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Abstract. Dynamical spectral estimation is a well-established numerical approach for estimating eigenvalues
and eigenfunctions of the Markov transition operator from trajectory data. Although the approach
has been widely applied in biomolecular simulations, its error properties remain poorly understood.
Here we analyze the error of a dynamical spectral estimation method called “the variational approach
to conformational dynamics” (VAC). We bound the approximation error and estimation error for
VAC estimates. Our analysis establishes VAC’s convergence properties and suggests new strategies
for tuning VAC to improve accuracy.
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1. Introduction. An essential goal in simulation studies is to identify functions that decor-
relate slowly in time. Since the values of these functions can be forecast far into the future,
they are used for dimensionality reduction and prediction. Moreover, slowly decorrelating
functions describe many scientifically significant processes. For example, in biomolecular sys-
tems, large-scale arrangements that control biological activity decorrelate slowly, compared
to quickly fluctuating bond lengths and angles.

Dynamical spectral estimation is a numerical method that identifies slowly decorrelating
functions by estimating the eigenfunctions and eigenvalues of the Markov transition operator
of a system. Under appropriate assumptions, a small number of eigenfunctions span the
most slowly decorrelating functions of the system, and the associated eigenvalues determine
the slowest decorrelation rates. Dynamical spectral estimation uses simulated trajectories to
estimate these quantities of interest.
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Despite the wide acceptance of dynamical spectral estimation, estimated eigenfunctions
and eigenvalues can have substantial error [45], and the cause of this error is not yet fully
understood. Our goal here is to identify and bound the major error sources, thereby identifying
opportunities where dynamical spectral estimation can produce accurate results.

Dynamical spectral estimation has been used in fields as diverse as biomolecular simu-
lation [34], fluid mechanics [47], and geophysical analysis [9]. The approach goes by many
names in the literature, including Markov state models [41], time-lagged independent com-
ponent analysis [42], Ulam’s method [51], dynamical mode decomposition [40], and extended
dynamical mode decomposition [54]. The methods are all closely related, so an error analysis
for any one of the methods can shed useful light on the others. Here, for concreteness, we
focus on a dynamical spectral estimation method that is well established in chemistry called
“the variational approach to conformational dynamics” (VAC) [28, 5, 27, 13].

VAC can be applied to any Markov process Xt that is ergodic and reversible with respect
to a distribution \mu . Starting from a data set of simulated trajectories, VAC is applied in
two steps. First, the data set is used to estimate expectations Cij (\tau ) = E\mu [\phi i (X0)\phi j (X\tau )]
involving a set of basis functions (\phi i)1\leq i\leq n. Then, the spectral decomposition of the matrix

C (0) - 1C (\tau ) is used to estimate eigenvalues and eigenfunctions of the transition operator of
Xt.

Our mathematical analysis establishes bounds on VAC’s approximation error and estima-
tion error. Approximation error is the error in eigenvalue and eigenfunction estimates if the
expectations Cij (\tau ) = E\mu [\phi i (X0)\phi j (X\tau )] are computed perfectly. Estimation error is the
additional error incurred in VAC estimates because matrices C (0) and C (\tau ) are computed
imperfectly using a finite data set.

We are not the first authors to mathematically examine VAC’s error. Djurdjevac and
coauthors [7] bounded the approximation error of VAC eigenvalues. We extend their work
by bounding the approximation error for VAC eigenfunctions, which are the chief objects of
interest in most applications of dynamical spectral estimation. Additionally, we provide the
first analysis of estimation error both for VAC eigenvalues and for eigenfunctions.

Our analysis of VAC also requires proving original error bounds. Standard bounds for
the approximation of eigenspaces (e.g., [38, p. 103] or [18, p. 990]) depend on the inverse
gap between eigenvalues. However, the gap between any two nontrivial eigenvalues of the
transition operator vanishes exponentially fast with the lag time parameter \tau . Therefore, the
standard bounds increase exponentially as \tau \rightarrow \infty . In contrast to this asymptotic scaling,
we contribute a sharp new perturbation bound that depends only on the inverse relative

gap between eigenvalues. This new bound reaches its minimal value in the large \tau limit,
demonstrating the benefit of long lag times for reducing approximation error. In contrast, our
asymptotic expressions for the estimation error do depend on the inverse spectral gap and
grow in the large \tau limit. Therefore, it is best to select an intermediate lag time.

While there is no single ideal lag time dictated by our analysis, we offer new tools for tuning
VAC to reduce the estimation error. One such tool, the VAC condition number, identifies the
subspaces of VAC eigenfunctions most sensitive to estimation error. A second diagnostic, the
mean squared estimation error, identifies the typical size of the estimation error at different
lag times. We provide data-driven formulas for calculating these quantities, enabling VAC
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users to identify and avoid the most problematic subspaces and lag times. Our experiments
confirm that using these diagnostic tools leads to improved accuracy for VAC estimates.

The paper is organized as follows. Background material is given in section 2, theoretical
results are in section 3, numerical experiments are in section 4, mathematical derivations are
in section 5, and the conclusions follow in section 6.

2. Background. This section presents background material explaining the VAC algorithm
and the dynamical quantities VAC approximates.

2.1. VAC. We begin by introducing the steps of VAC when the algorithm is applied to
trajectory data from a Markov process Xt with an ergodic, reversible distribution \mu . The
algorithm starts by estimating expectations involving a set of basis functions (\phi i)1\leq i\leq n. Sub-
sequently, VAC solves an eigenvalue problem involving matrices of expectations.

Algorithm 2.1 VAC algorithm at lag time \tau .

1. Form matrix Ĉ (0) with entries Ĉij (0) \approx Cij (0) = E\mu [\phi i (X0)\phi j (X0)].
2. Form matrix Ĉ (\tau ) with entries Ĉij (\tau ) \approx Cij (\tau ) = E\mu [\phi i (X0)\phi j (X\tau )].

