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ABsTrRACT: We describe algorithms developed to isolate and accurately reconstruct two-track events
that are contained within the MicroBooNE detector. This method is optimized to reconstruct two
tracks of lengths longer than 5 cm. This code has applications to searches for neutrino oscillations
and measurements of cross sections using quasi-elastic-like charged current events. The algorithms
we discuss will be applicable to all detectors running in Fermilab’s Short Baseline Neutrino program
(SBN), and to any future liquid argon time projection chamber (LArTPC) experiment with beam
energies 1GeV. The algorithms are publicly available on a GITHUB repository [1]. This
reconstruction offers a complementary and independent alternative to the Pandora reconstruction
package currently in use in LArTPC experiments, and provides similar reconstruction performance
for two-track events.

Keyworbps: Large detector-systems performance; Neutrino detectors; Noble liquid detectors (scin-
tillation, ionization, double-phase); Time projection chambers
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1 Introduction

The MicroBooNE experiment is currently taking data in the Booster Neutrino Beam (BNB) at
Fermilab since October 2015, consists of a LArTPC located 450 m downstream of the proton beam
target [2]. The detector cryostat has a total capacity of 170 metric tons of liquid argon. The system
comprises three major sub-detectors: a time projection chamber (TPC) of (2.6 2.3 10.4)m? for
tracking, a light collection system for triggering and reconstruction of the precise interaction time,
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Figure 1. A schematic of the MicroBooNE TPC system. A volume of liquid argon has an applied electric
field between a cathode plane and an anode plane. The anode plane is composed of three vertical planes
of sense wires. The wires are oriented at 60 and 0 with respect to the vertical inside the (Y, Z) plane.
Electrons from the ionization of charged particles drift towards the wire planes and are read out on the sense
wires.

and a cosmic ray tagger (CRT) for improved cosmic background reduction. The detector has been
described in detail in ref. [3] and [4].

Neutrino events that are contained within the detector, and that are consistent with the final state
signature of one muon and one proton, are of interest to a number of physics studies in MicroBooNE.
Such a topology includes a large predicted charged current quasi-elastic (CCQE) component and is
important for the investigation of the MiniBooNE low energy excess [5] in MicroBooNE. While the
signal for the latter consists mainly of an electron and at least one proton, the normalization sample
consists of a muon and at least one proton. In this case, the reconstruction is identifying candidate
events that may be selected as “1 1 ” (one muon and one proton) events after particle ID for use
in constraining nuclear effects in argon for 1 1 events. To obtain a large sample of contained
1 1 events, the MicroBooNE collaboration has developed a reconstruction package specialized
for contained two-track events. The purpose of this package is to identify and reconstruct those
events with two tracks, each longer than a specified length, emanating from a vertex; any number
of shorter tracks may be attached to the same vertex.

The physics analyses that will make use of this code package employ both the TPC and light
collection subsystems. However the three-dimensional reconstruction code described here uses
only the TPC information, and so we describe only this subsystem.

Figure 1 illustrates the working principle of a LArTPC. Charged daughter particles from the
neutrino-argon interactions ionize the argon along their path. Electrons from the ionization tracks
drift in a horizontal 273 V cm electric field along the axis, towards the vertical ( , ) anode plane
composed of three parallel sense wire planes that provide the charge readout.

The signals from the three wire planes form three views, U (2400 wires at 60 from vertical),
V (2400 wires, 60 ),and Y (3456 wires, 0 ). The U and V planes detect signals via electomagnetic
induction, while the Y plane collects the charge of the ionization tracks. The wire spacing in each
plane is O 3 cm. The wire waveforms are read out with a sampling time of 0 5 ps, and with a shaping



time of the digitizers of 2 us. This results in highly detailed event information that we exploit by
treating the time versus wire waveform event display plots from each of the three planes as images
with pixels, as described below. This use of high-resolution images allows the analysis chain
to make use of deep learning algorithms. Indeed, in this article, we present an algorithm-based
reconstruction approach leveraging the output of a pre-processing performed using a deep neural
network.

Our reconstruction package is discussed within the context of MicroBooNE physics analyses.
However, the approaches are generic to LArTPC detectors that run in a neutrino beam with an
energy of the order of a GeV. Examples of such experiments are SBND and ICARUS, which will
run in the same BNB neutrino line as MicroBooNE in the near future [6]. As an example, SBND is
expecting 3M  CCQE events for an exposure of 6 6  10?° protons on target (POT), of which

2 M with the final state 1 1 [6]. The approach is also appropriate for reconstructing atmospheric
neutrino events in the DUNE near and far detector, as well as lower energy beam-based events [7],
although in DUNE far detector, complications due to cosmic rays will be substantially reduced
compared to the surface-based detectors on the BNB. About 18 M CCQE events are expected
per year in DUNE liquid argon near detector, with 13.7 M/year events withthe 1 1 final state [8].

We present results based on simulated particles at energies relevant to the MicroBooNE beam
using MicroBooNE’s Monte Carlo simulation package (MC). MicroBooNE uses GENIE [9] to
simulate the initial neutrino interactions in argon. For the purpose of this article, we only make
use of predicted =~ CCQE interactions with their final states containing a muon of at least 35 MeV
and only one proton of at least 50 MeV; any number of particles below these thresholds can be
present, as well as non-ionizing particles such as neutrons and . The outgoing particles are fed to
a GEANT4 simulation [10-12] of the detector. Data from unbiased off-beam readouts, containing
only comic rays, are overlaid on top of the simulated event displays containing the tracks from the
neutrino interactions. This ensures a correct representation of the cosmic ray background in our
simulated neutrino events.

