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Abstract. Dynamical spectral estimation is a well-established numerical approach for estimating eigenvalues
and eigenfunctions of the Markov transition operator from trajectory data. Although the approach
has been widely applied in biomolecular simulations, its error properties remain poorly understood.
Here we analyze the error of a dynamical spectral estimation method called “the variational approach
to conformational dynamics” (VAC). We bound the approximation error and estimation error for
VAC estimates. Our analysis establishes VAC’s convergence properties and suggests new strategies
for tuning VAC to improve accuracy.
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1. Introduction. An essential goal in simulation studies is to identify functions that decor-
relate slowly in time. Since the values of these functions can be forecast far into the future,
they are used for dimensionality reduction and prediction. Moreover, slowly decorrelating
functions describe many scientifically significant processes. For example, in biomolecular sys-
tems, large-scale arrangements that control biological activity decorrelate slowly, compared
to quickly fluctuating bond lengths and angles.

Dynamical spectral estimation is a numerical method that identifies slowly decorrelating
functions by estimating the eigenfunctions and eigenvalues of the Markov transition operator
of a system. Under appropriate assumptions, a small number of eigenfunctions span the
most slowly decorrelating functions of the system, and the associated eigenvalues determine
the slowest decorrelation rates. Dynamical spectral estimation uses simulated trajectories to
estimate these quantities of interest.
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Despite the wide acceptance of dynamical spectral estimation, estimated eigenfunctions
and eigenvalues can have substantial error [45], and the cause of this error is not yet fully
understood. Our goal here is to identify and bound the major error sources, thereby identifying
opportunities where dynamical spectral estimation can produce accurate results.

Dynamical spectral estimation has been used in fields as diverse as biomolecular simu-
lation [34], fluid mechanics [47], and geophysical analysis [9]. The approach goes by many
names in the literature, including Markov state models [41], time-lagged independent com-
ponent analysis [42], Ulam’s method [51], dynamical mode decomposition [40], and extended
dynamical mode decomposition [54]. The methods are all closely related, so an error analysis
for any one of the methods can shed useful light on the others. Here, for concreteness, we
focus on a dynamical spectral estimation method that is well established in chemistry called
“the variational approach to conformational dynamics” (VAC) [28, 5, 27, 13].

VAC can be applied to any Markov process X; that is ergodic and reversible with respect
to a distribution p. Starting from a data set of simulated trajectories, VAC is applied in
two steps. First, the data set is used to estimate expectations Cj; (1) = E, [¢; (Xo) ¢ (X+)]
involving a set of basis functions (¢;);<,;<,. Then, the spectral decomposition of the matrix

C (0)"' C (7) is used to estimate eigenvalues and eigenfunctions of the transition operator of
Xt.

Our mathematical analysis establishes bounds on VAC’s approximation error and estima-
tion error. Approximation error is the error in eigenvalue and eigenfunction estimates if the
expectations Cyj (1) = E, [¢; (Xo) ¢; (X)) are computed perfectly. Estimation error is the
additional error incurred in VAC estimates because matrices C (0) and C (1) are computed
imperfectly using a finite data set.

We are not the first authors to mathematically examine VAC’s error. Djurdjevac and
coauthors [7] bounded the approximation error of VAC eigenvalues. We extend their work
by bounding the approximation error for VAC eigenfunctions, which are the chief objects of
interest in most applications of dynamical spectral estimation. Additionally, we provide the
first analysis of estimation error both for VAC eigenvalues and for eigenfunctions.

Our analysis of VAC also requires proving original error bounds. Standard bounds for
the approximation of eigenspaces (e.g., [38, p. 103] or [18, p. 990]) depend on the inverse
gap between eigenvalues. However, the gap between any two nontrivial eigenvalues of the
transition operator vanishes exponentially fast with the lag time parameter 7. Therefore, the
standard bounds increase exponentially as 7 — oco. In contrast to this asymptotic scaling,
we contribute a sharp new perturbation bound that depends only on the inverse relative
gap between eigenvalues. This new bound reaches its minimal value in the large 7 limit,
demonstrating the benefit of long lag times for reducing approximation error. In contrast, our
asymptotic expressions for the estimation error do depend on the inverse spectral gap and
grow in the large 7 limit. Therefore, it is best to select an intermediate lag time.

While there is no single ideal lag time dictated by our analysis, we offer new tools for tuning
VAC to reduce the estimation error. One such tool, the VAC condition number, identifies the
subspaces of VAC eigenfunctions most sensitive to estimation error. A second diagnostic, the
mean squared estimation error, identifies the typical size of the estimation error at different
lag times. We provide data-driven formulas for calculating these quantities, enabling VAC
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users to identify and avoid the most problematic subspaces and lag times. Our experiments
confirm that using these diagnostic tools leads to improved accuracy for VAC estimates.

The paper is organized as follows. Background material is given in section 2, theoretical
results are in section 3, numerical experiments are in section 4, mathematical derivations are
in section 5, and the conclusions follow in section 6.

2. Background. This section presents background material explaining the VAC algorithm
and the dynamical quantities VAC approximates.

2.1. VAC. We begin by introducing the steps of VAC when the algorithm is applied to
trajectory data from a Markov process X; with an ergodic, reversible distribution u. The
algorithm starts by estimating expectations involving a set of basis functions (¢;),<;~,,. Sub-
sequently, VAC solves an eigenvalue problem involving matrices of expectations.

Algorithm 2.1 VAC algorithm at lag time 7.

. Form matrix C:’ (0) with entries C;’ij (0) = Cy5 (0) = E,, [¢5 (Xo) ¢ (X0)].
. Form matrix C (1) with entries Cy; (1) = Cj; (1) = E, [¢i (Xo) ¢ (X7)].
. Solve eigenvalue problem ;\;ﬁi (1) =C 01 C(r) vl (7).

. Return VAC eigenvalues A7 and VAC eigenfunctions 47 = ) j @; (1) @5

O

In Algorithm 2.1, we are purposefully vague about the exact method for obtaining trajec-
tory data to estimate

(2.1) Cij (1) = Cij (1) = By [¢i (Xo) &5 (X7)] -

One common approach involves simulating long trajectories of X; and removing the start of
each trajectory to limit equilibration bias [43]. A second common approach (“importance sam-
pling” [19]) involves simulating short trajectories and addressing bias through an appropriate
reweighting procedure [31, 55]. Since there are no restrictions on how the data set is gener-
ated, enhanced sampling techniques can be used to generate the trajectory initial conditions
or even the trajectories themselves [3, 32].

In addition to collecting a data set, another key design feature affecting VAC is the choice
of basis functions. In the mid-1990s, early versions of VAC used the coordinate axes as
basis functions [48, 11], a choice that remains common in molecular dynamics simulations
[26, 42, 33]. Independently, in the late 1990s and early 2000s, researchers began constructing
spectral estimates using “Markov state models” [41, 45, 46], a procedure mathematically
equivalent to performing VAC using a basis of indicator functions on a partition of state
space. This idea of using a basis of indicator functions can be traced back to a publication
by Stanislaw Ulam in 1960 [51, pp. 74-75] and leads to simplifications in the eigenvalue
problem in Algorithm 2.1. In the 2010s, it was observed that these schemes shared a common
mathematical framework that could be extended to arbitrary basis sets [28]. Subsequent work
led to the development of new families of basis functions [29, 53, 2, 30].