3. Solve eigenvalue problem \̂lambda \tau 
i v̂

i (\tau ) = Ĉ (0) - 1 Ĉ (\tau ) v̂i (\tau ).
4. Return VAC eigenvalues \̂lambda \tau 

i and VAC eigenfunctions \gamma \tau i =
\sum 

j v̂
i
j (\tau )\phi j .

In Algorithm 2.1, we are purposefully vague about the exact method for obtaining trajec-
tory data to estimate

(2.1) Ĉij (\tau ) \approx Cij (\tau ) = E\mu [\phi i (X0)\phi j (X\tau )] .

One common approach involves simulating long trajectories of Xt and removing the start of
each trajectory to limit equilibration bias [43]. A second common approach (“importance sam-
pling” [19]) involves simulating short trajectories and addressing bias through an appropriate
reweighting procedure [31, 55]. Since there are no restrictions on how the data set is gener-
ated, enhanced sampling techniques can be used to generate the trajectory initial conditions
or even the trajectories themselves [3, 32].

In addition to collecting a data set, another key design feature affecting VAC is the choice
of basis functions. In the mid-1990s, early versions of VAC used the coordinate axes as
basis functions [48, 11], a choice that remains common in molecular dynamics simulations
[26, 42, 33]. Independently, in the late 1990s and early 2000s, researchers began constructing
spectral estimates using “Markov state models” [41, 45, 46], a procedure mathematically
equivalent to performing VAC using a basis of indicator functions on a partition of state
space. This idea of using a basis of indicator functions can be traced back to a publication
by Stanislaw Ulam in 1960 [51, pp. 74–75] and leads to simplifications in the eigenvalue
problem in Algorithm 2.1. In the 2010s, it was observed that these schemes shared a common
mathematical framework that could be extended to arbitrary basis sets [28]. Subsequent work
led to the development of new families of basis functions [29, 53, 2, 30].

The name “variational approach to conformational dynamics” is inspired by the min-max
principle for self-adjoint operators [28, 36]. This variational principle demonstrates that the
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top eigenfunctions \eta 1, . . . , \eta k of the transition operator maximize the value of the autocorre-
lation function

(2.2) \rho \eta (\tau ) = corr\mu [\eta (X0) , \eta (X\tau )]

at any lag time \tau \geq 0. Thus, when \eta is a linear combination of the top k eigenfunctions and
u is uncorrelated with the top k eigenfunctions, the autocorrelation functions are related by

(2.3) \rho \eta (\tau ) \geq \rho u (\tau ) , \tau \geq 0.

Consistent with this variational principle, VAC constructs linear combinations of basis func-
tions that maximize autocorrelations. A recent approach due to [21] and [4] extends the
linear fitting procedure in VAC by using artificial neural networks to maximize autocorrela-
tions. However, in the present analysis we focus on the linear VAC algorithm as described in
Algorithm 2.1, and we leave analysis of the nonlinear fitting procedure to future work.

To help clarify the relationship between VAC and other algorithms, we observe that the
computational steps in Algorithm 2.1 can be used for many purposes. For example, AMUSE
[50, 25] uses the same computational procedure as Algorithm 2.1, but the goal is to solve the
blind-source separation problem in signal processing. Likewise, dynamic mode decomposition
[37] and extended dynamic mode decomposition [54] use the same computational procedure
as Algorithm 2.1, but the goal is to analyze nonreversible processes, particularly deterministic
fluid flows. While the underlying computations are similar in all these cases, VAC refers
specifically to the spectral estimation of time-reversible processes. To learn more about the
connections between VAC and other related algorithms, we refer the reader to the helpful
review paper by Klus and coauthors [16].

2.2. Spectral theory. In this subsection, we take a closer look at the transition operator
of the process Xt and its eigenfunctions. We assume Xt is either a continuous-time Feller
process [14] or a discrete-time process restricted to even times t = 0, 2, 4, . . . . We assume Xt is
ergodic and time-reversible with respect to a distribution \mu . We use \langle \cdot , \cdot \rangle to denote the inner

product on the Hilbert space L2 (\mu ), and we set \| \cdot \| = \langle \cdot , \cdot \rangle 1/2. Lastly, we use P\scrU to denote
the orthogonal projection [35, p. 187] onto the closed linear subspace \scrU and Pf to denote the
orthogonal projection onto the one-dimensional subspace spanned by the function f .

The transition operator [14], also called the Koopman operator, is defined as the condi-
tional expectation operator satisfying

(2.4) Tt [f ] (x) = E [f (Xt)| X0 = x] .

There are three main properties of the transition operator that determine information about
its eigenfunctions.
1. The transition operator Tt is self-adjoint in L2 (\mu ). The self-adjointness follows from the

time-reversibility condition

(2.5) \mu (dx) pt (x, dy) = \mu (dy) pt (y, dx) ,

where pt (x, dy) denotes the transition probabilities for the process Xt. By integrating over
(2.5), we verify the self-adjointness property

(2.6) \langle f, Ttg\rangle = \langle Ttf, g\rangle , f, g \in L2 (\mu ) .
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2. The transition operator satisfies the semigroup property

(2.7) Tt+s = TtTs.

For discrete-time processes, the semigroup property guarantees a decomposition

(2.8) Tt = (T1)
t , t = 0, 1, 2, . . . .