2 Data pre-processing

An essential and very difficult problem to solve in reconstruction of LArTPC data on the surface is
identification and removal of cosmic rays from the events. With minimal overburden, MicroBooNE
averages 12 cosmic rays in a 2.3 millisecond readout window. The high rate of cosmic rays makes this
background a complication for neutrino analyses. To address this issue, prior to three-dimensional
reconstruction, an algorithm is applied to tag pixels corresponding to cosmic rays. This code will
be described in a future separate article, and so is only briefly described here. Cosmic rays are
identified by their boundary-crossings at the edges of the active region. Through-going cosmic rays
cross two boundaries. The cosmic ray tagging algorithm starts at the boundary and works inward,
into the detector, labeling consecutive charge depositions, finding a path between two boundary
crossings. Once all charge that is connected to a boundary is identified, a 3D volume in the TPC is
found for which the projection on each plane encompasses the remaining untagged charge clusters.
Such a volume is called “contained regions of interest” (cROIs). These cROIs are then passed to the
three-dimensional reconstruction code. Typically about 10 cROIs are found per event. It is possible
for tagged cosmic ray charges to appear within a cROI.



The cROIs are then passed to a deep-learning algorithm called a semantic segmentation network
(SSNet) [13, 14]. The uses and performances of semantic segmentation in MicroBooNE analyses
are described in detail in [15]. For the purpose of this work, it should suffice to say that the Semantic
Segmentation labels all pixels in the cROI image as either background, track-like, or shower-like,
where background refers to empty pixels with little to no charge deposition. Typically, the semantic
segmentation network will classify muons, charged-pion and protons as track-like; and electrons
and photons as shower-like.

In summary, the inputs to the code we describe here are cROIs that have all charge tagged
as cosmic-ray-, track-, shower-, or background-like. This information is used to find a three-
dimensional vertex using the sets of images from the three planes. At that point a determination
is made as to whether there are two, and only two, track-like chains of charge with lengths that
pass our requirements. The pixels associated with the track-like chains are clustered. The three-
dimensional vertex is then passed to an algorithm that reconstructs the three-dimensional tracks.
For the track-reconstruction stage, the pixel identification tagging is not used. We describe each
of these steps below, and present information on the reconstruction efficiency and other figures of
merit. First, we describe the input images that are utilized by this package.

3 Using images in the reconstruction package

This reconstruction package treats MicroBooNE data and Monte Carlo event readouts as “images”.
By this, we mean that the TPC data from each of the three views are represented on a 2-dimensional
plot, with wire number along the axis and drift time along the axis. The choice to analyze
the detector in an image-format allows the use of widespread and very powerful computer vision
tools such as “OpenCV” (open source computer vision) [16], which is a C/C++ based framework
for computer vision that provides useful classes/functions for image processing. It is a widely
used application for pattern recognition. Using images also allows for the implementation of deep
learning algorithms at two points in the analysis. The first is the Semantic Segmentation, which
precedes this reconstruction package, and was discussed above. The second is a convolutional-
neural-network-based particle identification, which follows the reconstruction package presented
here, and is beyond the scope of this article. The output of the three-dimensional reconstruction
package described here can be used by deep-learning-base particle identification networks as
presented in ref. [17]. A likelihood-based particle identification that follows this package is also
under development in MicroBooNE.

However, the value of using images goes beyond the applications of deep learning. When
constructing the simulated events, it is easy to overlay the pixels associated with a simulated
neutrino event onto a real out-of-beam image or an image from the cosmic-ray simulation. Also,
crucially for the three-dimensional reconstruction, information can be straightforwardly associated
with each pixel at each stage of the algorithm, and then carried through to the following stages.

The reconstruction package primarily uses two kinds of images. The first is the “ADC image”,
which contains information on the charge in each pixel. The second is the “SSNet image” which
contains information on whether pixels representing connected chains of charge are track-like,
shower-like, or neither. In both cases, the cosmic-ray tagged pixels identified in the early stages
are masked, and so are not visible in the images. Two additional pieces of information are also
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Figure 2. A simulated  event shown in the three wire planes that illustrates the features of interest for
this reconstruction package. The  true energy is 483 MeV, producing a single proton (deposited energy
266 MeV) and muon (deposited energy 73 MeV). The representation of the charge induced or deposited in
each wire and per time sample creates an image of the interaction.

provided to the algorithm. The first are images that show the cosmic-ray-tagged pixels. The second
are images indicating unresponsive wires.

3.1 ADC images

In the case of the ADC image, the intensity of each “pixel” is determined by summing the amplitude
of the noise-filtered, deconvolved signal [18] from the wires over six time ticks. This choice comes
from the fact that, at 0.5 microseconds per tick, six time ticks is 3 microseconds, only slightly larger
than the 2 microsecond shaping time of the ASICs. Also, at the current drift field, the nominal drift
velocity of the electrons is 1 098 mm us [19]. Therefore, the drift distance over six time ticks is
about 0 33 cm, which is similar to the detector’s O 3 cm wire pitch. The images are created using
the LArCV code available on GITHUB [1]. An image is created for each cROI in each of the
wire-plane views.

Figure 2 shows an example of a simulated =~ CCQE event, of interest for this reconstruction
package. An ADC image is made for each plane, as illustrated by each of the three image frames.
The size of each image is set by the cROI-finding algorithm. The neutrino in this event has a true
energy of '™ 483 MeV; the kinetic energies of the emitted muon and proton are 73 MeV and
266 MeV, respectively, which is typical of the kinematics this package was designed to reconstruct.