The name “variational approach to conformational dynamics” is inspired by the min-max
principle for self-adjoint operators [28, 36]. This variational principle demonstrates that the
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top eigenfunctions 7y, ..., n; of the transition operator maximize the value of the autocorre-
lation function
(2.2) py (1) = corry [n(Xo) , n (Xr)]

at any lag time 7 > 0. Thus, when 7 is a linear combination of the top k eigenfunctions and
u is uncorrelated with the top k eigenfunctions, the autocorrelation functions are related by

(2.3) pn (1) > pu (1), T2>0.

Consistent with this variational principle, VAC constructs linear combinations of basis func-
tions that maximize autocorrelations. A recent approach due to [21] and [4] extends the
linear fitting procedure in VAC by using artificial neural networks to maximize autocorrela-
tions. However, in the present analysis we focus on the linear VAC algorithm as described in
Algorithm 2.1, and we leave analysis of the nonlinear fitting procedure to future work.

To help clarify the relationship between VAC and other algorithms, we observe that the
computational steps in Algorithm 2.1 can be used for many purposes. For example, AMUSE
[50, 25] uses the same computational procedure as Algorithm 2.1, but the goal is to solve the
blind-source separation problem in signal processing. Likewise, dynamic mode decomposition
[37] and extended dynamic mode decomposition [54] use the same computational procedure
as Algorithm 2.1, but the goal is to analyze nonreversible processes, particularly deterministic
fluid flows. While the underlying computations are similar in all these cases, VAC refers
specifically to the spectral estimation of time-reversible processes. To learn more about the
connections between VAC and other related algorithms, we refer the reader to the helpful
review paper by Klus and coauthors [16].

2.2. Spectral theory. In this subsection, we take a closer look at the transition operator
of the process X; and its eigenfunctions. We assume X; is either a continuous-time Feller

process [14] or a discrete-time process restricted to even times t = 0,2, 4, .... We assume X; is
ergodic and time-reversible with respect to a distribution p. We use (-, -) to denote the inner
product on the Hilbert space L? (1), and we set [|-]| = (-, ->1/2. Lastly, we use P to denote

the orthogonal projection [35, p. 187] onto the closed linear subspace U and Py to denote the
orthogonal projection onto the one-dimensional subspace spanned by the function f.

The transition operator [14], also called the Koopman operator, is defined as the condi-
tional expectation operator satisfying

(2.4) T; [f] (z) = E[f (X¢)| Xo = a].

There are three main properties of the transition operator that determine information about

its eigenfunctions.

1. The transition operator Ty is self-adjoint in L? (u). The self-adjointness follows from the
time-reversibility condition

(2.5) p(dz) pe (2, dy) = p(dy) pe (y, dz)

where p; (z, dy) denotes the transition probabilities for the process X;. By integrating over
(2.5), we verify the self-adjointness property

(2.6) (f.Thg) = (Tif,9), f.g€L*(n).
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2. The transition operator satisfies the semigroup property
(2.7) Tirs = TiTs.
For discrete-time processes, the semigroup property guarantees a decomposition
(2.8) T,=(Ty)", t=0,1,2,....

For continuous-time Feller processes, the decomposition can be extended even further,
leading to the formula

(2.9) T, =4, >0,

which relates the semigroup 7} to its infinitesimal generator A [14].
3. The transition operator 7; is nonnegative, that is,

(2.10) (. Tof) = (Typof Tyyof) >0, f€L?(n),
for all ¢ > 0 if X; is a continuous-time process and for t = 0, 2,4, ... if X; is a discrete-time
process.

Using the spectral theorem for self-adjoint operators [35], we obtain a decomposition of
either A or T5. Then, we extend this decomposition to the transition operator at all lag times
t>0o0rt=0,2,4,.... The spectral decomposition takes the form

(2.11) T, = /OO e ' (do) ,
0

where II (do) is a projection-valued measure.

The spectral decomposition completely determines the time correlations of the process
X;. If the spectrum is discrete, then a finite set of orthonormal eigenfunctions is responsible
for all the slowest decorrelations of the process. However, if there is an essential spectrum
containing o = 0, then an infinite set of orthonormal functions decorrelates arbitrarily slowly
[35, p. 236].

To avoid the possibility of having an essential spectrum containing ¢ = 0, it is sufficient
to assume that 7} is compact. Under compactness, the spectral decomposition takes the form

o0
(2.12) T, =) e P,
i=1
where et > ¢792t > ¢793t > ... are eigenvalues and 71,72, 73, . .. are the associated eigen-

functions. Since the process is ergodic, e 71! = 1 is a simple eigenvalue of T} corresponding to

the eigenfunction n; = 1. Figure 1 shows additional examples of eigenfunctions for a compact
transition operator T;.

While the compactness assumption is enough to facilitate a rigorous analysis of VAC,
the compactness assumption can be overly restrictive. In the Monte Carlo literature, there
are numerous examples of transition operators that are not compact, such as the transition
operator for the Metropolis—-Hastings sampler [23, 1]. Therefore, we prefer to use the quasi-
compactness assumption, a weaker assumption satisfied by a broader class of processes.
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Figure 1. Eigenfunctions of a compact transition operator, corresponding to dynamics d( ii:) =

1
(057 90172)(){,:)dt +v2d( &2 ). Left: Typical trajectory of (Xt,Y:). Upper middle: Time series for eigen-

function ne with slow decorrelation timescale o5+ = 5. Lower middle: Time series for eigenfunction nso with
fast decorrelation timescale o5, = 0.1. Right: Spatial structure of N2 and nso.

Assumption 2.1 (quasi-compactness). The spectral decomposition for the transition op-
erator T; takes the form

r 9]
(2.13) T,=) e "'Py + Ry, Ry = / e 7' (do).
i=1 Ort1
Here, e 71t > 792t > ... > ¢ are eigenvalues, 11,12, ..., n, are the associated eigenfunc-

tions, and e~“7+!! is not necessarily an eigenvalue but it bounds the operator norm of the
residual operator, that is, ||R[|, < e or+

Remark 2.2. In the analysis to follow, an “eigenspace” of T; denotes the closed linear
subspace of eigenfunctions with a given eigenvalue. An “invariant subspace” U is any closed
linear subspace satisfying T30/ C U.

Remark 2.3. There is a common modification of Algorithm 2.1 where the estimated mean
fui = pi = B, [¢; (Xo)] is subtracted from each one of the basis functions ¢; before performing
VAC (see the discussion in [16]). When the mean is removed, VAC no longer estimates the
trivial eigenfunction n; = 1 with eigenvalue e~ = 1; however, VAC continues to estimate
all other eigenvalues and eigenspaces.

2.3. Approximation of eigenspaces. It is colloquially said that VAC approximates eigen-
values and eigenfunctions, but it is more correct to say that VAC approximates eigenvalues
and eigenspaces. Recall that 5\17 and 4] are the VAC eigenvalues and eigenfunctions, while
e~ %7 and 7; are the true eigenvalues and eigenfunctions of the transition operator. We assume
that VAC eigenvalues are arranged from largest to smallest so that ;\I > 5\5 > > 5\; Then
VAC approximates eigenvalues

(2.14) Al e 97T 1<i<n.
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VAC approximates eigenspaces and other invariant subspaces

(2.15) span 4] A~ span 7);
J<i<k J<i<k
whenever there is a gap between {o},...,04} and all other o; values.