For continuous-time Feller processes, the decomposition can be extended even further,
leading to the formula

(2.9) Tt = etA, t \geq 0,

which relates the semigroup Tt to its infinitesimal generator A [14].
3. The transition operator Tt is nonnegative, that is,

(2.10) \langle f, Ttf\rangle =
\bigl\langle 
Tt/2f, Tt/2f

\bigr\rangle 
\geq 0, f \in L2 (\mu ) ,

for all t \geq 0 if Xt is a continuous-time process and for t = 0, 2, 4, . . . if Xt is a discrete-time
process.
Using the spectral theorem for self-adjoint operators [35], we obtain a decomposition of

either A or T2. Then, we extend this decomposition to the transition operator at all lag times
t \geq 0 or t = 0, 2, 4, . . . . The spectral decomposition takes the form

(2.11) Tt =

\int \infty 

0
e - \sigma tΠ(d\sigma ) ,

where Π (d\sigma ) is a projection-valued measure.
The spectral decomposition completely determines the time correlations of the process

Xt. If the spectrum is discrete, then a finite set of orthonormal eigenfunctions is responsible
for all the slowest decorrelations of the process. However, if there is an essential spectrum
containing \sigma = 0, then an infinite set of orthonormal functions decorrelates arbitrarily slowly
[35, p. 236].

To avoid the possibility of having an essential spectrum containing \sigma = 0, it is sufficient
to assume that Tt is compact. Under compactness, the spectral decomposition takes the form

(2.12) Tt =
\infty \sum 

i=1

e - \sigma itP\eta i ,

where e - \sigma 1t > e - \sigma 2t \geq e - \sigma 3t \geq \cdot \cdot \cdot are eigenvalues and \eta 1, \eta 2, \eta 3, . . . are the associated eigen-
functions. Since the process is ergodic, e - \sigma 1t = 1 is a simple eigenvalue of Tt corresponding to
the eigenfunction \eta 1 = 1. Figure 1 shows additional examples of eigenfunctions for a compact
transition operator Tt.

While the compactness assumption is enough to facilitate a rigorous analysis of VAC,
the compactness assumption can be overly restrictive. In the Monte Carlo literature, there
are numerous examples of transition operators that are not compact, such as the transition
operator for the Metropolis–Hastings sampler [23, 1]. Therefore, we prefer to use the quasi-
compactness assumption, a weaker assumption satisfied by a broader class of processes.
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VAC approximates eigenspaces and other invariant subspaces

(2.15) span
j\leq i\leq k

\gamma \tau i \approx span
j\leq i\leq k

\eta i

whenever there is a gap between \{ \sigma j , . . . , \sigma k\} and all other \sigma i values.
To measure the error in VAC’s invariant subspaces, we introduce two distances: the gap

distance d2 (\cdot , \cdot ) and the projection distance dF (\cdot , \cdot ) [8].
Definition 2.4. Consider closed subspaces \scrU and \scrW , and let \scrW \bot indicate the orthogonal

complement of \scrW . Then, we define the gap distance and projection distance as follows:

d2 (\scrU ,\scrW ) = \| P\scrW ⊥P\scrU \| 2 , dF (\scrU ,\scrW ) = \| P\scrW ⊥P\scrU \| F .(2.16)

Here, \| \cdot \| 2 denotes the operator norm, and \| \cdot \| F denotes the Hilbert–Schmidt norm, also known

as the Frobenius norm.

The gap distance and projection distance are very flexible, and definitions (2.16) can be
applied even if dim (\scrU ) < dim (\scrW ) \leq \infty . In this case, we observe that d2 (\scrU ,\scrW ) and dF (\scrU ,\scrW )
are not technically distances. Rather, d2 (\scrU ,\scrW ) and dF (\scrU ,\scrW ) are properly interpreted as
distances between \scrU and the nearest dim (\scrU )-dimensional subspace of \scrW .

We end this section by introducing a useful property of the projection distance, which we
apply repeatedly in the analysis.

Lemma 2.5. Consider \scrU = span (\scrU 1,\scrU 2), where \scrU 1 and \scrU 2 are orthogonal subspaces, and

\scrW = span (\scrW 1,\scrW 2), where \scrW 1 and \scrW 2 are orthogonal subspaces. Then,

(2.17) d2F (\scrU 2,\scrW 2) \leq d2F (\scrU ,\scrW ) + d2F (\scrU 1,\scrW 1) .

Proof. Calculate

d2F (\scrU 2,\scrW 2) = \| P\scrU 2
P\scrW ⊥\| 2F + \| P\scrU 2

P\scrW 1
\| 2F(2.18)

\leq \| P\scrU P\scrW ⊥\| 2F +
\bigm\| 
\bigm\| 
\bigm\| P\scrU ⊥

1
P\scrW 1

\bigm\| 
\bigm\| 
\bigm\| 

2

F
(2.19)

= d2F (\scrU ,\scrW ) + d2F (\scrU 1,\scrW 1) .(2.20)

3. Theoretical results. To describe the approach taken in the theoretical analysis, we
introduce an idealized VAC algorithm where expectations Cij (\tau ) = E\mu [\phi i (X0)\phi j (X\tau )] and
Cij (0) = E\mu [\phi i (X0)\phi j (X0)] are computed perfectly. Notationally, we distinguish between
VAC and idealized VAC by using the ˆ symbol to indicate the quantities calculated using data.
For VAC, we write Ĉij (\tau ), v̂

i (\tau ), \̂lambda \tau 
i , and \gamma \tau i . For idealized VAC, we write Cij (\tau ), v

i (\tau ), \lambda \tau 
i ,

and \gamma \tau i .
In the theoretical analysis, we use idealized VAC to isolate two different sources of error.

We decompose the subspace error using

(3.1) dF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

\eta i

\Biggr) 

\underbrace{}  \underbrace{}  

total error

\leq dF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

\eta i

\Biggr) 

\underbrace{}  \underbrace{}  

approximation error

+ dF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

\gamma i

\Biggr) 

\underbrace{}  \underbrace{}  

estimation error

.
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Analogously, we decompose the eigenvalue error using

(3.2)
\bigm| 
\bigm| 
\bigm| \̂lambda \tau 

i  - e - \sigma i\tau 
\bigm| 
\bigm| 
\bigm| 

\underbrace{}  \underbrace{}  

total error

\leq 
\bigm| 
\bigm| \lambda \tau 

i  - e - \sigma i\tau 
\bigm| 
\bigm| 

\underbrace{}  \underbrace{}  

approximation error

+
\bigm| 
\bigm| 
\bigm| \̂lambda \tau 

i  - \lambda \tau 
i

\bigm| 
\bigm| 
\bigm| 

\underbrace{}  \underbrace{}  

estimation error

.