3.2 SSNet images

The SSNet images, which are also constructed for each cROI and for each wire plane view, are
created by feeding the ADC images to a SSNet. The SSNet identifies the pixels based on their
surroundings into three categories:

* track pixels
* shower pixels

* background pixels

Two examples of SSNet outputs are shown in figure 3. The left panel shows a view of a 1 1
interaction in the Y plane, with a 600 MeV neutrino producing a 279 MeV proton and a 280 MeV



Figure 3. Two examples illustrating the SSNet image pixel labeling. The left panel showsa 1l 1 type event
from a interaction. The original neutrino energies as well as the kinetic energy of daughter particles are
indicated on the figure. The pixels corresponding to the proton are correctly classified as track-like by the
SSNet. The pixels corresponding to the electron are mostly classified as shower-like by the SSNet, except for
a small portion mistakenly labeled as a track. The right panel showsa 1 1 type eventfroma interaction.
Both the proton and muon tracks are correctly labeled as track pixels. The muon decays into a Michel
electron, classified as shower pixels. Dark blue pixels correspond to empty pixels, without charge deposition.
Clear vertical bands correspond to simulated unresponsive regions of the TPC.

electron. The proton track is correctly classified as containing only track-like pixels (in yellow),
and the electron shower is mostly classified as shower pixels (in light blue). A small fraction of
the shower pixels are mistakenly labeled as track-like. Background pixels, corresponding to pixels
without charge deposition, are shown in dark blue.

The right panel shows a Y plane view of the interaction of a 936 MeV ~ producinga 1 1
event with a 397 MeV proton and a 395 MeV muon, which decays into a Michel electron. The
Michel electron is classified as shower pixels, while the proton and muon tracks are correctly
labeled as track-like.

In this note, we will focus on the 1 1 topology; therefore we will be looking for two-track
vertices, neglecting track-shower vertices.

3.3 Cosmic-ray-tagged images

The reconstruction algorithms described in the rest of this article are also supplied with an additional
image with cosmic-ray information. The through-going muon pixels in this image are tagged, but
remain visible to the algorithms. These pixels can be optionally removed from the ADC, track,
and shower images to help reduce the probability that the algorithms will reconstruct a cosmic-ray
background.

3.4 Unresponsive-wire images

In addition, the vertexing algorithm is supplied with an image marking the spatial locations of
unresponsive wires, which can be time-dependent. Providing this information allows the algorithm



to know precisely which region in the image represents pixels which contain no charge, and make a
decision about whether to veto this region, and potentially neighboring regions, for vertex finding
and particle clustering.

4 3D vertex finding and particle clustering

This reconstruction step finds the 3D vertex and then clusters pixels belonging to individual particles.
In this algorithm, the pixels tagged as cosmic rays are removed from the images. For each of the
three views, a set of three images are provided to this algorithm. The first image contains all pixels
in the cROI (ADC image), the second contains pixels labeled as tracks (track image) after the SSNet
correction, and the third image contains pixels labeled as showers (shower image).

Along with the use of LArOpenCYV, described in the previous section, this code makes use of
a custom OpenCV package called Geo2D. This package has convenient tools for 2D geometrical
analysis to supplement and extend OpenCYV built-in data types.

4.1 Vertex finding using track-identified pixels

This step makes use of only the track-identified pixels (the track image) to reconstruct a 3D vertex.
The algorithm searches for a coincident “vee” shape feature, as shown in figure 2, across the three
wire planes which could indicate the presence of a 1 1 interaction. This event will be used
throughout this section to illustrate the vertex reconstruction algorithm. The algorithm begins by
identifying a collection of vertex “seeds” in each plane. Vertex seeds are pixel locations in the image
where a likely vertex may be present, for example at a kink point, the location where two tracks
meet. The algorithm identifies vertex seeds by breaking down continuous sets of track clusters into
smaller clusters which contain straight segments of charge.

4.1.1 High-charge and low-charge clusters

First, a threshold of 10 ADC is applied on the image to remove pixels from waveform deconvolution
artifacts. A distinction between pixels in the low-charge (LC) and high-charge (HC) regimes as
shown in figure 4 is then performed. The division between LC and HC pixel ADC count is a constant
threshold per plane and is determined from a study of the pixel intensities of MC protons. The
threshold value for the U, V, and Y planes are set at 140 ADC, 120 ADC, and 80 ADC, respectively.
These values correspond to 10% of the average pixel value for a proton track on each plane. Once
the pixel ranges are separated, the algorithm finds groups of LC and HC pixels by applying the
OpenCV contour finder.

4.1.2 Linear cluster breakdown

Next the algorithm performs a shape analysis by breaking down LC and HC clusters, which are not
linear, into linear clusters. For example, the blue LC contour shown in figure 4 has an obvious bend
or “kink” in it, which is associated with a possible neutrino interaction vertex. For each cluster,
the algorithm computes the “convex hull” which is the smallest convex polygon that bounds the
original cluster.

Figure 5a shows an example of convex hull (purple polygon) encompassing the pixels of a
1 1 simulated event. The algorithm identifies the side of the convex hull that is furthest away
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Figure 4. (a) V-plane view of the 1 1 event from figure 2. (b) Low charge (blue) and high charge (red)
contours are found in this example 1 1 event. The high charge contour clusters a collection of pixels which
have a high pixel intensity (here belonging to the proton Bragg peak). The low charge contour encloses all
pixels in this track image as they are all above the 10 ADC threshold.

from the cluster of pixels. The point on the contour that is furthest away from the corresponding
hull side is called the “contour defect”, and is a location where the cluster is potentially bending and
changing direction. If the convex hull side is far enough away (5 pixels) from the contour defect, the
contour is then broken into two at the contour defect. Figure Sb shows the three clusters obtained
after this stage, 1 HC cluster (purple line) and 2 LC clusters (yellow and blue lines), as well as the
contour defect of the original LC cluster (orange star). The algorithm then iteratively breaks down
all clusters into linear segments as long as a contour defect can be found further than 5 pixels away
from the convex hull. The collection of contour defects are the first set of vertex seeds.

