
by the regularization parameter \. For a given )\, we find the optimal H, by

minimizing the cost function V = p? + An?,

Hy = minV(H, \) = p*(H) + 2> (H). (11)
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When )\ is too large, the smoothness condition dominates the cost function, and
we get an overly smooth CRS that fits the experimental data poorly (small 52, and
large pz). When ) is too small, the smoothness condition is essentially ignored,
and we end up with the original non-regularized problem, which is ill-conditioned.
This leads to an oscillatory H that is sensitive to noise in the data (large n?, and
small p?).

The idea behind Tikhonov regularization is to choose an optimal A = \* that is
approximately midway between these extremes. There are several different meth-
ods of choosing \* [14,15,24]. While the value of \* depends on the method used;
the estimates of H(r) are often similar. One of these methods, called the L-curve
method, is employed in ReSpect. We plot 1? versus p? obtained by solving the
minimization problem (eqn 11) for a range of A between Apin and Amax. Often,
this yields an “L-shaped” curve (see inset in fig. 3). In the L-curve method, a suit-
able point near the corner of the “L” is used to determine A\. =~ A\*. The subscript
“c” stands for “corner”. When a clear corner cannot be discerned (see inset in
figure 5), additional heuristics are required to determine Ac.

In pyReSpect, we solve the minimization problem (eqn. 11) using the nonlinear
least-squares minimizer “least_squares()” from scipy, which uses a trust-region re-
flective method [8,25]. This requires us to furnish subroutines that supply residuals
and the Jacobian. A detailed description of these quantities is provided because
they are also useful in Bayesian analysis.

Before that, it is useful to consider the size of the computational problem.
When Go = 0 the number of unknowns (Hi, ..., Hp, ) is nr. When Go # 0 also has
to be determined, the number of unknowns increases to nr + 1. The number of

residuals, 2n + ny, is the same in either case. The size of the Jacobian matrix for
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Go =01is (2n+n;) x nr. When Go # 0, it has an extra column (2n+mn;) x (nr +1)

to account for the additional unknown (Go).

2.1.1 Residuals and Jacobian

The objective function (eqn 11) can be written as a sum of squared residuals,

2n+ny 2n 2n+ny
VEN) = D> ri=) it > i
i=1 i=1 1=2n+1

where the first 2n residuals correspond to p® (eqn. 8). The subsequent n; residuals

correspond to A2, and are given by,
Ponti = VN (Hip1 — 2H; + Hi—1), 2<i<n-—1. (12)

These can be conveniently built from the vector LH.
The Jacobian J is defined as J;; = dr;/0H;. Let us first consider the simpler

case with Go = 0. For the first 2n rows (eqn. 8),

8” o i 8G1 (H) _ VG”

(13)

9H; ~ D; 0H; D;
From eqn 3, the derivative of the kernel can be computed; all the terms in the

summation, except the particular H;, drop off. The 2n x nr matrix VG is,
VGij = e Ky (14)

Note that apart from the additional /s factor, VG is identical to the kernel

matrix K. Thus, the derivative of the residual is,

) Hj g .
Jijzggj:——e Di”, 1<i<2n,1<j<n, (15)

The last n; rows of the Jacobian are are simply a rescaled form of L.

Jontij=VALy, 1<i<n,1<j<n;. (16)
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If Go # 0, then the Jacobian has an additional column, which is zero every-
where, except,

or; 1 8G;(H) 1 .
. — = - - <7< n.
Jine+1= 56 D; 0H, D, lsisn (17)

2.2 Bayesian Inference

In a Bayesian framework, we treat A as a random variable characterized by a proba-
bility distribution function m()). The posterior distribution 7(A\|D) is proportional

to the product of the likelihood or evidence w(DJ|\) and the prior,
m(A|D) ~ m(D|X) w(A).