To measure the error in VAC’s invariant subspaces, we introduce two distances: the gap
distance ds (-, ) and the projection distance dp (-,-) [8].

Definition 2.4. Consider closed subspaces U and W, and let W indicate the orthogonal
complement of W. Then, we define the gap distance and projection distance as follows:

(2.16) dy UW) = || Py Full dr (UW) = || Py Pulp -
Here, |||, denotes the operator norm, and ||-||p denotes the Hilbert-Schmidt norm, also known

as the Frobenius norm.

The gap distance and projection distance are very flexible, and definitions (2.16) can be
applied even if dim (i) < dim (W) < oo. In this case, we observe that do (U, W) and dp (U, W)
are not technically distances. Rather, dy (U, W) and dp (U,WV) are properly interpreted as
distances between U and the nearest dim (U)-dimensional subspace of W.

We end this section by introducing a useful property of the projection distance, which we
apply repeatedly in the analysis.

Lemma 2.5. Consider U = span (Uy,Us), where Uy and Us are orthogonal subspaces, and
W = span (W, Wh), where Wi and Ws are orthogonal subspaces. Then,

(2.17) d2 (U, W) < d& (U, W) + d& (U, Wr) .

Proof. Calculate

(2.18) di Uz, Wa) = || Py Pyo | p + 1 Pty Py |17
2
(2.19) < PP 13+ | B Poa |
(2.20) = d& (UW) + d& (U, W) . |

3. Theoretical results. To describe the approach taken in the theoretical analysis, we
introduce an idealized VAC algorithm where expectations Cj; (1) = E, [¢; (Xo) ¢j (X7)] and
Ci; (0) = E, [¢i (Xo) ¢j (Xo)] are computed perfectly. Notationally, we distinguish between
VAC and idealized VAC by using the " symbol to indicate the quantities calculated using data.
For VAC, we write Cy; (1), 0% (), AT, and 47. For idealized VAC, we write Cj; (1), v’ (1), A],
and 7.

In the theoretical analysis, we use idealized VAC to isolate two different sources of error.
We decompose the subspace error using

(3.1) dp (span A7, span m) < dp (Span ~7, span m) +dp (span A7, span ’yi> )

j<i<k  j<i<k j<i<k  j<i<k j<i<k  j<i<k

Vv vV
total error approximation error estimation error
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Analogously, we decompose the eigenvalue error using

(3.2) Mo—e Tl < N —e | 4+ AT- a7
N——— —
total error approximation error  ootimation error

Approximation error is the difference between idealized VAC estimates and the true eigenval-
ues and eigenspaces. Estimation error is the difference between VAC estimates and idealized
VAC estimates. We first present approximation error bounds in subsection 3.1, and then we
present estimation error bounds in subsection 3.2.

Remark 3.1. To illustrate the implications of our error bounds, we use numerical exper-
iments. Thus, Figure 2 and Figure 3 demonstrate the error of VAC when applied to the
Ornstein—Uhlenbeck (OU) process dX = —X dt ++/2dW using a basis of indicator functions.
Details on how the figures were generated appear in the accompanying supplemental material
file SMM133598.pdf [local/web 301KB].

3.1. Approximation error. In this subsection, we first bound the approximation error by
using traditional Rayleigh—Ritz approximation bounds. However, we find that the Rayleigh—
Ritz bounds do not provide enough information to show how approximation error depends on
the lag time parameter 7. Therefore, we derive improved bounds by using original methods.
The improved bounds are asymptotically sharp at long lag times, revealing that long lag times
cause the approximation error to stabilize.

3.1.1. Existing approximation bounds are inadequate. The idealized VAC algorithm is
equivalent to the Rayleigh—Ritz method in spectral estimation. In the Rayleigh-Ritz method
[44], the eigenvalues and eigenspaces of a target operator A are estimated by introducing
a subspace of functions ¢/ and then calculating the eigenvalues and eigenspaces of P A,
where A[,, denotes the restriction of A to the subspace Y. This is also exactly what is
done in idealized VAC. The target operator is the transition operator T;, and the subspace
of basis functions is ® = span;.;«, ¢;. Moreover, the idealized VAC eigenfunctions 7] are
eigenfunctions of Py Tr|q with eigenvalues AT.

The equivalence between the Rayleigh—Ritz method and idealized VAC is known in the
VAC literature [39, 7]. However, the implications for VAC’s approximation error have not
yet been fully explored. Djurdjevac and coauthors [7] applied Rayleigh-Ritz error bounds
to analyze idealized VAC eigenvalues. The following theorem goes a step further, by also
applying Rayleigh—Ritz error bounds to analyze idealized VAC eigenspaces.

Theorem 3.2 (approximation bounds). Fiz the lag time 7 > 0 and the index 1 < k < r,
but allow the basis set ® to vary. In the limit as dp (span1<i<k Ni, <I>) — 0, the idealized VAC
estimates converge as follows: o
1. The idealized VAC eigenvalues 1,2, ...,k all converge as

(3.3) A e T 1<i<k.

2. When there is a gap between {cj, ..., o} and all other o; values, the subspace span;<;<j "V,
of idealized VAC' eigenfunctions converges as

(3.4) span y; — span 7;.
Jj<isk J<i<k
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Additionally, error bounds are given as follows:
1. The kth idealized VAC' eigenvalue is bounded by

AT
(3.5) 1—d3 (span m,cb) < Tk <1,

1<i<k e~ I9kT T

2. The top k idealized VAC' eigenfunctions are bounded by

di (span v;, span 77i> )
(3.6) | < 1<i<k  1<i<k <1+ | PpL Ty Pa |5
— — ‘e_O_kT . )\T ‘2
d% span 7;, ® k+1
1<i<k

Proof. See [17, 18] for the original proofs, or see the derivations in the accompanying
supplemental material file SMM133598.pdf [local/web 301KB]. [ |

The main takeaway from Theorem 3.2 is that the approximation error converges to zero
in the limit as

(3.7) dp <span ni,q)) — 0.

1<i<k

Condition (3.7) implies that the basis set ® must become very rich, so that eigenfunctions 7;
can be closely approximated using linear combinations of basis functions.

The Rayleigh—Ritz error bound (3.6) clearly indicates that the eigenspace approximation
error must decay with an increasingly rich basis. However, the bound is not sufficiently
detailed to show how the approximation error depends on the lag time 7. As seen in Figure 2,
the Rayleigh-Ritz bound (3.6) asymptotes to infinity as the lag time increases, implying that
approximation error can grow arbitrarily large. In contrast to this upper bound, however,
experiments reveal that the approximation error decreases and then stabilizes as the lag time
tends to infinity. In the next section, we will derive an improved bound that is asymptotically
sharp, describing the exact behavior of the approximation error as 7 — oc.

3.1.2. New approximation bounds. To analyze the dependence on lag time, we develop
a mathematical approach different from the methods applied to the Rayleigh-Ritz method
in the past. We start by identifying a key stability property of idealized VAC that has not
appeared in the previous literature. As 7 — oo, idealized VAC eigenspaces converge to a
well-defined limit, implying that the approximation error must stabilize at long lag times.

To rigorously study the convergence of idealized VAC estimates, our first step is to in-
troduce the orthogonalized projection functions ¢i,¢qo,.... These are the natural functions
to appear in the 7 — oo limit. They are constructed from the projected eigenfunctions
Py, Ppne, . .., but they are adjusted to meet the orthogonality constraints on idealized VAC
eigenfunctions.