The second set of vertex seeds is found using a principal component analysis (PCA) procedure
which calculates the best straight line formed by the clusters of pixels. A PCA is calculated for
each of the clusters found by the bounding box stage separately. Since all clusters have been broken
into linear segments by the previous step, a linear approximation is applicable. The algorithm
then computes the intersection of all possible PCA lines on the plane. If the lines intersect near a
location with charge, the point is saved and is added to the set of vertex seeds. Intersection points
located in pixels with no charge are ignored. Figure 6 shows the three PCAs found in the example
event. Although three intersection points are found, only two correspond to pixels with charge and
are kept. This type of vertex seed helps find the 2D location where tracks which may be changing
direction. Also, using a linear approximation for the clusters gives an additional set of points beyond
the defects points, increasing the efficiency of finding the actual vertex.

4.1.3 Finding 3D-consistent vertex candidates

The final set of vertex seeds is composed of both the contour defects and the PCA intersections.
The proximity of the seeds from the two methods is a strong indication of the actual vertex location.
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Figure 5. (a) The convex hull (purple) is computed for the LC contour (blue) of the event of figure 4. A
contour defect is found on the LC contour, more than 5 pixels away from the corresponding convex hull edge.
The contour defect indicates the location where the cluster is bending. (b) The LC cluster is then broken into
two clusters at the contour defect. The breaking procedure is carried out for each contour until no contour
defects remain on the cluster.

MicroBooNE Simulation
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Figure 6. Diagram showing the calculation of the PCA for each track cluster. For each broken cluster found
in figure 5, a 2D PCA line is calculated. Three PCA lines (gray dashed) are found in this example, one per
cluster. The points where the PCA lines cross are shown as purple stars and are called PCA intersections.
The orange star is the vertex seed from the earlier contour defect stage.



Each of these 2D points is considered a vertex “seed” and serves as a starting point for 3D vertex
search.

The algorithm makes use of the fact that a correct vertex will appear near the same time tick
in each view. This reduces the seed sample to the time-coincident ones. The X position of these
candidates can be determined by using the trigger time and the known drift speed to match the time
tick to an X position. The Y and Z positions can then be determined by using wire coincidences
between two or three planes.

The algorithm then performs an exhaustive search for a 3D vertex around each seed by mini-
mizing an angular metric. This angular metric is a single quantity which evaluates the likelihood of
two tracks being emitted radially outward at the same position across two or more planes for a given
vertex seed. This metric is minimized when a point in 3D space is found where the 2D projections
indicate that the particles are coming out of a single point.

The algorithm begins a search for a 3D vertex by using images from all three wire planes. The
following operation is performed for every vertex seed on each plane. Circles of radius of 6 and 12
pixels are drawn with the given vertex seed at the center. The circle size with the greatest number
of clusters intersecting it is used. In cases where the same number of clusters cross the circles, the
largest circle is kept. The algorithm then identifies the points at which the out-going clusters cross
the circle. For each pair of out-going clusters, the algorithm evaluates two angular quantities:

* The first angular quantity, , is the smallest angle between the center of the circle, and each
pair of cluster-circle intersection points.

* The second quantity, , is calculated in the following way. At each cluster-circle intersection
point a small region of 7 7 pixels is identified. In this region, a PCA of charge carrying
pixels is computed, and provides an estimate of the local cluster directions. is the smallest
angle between each local PCA pair.

The definitions of the two angles are illustrated in figure 7a and figure 7b respectively.

Starting at the vertex seed, two line segments are drawn from the initial local PCA approxima-
tions, as illustrated in figure 7c. The circle center is then stepped in increments of 1 pixel along the
straight line segments. When the difference betweenthe and angles is the smallest, this indicates
that the circle is at a location where the tracks are coming out straight from the center point, likely
indicating a kink feature. The algorithm computes the magnitude difference at each
step and stores it per time tick. The stepping stops when the algorithm has scanned a 40 40 pixel
region around the initial vertex seed. This procedure is repeated for each vertex seed in the plane.
The evolution of  as a function of the corresponding time tick is represented in figure 7c. If two
vertex seeds happen to occur on the same time tick, the lowest ~ value is stored.

Next, the versus time-tick maps for the three views are summed to produce a single
distribution of ~ values. The summed magnitude difference is the angular metric to be minimized
to find the best vertex seed. The distribution is smoothed using a rolling mean that averages over 6
time ticks. Finally, the algorithm searches for local minima in the spectrum to find regions where
a coincident vertex feature appears across multiple planes as shown in figure 8. In each plane, the
circle at the local minima time is examined and matched across planes using wire coincidences. If
coincident wires are found, then a 3D vertex is claimed. A set of coincident vertex seeds across
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Figure 7. Evaluation of the angular metric used to find the best seed position. For each candidate vertex
position found in figure 6, a circle is drawn centered at the vertex candidate position, the tracks intersects
the circle boundary at two points. (a) and (b) describe the angles of interest and . The circle center is
stepped in increments of one pixel along the initial straight line PCAs in (c) and the magnitude difference,

,between and is recorded per six-time-tick bin (3 microseconds). The bottom plot shows the resulting
spectrum for the scanning procedure applied centered at the vertex seed near the kink point. The graph is
versus time.

three planes will exhibit a more pronounced local minimum in the summed  variable than a set
of seeds that only coincide on two planes. Therefore, while it is possible to find vertex candidates
that only match on two planes, a candidate that matches on three planes is favored.