Here, we assume a simple exponential prior 7(\) = e . The evidence is the

integral over all possible spectra H,
(D) = /w(D|H,)\) (H|A) dH. (18)

The components of the objective function in eqn 11 and the evidence (eqn 18)
are closely related. In particular, the first term in the integral, 7(D|H, \) can be
related to p? via,
(DIH,\) ~ e ? = N(G,D/V2). (19)
This asserts that the observed data are normally distributed around the predicted
values G(H) with a standard deviation proportional to D (see eqn. 8). Note that
this term does not depend on A explicitly, and the prefactor or normalization
constant is independent of H.
The second term in eqn 18, 7 (H|\) corresponds to the regularization constraint

or n?,
e n” (H)

Zy2

*(H)) = (20)
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where the curvature penalty term, n?(H) = ||LH|>. Z, is the normalization con-
stant, which is determined shortly.
In Tikhonov regularization, the cost function is V(H,\) = p?(H) + An?(H).

Thus, eqns. 19 and 20 imply that the evidence can be written as,

~V(HN)
(D[N :/TdHA (21)
n

We can use the saddle point or Laplace approximation to estimate the normaliza-

tion constant. This means that if H) is the optimal solution at a given A, we can

integrate over all spectra H,

dH

_V(H,N) _V(H,) o,
/e ~ € (2m) ’ (22)
Z172 Z772 det(/\A —|— B)

to obtain the evidence for D at a particular A. In the expression above, the Hessians
A :=VVn? and B := VVp? are evaluated at the optimum Hy. We can define the
Hessian corresponding to the cost function as C := VVV = \A + B.

Unlike the normalization constant for p?, Zy2 cannot be neglected because it
depends on A. Nevertheless, we can use the saddle point approximation again to

estimate it. From eqn. 20,

= [ gy ) [ 21
Zy /e dH=¢e det(\A) (23)

For A\ > 1, the H that maximizes ei>"72, Hy, corresponds to 2 = 0. Thus, it is
safe to assume that e~ (o) — 1 Tp pyReSpect, the level of discretization n, is
held fixed throughout; therefore, the saddle point approximation for the posterior

can be written as,

T(AD) ~ w(DA)7(A) ~ eV EHD, %(ACA)) e (24)

Since det(AA) = A" det(A) where n; is the size of matrix A,

logm(A\|D) ~ =V (H,) + % [logdet(A) 4+ nrlog A — log det(C)] — A, (25)
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2.2.1 Hesstans
We now seek to explicitly resolve the matrices A and B, starting with A = VVn?2.
n*(H) = (LH)" (LH) = H'L"LH. (26)

The Hessian of the quadratic form is a square (nr X n;) matrix,

_ 9*HTLTLH)

- 2
A=Vvn oH 0HT

=2L7L. (27)

Note that A is constant and does not depend on .

To compute B = VVp?, we start by considering the ;' element of the vector

s

2 2n 2n
ap = 0 ‘7“2 = Z 27‘k a?"k 1 S] < nr. (28)
J

The derivative of the residual was previously evaluated (eqn. 15) to determine
the Jacobian, dry/0H; = Jyj, for 1 <k < 2n,1 < j < ns. Thus, eqn. 28 may be

simplified as,

p? or 2

9L _9 k _9 A 2

dH; Z Tk OH; Z Tk Jkj (29)
k=1 k=1

To find the Hessian B = VVp?, we take the partial with respective to Hj,

9 9p?
Bij = OH,; OH;

Brk &ka
k

=2 (Jkiduj + e Jridis) - (30)
k

The Kronecker delta function in the second term of the summation ensures that

it is only active along the diagonal of the Hessian (i = j). Note that size of the
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matrix B = VVp? is also nr X n,. In matrix form, we can write,

A =2L"L

B=2 (JTJ + diag(rTJ)) 7 (31)

where J is the 2n x nr part of Jacobian matrix, and r is the 2n x 1 residual vector
that corresponds to p2. The advantage of expressing A and B in matrix form is

that the equations translate seamlessly even when Gg # 0.

2.2.2 Algorithm in pyReSpect

We precompute the matrix A = LT L. The prefactor of two (eqn 31) can be thrown
away from both A and B since it cancels out eventually. We scan through a range

of A € [Amin, Amax]. At each )\

(i) compute Hy by minimizing V(H, X) and store it.
(ii) compute p2, %, V(A) = p? + A
(iii) compute the residual r and Jacobian J.
(iv) compute B = (JTJ + diag(rTJ)) and hence C = \A + B.