Approximation error is the difference between idealized VAC estimates and the true eigenval-
ues and eigenspaces. Estimation error is the difference between VAC estimates and idealized
VAC estimates. We first present approximation error bounds in subsection 3.1, and then we
present estimation error bounds in subsection 3.2.

Remark 3.1. To illustrate the implications of our error bounds, we use numerical exper-
iments. Thus, Figure 2 and Figure 3 demonstrate the error of VAC when applied to the
Ornstein–Uhlenbeck (OU) process dX =  - X dt+

\surd 
2 dW using a basis of indicator functions.

Details on how the figures were generated appear in the accompanying supplemental material
file SMM133598.pdf [local/web 301KB].

3.1. Approximation error. In this subsection, we first bound the approximation error by
using traditional Rayleigh–Ritz approximation bounds. However, we find that the Rayleigh–
Ritz bounds do not provide enough information to show how approximation error depends on
the lag time parameter \tau . Therefore, we derive improved bounds by using original methods.
The improved bounds are asymptotically sharp at long lag times, revealing that long lag times
cause the approximation error to stabilize.

3.1.1. Existing approximation bounds are inadequate. The idealized VAC algorithm is
equivalent to the Rayleigh–Ritz method in spectral estimation. In the Rayleigh–Ritz method
[44], the eigenvalues and eigenspaces of a target operator A are estimated by introducing
a subspace of functions \scrU and then calculating the eigenvalues and eigenspaces of P\scrU A| \scrU ,
where A| \scrU denotes the restriction of A to the subspace \scrU . This is also exactly what is
done in idealized VAC. The target operator is the transition operator T\tau , and the subspace
of basis functions is Φ = span1\leq i\leq n \phi i. Moreover, the idealized VAC eigenfunctions \gamma \tau i are
eigenfunctions of PΦ T\tau | Φ with eigenvalues \lambda \tau 

i .
The equivalence between the Rayleigh–Ritz method and idealized VAC is known in the

VAC literature [39, 7]. However, the implications for VAC’s approximation error have not
yet been fully explored. Djurdjevac and coauthors [7] applied Rayleigh–Ritz error bounds
to analyze idealized VAC eigenvalues. The following theorem goes a step further, by also
applying Rayleigh–Ritz error bounds to analyze idealized VAC eigenspaces.

Theorem 3.2 (approximation bounds). Fix the lag time \tau > 0 and the index 1 \leq k \leq r,
but allow the basis set Φ to vary. In the limit as dF

\bigl( 
span1\leq i\leq k \eta i,Φ

\bigr) 
\rightarrow 0, the idealized VAC

estimates converge as follows:

1. The idealized VAC eigenvalues 1, 2, . . . , k all converge as

(3.3) \lambda \tau 
i \rightarrow e - \sigma i\tau , 1 \leq i \leq k.

2. When there is a gap between \{ \sigma j , . . . , \sigma k\} and all other \sigma i values, the subspace spanj\leq i\leq k \gamma 
\tau 
i

of idealized VAC eigenfunctions converges as

(3.4) span
j\leq i\leq k

\gamma \tau i \rightarrow span
j\leq i\leq k

\eta i.
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Additionally, error bounds are given as follows:

1. The kth idealized VAC eigenvalue is bounded by

(3.5) 1 - d22

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) 

\leq \lambda \tau 
k

e - \sigma k\tau 
\leq 1.

2. The top k idealized VAC eigenfunctions are bounded by

(3.6) 1 \leq 
d2F

\Biggl( 

span
1\leq i\leq k

\gamma \tau i , span
1\leq i\leq k

\eta i

\Biggr) 

d2F

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) \leq 1 +
\| PΦ⊥T\tau PΦ\| 22

\bigm| 
\bigm| e - \sigma k\tau  - \lambda \tau 

k+1

\bigm| 
\bigm| 2
.

Proof. See [17, 18] for the original proofs, or see the derivations in the accompanying
supplemental material file SMM133598.pdf [local/web 301KB].

The main takeaway from Theorem 3.2 is that the approximation error converges to zero
in the limit as

(3.7) dF

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) 

\rightarrow 0.

Condition (3.7) implies that the basis set Φ must become very rich, so that eigenfunctions \eta i
can be closely approximated using linear combinations of basis functions.

The Rayleigh–Ritz error bound (3.6) clearly indicates that the eigenspace approximation
error must decay with an increasingly rich basis. However, the bound is not sufficiently
detailed to show how the approximation error depends on the lag time \tau . As seen in Figure 2,
the Rayleigh–Ritz bound (3.6) asymptotes to infinity as the lag time increases, implying that
approximation error can grow arbitrarily large. In contrast to this upper bound, however,
experiments reveal that the approximation error decreases and then stabilizes as the lag time
tends to infinity. In the next section, we will derive an improved bound that is asymptotically
sharp, describing the exact behavior of the approximation error as \tau \rightarrow \infty .

3.1.2. New approximation bounds. To analyze the dependence on lag time, we develop
a mathematical approach different from the methods applied to the Rayleigh–Ritz method
in the past. We start by identifying a key stability property of idealized VAC that has not
appeared in the previous literature. As \tau \rightarrow \infty , idealized VAC eigenspaces converge to a
well-defined limit, implying that the approximation error must stabilize at long lag times.

To rigorously study the convergence of idealized VAC estimates, our first step is to in-
troduce the orthogonalized projection functions q1, q2, . . . . These are the natural functions
to appear in the \tau \rightarrow \infty limit. They are constructed from the projected eigenfunctions
PΦ\eta 1, PΦ\eta 2, . . . , but they are adjusted to meet the orthogonality constraints on idealized VAC
eigenfunctions.