To obtain the 3D vertex position, the vertex time provides the -coordinate. The and
spatial information of the vertex is extracted from wire coincidences across any pairof , ,and
planes.

4.2 Refining the 3D-vertex position

The algorithm then refines the 3D vertices found in both the track-only and the track-shower cases
to best estimate the final 3D vertex. This procedure is called the “3D vertex scan”. The algorithm
takes as input a 3D point in space, and scans in steps of 0 Scma (4 4  4) cm® volume around the
3D point. At each 3D step in the local volume, a 2D point is formed by projecting into the plane.
At the projected step point, a circle is gradually increased in size from 6 pixels to 10 pixels in steps
of 2 pixels. At each radial step the 2D angular metric (summed magnitude difference between
and ) is computed. The result is summed across planes, and minimized over the 3D volume. The
3D points which minimize the angular metric are claimed as 3D vertex candidates.
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Figure 8. Determination of the best seed location across the three planes. The scanning procedure described
in figure 7 is carried out for each vertex seed across three planes. The sum plane 18 used to
determine the best seed location in time.

4.3 Correlating particles across the three views

Once the 3D vertex is identified, the images across the three views of each particle that emanates
from the vertex must be correlated. This is done in two steps. First, in each view, unique particles
are identified using 2D clustering. Then, these 2D clusters are matched across views.

In this step, 2D clusters at each vertex candidate point are matched across planes to identify
a unique 3D particle using the ADC image. The clusters from a single vertex are matched by first
computing all possible combinations of clusters across 2 and 3 planes from a given vertex. For each
combination of 2D clusters, a score is computed. This score is a floating point number between 0
and 3 and is calculated in the following way. There are two cases to consider: a two-plane match
(pairing) and a three plane-match (triplet). For a two-cluster pair, the smallest and largest clusters
are determined based on their total number of pixel points. For each pixel in the smallest cluster,
the corresponding coincident pixel in terms of time tick (X), and wire overlap (Y, Z) position is
searched for in the larger cluster. Wire overlap refers to wires in two different planes that, for a
given time tick value, are expected to show charge deposition according to a (Y, Z) position in the
detector. The total coincident overlap between the larger and smaller cluster is computed as the
ratio of the number of overlapping pixels in the smaller cluster, to the total number of pixels in
the smaller cluster. The pair score will be a number between O (no overlap) and 1 (the smallest
cluster is covered completely). A threshold of 0.5 is applied to ensure the potential match is unique.
For the three plane match, the same procedure is calculated for each pair of clusters in the triplet.
A threshold overlap value of 0.5 is applied between combinations to ensure a unique match. The
triplet score is determined from a sum of overlaps across the triplet. If at least 2 clusters in the
triplet do not meet the threshold requirement, the match is discarded. The triplet score will be a
number between 0 (no overlap) and 3 (all three clusters overlap completely). In this way, a three
plane match is favored over a two plane match since the potential for a score larger than 1 is possible.
For each vertex the algorithm returns unique combinations of matched clusters by comparing the
scores. For each match, a 3D particle candidate is identified. An illustration for the triplet case is
shown in figure 9.
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Figure 9. A cartoon matching scenario for a triplet of clusters across the U, V, and Y planes. (a) A green (A),
orange (B), and pink (C) cluster reconstructed from a particle vertex for each of the three plane views. (b)
Triplet pairings for possible cluster combinations. For each combination, pixels in each cluster are compared
for 3D consistency via time tick and wire overlap (black lines). The ratio of the number of 3D consistent
pixels to the number of pixels in the smallest cluster is computed for each combination.

4.4 3D vertex studies

In this section, we discuss the quality of the vertex reconstruction. We consider the resolution of
the 3-D vertex position reconstruction and the efficiency of vertex finding for the MicroBooNE
detector.

For this study, we use a simulated  sample filtered to satisfy our target final state choice
“l 1 ”. The simulation is described in detail in section 1. The true vertex is required to be within
a fiducial volume defined by 10 cm from any edge of the active volume. Also, we require that the
event contains only one muon and one proton, having a kinetic energy greater than 35 MeV and
60 MeV, respectively at the generator level, and that the muon is contained in the active volume.
1 1 events in MicroBooNE that satisfy the containment criterion typically have energies that
range from 200 MeV to 2 GeV.

4.4.1 Vertex resolution

The quality of the track image vertex-finding can be assessed using MC by considering ,
the distance between the simulated true neutrino vertex and the reconstructed vertex. The

distribution is shown in figure 10, unity normalized. Electric field inhomogeneities throughout the
detector volume can cause distortion of tracks and displacement of the apparent vertex location.
This effect is known as the space-charge effect [20]. To compensate for this, and in order to estimate
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the tracks and showers to exit that cROL. If this happens, although the vertex can be identified, the
particle clustering may not reach the end of the tracks and showers, leading to misreconstructing
them. It is important to have the capability to pursue a reconstruction beyond the cROI. Searching
for the 3D path followed by the track all the way to the end of the track is thus performed by a
separate tracking algorithm.