(v) compute log posterior probability,

[log |A| + nrlog A —log|C[] — A

N =

logmy = -V(Hy) +

We normalize log wy to get the posterior 7()) (the dependence on D in 7(A|D)

is dropped henceforth for brevity), and find the mean (subscript “m”)

N 2 A = E[N\] = exp (Z log A - logwA) . (32)
A

Finally, we compute the mean spectrum

H= B[H,] = / Hy m(\) d), (33)
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—— pyReSpect
8 — true -
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= 44 i
N
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Fig. 1 The true spectrum is given by eqn 35. The spectrum inferred by pyReSpect captures
the two peaks. Due to the smoothness constraint, it is unable to resolve the sharp cusp near
7 &~ 1. The shaded region around the inferred spectrum represents the uncertainty due to
M. The dashed vertical lines mark the domain e"'/2/wmax <7< e‘"/z/wmin in which the

inferred spectrum is reliable [11].

and the error estimate,

var(H) = E[(Hy — H)?). (34)

Typically, the mean spectrum H is approximately equal to the spectrum computed

at the mean \; i.e. H ~ Hy«.

2.3 Test Cases

We consider three test cases in this paper: (i) a synthetic dataset generated from a
spectrum with two unequal peaks, (ii) an H-polymer [28,36], and (iii) an elastomer

with nonzero Go [13,27].



Bayesian Nonlinear Tikhonov Regularization 15

(i)

(i)

Synthetic Data from Spectrum with Unequal Peaks: This dataset is
fashioned after the example used in Honerkamp and Weese (their figure 1a)
[19]. The underlying spectrum is given by a weighted sum of two quadratic

components,

Hi(r) =8 —2(logo 7 + 2)°
Ha (1) =5— 0.5 (log,o 7 — 3)*

He(r) = w(r)Hi(r) + (1 — w(r)) Hz(7), (35)

where the weight function w(r) = 1/(1 + e2=H1) preferentially overweights
the component (H; or Hz) with the larger magnitude at any given 7. The
spectrum is shown in figure 1. The first (taller) peak corresponds to H; while
the second (shorter) peak corresponds to Ha. Synthetic data is generated by
adding 2.5% noise to the G* (w) computed numerically from Hc(7) using eqn.
1 at n = 100 logarithmically equispaced points. It extends over 11 orders
of magnitude, and is chosen to represent a polymer in terminal, plateau,
transition, and glassy regions (see figure 2).

For a similar example, Honerkamp and Weese showed that using a linear
least squares method (like FTIKREG) results in serious difficulties due to
the contributions corresponding to the two peaks. At small 7, the higher
peak contributes significantly to G*(w) in the transition and glassy regions,
while at large 7, the lower peak contributes modestly to the linear rheology
in the terminal and plateau regions. It is difficult for FTIKREG to resolve
both peaks simultaneously.

H-polymer: This is the H3A1A polystyrene H-polymer which was synthe-

sized, and first studied by Roovers and co-workers [36,37]. The nominal
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(iii)

molecular weight of the arms and the backbone are 132 kDa and 123 kDa,
respectively. The linear viscoelasticity was restudied by Lentzakis [28], using
a more advanced rheometer and resolving low-frequency measurements more
carefully.

This data is presented in figure 4. It was used by Ankiewicz et al. to discuss
the advantages of using a CRS to identify power-laws and relaxation regimes
that are not distinctly visible in the experimental G*(w) [2]. In particular,
they were able to recognize a 7~1/2 Rouse regime at short time scales in the
spectrum (not visible in G”(w) due to contamination from glassy modes),
and 7 /4 regime at intermediate time corresponding to the relaxation of
the arms, prior to terminal relaxation.

Elastomer with Terminal Plateau: This test case (shown in figure 6) cor-
responds to Sorbothane 70, a cross-linked polyurethane rubber, at 20°C, by
superposing data obtained at 16 different temperatures [13,27]. The elas-
tomer has good shock-absorption properties because high energy dissipation
occurs in the transition zone between rubbery and glassy behavior at fre-
quencies (10?2 — 10% Hz) that are typical of impacts.

There are two reasons for selecting this as a test case: (i) G*(w) data extends
over 18 orders of magnitude, and (ii) nonzero terminal plateau, Go # 0, which

is visible as a plateau in G’(w) at low frequencies.
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Fig. 2 Symbols are data generated from the true spectrum shown in fig. 1, with 2.5% noise

added. Lines depict G*(w) resulting from the inferred spectrum.