Definition 3.3. Set p = min{n,r}, where n is the number of basis functions (¢i);<;<,
and r is the number of eigenfunctions (1;),<;<, identified in Assumption 2.1. Assume that
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Figure 2. Comparison between different bounds for the approzimation error. Left: The Rayleigh—Ritz bound
asymptotes to infinity at long and short lag times. Center: The true approzimation error stabilizes at long lag
times. Right: The improved bound presented in Theorem 3.4 is asymptotically sharp at long lag times.

projections Pgn; are linearly independent for 1 < i < p. Then, define

(3.8) q1 = Pem, a1 =q/ ||a|
(3.9) G2 = Poma — (q1,m2) q1, @ = ¢/ @],
(3.10)
p—1
(3.11) Gp = Ponp — Z (Gisp) Gis ap = dp/ |Gyl -
i—1

Our next step is to prove that idealized VAC eigenfunctions 7] converge to the orthogo-
nalized projections ¢; at long lag times.

Theorem 3.4 (the 7 — oo limit). Fiz the basis set ® but allow the lag time T to vary. In
the limit as T — 00, idealized VAC' estimates converge as follows:
1. When there is a gap between o and all other o; values, the kth idealized VAC' eigenvalue
satisfies

AL 9
(3.12) e,fkT — (M Qi) -
2. When there is a gap between {cj,... 0} and all other o; values, the subspace span;<;<i Vi

of idealized VAC' eigenfunctions converges as

(3.13) span y; — span g;.
j<i<k j<i<k

3. When there is a gap between oy and all other o; values and a gap between opy1 and all
other o; values, the top k idealized VAC eigenfunctions satisfy

> Ak _>‘<<77k+17%>

AL Mie+1> Qo+1)

(3.14) dp | span v, , span ¢;
k+1

1<i<k  1<i<k
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Proof. See subsection 5.2, subsection 5.3, and subsection 5.4. |

The main message of Theorem 3.4 is that idealized VAC eigenspaces converge exponen-
tially fast as 7 — o0o. Because of this convergence, the approximation error must stabilize. As
the last step of our approximation error analysis, we use the stabilization at long lag times to
provide a new, asymptotically sharp bound on VAC’s approximation error.

Theorem 3.5. When A\, > e 7%+17 the top k idealized VAC eigenfunctions are bounded by

(3.15)

d% span v, , span 7;
1<i<k  1<i<k 1 e Ok+1T
1< <l4+=|—
4 | A} — e kT
d% <span i, CID)
1<i<k

Proof. See subsection 5.3. u

Interpreting the results of this subsection, we can identify concrete strategies for how best
to reduce approximation error. The approximation error can be divided into two parts:

(3.16) dp | span~;, span n; | < dp | span g;, span n; | +dp | span v, span ¢; | .
J<i<k J<i<k J<i<k  j<i<k J<i<k J<i<k
approximation error lag-time-independent error lag-time-dependent error

In this decomposition, we separate the lag-time-independent error and the lag-time-dependent
error. In applications of VAC, there are separate strategies for reducing these two error sources.

To reduce the lag-time-independent error, the best strategy is to enrich the basis set
as much as possible. If the basis set is rich enough to approximate the top eigenfunctions
ni,7M2, ..., Mk with high accuracy, then the lag-time-independent error must be low. Assuming
there is a gap between {o},..., 0.} and all other o; values, Lemma 2.5 guarantees

(3.17) d% | span g;, span n; <d%| span 7;,® | +d3 | spann;, ® | .
j<i<k  j<i<k 1<i<j—1 1<i<k

squared lag-time-independent error

As the basis set becomes increasingly rich, the right-hand side of the inequality converges to
zero, implying that the lag-time-independent error must vanish.

To reduce the lag-time-dependent error, the best strategy is simply to increase the lag
time. As 7 — 00, Theorem 3.4 guarantees that the lag-time-dependent error must decay
exponentially quickly.

3.2. Estimation error. In this subsection, we present formulas for the estimation error
and explain how to calculate the mean squared estimation error using data.

3.2.1. Formulas for the estimation error. In applications of VAC, it is not typically
possible to evaluate expectations Cy; (1) = E, [¢; (Xo) ¢j (X7)] exactly. Instead, trajectory
data is used to provide estimates éij (1) = Cj; (7). In the asymptotic limit as C(r) = C (1)
and C (0) — C (0), the estimation error is governed by the following asymptotic formulas.
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Theorem 3.6 (estimation error). Fiz the basis set ® and the lag time 7 > 0, but allow
matrices C' (0) and C (1) to vary. Assume idealized VAC' eigenfunctions are normalized so
that (] ,~7) = 05, and recall that v; (1) is the vector with 4] =377, v§ (1) ¢j. Set

(3.18) Lij (r) = v (r)" [C (1) = X7 C (0)} W(r), 1<i,j<n.

Then, VAC estimates have the following behavior as C (1) — C (1) and C (0) — C (0):
1. When there is a gap between A}, and all other ] wvalues, the kth VAC' eigenvalue satisfies

. . . 2 . 2

(3.19) A=A =L (1) 40 (Hc (-c@)| +||co-c (0)HF> .
2. When there is a gap between {)\}, ..., AL} and all other \] values, the subspace span;<;<k Y,
of VAC eigenfunctions satisfies
1/2
k T

dr | span 4;, span ] | = %mT

(3.20) <j<z'<k j<i<k Z; g::j AT = A
or I>k

10O (Hc (1) - C (T)Hi +ew-c (O)HD .

Moreover, the condition number for the subspace span,<;<4; s given by

dp <Span 47, span '7[)

. J<isk Jj<is<k 1
(3.21) lim sup - = ,
O(r)=C(r) L{(7) H min {X7y = X7~ A )
C(0)—C(0) F
with the conventions \j = 0o and A} 1 = —00.
Proof. See subsection 5.5. [ |

A useful quantity identified in Theorem 3.6 is the condition number (3.21), which quantifies
VAC’s sensitivity to small errors in the matrices C (1) and C (0). In experiments, we find the
condition number is a useful heuristic for judging whether a VAC estimation problem is easy or
hard—more specifically, whether a large or small data set is required for accurate estimation.
When the condition number for a subspace of VAC eigenfunctions is higher than 5 at all lag
times, the numerical experiments in section 4 show that VAC is prone to experiencing large
amounts of estimation error. Empirically, we can estimate the minimum condition number
across all lag times by using

1
(3.22) min ~ — - .
=0 min {A7_, = A7, A7 - A, }

We recommend that VAC users identify the minimum condition number for various subspaces
and focus on estimating the well-conditioned subspaces whenever possible. Additionally, we
recommend that authors report the minimum condition number along with their VAC results,
helping readers to assess whether the results could be affected by estimation error.
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3.2.2. Calculating the asymptotic mean squared estimation error using data. Here, we
explain how to calculate the mean squared estimation error using trajectory data. We assume
for simplicity that the data consists of a single long stationary trajectory of the process X;.
However, the estimation procedure described here could be generalized to other types of
trajectory data.

Our approach for calculating the mean squared estimation error is based on the following
convergence in distribution result.