The track finding algorithm takes as input the full ADC images for each of the three planes and
the vertex 3D point. No other information is used. As unresponsive wires can change in time, it is
then important to identify them for each event. The detection of unresponsive wires is achieved by
tagging the wires over which no charge is deposited for the full read out duration of the event.

The reconstruction of a track begins by finding a set of 3D points, i.e. points in the ( , , )
coordinate frame of the cryostat, that belong to a given track by performing an iterative stochastic
search in the neighborhood of previously found 3D points. A regularization is then performed to find
a minimal set of ordered 3D points that describes the track at the required spatial resolution. Finally,
observables such as length, local and average charge deposition, and angles can be estimated.

For finding the first set of 3D points, the algorithm proceeds in successive reconstruction steps
starting at the vertex:

* The seed of each reconstruction step (iteration) is placed at the last found point.

* A set of random 3D points is picked inside a sphere, centered at the seed, of radius scarch
2 4 > c¢m, where represents the distance between the vertex and the last points
already found in that track. The purpose here is to allow a wider search around the vertex
point, but once a track is found, characterized by a significant of 5 cm, the restricted radius
helps to prevent the track reconstruction from jumping to a nearby track. The search region
rapidly decreases to 2 cm, while tracks are typically 1cm wide. This allows coverage of
the whole thickness of the tracks and good coverage when crossing other tracks.

* If the current track is longer than 5cm, 3D points are also selected inside a forward-going
cone within a 30 opening angle. The cone follows the averaged direction of the track in the
last 10 cm, or the full length of the track if it is too short. The forward search region extends
to 2 gearch- While the spherical search region allows for fine tracking, and can resolve
sudden direction changes, the forward cone search region allows for a faster progression on
straight track portions and increases the robustness to unresponsive wires.

* Only the points that project back onto pixels with non-zero charge deposition on all planes
are kept, with at most one plane on which the point projects on an unresponsive wire.

* New points can only be added if the sum of the ADC values of the deposited charge on the
pixels on which they project is greater than that of the already placed points of that iteration.

At this point, we have a set of neighbors to the seed. Some of these points are not relevant,
because they are too close to an already found point or track. They are rejected based on the
following criterion:

* New points cannot be placed closer than 0 3 cm from an already placed point.
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All the remaining points at this stage are added to a proto-track, a cloud of unrelated 3D points
that correspond to non-zero pixels. The point within the set newly found points that is the furthest
away from the current seed is now used as the new seed and that phase is iterated as long as new
points can be found. This phase ensures that the explored region is pushed as far as possible along
the track.

The points in the proto-track are not ordered and do not follow a linear path. They zig-zag
back and forth within the thickness of the track. The next step is to order the points by linking each
one to its most likely neighbor. This next neighbor is found by minimizing a global score over all
unordered points:

globalscore 5 | 01 , 2 2 cos 10 2 cos 5.1)

The distances | and ; (in centimeters), as well as the angles and are summarized in the
cartoons in figure 13. The dots represent the set of 3D points in the proto-track. The black dots
are the points that have been sorted through, and the light blue dots are the remaining un-sorted
points. The green and red dots correspond to the vertex, and the end of the track, respectively.
The end point is selected as the 3D point which is the furthest away from the vertex. The red
broken line corresponds to the path found within the sorted 3D points. For each candidate within
the points that are still un-sorted (the dark blue point in figure 13 shows one) the two lengths and
angles are computed: | is the distance to the last selected 3D point, ; is the distance to the end
of the proto-track, is the angle from the last two sorted points to the candidate, and is the angle
between the candidate, the last sorted point, and the end of the proto-track. Once the points in the
proto-track have been ordered, there is a logical path from one point to the next, and some points
are rejected as they are never the best candidates, they are then discarded from the list of available
points. The numerical parameters in the global score have been tuned to optimize the smoothness
of the paths, while allowing it to bend and follow the particle path with fidelity. However, at this
point, the track still zig-zags and is formed by too many 3D points to be a good representation of
the particle path, so a second stage is required.

The second stage smooths the path. We loop through the set of 3D points, rejecting superfluous
points based on several criteria:

* A new set of points is created by performing a rolling average of two consecutive points.

* The new set is ordered by moving from one point to its closest neighbor.

The selected new point must be closer to the end point than the previous one.

* The distance from the previous point cannot be more than 5cm (as this would indicate a
possible jump to another nearby track).

* The points that deviate by less than 0 5 cm from the line between points 1 and 1 are
removed.

5.2 Full event reconstruction

These operations are then iterated for all tracks that are found. To prevent the algorithm from
finding the same track multiple times, or from producing equivalent tracks that explore the same
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Figure 13. Cartoon of the 3D points found in the first stage of track reconstruction. These points correspond
to 3D locations consistent with charge deposition on all three planes, but have no logical link between them.
Once the set of uncorrelated 3D points is found, a sorting algorithm finds a logical path. From a sorted
point, the other candidates (dark blue point for current step) are evaluated based on the distance to already
sorted points (black points), the remaining distance to the end of the track (red point) and the two angles,
with respect to the last sorted points ( ) and to the end of the track ( ). The green point represents the vertex
and the light blue points are the points of the found set that have not been sorted through yet.

actual charge deposition, the pixels corresponding to a found track are masked in the ADC image.
Two regimes are used to mask the pixels:

* The 3D points are within 2cm of the vertex: pixels within a 3-pixel cylinder around the
projected track on each plane are erased.

* The 3D points are beyond 2 cm of the vertex: pixels within a 6-pixel cylinder around the
projected track on each plane are erased.

Pixels are erased on a smaller cyliinder close to the vertex in order to allow the algorithm to be
efficient at finding tracks that overlap, i.e. that would have a small projected angle with one another,
in one of the three planes.