3 Results and Discussion

For all the examples below, unless explicitly mentioned otherwise, the CRS was
determined by using default settings in the pyReSpect program. Unlike the original

ReSpect, these defaults are quite robust and reliable.

3.1 Synthetic Spectrum

The true (eqn 35) and inferred spectra are compared in figure 1. For a similar
spectrum, Honerkamp and Weese found that a linear least squares method was
unable to simultaneously resolve both peaks. This motivated the h = e substitu-
tion used in NLREG (and this work). A similar problem was reported by Hansen

using BayesRelax, which uses a Bayesian framework without the h = e substitu-
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0 - ]
10°
-5 N:10-1 E \ »
~
=g 1072
a0 107"
> =10 | L
-—— X
15 === A, i
o default
10 103 1072 107" 10° 10" 102

A

Fig. 3 Logarithm of the posterior distribution of A. Symbols (green) denote the discrete
values of A explored using default settings in pyReSpect. The mean value A, is indicated by
the dashed black line. The dashed gray line indicates A, - the “corner” value using the older
heuristic method. The inset shows the n? v/s p? curve, and the location of An, and A. on it

(gray and black circles).

tion [17]. Here, the agreement between the true and inferred spectra is quite good

near and around the two peaks.

The difference between them is most pronounced near the sharp cusp (7 ~ 1)
where the two quadratic modes in the true spectrum intersect. Due to the smooth-
ness constraint placed on the spectrum, such sharp corners in H(7) are heavily
penalized. The 7? for the inferred spectrum is an order of magnitude smaller than
that for the true spectrum. This tradeoff is especially understandable, since the fit
between the experimental data and G*(w) resulting from the inferred H(7) (fig-
ure 2) is remarkably good. Note that it is possible to incorporate more flexible

regularization terms, such as those implemented in the program GENEREG [38].
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107 | 1 1 | 1 1 1 1
108 .
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v 105 | L
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10* data -
—— pyReSpect
=== Hansen
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w rad/s

Fig. 4 G*(w) for the H-polymer data H3A1A [2,28]. The solid line shows the fit obtained from

pyReSpect. The dashed green line shows the prediction using the program BayesRelax [17].

The inset to figure 3 shows the competition between p? and n?. As ) is increased
n? decreases, and p? increases. The older heuristic method was designed to find the
optimal A* as the corner of this n? v/s p? curve. It yields Ac = 2.68 as the corner.
We can use the Bayesian inference framework to find the mean of the posterior
distribution #(A) (fig. 3). This analysis yields, A = 4.55. Although Ay > Ac in
this case, they essentially overlap on the 1 v/s p curve, and lead to nearly identical

spectra; i.e., Hy (1) ~ Hy, (7).

3.2 H-Polymer

The H-polymer data H3A1A is shown in figure 4 [28]. This dataset was studied by
Ankiewicz et al. using the program NLREG [2,19]. They argued that it was easier
to detect power-law behavior in H(7) than in the G*(w) data from which it was

inferred.
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16 1 1 1 1 5 1 1 1 1
15 — pyReSpect 10 |
=== Hansen 107" J L
14 - \ e -
AR 107+ e L
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Fig. 5 The solid blue line shows the spectrum obtained from pyReSpect, while the dashed
green line shows H(7) obtained from BayesRelax. The power-laws at short (7—/2) and in-
termediate times (771/4) are identified. The spectrum is reliable in the region between the
dashed gray lines. The inset shows the n? versus p? curve, which does not have a well-defined

corner. Similar to figure 1, the black and the gray symbols locate Ap, and Ac, respectively.

Figure 5 depicts H(7) obtained using pyReSpect with default settings. At short
times between 7 = 102 — 10, the signature of Rouse relaxation h(7) = T2 s
visible, even though it is unclear in the corresponding region of the frequency plot
[2]. The G (w) ~ w'/? is not clearly visible, because the terminal relaxation of the
glassy modes interferes with G’ (w). In the intermediate time region 7 = 102 —10%s,
we observe a weaker power-law close to the h(r) = 77 1/4 expected for relaxation of
star arms. Most of the terminal relaxation of the backbone lies beyond the reliable

limit.