Definition 3.3. Set p = min \{ n, r\} , where n is the number of basis functions (\phi i)1\leq i\leq n

and r is the number of eigenfunctions (\eta i)1\leq i\leq r identified in Assumption 2.1. Assume that
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Proof. See subsection 5.2, subsection 5.3, and subsection 5.4.

The main message of Theorem 3.4 is that idealized VAC eigenspaces converge exponen-
tially fast as \tau \rightarrow \infty . Because of this convergence, the approximation error must stabilize. As
the last step of our approximation error analysis, we use the stabilization at long lag times to
provide a new, asymptotically sharp bound on VAC’s approximation error.

Theorem 3.5. When \lambda \tau 
k > e - \sigma k+1\tau , the top k idealized VAC eigenfunctions are bounded by

(3.15) 1 \leq 
d2F

\Biggl( 

span
1\leq i\leq k

\gamma \tau i , span
1\leq i\leq k

\eta i

\Biggr) 

d2F

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) \leq 1 +
1

4

\bigm| 
\bigm| 
\bigm| 
\bigm| 

e - \sigma k+1\tau 

\lambda \tau 
k  - e - \sigma k+1\tau 

\bigm| 
\bigm| 
\bigm| 
\bigm| 

2

.

Proof. See subsection 5.3.

Interpreting the results of this subsection, we can identify concrete strategies for how best
to reduce approximation error. The approximation error can be divided into two parts:

(3.16) dF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

\eta i

\Biggr) 

\underbrace{}  \underbrace{}  

approximation error

\leq dF

\Biggl( 

span
j\leq i\leq k

qi, span
j\leq i\leq k

\eta i

\Biggr) 

\underbrace{}  \underbrace{}  

lag-time-independent error

+ dF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

qi

\Biggr) 

\underbrace{}  \underbrace{}  

lag-time-dependent error

.

In this decomposition, we separate the lag-time-independent error and the lag-time-dependent
error. In applications of VAC, there are separate strategies for reducing these two error sources.

To reduce the lag-time-independent error, the best strategy is to enrich the basis set
as much as possible. If the basis set is rich enough to approximate the top eigenfunctions
\eta 1, \eta 2, . . . , \eta k with high accuracy, then the lag-time-independent error must be low. Assuming
there is a gap between \{ \sigma j , . . . , \sigma k\} and all other \sigma i values, Lemma 2.5 guarantees

(3.17) d2F

\Biggl( 

span
j\leq i\leq k

qi, span
j\leq i\leq k

\eta i

\Biggr) 

\underbrace{}  \underbrace{}  

squared lag-time-independent error

\leq d2F

\Biggl( 

span
1\leq i\leq j - 1

\eta i,Φ

\Biggr) 

+ d2F

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) 

.

As the basis set becomes increasingly rich, the right-hand side of the inequality converges to
zero, implying that the lag-time-independent error must vanish.

To reduce the lag-time-dependent error, the best strategy is simply to increase the lag
time. As \tau \rightarrow \infty , Theorem 3.4 guarantees that the lag-time-dependent error must decay
exponentially quickly.

3.2. Estimation error. In this subsection, we present formulas for the estimation error
and explain how to calculate the mean squared estimation error using data.

3.2.1. Formulas for the estimation error. In applications of VAC, it is not typically
possible to evaluate expectations Cij (\tau ) = E\mu [\phi i (X0)\phi j (X\tau )] exactly. Instead, trajectory
data is used to provide estimates Ĉij (\tau ) \approx Cij (\tau ). In the asymptotic limit as Ĉ (\tau ) \rightarrow C (\tau )
and Ĉ (0) \rightarrow C (0), the estimation error is governed by the following asymptotic formulas.
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Theorem 3.6 (estimation error). Fix the basis set Φ and the lag time \tau > 0, but allow

matrices Ĉ (0) and Ĉ (\tau ) to vary. Assume idealized VAC eigenfunctions are normalized so

that \langle \gamma \tau i , \gamma \tau j \rangle = \delta ij, and recall that vi (\tau ) is the vector with \gamma \tau i =
\sum n

j=1 v
i
j (\tau )\phi j. Set

(3.18) L̂ij (\tau ) = vi (\tau )T
\Bigl[ 

Ĉ (\tau ) - \lambda \tau 
j Ĉ (0)

\Bigr] 

vj (\tau ) , 1 \leq i, j \leq n.

Then, VAC estimates have the following behavior as Ĉ (\tau ) \rightarrow C (\tau ) and Ĉ (0) \rightarrow C (0):
1. When there is a gap between \lambda \tau 

k and all other \lambda \tau 
i values, the kth VAC eigenvalue satisfies

(3.19) \̂lambda \tau 
k  - \lambda \tau 

k = L̂kk (\tau ) +\scrO 
\biggl( \bigm\| 
\bigm\| 
\bigm\| Ĉ (\tau ) - C (\tau )

\bigm\| 
\bigm\| 
\bigm\| 

2

F
+

\bigm\| 
\bigm\| 
\bigm\| Ĉ (0) - C (0)

\bigm\| 
\bigm\| 
\bigm\| 

2

F

\biggr) 

.

2. When there is a gap between \{ \lambda \tau 
j , . . . , \lambda 

\tau 
k\} and all other \lambda \tau 

i values, the subspace spanj\leq i\leq k \gamma 
\tau 
i

of VAC eigenfunctions satisfies

dF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

\gamma \tau i

\Biggr) 

=

\left( 

 
 
 

\sum 

l<j
or l>k

k\sum 

m=j

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

L̂\tau 
lm

\lambda \tau 
l  - \lambda \tau 

m

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

2

\right) 

 
 
 

1/2

+\scrO 
\biggl( \bigm\| 
\bigm\| 
\bigm\| Ĉ (\tau ) - C (\tau )

\bigm\| 
\bigm\| 
\bigm\| 

2

F
+

\bigm\| 
\bigm\| 
\bigm\| Ĉ (0) - C (0)

\bigm\| 
\bigm\| 
\bigm\| 

2

F

\biggr) 

.