Once new tracks are no longer found, we iterate the process to the end points of the tracks
already found. The end points were selected as the point the furthest away from the vertex, but in
some cases, if scattering causes the track to curl up, the actual end of the track is not the furthest
point. Starting at the end of a found track and looking for a missing portion of the track helps
correct for these cases. The two portions of the same tracks are then merged into a single new track.

5.3 Self-diagnostic

Once all the tracks associated with a vertex have been found, it is important to recognize and possibly
reject cases where the reconstruction failed. The purpose of the following step is to identify why
no more points can be associated to the found tracks, either because the reconstruction reached the
end of the actual particle path, or because an error, or an unresponsive region, occurred, and no
more 3D point can be projected into non-zero pixels in all three images. This cross-check relies
on a set of random points thrown on a spherical shell of radius 3 cm at the end point of each track.
Only the forward-going points within a solid angle of 65 are kept, where forward is defined as
the direction along of the track. For each track, the fraction of points that project onto pixels
corresponding to unresponsive wires, empty pixels and pixels with charge deposited are evaluated,
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Figure 14. Example of a simulated event that exhibits the three possible ends to a reconstructed track: (a)
the track en@®®hile on an unresponsive region, (b) the track ends at the termination of the charge deposition
on that plane, and (c) the track ends while the charge deposition continues on that plane. The red line
corresponds to the path of the reconstructed track, projected on each plane, and the black dots represent
the search regions to diagnose the end of the track. The track end point labels of these three cases are
Unresponsi;/goga), Empty (b) and Track (c).
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and a label is attributed to the end point on each plane. Figure 14 shows the three possible cases
we distinguish. The red line corresponds to the projected reconstructed path on a given wire plane
of the reconstructed 3D points, the colored pixels are the charge depositions, and the uniform blue
region corresponds to unresponsive wires. The black dots correspond to the points used to estimate
the goodness of the reconstruction.

In the case where the charge deposition seems to continue (end point label “Track™), it is clear
that the reconstruction failed to find the actual end of the track, but in the cases where the track
ends at the termination of the charge depositions (end point label “Empty”) or on an unresponsive
region (end-point label “Unresponsive”), one needs to have a more global approach and look at the
other planes.

A track that reaches the end in an unresponsive region in two planes but in the third plane
shows that the end of the charge depositions is reached, can be considered as well reconstructed.
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However, the case where the charge deposition seems to continue in the third plane indicates that
the reconstruction did not reach the end of the track.

Another case that can be addressed in this way is when the track locally becomes coplanar to a
wire in the induction planes. Since the signal in these wires is bipolar, the track can appear faint, or
interrupted. In that case, the reconstruction will sometimes stop at the interruption point. This end
point is going to be classified as correct since it appears that, indeed, the track has stopped. In the
other two planes, however, the end points will be classified as bad because the charge deposition
seems to continue.

Based on the label of the end points in the various planes, a track label is attributed to the tracks
as shown in table 1.

Table 1. Track label attribution for the three possible outcomes of the diagnostic tool, depending on the
number of planes whith a given end point label.

Number of planes

with a given end label Diagnostic Output

Unresponsive | Empty | Track

3 0 0 Unresponsive Wire
2 0 1 Unresponsive Wire
1 1 1 Failed Reconstruction
0 2 1 Failed Reconstruction
0 1 2 Failed Reconstruction
0 0 3 Failed Reconstruction
1 0 2 Failed Reconstruction
1 2 0 Good Reconstruction
2 1 0 Good Reconstruction
0 3 0 Good Reconstruction

Cases that fail due to unresponsive wires can be recovered in some cases, as illustrated in
figure 15: non-zero pixels are added in unresponsive regions along a line extrapolated from the
direction of the track at the failure point. The track reconstruction and self diagnostic are then per-
formed again. In cases where the tracks are reasonably straight within the unresponsive region, the
track finding is able to connect the track to the opposite end of the unresponsive regions through the
added pixels. After applying this correction, 0 3% of events have track reconstructions terminated
with the label “Unresponsive Wire”, 38% are terminated with the label “Failed Reconstruction”,
and 61% with the label “Good Reconstruction”.

In the following sections of the paper, a “well-reconstructed vertex” is a vertex with exactly
two tracks of more than 5 cm that both end at the termination of the charge deposition.

From the reconstructed 3D-path of each particle exiting a vertex, several key observables can
be estimated. As we describe these observables in the subsections below, we will characterize the
results using a 1 1 MC sample. In this sample, all events are generated with exactly one
proton above 60 MeV of kinetic energy and exactly one muon above 35 MeV of kinetic energy,
and the neutrino interaction is a quasi-elastic charged current interaction. A fiducial volume
defined by 10cm from any edge of the active volume is applied on the vertex position, and a
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Fcégure 15. Example of track recon%ruction, where the track crosses unresponsive regions. In this example,
the muon track (red) crossed unresponsive regions (vertical blue lines) in two planes, (a) and (c) at the same
tim@9black rectangles) and would ha¥®been labeled as failed. The recovery method allowed a new stage of
track flnding to successfully reconstruct the track. |

4000 4000
containment criterion is applied to the two particles. Simulated neutrino interactions are overlaid

onto a co$fic rayobyckerdaid image frorffunbidS8d belfii-off data. Furthermore, in order to
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eyaluate the performance of the track-finding algorithm specifically, we require that the vertex found

P . o .

i Within 2 cm of the true vertex position, and we compute the performance of the track finding

aggorithm (resolutions, efficiencies, etc.) on the events that follow this criterion. Furthermore,

for the resolution studies in sections 5.4, 5.5, and 5.6, the events used were all labelled as well

6000 . . . . . . . .
reconstructed by the self diagnostic tool. However, the efficiencies estimations in section 5.7 do
inclumnm in the denominator of the efficiency, but not in the numerator.