Figure 5 also depicts the spectrum obtained using BayesRelax [17]. The pro-

gram has a convenient web-interface (bayesrelax.org), where data can be uploaded.
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The Fortran 77 computer program which carries out these calculations is also avail-
able at that site. Like pyReSpect, BayesRelax uses Bayesian analysis to obtain a
distribution of (), from which h(7) is determined. Unlike pyReSpect or NLREG,
however, it solves a linear least squares problem to determine h(7). As a result the
spectrum is not guaranteed to be positive, and suffers from limitations similar to
FTIKREG. Nevertheless, in this particular case, the spectrum generated closely
matches the H(7) obtained by pyReSpect, except perhaps at short 7.

The G*(w) corresponding to the spectra obtained using pyReSpect and BayesRe-
lax are compared with the experimental data in figure 4. The fits agree with the
data everywhere, except at large frequencies (corresponding to short 7), where the
mismatch between the data and G*(w) obtained from BayesRelax is more pro-
nounced. Even the G*(w) obtained using pyReSpect shows some deviations from
the last G”(w) data-point. It is unclear whether this arises from a break-down of
Kramers-Kronig relationship, that is sometimes observed when data from several
different experiments are superposed to obtain a master curve. Ankiewicz et al.
did not report the fit with G*(w) in their paper [2], but we expect the outcome to
be similar.

The 7? versus p? curve is shown in the inset to figure 5. Over the range of X
explored, it is a monotonically decreasing curve. Since there is no obvious corner
on this “L-curve”, the original version of pyReSpect used a series of complicated
heuristics to determine A.. For this example, A\ = 2.81, which is quite close to
Am = 4.92, determined from the posterior distribution 7(\). Due to the proximity
of Ac and Am, they yield very similar H(7). Nevertheless, the criterion used to
determine )\, is simpler, easier to articulate and comprehend, and generalizes

quite well. When the L-curve has a corner (fig 1), A, is close to it. In other cases,
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Fig. 6 Symbols show experimental G*(w) for Sorbothane 70 shifted to 20°C. The solid and
dashed lines show the fits using the CRS and DRS, respectively. These spectra are shown in

fig. 7.

when 7?2 versus p? does not have a sharp corner, it finds a reasonable A, that is

close to the possibly over-engineered heuristic used for .

3.3 Terminal Plateau

The final example, shown in figure 6, is an elastomer. Unlike previous cases, it has
a nonzero Go. In pyReSpect, we can turn the “plateau” flag on in the input file to
find H(7) for such datasets. In this case, pyReSpect returns Go = 0.24 MPa.
pyReSpect can also be used to determine the discrete relaxation spectrum
(DRS) [5,6,23,35] which consists of pairs of relaxation times and strengths {7;, g;},
with ¢ = 1,2,..., N, where N is the number of modes in the spectrum. pyReSpect

automatically determines an optimal number of modes based on an information
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criterion [39]. The relationship between the DRS and G*(w) is given by,

1 i w2T2
Gw)=Go+ ) gi—55
= 14w T;
N
W) =g (36)
~ Z1—|—cu27'i2

Figure 7 depicts the CRS and DRS for this example. The fit of the G*(w)
corresponding to these spectra are shown in figure 6. For this case, Ay, = 7.39 is
smaller than A\. = 178 obtained using the older method. However, it turns out that
H, is somewhat insensitive to A\ for this example. This is evident in figure 7; in
addition to the CRS determined at A = Ay, (shown by the thick red line), Hys for
A € [0.4,1000] are shown by thin gray lines. These curves essentially superpose,
except near the ends, outside the region demarcated by the dashed gray lines,
where they flare out mildly. Thus, for this example, the inferred CRS at A\, and
A¢ are essentially indistinguishable. However, this remarkable insensitivity of H)
to X is not a general feature. In the appendix, figure 8 shows a similar plot for the
H-polymer, where somewhat greater dispersion in H) can be observed.