(3.20)

Moreover, the condition number for the subspace spanj\leq i\leq k \gamma 
\tau 
i is given by

(3.21) lim sup
Ĉ(\tau )\rightarrow C(\tau )

Ĉ(0)\rightarrow C(0)

dF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

\gamma \tau i

\Biggr) 

\bigm\| 
\bigm\| 
\bigm\| L̂ (\tau )

\bigm\| 
\bigm\| 
\bigm\| 
F

=
1

min
\Bigl\{ 

\lambda \tau 
j - 1  - \lambda \tau 

j , \lambda 
\tau 
k  - \lambda \tau 

k+1

\Bigr\} ,

with the conventions \lambda \tau 
0 = \infty and \lambda \tau 

n+1 =  - \infty .

Proof. See subsection 5.5.

A useful quantity identified in Theorem 3.6 is the condition number (3.21), which quantifies
VAC’s sensitivity to small errors in the matrices Ĉ (\tau ) and Ĉ (0). In experiments, we find the
condition number is a useful heuristic for judging whether a VAC estimation problem is easy or
hard—more specifically, whether a large or small data set is required for accurate estimation.
When the condition number for a subspace of VAC eigenfunctions is higher than 5 at all lag
times, the numerical experiments in section 4 show that VAC is prone to experiencing large
amounts of estimation error. Empirically, we can estimate the minimum condition number
across all lag times by using

(3.22) min
\tau \geq 0

1

min
\Bigl\{ 

\̂lambda \tau 
j - 1  - \̂lambda \tau 

j , \̂lambda 
\tau 
k  - \̂lambda \tau 

k+1

\Bigr\} .

We recommend that VAC users identify the minimum condition number for various subspaces
and focus on estimating the well-conditioned subspaces whenever possible. Additionally, we
recommend that authors report the minimum condition number along with their VAC results,
helping readers to assess whether the results could be affected by estimation error.
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3.2.2. Calculating the asymptotic mean squared estimation error using data. Here, we
explain how to calculate the mean squared estimation error using trajectory data. We assume
for simplicity that the data consists of a single long stationary trajectory of the process Xt.
However, the estimation procedure described here could be generalized to other types of
trajectory data.

Our approach for calculating the mean squared estimation error is based on the following
convergence in distribution result.

Theorem 3.7. Fix the basis set Φ and the lag time \tau > 0, but allow the data set used in

VAC to vary. Assume E\mu | \phi i (X0)| 4 < \infty for 1 \leq i \leq n. Assume that a stationary trajectory

X0, X∆, X2∆, . . . , XT - ∆ is simulated and estimates Ĉij (t) \approx Cij (t) are formed using

(3.23) Ĉij (t) =
∆

T  - t

T−t
∆

 - 1
\sum 

s=0

\phi i (Xs∆)\phi j (Xs∆+t) + \phi j (Xs∆)\phi i (Xs∆+t)

2
.

Then, VAC estimates have the following behavior as T \rightarrow \infty :

1. When there is a gap between \lambda \tau 
k and all other \lambda \tau 

i values, the kth VAC eigenvalue satisfies

(3.24)
\surd 
T
\Bigl( 

\̂lambda \tau 
k  - \lambda \tau 

k

\Bigr) 
\scrD \rightarrow Z\tau 

kk.

2. When there is a gap between \{ \lambda \tau 
j , . . . , \lambda 

\tau 
k\} and all other \lambda \tau 

i values, the subspace spanj\leq i\leq k \gamma 
\tau 
i

of VAC eigenfunctions satisfies

(3.25) TdF

\Biggl( 

span
j\leq i\leq k

\gamma \tau i , span
j\leq i\leq k

\gamma \tau i

\Biggr) 2
\scrD \rightarrow 

\sum 

l<j
or l>k

k\sum 

m=j

\bigm| 
\bigm| 
\bigm| 
\bigm| 

Z\tau 
lm

\lambda \tau 
l  - \lambda \tau 

m

\bigm| 
\bigm| 
\bigm| 
\bigm| 

2

.

Here, (Z\tau 
lm)1\leq l,m\leq n is a mean-zero multivariate Gaussian random variable with variance terms

(3.26) E | Z\tau 
lm| 2 = ∆

\infty \sum 

s= - \infty 
Cov\mu [F

\tau 
lm (X0, X\tau ) , F

\tau 
lm (Xs∆, Xs∆+\tau )] ,

where we have defined

(3.27) F \tau 
lm (x, y) =

\gamma \tau l (x) \gamma 
\tau 
m (y) + \gamma \tau l (y) \gamma 

\tau 
m (x)

2
 - \lambda \tau 

m

\gamma \tau l (x) \gamma 
\tau 
m (x) + \gamma \tau l (y) \gamma 

\tau 
m (y)

2
.

Proof. See subsection 5.6.

The great value of Theorem 3.7 is that it suggests a data-driven approach for calculat-
ing the mean squared estimation error in the asymptotic limit as T \rightarrow \infty . First, we can
use the data set to estimate the E | Z\tau 

lm| 2 terms by means of (3.26). Second, we can sub-
stitute the E | Z\tau 

lm| 2 estimates into (3.24) or (3.25) to compute the mean squared estimation
error for eigenvalues or invariant subspaces. In the accompanying supplemental material file
SMM133598.pdf [local/web 301KB], we provide a step-by-step description of this estimation
procedure.
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To approximate the behavior of idealized VAC at long lag times, we remove the smallest
terms in the expansion (5.2) and replace C (\tau ) by the sum of k rank-one matrices

(5.3)

k\sum 

l=1

e - \sigma l\tau 
\Bigl\langle 

\eta l, \vec{}\phi 
\Bigr\rangle \Bigl\langle 

\eta l, \vec{}\phi 
\Bigr\rangle T

.