4000

5.4 Local charge deposition

800 900 1000
For each 3D point, the'lewrlvéharge deposition ( ) for a given plane is computed by integrating

the values of non-zero pixels in a 2 pixel radius around the projection of the 3D point on that plane.
Once the local charge deposition around each 3D point has been acquired for each of the three
planes, other variables can be derived at the analyzer’s preference, including:

¢ Collection-plane-only average ionization: the averaged ADC value per 3D point

1! — (5.2)

where n is the number of reconstructed 3D points and — is the local ionization of a given
point using only the collection plane information.

* Three-plane average ionization: the same variable as previously defined but using, for each
point, the averaged pixel value of all three planes with non-zero charge. In this case, a scale
factor 3  is applied where is the number of planes on which a non-zero value was found.
This scale factor allows correction for a possible plane in which the 3D point projects onto

an unresponsive region.
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Figure 16. Pixel intensity averaged along the reconstructed track on the three planes. The red and blue
distributions represent the tracks with the highest and lowest average ionization in a given vertex respectively.
Inthecaseofal 1 interaction, the track with the higher pixel intensity is likely to be the proton.

The average ionization per pixel reconstructed for simulated 1 1 events in MicroBooNE is
shown in figure 16. At this stage, no particle identification has been performed, the two populations
have been separated by identifying the muon as the track with the lowest average ionization within
the pair of reconstructed tracks (blue distribution) and identifying the proton as the track with the
highest average ionization (red distribution). It is important to note that these particle identifications
are relative within a pair of reconstructed particles, assuming one is a proton and the other a muon.
This is sufficient at this stage as a more definitive particle identification will be performed later on
in the analysis chain.

5.5 Angle estimation

For each individual track, the coordinates of the 3D points within 15 cm of the vertex are averaged.
The vector from the vertex to that mean point describes the path of the particle at short range. The
angles , the projected angle in the (X, Y) plane, and , the angle with respect to the beam axis, are
evaluated for each track as shown in figure 17.

Figures 18 and 19 show the angular errors in the track reconstruction of protons and muons.
Figures 18a and 18b show the errors on the angles for the protons and muons respectively.
Resolutions in  of 6 3 for the protons and 3 3 for the muons are achieved.

Figures 19a and 19b show the errors on the angles for the protons and muons respectively.
Resolutions in  of 3 6 for the protons and 3 0 for the muons are achieved.

Once the direction of each track has been computed, an opening angle can be evaluated by
taking the angle between the direction of the two tracks. Figure 20 shows the error made when
reconstructing that opening angle. A fit to the central peak yields a resolution of 4 8 . The insert
shows the linearity of the opening angle reconstruction.
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Figure 25. Example of a reconstructed MC event: (a) ADC image of a 975 MeV simulated 1 1 neutrino
event producing a 603 MeV muon and a 226 MeV proton. (b) Reconstructed tracks are overlaid on top of the
ADC image. The event is reconstructed as a 627 MeV muon (red) and a 221 MeV proton (green).

6 Comparison to the Pandora-based reconstruction

The reconstruction presented here makes use of the detector readout as an image and as such
uses image processing tools such as convolutional neural networks and image processing. Other
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the cosmic ray pixel tagger. From the output of the vertexing stage, the track finding algorithm
is mainly affected by the unresponsive detector regions. The dependence of the efficiency on the
energy is simply due to an increased probability of crossing such a region as the track length
increases.

The performance of the vertex reconstruction was optimized to precisely place vertices on 3D-
consistent kinks and track-shower boundaries with a maximum efficiency. The track reconstruction
is then run for all found vertices. The performances of the track reconstruction are optimized
with the objective of finding nearby tracks with small opening angles, and to maximize the length
of the reconstructed tracks by following a 3D-consistent path of non-zero charge deposition. A
smoothing algorithm is then applied to the found set of points and finally, a self-diagnostic is
performed to ensure that the reconstructed variables are relevant, and rejects the vertices for which
the reconstruction failed to follow the track to its end to increase the purity of the final sample of
events. The efficiencies for neutrino events in the 200-1250 MeV of the vertex finding is 56% and
that of the track reconstruction is 69%. The spatial resolution of the vertex finding algorithm is of
the order of the wire spacing of MicroBooNE, and the neutrino energy resolution of 2-track truth-
level CCQE events reconstructed using this tracking methodis 18 02 %, in the 200—1000 MeV
energy range.

Further work will include allowing the tracker to recover tracks by improving its ability to
cross through unresponsive regions. The local ionization will also be exploited to better pinpoint
the end of muon tracks and separate the Michel electron. A spatial correction of the reconstructed
points based on a precise measurement of the space-charge effect inducing inhomogeneities of
drift field and distorting the reconstructed tracks will also be performed, further improving the
performance of this reconstruction. Furthermore, the systematic impact of the uncertainties from
event generator, as well as from the detector simulation, still need to be investigated. These are
mostly analysis dependent and will be described in the communications of the analyses making
use of the reconstruction described above. Systematic effects from the event generator can be
reweighed to account for various models describing the neutrino interactions and the propagation
of the daughter particles, while detector effect will require the use of simulated events for many
universes describing the range of possible detector configuration. As these studies are beyond the
scope of this work, they are not presented here.
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