Theorem 3.7. Fix the basis set ® and the lag time T > 0, but allow the data set used in
VAC to vary. Assume E, |¢; (X0)|4 < oo for 1 <i<mn. Assume that a stationary trajectory

Xo, XA, XoA, ..., X7_A is simulated and estimates éij (t) = Cyj (t) are formed using
It
A A i (X (X (X i (Xs
(3.23) Cif () = = 9i (Xsa) 0 ( A+t)-2ﬂzﬁy( a) ¢ (Xsars)
s=0

Then, VAC estimates have the following behavior as T — oco:
1. When there is a gap between Aj, and all other \] wvalues, the kth VAC eigenvalue satisfies

(3.24) VT (5= %) B Zi

2. When there is a gap between {)\JT, ..., AL} and all other X walues, the subspace span;<;<i Vi
of VAC eigenfunctions satisfies

2

2 k
. D Z7
(3.25) Tdp | span 4] ,span~y, | = —n
i<i<k | j<i<k ; mz:] A=A
or 1>k
Here, (Z] )1 < men 15 @ mean-zero multivariate Gaussian random variable with variance terms
o0
(3.26) E|Z,)2 =AY Covu[Ff, (Xo, Xr), Fy, (Xen, Xentr)],

S§=—00

where we have defined

W (@) Y W) + 97 @) v (@) - 3] (@) 9 (@) + 97 () Y ()
2 m 2 '

Proof. See subsection 5.6. u

(3.27) Fi (2,y) =

The great value of Theorem 3.7 is that it suggests a data-driven approach for calculat-
ing the mean squared estimation error in the asymptotic limit as T" — oo. First, we can
use the data set to estimate the E |Zle]2 terms by means of (3.26). Second, we can sub-
stitute the E |Zl7;n]2 estimates into (3.24) or (3.25) to compute the mean squared estimation
error for eigenvalues or invariant subspaces. In the accompanying supplemental material file
SMM133598.pdf [local/web 301KB]|, we provide a step-by-step description of this estimation
procedure.
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In Figure 3, we calculate the mean squared estimation error by using a single trajectory
of data. We find that it is possible to accurately identify the lag times at which the mean
squared estimation error exceeds a critical threshold, such as 0.2. Moreover, in the numerical
experiments in section 4, 0.2 is a typical level at which the estimation error begins to contribute
significantly to VAC’s overall error. Therefore, in VAC applications we recommend calculating
the mean squared error and avoiding lag times where the error exceeds such a threshold.

T=103 T=10° T=105
S
° 10° 10° 10°
o
: —— True error
£
5.0, -1 -1 Calculated error
g 10 10 10 (from data)
)]
=
(-4

1072 1072 1072
o 2 4 1] 2 4 0 2 4
Lag time Lag time Lag time

Figure 3. Root mean squared estimation error for different trajectory lengths T. The calculated error is
obtained from a single trajectory of data using formulas in Theorem 3.7. The true error is obtained through
100 independent trials.

We conclude this section by considering three additional strategies to reduce the estimation
error of VAC. The first strategy is to increase trajectory length. By increasing the length 7' of
the trajectory, the estimation error consistently decreases at a 1/ VT rate as shown in Figure 3.

The second strategy for reducing the estimation error is to prune the size of the basis set.
We find in Theorem 3.6 that the squared estimation error increases linearly with the number
of basis functions. Therefore, it is best to include only those basis functions that have the
potential to overlap with the eigenfunctions of the transition operator.

The final strategy for reducing the estimation error is to select basis functions with fa-
vorable integrability properties. In Theorem 3.7, it is seen that the mean squared estimation
error depends on the fourth moments of the idealized VAC coordinates. If the basis functions
themselves have large kurtosis

E, | ¢: (Xo) — E, [¢: (Xo)][*

(3.28) 0 2
(B 165 (Xo) = By [65 (Xo)?)

7

this can increase the estimation error in VAC calculations. Favorable integrability properties
may be one factor that helps explain the success of Markov state models, in which the basis
consists of indicator functions on a partition of the state space. The fourth moments of
indicator functions are often well controlled, compared to, e.g., higher-order polynomials of
the coordinate axes.

4. Numerical experiments. In this section, we report on two numerical experiments that
illustrate the major factors impacting VAC accuracy. These experiments show how computing
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the VAC condition number and the mean squared estimation error can help to improve VAC’s
results.

4.1. Varying the basis size and trajectory length. First, we apply VAC to estimate the
span of eigenfunctions 71, 72, and 73 for the Ornstein—Uhlenbeck (OU) process

(4.1) dX = —X dt +V2dW .

In two different trials, we show how VAC’s accuracy depends on the size of the basis set
and the length of the simulated trajectory. The number of basis functions and the trajectory
length are varied as follows:

| Trial 1 | Trial 2
n=20 | n=250
T =10* | T =500

Basis functions
Trajectory length

In both trials, the basis functions are indicator functions on disjoint intervals.

The two different trials demonstrate that the breakdown of approximation error and esti-
mation error is sensitive to context, as seen in Figure 4. The approximation error is higher in
trial 1 because of the smaller set of basis functions, whereas the estimation error is higher in
trial 2 because of the smaller data set. In trial 1, it is optimal to use a comparatively long lag
time of 7 = 0.7 to reduce the approximation error. In contrast, in trial 2 it is optimal to use
a comparatively short lag time of 7 = 0.1 to avoid the increase in estimation error at longer
lag times.

1.0 Trial 1 Trial 2
---- Total error
. 0.8 Estimation error -
g Y D Approximationerror|| | o o7
o A
g 0.4 T il IS W
E M e T
0.2
0.0
1.0
1S
£o.s
[]
g 0.6
.1'_1
0 0.4
J
® 0.2
(¥

0.
8.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Lag time Lag time

Figure 4. True error and calculated error for the OU process. Top: The bold line indicates the true root
mean squared error over 30 independent trajectories, while the shaded region indicates the mean + 1 standard
deviation. The purple dot shows the optimal lag time. Bottom: The calculated root mean squared estimation
error obtained from each of the 30 trajectories.

In addition to showing the true error levels, Figure 4 shows the root mean squared estima-
tion error calculated directly from the data. In trial 1, the calculated estimation error remains
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below 0.2 for lag times up to 1.5. Therefore, the VAC practitioner can infer that the data set
is rich enough to take high lag times without experiencing large estimation error. However,
in trial 2, the calculated estimation rises more rapidly, reaching a level of 0.2 when the lag
time is just 7 = 0.5. In this case, the VAC practitioner can infer that the data set is not rich
enough to take 7 > 0.5.

An alternative lag time selection strategy called implied timescale analysis has been ad-
vocated in the past by VAC researchers [45]. In this strategy, the VAC eigenvalues are used
to compute the implied timescales

—T
log (5{)

If VAC eigenvalues were perfect estimates of the true eigenvalues, then implied timescales
would be perfectly flat and they would equal o, ! In practice, however, implied timescales
are not flat. They increase quickly at short lag times and then increase more slowly at long lag
times. To cut down on VAC’s error, Swope and coauthors [45] proposed selecting a long enough
lag time so that the implied timescales for the eigenfunctions of interest are approximately
level.

Figure 5 presents the implied timescales for the OU process. From the figure it is clear
that the implied timescales cannot be used to assess the estimation error. The estimation
error is much higher in the second trial, yet the implied timescales for trial 1 and trial 2 are
similar. However, implied timescales may help assess the approximation error. As the lag
time is increased from 7 = 0 to 7 = 0.1, the second and third implied timescales become much
flatter, which provides an accurate indication that the approximation error is decreasing and
beginning to settle.