Here, the DRS has N = 27 modes, and closely mimics the shape of the CRS.
In ref. 27, the authors fit a N = 14 and N = 15 mode DRS, in conjunction
with a viscous mode, to selectively fit the data at frequencies between 1072 — 10*
rad/s. Since the primary object of investigation in their study was the impact
response of elastomers in drop tests, matching G*(w) for frequencies higher than
10° rad /s was deemed unnecessary. The duration of impact is of the order of several
milliseconds, and modes faster than 10° rad/s contribute little to the viscoelastic
impact response [27]. Nevertheless, the DRS inferred from pyReSpect offers a
compelling description of the entire G*(w) response with a sparse mode density of

approximately 1.4 modes/decade.
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Fig. 7 The CRS and DRS are represented by the solid and circle-dashed lines, respectively.
H) (7) determined at different values of A is overlaid in gray. Here, these curves essentially
superpose, except near the edges. The gray vertical dashed lines mark the region in which the
spectrum is reliable. The second derivative of the spectrum with respect to A is also shown by

purple solid lines.

3.4 Advantages of the Nonlinear Bayesian Formulation

The Bayesian formulation for determining A\* confers several advantages. It is sim-
ple and robust. More importantly, it provides error-bars for H(r) that propagate
the uncertainty in determining A\*. This is a major improvement over previous
versions of ReSpect and pyReSpect which offered no such uncertainty quantifica-
tion. Surprisingly, the Bayesian formulation also leads to a major improvement in

efficiency.

Table 1 depicts the computational cost using the Bayesian framework (labeled
“Bayes”), and the older method (labeled “Old”) using the complicated heuristic

to determine \*. Calculations were performed on a desktop computer with an
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Bayes Old
sample total A-scan | total = A-scan
synthetic spectrum 3.2 1.5 10.1 8.8
H-polymer 3.4 1.4 14.2 12.1
elastomer 3.1 1.8

Table 1 Computational time in seconds to run pyReSpect with (Bayes) and without (old)
the Bayesian framework, for the three cases studied here. The old method cannot be used for

the last case since Go # 0.

Intel i7-6700 3.4GHz CPU. The total cost of the calculation, which includes the
overhead: 1/0O, setup, initialization, printing and plotting, is shown in addition to
the cost of the most expensive step, viz., scanning a range of A to determine \*.
The overhead cost is about 1.5-2s for both the old and new methods. However, we
observe a significant speedup in the computational cost for scanning A. For the first
two cases (synthetic spectrum and H-polymer), speeds ups in the range of 6-9x
are obtained with the Bayesian formulation. The old program was not geared to
handle nonzero terminal plateau (Go # 0), and hence a direct comparison cannot

be made for the last case.

The efficiency arises from both the Bayesian, and the nonlinear formulation of
Tikhonov regularization. The Bayesian framework allows us to limit the range of
A explored, and the nonlinear formulation allows us to use a sparse distribution of

As within this limited range. Let us explore both these advantages in more detail.

By default, pyReSpect scans A € [1071°,10%], starting from large values, with
a density of 3 modes per decade. As seen in figure 3, logm()) initially increases
as A decreases registering a maximum (between A ~ 10° — 10!, in this case),

before decreasing further. In the program, once w()) falls sufficiently below the
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maximum (8 orders of magnitude), we truncate the A-scan. Smaller values of A
are associated with negligible probabilities. Compared to the older method, this
results in significant computational savings, since the entire n? versus p? curve does
not have to be constructed. In figure 3 for example, the A-scan is terminated after
A = 7.8 x 1072, instead of going all the way to Amin = 10710, This implies that
only a third of the potential ~ 40 discrete values of A € [10710, 103] are explored.
This directly results in savings of a factor of ~ 3, over the original program.

In figure 3, green circles indicate the values of A explored using the default
setting in pyReSpect. The blue line depicts log () obtained with a higher reso-
lution of A. The Ay, inferred from the (default) coarse spacing of A is remarkably
consistent with that obtained using the finer resolution. Interestingly, and fortu-
nately, this turns out to be a general observation that arises from the nonlinear

formulation of the problem. In general, we observe that for \; < X\ < Ag,
H(7) &= (1 = sx)Hy, (1) + sxHy, (7), (37)

where sy = (log A —log A1) (log A2 —log A1). Differentiating eqn 37, we find that the
first derivative is independent of )\,

0H,  Hy,—Hy,
OlogX logla —log A1’

(38)