When the rank-k approximation is used in place of C (\tau ), it results that the top k idealized
VAC eigenfunctions \gamma \tau 1 , . . . , \gamma 

\tau 
k span the subspace

(5.4) span
1\leq i\leq k

qi = PΦ span
1\leq i\leq k

\eta i.

Therefore, the truncation argument helps intuitively explain the convergence of idealized eigen-
functions \gamma \tau i to orthogonalized projections qi as \tau \rightarrow \infty . Our proofs in subsection 5.2, subsec-
tion 5.3, and subsection 5.4 essentially serve to justify the truncation argument and to provide
rigorous bounds on the convergence.

5.2. Convergence of eigenvalues. In this section, we verify the statement in Theorem 3.4
that the kth idealized eigenvalue converges

(3.12)
\lambda \tau 
k

e - \sigma k\tau 
\rightarrow \langle \eta k, qk\rangle 2

in the limit \tau \rightarrow \infty , provided there is a gap between \sigma k and all other \sigma i values. To prove this
result, our main tool is the min-max principle for self-adjoint operators [36].

Lemma 5.1. Consider a quasi-compact self-adjoint operator

(5.5) A =
\sum r

i=1
\lambda iP\eta i +R.

Here, \eta 1, \eta 2, . . . , \eta r are orthonormal eigenfunctions of A with eigenvalues \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda r,

and the spectrum of R lies in ( - \infty , \lambda r). Then, for each 1 \leq k \leq r,

(5.6) \lambda k (A) = max
dim(H)=k

min
\eta \in H

\langle \eta ,A\eta \rangle 
\langle \eta , \eta \rangle .

Before applying the min-max principle, we derive two estimates.

Proposition 5.2. For any \phi \in Φ \cap 
\bigl( 
span1\leq i\leq k - 1 qi

\bigr) \bot 
,

(5.7)
\langle \phi , T\tau \phi \rangle 
\langle \phi , \phi \rangle \leq e - \sigma k\tau \langle \eta k, qk\rangle 2 + e - \sigma k+1\tau .

Proof. Calculate

\langle \phi , T\tau \phi \rangle =
\Bigl\langle 

\phi ,
\Bigl( \sum r

i=k
e - \sigma i\tau P\eta i +R\tau 

\Bigr) 

\phi 
\Bigr\rangle 

(5.8)

= e - \sigma k\tau \langle \eta k, \phi \rangle 2 +
\Bigl\langle 

\phi ,
\Bigl( \sum r

i=k+1
e - \sigma i\tau P\eta i +R\tau 

\Bigr) 

\phi 
\Bigr\rangle 

(5.9)

\leq e - \sigma k\tau \langle \eta k, qk\rangle 2 \langle qk, \phi \rangle 2 + e - \sigma k+1\tau \langle \phi , \phi \rangle (5.10)

\leq e - \sigma k\tau \langle \eta k, qk\rangle 2 \langle \phi , \phi \rangle + e - \sigma k+1\tau \langle \phi , \phi \rangle .(5.11)
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Proposition 5.3. Set H1:k - 1 = span1\leq i\leq k - 1 \eta i. Then for any q \in Q1:k = span1\leq i\leq k qi,

(5.12)
\langle q, T\tau q\rangle 
\langle q, q\rangle \geq e - \sigma k\tau 

\Biggl( 

\langle \eta k, qk\rangle 2  - 
1

e(\sigma k - \sigma k−1)\tau 
\bigl( 
1 - d22 (H1:k - 1,Φ)

\bigr) 
 - \langle \eta k, qk\rangle 2

\Biggr) 

,

provided the denominator term is positive.

Proof. It suffices to consider the \| q\| = 1 case. Then, q can be decomposed as q = aq\prime +bqk,
where a2 + b2 = 1, q\prime \in Q1:k - 1, and \| q\prime \| = 1. It follows that

\langle q, T\tau q\rangle \geq 
\bigl\langle 
q,

\bigl( 
e - \sigma k−1\tau PH1:k−1

+ e - \sigma k\tau P\eta k

\bigr) 
q
\bigr\rangle 

(5.13)

= a2e - \sigma k−1\tau 
\bigm\| 
\bigm\| PH1:k−1

q\prime 
\bigm\| 
\bigm\| 2 + e - \sigma k\tau 

\bigl\langle 
\eta k, aq

\prime + bqk
\bigr\rangle 2

.(5.14)

Thus, \langle q, T\tau q\rangle is bounded from below by the lowest eigenvalue of

(5.15) M = e - \sigma k−1\tau 
\bigm\| 
\bigm\| PH1:k−1

q\prime 
\bigm\| 
\bigm\| 2

\biggl( 
1 0
0 0

\biggr) 

+ e - \sigma k\tau 

\biggl( 
\langle \eta k, q\prime \rangle 2 \langle \eta k, q\prime \rangle \langle \eta k, qk\rangle 

\langle \eta k, q\prime \rangle \langle \eta k, qk\rangle \langle \eta k, qk\rangle 2
\biggr) 

.

For any symmetric real-valued matrix M = ( a b
b c ) with a > c, the lowest eigenvalue is at least

as large as c - b2/ (a - c) [22]. We can check that

(5.16)
\bigm\| 
\bigm\| PH1:k−1

q\prime 
\bigm\| 
\bigm\| 2 = 1 - 

\bigm\| 
\bigm\| 
\bigm\| PH⊥

1:k−1
q\prime 
\bigm\| 
\bigm\| 
\bigm\| 

2
\geq 1 - d22 (H1:k - 1,Φ) .

Therefore, the lowest eigenvalue of the matrix M is at least as large as

(5.17) e - \sigma k\tau \langle \eta k, qk\rangle 2  - 
e - 2\sigma k\tau 

e - \sigma k−1\tau 
\bigl( 
1 - d22 (H1:k - 1,Φ)

\bigr) 
 - e - \sigma k\tau \langle \eta k, qk\rangle 2

.