(4.2)

Trial 1 Trial 2

1.2
0
o 1.0 -
T F’k / —— -T/log(A;)
(%) A
go0.8 —— —1/log(As)
'§0.6 —— —1/log(As)
h A

— =1/log(A

2o.a K//’ /—’__d/ g(AS)
E- —1/log(Ae)
= 0.2 /

0'%.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Lag time Lag time

Figure 5. Implied timescales of the OU process.

We conclude that implied timescale analysis may provide an approach for assessing ap-
proximation error that is complementary to our approach for assessing the estimation error.
Whereas our approach is useful for identifying and avoiding the error that is prevalent at
long lag times, implied timescale analysis may be useful for identifying and avoiding the error
that is prevalent at short lag times. However, while our approach for computing the mean
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squared estimation error is rigorously justified, it remains an open research problem to rigor-
ously justify this proposed relationship between the implied timescales and the approximation
error.

4.2. Varying the size of the subspace. In our second experiment, we apply VAC to
estimate the eigenfunctions of the diffusion process

1
(4.3) dX = —§aaTVU(X) dt +o dW,

where the potential U and the diffusion matrix ¢ are given by
(4.4) Ul(xy,x0) = 4xf — 822 + 21 + 0.523 o= (2 Y
. 1,42 1 1 1 +9L2, 1 \/g :

We simulate a stationary trajectory of length 7' = 500 and then apply VAC using the basis
set {1,z1, 72, 2%, v172, 73}

We investigate how the accuracy changes when VAC is used to estimate two subspaces of
different sizes: span {n;,72} and span {n1,72,73}. When estimating span {n;, 72}, there is a
wide range of lag times that all lead to low error levels. As seen in Figure 6, the total error
decreases between lag times of 7 = 0 and 7 = 0.2, but it is nearly constant for all lag times
between 7 = 0.2 and 7 = 1.5. In contrast, when estimating span {7, 72,73}, the total error is
V-shaped with a distinct minimum at the lag time 7 = 0.2. The error rises rapidly as the lag
time is increased beyond 7 = 0.2 due to an upsurge in the estimation error.

Estimating span{ni, n2} Estimating span{ni, n2, n3}

1.0 1.0
---- Total Error

. 0.8 Estimation error o8 A s
g 061 L Approximation error 0.6 //
o
S04 0.4 e
- \ —_—
= \ \ =T

0.2{ M~-mermmmmmmmmmm s RS AT 0.2

0.0 0.0

1.0 1.0
13
£os 0.8
7]
£ 0.6 0.6
b=
0.4 0.4
%}
® 0.2 0.2
o ///

0. 0.

%.0 05 10 15 20 25 3.0 %.0 05 1.0 15 2.0 25 3.0
Lag time Lag time

Figure 6. When the minimum condition number is 2.0, the estimation error is low (left). When the
minimum condition number is 9.5, the estimation error is much higher (right).

What explains the different error profiles when estimating the subspace span {n;, 72} versus
span {n1,n2,1m3}? The explanation is not a difference in the data set or the basis set, since
these factors remain the same when estimating the two subspaces. Rather, the increase in
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estimation error is due to the much higher condition number for the subspace span {1y, 72,73}
No matter how the lag time is selected, the inverse spectral gap (A\] — )\g)_l is at least as
high as 9.5. In contrast, when estimating the subspace span {n;, 72}, the minimum condition
number min; (A} — )\5)_1 is just 2.0. Here we see that a high condition number is associated
with increased levels of estimation error and a stronger relationship between estimation error
and lag time.

To avoid situations where the estimation error is uncontrollably high, VAC users should
identify well-conditioned subspaces and focus on estimating these subspaces whenever possible.
As shown in the VAC eigenvalue plot in Figure 7, eigenvalues for well-conditioned subspaces
visually stand apart from the rest of the eigenvalues. The large gap between the second
and third VAC eigenvalues indicates a natural separation in timescales, which implies that
span {n,n2} is a well-conditioned subspace.

1.0;
0.8
: —
= 0.6 2
$o.4 — A
i — As
0.2
0.0
103 102 107! 10° 10!

Lag time

Figure 7. VAC eigenvalues.

5. Mathematical derivations. In this section, we prove the mathematical results pre-
sented in Theorem 3.4, Theorem 3.5, Theorem 3.6, and Theorem 3.7.

5.1. Building mathematical intuition. Before proving Theorem 3.4, we identify the intu-
itive mathematical reason why idealized VAC estimates converge at long lag times. Applying
the spectral decomposition (2.13), we find that each matrix entry Cj; (1) has an exponentially
decaying structure.

(51) CZ] (T) = <¢la TT¢J> = Z e 717 ("717 ¢l> <77l7 (Z)J) +0 (6_0T+1T) , T —» Q.
=1

Thus, the matrix C (7) is the sum of exponentially decaying rank-one matrices

(5.2) O =Y e (m.8) (m.8) +0 (7). 70,
=1

-

where we have used the shorthand (1, ¢) to denote the vector with entries (1, ¢;).
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To approximate the behavior of idealized VAC at long lag times, we remove the smallest
terms in the expansion (5.2) and replace C (7) by the sum of k rank-one matrices

k T
(53) Z e 7" <77l7 $> <77l7 $> .
=1

When the rank-k approximation is used in place of C (1), it results that the top k idealized
VAC eigenfunctions 77, ...,7] span the subspace

(5.4) span ¢; = Pg span 7;.

1<i<k 1<i<k
Therefore, the truncation argument helps intuitively explain the convergence of idealized eigen-
functions «; to orthogonalized projections g; as 7 — co. Our proofs in subsection 5.2, subsec-

tion 5.3, and subsection 5.4 essentially serve to justify the truncation argument and to provide
rigorous bounds on the convergence.

5.2. Convergence of eigenvalues. In this section, we verify the statement in Theorem 3.4
that the kth idealized eigenvalue converges

T

(3.12) = (7%, @x)’

e—O'k’T

in the limit 7 — oo, provided there is a gap between o} and all other ¢; values. To prove this
result, our main tool is the min-max principle for self-adjoint operators [36].

Lemma 5.1. Consider a quasi-compact self-adjoint operator

,
(5.5) A=) AP, +R
Here, 01,19, ...,m are orthonormal eigenfunctions of A with eigenvalues Ay > Ao > -+ > A,
and the spectrum of R lies in (—oo, A\,). Then, for each 1 <k <,

A
(5.6) Ak (A) = max min M

dim(H)=k neH (1, 1)
Before applying the min-max principle, we derive two estimates.