In other words, the second derivative % H) /8(log A\)? ~ 0. This is depicted in figure
7 by the solid purple lines using a centered difference formula to approximate the

second derivative at A = Aj;,

BQHA(T) N H(7,Mjt1) —2H(7, Xj) + H(1,A\j—1)
d(log\)2 ™ (Alog \)2 ’

(39)

with Alog A = log Aj 1 — log A;. Despite minor oscillations, the second derivative

(fig. 7) is negligible. This implies that the spectrum H, (1) is approximately linear
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in log A. Practically, this means that the density of As can be quite sparse. Often
about 10 different values of A are sufficient to determine \;,, compared to 30-100
values for BayesRelax [17]. Appendix 5 explores the origin of 92H/d(log\)? ~ 0
using a toy model.

Thus, the combination of the Bayesian (clip the range of \) and nonlinear
(sparse distribution of \) formulations greatly reduce the effort required to find
the optimal \*. Each of these steps contributes a 2-3x cost saving, leading to a
combined savings of 6-9x. Since this is the slowest step in the algorithm, it reduces

the computational effort greatly.

4 Summary

We developed a computer program called pyReSpect to infer the continuous and
discrete relaxation spectra from oscillatory shear experiments. An older version of
this program used nonlinear Tikhonov regularization with a complicated heuristic
to determine the optimal amount of regularization. In this work, we replaced it with
a method based on Bayesian inference. The new and improved program provides
uncertainty estimates for H(7) by considering the distribution of 7(\) that arises
from Bayesian analysis.

The Bayesian formulation improves the performance by a factor of 2-3x by
focusing on a limited window of A for which 7()) is non-negligible. The nonlinear
formulation results in 9*Hy/d(logA)? ~ 0. This linearity allows us to consider
a coarse mesh of A, thereby improving the performance by an additional factor
of 2-3x. For the examples considered, combined efficiency gains of order 6-9x are

observed, consistent with these sources.
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Fig. 8 The CRS for the H-polymer is represented by the red line. H)(7) determined at
different values of A is overlaid in gray. These curves show some variation at small 7. The gray
vertical dashed lines mark the region in which the spectrum is reliable. The second derivative

of the spectrum with respect to A is also shown by purple solid lines.

pyReSpect differs from the Hansen’s Bayesian analysis in that it considers
a nonlinear Tikhonov regularization problem via H = e® [17]. This makes the
method more robust to wide spectra with modes of different heights, and requires
a smaller mesh density of A, since 9H/9(log\) =~ constant. The program is also

able to handle cases when Gp # 0.

5 Appendix: Linearity of the CRS with regularization parameter

What property of the problem leads to the general observation 92 Hy /d(log \)? ~
0? Since H = log h, we intuitively understand that deviations in H are mild com-
pared to deviations in h. Nevertheless, we can show using a toy example that the

linearity of H(log\) stems from the form of the cost function.



Bayesian Nonlinear Tikhonov Regularization 29

For simplicity, and without loss of generality, suppose that H is a variable
rather than a function H(7). Let, V(\, H) = p*(H) + Ap?(H) be a cost function

that is linear in A, but nonlinear in H. Furthermore, suppose

HY =min V() H)
H

H* =minV(\", H),

where \* is any particular A, not necessarily the optimal \. Let R(H) = dp?(H)/dH

and N(H) = dn*(H)/dH, be the first derivatives. Optimality conditions imply,

RHY) +AN(HT) =0

R(H*)+ A\*N(H*) = 0.

Let Rt = R(HT), N* = N(H"), R* = R(H*), and N* = N(H*). For slowly

varying functions, a Taylor series expansion implies,

R =R+ (nt — ) 4B

2
ai | . + O(AH?) (40)
Nt =N"+(H" - H") ay O(AH?) (41)
dH | ;.

Ignoring quadratic and higher order terms, and setting c;

dR(H*)/dH and
co =dN(H*)/dH,
RY+ANT = R* + AN* + (HT — H*)(c1 + Ac2)

0=MA=N)N*+ (H" — H*)(c1 + Aea).

If cad > 1, then (HT — H*)/(A = \*) = AH/AX =~ —N*/(c2)\). Thus,

AH N*

~ —
~

- = t. 42
Alog = constan (42)
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