Proposition 5.2. For any ¢ € ® N (spanlgigk_l qi)J‘,

T _ _
(57) <¢7 d)) <e ORT <77k,(Jk;>2+€ Tk1T

(¢, )
Proof. Calculate

(5.8) (0.T:0) = (6, (3 e Py + Rr) 6)

(5.9) = e (e 0) + (0, (Y, €T+ By ) )

(5.10) < €T (i, i) (g, B)2 + €T (6, 0)

(5.11) < eI (g, qi)? (¢, 9) + €T (B, ¢) . m
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Proposition 5.3. Set Hy.x—1 = spanj<;<;_1 mi- Then for any q € Q1.x = spany<;<y, i,

<Q7T’TQ> — 2 1
5.12 2 e T (e, qr)” — )
( ) <q7 Q> F k> e(ak_gk_l)T (1 - d% (lek—17 (p)) - <77k, Qk>2

provided the denominator term is positive.
Proof. Tt suffices to consider the ||g|| = 1 case. Then, g can be decomposed as ¢ = aq’+bqgy,
where a® + b2 =1, ¢ € Qr.1_1, and ||¢|| = 1. Tt follows that
(5.13) (0. Trq) = (g (77" Puyyy + €777 Py, ) q)
(5.14) = a2~ || Pay, d'||F 4 € (g, ad’ + by,

Thus, (q,Trq) is bounded from below by the lowest eigenvalue of

_ 2(1 0 - (s q')? (M @) (s are)
515 M —e Okp—1T PH . q/ < > + e OET < ) .
(5.15) 1P| 00 (M @) (> are) (ks qr)°

For any symmetric real-valued matrix M = (¢ %) with a > ¢, the lowest eigenvalue is at least
as large as ¢ — b?/ (a — ¢) [22]. We can check that

1

/ 2 / 2 2
(5.16) ity || :1_HPHik7 qH >1—d2(Hyp1,®).

Therefore, the lowest eigenvalue of the matrix M is at least as large as

6_2U’“T
(5.17) e~ (e, qi)” — ‘ -
e (1= & (Hypor, ®)) — o7 (11, 1)

Proof of (3.12). Using the min-max principle and Proposition 5.2, we obtain

T
(5.18) AL = max _ min (. Trm)

< e OkT 2 1 1
dim(H)=k,HC® neH (1, n) =€ Mk, qr)” (L +0(1))

as 7 — oo. Using the min-max principle and Proposition 5.3, we obtain

. <777T7'77> _ 9
519 A = > e kT 1 1)). u
( ) k dim(I—rll)lzalngcp gnelﬁl <777 ,,7> ¢ <77ka Qk> ( +o ( ))

5.3. Convergence of invariant subspaces. In this section, we verify the statement in
Theorem 3.4 that the subspace span;<;<j, 7] of idealized VAC eigenfunctions converges as

(3.13) span vy, — span g;
j<i<k j<i<k
in the limit 7 — oo, provided there is a gap between {0}, ...,0} and all other o; values. To

prove this result, our main tool is a well-known lemma due to Davis and Kahan [6].
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Lemma 5.4. Suppose A and B are self-adjoint operators and U and W are closed sub-
spaces. If the spectrum of Py Al lies in the interval [a,b] and the spectrum of Py By, lies
in (—oo,a — 8] U [b+ d,00), then

(5.20) §|1PwPully < | PwPyAPy — PwBPywPyllp.

The Davis and Kahan lemma leads to the following error bound.

Proposition 5.5. When A], > e™ %%+l the distance between subspaces I'T,, = spany<;<j 7,
and Ql:k = Spalli<;<k i s bounded by

6—0k+1T
5.21 dp (T'7.,, Q1) < d i, @] .
( ) F( 1:k Qlk) =9 ()\Z — e—0k+1T) F <ls$;a§r;7] )

Proof. The spectrum of Pgqq L T, T\q,mek lies in the interval [0, e 7%+17] while the spec-
trum of Ppr TT|FI-k lies in the interval [)\;,'1]. Therefore, the spectral gap is at least A\ —

e %k+17  We calculate

(5:22) (AL = ™7 | Pargy, P || < |[Ponar, Prr T Prs, = Ponar, TrPorar, i
(5.23) = || Penas, IrPr, — Ponat, TrPorqy, Fri. |,
(5.24) = |Ponas, TrPoun 1, ||

(5.25) = || Ponot, IrFQue |, -

where we have used the fact that I'T,; is an invariant subspace of PpT; Pp. Next, we introduce
the subspace Hy.y = span; ;< 7;, which is orthogonal to ® N ka Then,

(5.26) HPHtkPQM

P HPH““Pka )F

= || P, Porllp = dr (span 171»,<I>> .
1<i<k

To complete the theorem, it is enough to show that

e—Uk+1T
<
F 2

(5.27) | Ponay, TPav

Pt Pou |, -

To prove (5.27), we apply a useful property of the Frobenius norm. For bounded linear
operators A and B, if it is true that ||Au| < ||Bul| for all u, then it follows that [|A||p < ||B||p
[12]. Using this property, it is sufficient to prove that

e*Uk+1T
(5.28) HquthTrq ‘ < Pyl qll, ¢ € Qus
Moreover, it is sufficient to prove that
—Ok4+1T
(5.29) (6, Tug)| < 5
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for all p € N Q1 and g € Q1. with [|¢] = ||Pkaq|| = 1. We observe that

2 2
630 |, @20 = |t Py a] =2£2(0. Py 0) = 222000 =2

Using the polarization identity and the fact that Hf‘k is an invariant subspace of T, we
conclude that

(5:31) 16 Tra)| = |( Puy, 6. TPy, 0)|

(5.32) = ] (6+0) TPy 04+ 0) — 1 (P, (6 0), TPy, (6 q>>‘
(5.33) < 2’ e, TPy, |
(5.34) < ¢ U;” m

Proof of Theorem 3.5. When Aj, > e™7k+1, Proposition 5.5 allows us to calculate

5.35 d% | span n;, ® | < d% | span ~7, span n;
F F %
1<i<k 1<i<k  1<i<k
2
1:k F
2
2
(57 = 1Pas Pu 4 [Py PP,
1:k F
5.38 B L I B @ m
( ’ ) - + Z )\z — e Ok+1T F fgfgrzm’ .

Proof of (3.13). When there is a gap between {0}, ..., 01} and all other o; values, Propo-
sition 5.5 shows that span;<;<;7] — span;<,<j ¢ and span;<,<; ] — spanj<,<; ¢; in the
limit 7 — co. By applying Lemma 2.5, we verify span;<;<; 7] — span,<;< ¢i- ]

5.4. Exponential speed of convergence. In this section, we verify the last statement in
Theorem 3.4 that the top k idealized VAC eigenfunctions satisfy

Abt1 Mhet15 Qh+1)

AT
(3.14) dp | span ~], span g; ko | (1, Gk}
1<i<k  1<i<k (

in the limit 7 — oo, provided there is a gap between o; and all other o; values and a gap
between o4 and all other o; values.

Proof of (3.14). If there are fewer orthogonalized projection functions (¢;), <i<p compared
to basis functions (¢i);<;<,,, we select additional functions (g;),,<;<, S0 that (¢i);<;<, is a
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complete orthonormal basis for ®. Then,

(539)  dp <span 47, span qz-) - H(an+1 a: () <Zj17§ 7, ->> HF

1<i<k  1<i<k

(5.40) - HZ:’L:I@-H Zj:l  {9::95) (0 >HF
(5.41) = (Z;m Zj:l (475 >2>1/2

The terms (g;, ,ij> are determined by the eigenvalue equation

(5.42) Aj <ql'»’VJT> = <ql"TT’VgT> = lel (@i, Trqr) <%7}>-
As 7 — 00, Theorem 3.2 and the calculations in (5.31)—(5.33) imply that
(5.43 1A =0() and g Toah] < min {e=o, e},

Setting € = min {ogo — ok, 0k+1 — 0k—1} and sending 7 — oo, we find that

(5.44) dp <span v, span qi> = Ngrt1, )| + O (™)
1<i<k  1<i<k
1 n T —eT
(5.45) = N lel (@rr1 Tran) (@70 | + O (e77)

Lastly, using the facts that vf — qx and AJ ;€717 — (g1, qk+1)2, we obtain

AT T
(5.46) dp (span ~i, span %) )\Tk _ <Qk+)\17 ) (1+0(1))
1<i<k 1<i<k k+1 k+1
eio‘kJrlT , ,
(547) — <77k+1 Qk+1> <nk+1 Qk> (1 —|—O(1))
ek T (Mt 1, Qht1)
(5.48) _ ) (1+0(1)). m

<77k+1, Qk+1>

5.5. Formulas for the estimation error. In this section, we verify the formulas for the
estimation error that are given in Theorem 3.6.

Proof of Theorem 3.6. First, define matrices
(5.49) A(r) =diag {(A\T -+ L)}, V(r)=(vi(r) - wa(7)).

Due to the normalization d;; = (7],7]), we must have

(5.50) vintcoVv(ir) =1, V' CEVi(n)=Ar).
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Therefore, idealized VAC eigenfunctions ] and eigenvalues A] are the eigenfunctions and
eigenvalues of the multiplication operator

n
(5.51) Zi,j:l Y Aij (1) (7], ) -
In contrast, VAC eigenfunctions 4] and eigenvalues 5\17 are eigenfunctions and eigenvalues of

(5.52) Yoo (veteoemvm) ()

)

[é 0)C(0) - IH ¢ (7)

(5.55) =OC(r) - [0(0)0(0)*1—1] C(T)+0<HO(0)—C(0)Hi+ é(f)—C(T)Hi)

(656 =VE T [A@+LE]|VET 0 (HC 0 -co +|em-c (T)Hi) 7

where we have made repeated use of the identities (5.50). Multiplying on the left by V (7)” and
on the right by V' (7), we find that VAC eigenspaces are unitarily equivalent to the eigenspaces
of the matrix operator

(5.57)

V(D) eI eV () =A) +L(1)+0 <HC 0)-C (0)H§ + HC (1) -C (T)Hi) )

and the two operators share the same eigenvalues. Theorem 3.6 then follows by applying first-
order perturbation bounds [15] for eigenvalues and invariant subspaces of a diagonal matrix
A (1) that is perturbed by a matrix L (7). [ ]

5.6. Distributional formulas for the estimation error. In this section, we verify the dis-
tributional formulas for the estimation error that are given in Theorem 3.7.

Proof of Theorem 3.7. We fix the lag time ¢ > 0 and the indices 1 < 7,5 < n, but allow
the total trajectory length T' to vary. Then, we write

%71 (o . . (x
658 Gy =2 Y 6y (Xa)  ylay) = 0 () & (y)—;@ () 5 (x)
s=0

As T — oo, we will proceed to show that v/T(Ci;(t) — Ci;(t)) converges to an asymptotic
normal distribution.

By assumption, X; is started from the stationary distribution Xg ~ p, so the random
variables (¢ (Xsa, Xsatr))y—q . are strictly stationary [24, pp. 230-231] with mean Cj; ().
Moreover, the conditional expectations E [¢;; (Xsa, Xsatr)| Xo = ] satisfy

(5.59) IE [¢ij (Xsa, Xoatr)| Xo = 2] — Cyj (¢)]| < Ce™2, s >0,
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for a constant C' < oo that is independent of s. Condition (5.59) is an asymptotic negligibility
condition that guarantees the validity of the central limit theorem for ¢;; (Xsa, Xsa4-). Using
the central limit theorem in [10, Chap. 5], we prove that

(560) \/T (élj (t) - Cij (ﬂ) 2) N (07 A Z COV# [625:] (X07XT) ) %T] (XSA7XSA+T)}> .

S=—00

For simplicity, we have considered the asymptotic distribution of /T (C’Zj(t) — Ci(1)).
However, by the same approach we can prove the asymptotic normality of any linear combi-
nation of random variables /T (CA’U (t) — Cy;(t)) involving different values of 4, j, and ¢. By
the Cramér—Wold theorem [14], therefore, the array

(5.61) [\/cf (é (0)—C (o)) NT (é (r)—C (T))}

converges to a mean-zero multivariate normal distribution.

To complete the proof of Theorem 3.7, we then apply the “delta method” [52, p. 26] using
the formulas (3.19) and (3.20). Since the v/T||C(0) — C(0)|3 and v/T||C(7) — C(7)||3 terms
are (’)p(%) as T'— oo, these terms are asymptotically negligible. The matrix

~ A~

(5.62) L=V (CO)-CO)VE-VEO(CO)-CO)V AT

is a linear combination of matrices C (1) — C () and C (0) — C (0), with each matrix entry

L;; (1) satisfying

)

(5.63) VTLi;(r) BN (O,A i Cov, [F] (X0, X-), F}; (X5A7X3A+T)]>. |

S§=—00

Therefore, the formulas (3.19) and (3.20) guarantee the results in Theorem 3.7.

6. Conclusions. In this paper, we have identified and bounded the major error sources
of “the variational approach to conformational dynamics” (VAC) [28, 5, 27, 13]. VAC is
frequently applied in biomolecular simulation studies to estimate the largest eigenvalues
e 1T > 7927 > ... > e %7 for the Markov transition operator T, along with the cor-
responding eigenfunctions 71,99, . . ., N.

We have proved that VAC accurately identifies subspaces of eigenfunctions span,;<;<j n;
when three conditions are satisfied:

1. The values {oj,...,0.} are separated from all other o; values by a spectral gap.
2. The library of basis functions (¢;);;, becomes very rich so that linear combinations of

basis functions can fully represent 7y, ..., 7.

3. The data set becomes very large so that expectations Cj; (0) = E, [¢; (Xo) ¢; (Xo)] and

Cij (1) = E, [¢i (X0) ¢j (X7)] are evaluated with vanishing error.

VAC converges for any value of the lag time parameter 7 > 0, yet the choice of lag time
can dramatically alter the speed of convergence. Hence, our main contribution is to prove
error bounds that explicitly show how error depends on the lag time. These bounds provide
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a full theoretical justification for why limitations in the basis set contribute to the error at
short lag times and limitations in the data set contribute to the error at long lag times.

Our numerical analysis approach is flexible, and it could be extended to algorithms besides
VAC that estimate dynamical quantities of interest using trajectory data. A broadly useful
approach involves decomposing the total error into approximation error and estimation error.
Another useful approach involves identifying asymptotic formulas for the estimation error. In
future research, it is our goal to rigorously analyze the approximation and estimation error
for other powerful algorithms used in biochemical simulation (e.g., [49]).

Lastly, while the main purpose of our work is to deepen theoretical understanding, we
also provide diagnostic tools to assess VAC’s estimation error and tune VAC’s parameters
to reduce this error source. We present the VAC condition number as a tool for identifying
subspaces of VAC eigenfunctions that are prone to experiencing high estimation error. We
also present the mean squared estimation error as a tool for calculating the estimation error
at different lag times. Motivated by the present study, we have also developed an approach
for reducing the lag time sensitivity and increasing VAC’s robustness by integrating over a
window of lag times [20]. These tools have direct relevance to the researchers using VAC,
pointing the way toward a more streamlined lag time selection process and a more critical
assessment of VAC’s error for the future.
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