Proof of (3.12). Using the min-max principle and Proposition 5.2, we obtain

(5.18) \lambda \tau 
k = max

dim(H)=k,H\subseteq Φ
min
\eta \in H

\langle \eta , T\tau \eta \rangle 
\langle \eta , \eta \rangle \leq e - \sigma k\tau \langle \eta k, qk\rangle 2 (1 + o (1))

as \tau \rightarrow \infty . Using the min-max principle and Proposition 5.3, we obtain

(5.19) \lambda \tau 
k = max

dim(H)=k,H\subseteq Φ
min
\eta \in H

\langle \eta , T\tau \eta \rangle 
\langle \eta , \eta \rangle \geq e - \sigma k\tau \langle \eta k, qk\rangle 2 (1 + o (1)) .

5.3. Convergence of invariant subspaces. In this section, we verify the statement in
Theorem 3.4 that the subspace spanj\leq i\leq k \gamma 

\tau 
i of idealized VAC eigenfunctions converges as

(3.13) span
j\leq i\leq k

\gamma \tau i \rightarrow span
j\leq i\leq k

qi

in the limit \tau \rightarrow \infty , provided there is a gap between \{ \sigma j , . . . , \sigma k\} and all other \sigma i values. To
prove this result, our main tool is a well-known lemma due to Davis and Kahan [6].
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Lemma 5.4. Suppose A and B are self-adjoint operators and \scrU and \scrW are closed sub-

spaces. If the spectrum of P\scrU A| \scrU lies in the interval [a, b] and the spectrum of P\scrW B| \scrW lies

in ( - \infty , a - \delta ] \cup [b+ \delta ,\infty ), then

(5.20) \delta \| P\scrW P\scrU \| F \leq \| P\scrW P\scrU AP\scrU  - P\scrW BP\scrW P\scrU \| F .

The Davis and Kahan lemma leads to the following error bound.

Proposition 5.5. When \lambda \tau 
k > e - \sigma k+1, the distance between subspaces Γ\tau 

1:k = span1\leq i\leq k \gamma 
\tau 
i

and Q1:k = span1\leq i\leq k qi is bounded by

(5.21) dF (Γ\tau 
1:k, Q1:k) \leq 

e - \sigma k+1\tau 

2
\bigl( 
\lambda \tau 
k  - e - \sigma k+1\tau 

\bigr) dF

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) 

.

Proof. The spectrum of PΦ\cap Q⊥
1:k

T\tau | Φ\cap Q⊥
1:k

lies in the interval [0, e - \sigma k+1\tau ], while the spec-

trum of PΓτ
1:k

T\tau | Γτ
1:k

lies in the interval [\lambda \tau 
k, 1]. Therefore, the spectral gap is at least \lambda \tau 

k  - 
e - \sigma k+1\tau . We calculate

\bigl( 
\lambda \tau 
k  - e - \sigma k+1\tau 

\bigr) 
\bigm\| 
\bigm\| 
\bigm\| PΦ\cap Q⊥

1:k
PΓτ

1:k

\bigm\| 
\bigm\| 
\bigm\| 
F
\leq 

\bigm\| 
\bigm\| 
\bigm\| PΦ\cap Q⊥

1:k
PΓτ

1:k
T\tau PΓτ

1:k
 - PΦ\cap Q⊥

1:k
T\tau PΦ\cap Q⊥

1:k
PΓτ

1:k

\bigm\| 
\bigm\| 
\bigm\| 
F

(5.22)

=
\bigm\| 
\bigm\| 
\bigm\| PΦ\cap Q⊥

1:k
T\tau PΓτ

1:k
 - PΦ\cap Q⊥

1:k
T\tau PΦ\cap Q⊥

1:k
PΓτ

1:k

\bigm\| 
\bigm\| 
\bigm\| 
F

(5.23)

=
\bigm\| 
\bigm\| 
\bigm\| PΦ\cap Q⊥

1:k
T\tau PQ1:k

PΓτ
1:k

\bigm\| 
\bigm\| 
\bigm\| 
F

(5.24)

\leq 
\bigm\| 
\bigm\| 
\bigm\| PΦ\cap Q⊥

1:k
T\tau PQ1:k

\bigm\| 
\bigm\| 
\bigm\| 
F
,(5.25)

where we have used the fact that Γ\tau 
1:k is an invariant subspace of PΦT\tau PΦ. Next, we introduce

the subspace H1:k = span1\leq i\leq k \eta i, which is orthogonal to Φ \cap Q\bot 
1:k. Then,

(5.26)
\bigm\| 
\bigm\| 
\bigm\| PH⊥

1:k
PQ1:k

\bigm\| 
\bigm\| 
\bigm\| 
F
=

\bigm\| 
\bigm\| 
\bigm\| PH1:k

PQ⊥
1:k

\bigm\| 
\bigm\| 
\bigm\| 
F
= \| PH1:k

PΦ⊥\| F = dF

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) 

.

To complete the theorem, it is enough to show that

(5.27)
\bigm\| 
\bigm\| 
\bigm\| PΦ\cap Q⊥

1:k
T\tau PQ1:k

\bigm\| 
\bigm\| 
\bigm\| 
F
\leq e - \sigma k+1\tau 

2

\bigm\| 
\bigm\| 
\bigm\| PH⊥

1:k
PQ1:k

\bigm\| 
\bigm\| 
\bigm\| 
F
.

To prove (5.27), we apply a useful property of the Frobenius norm. For bounded linear
operators A and B, if it is true that \| Au\| \leq \| Bu\| for all u, then it follows that \| A\| F \leq \| B\| F
[12]. Using this property, it is sufficient to prove that

(5.28)
\bigm\| 
\bigm\| 
\bigm\| PΦ\cap Q⊥

1:k
T\tau q

\bigm\| 
\bigm\| 
\bigm\| \leq e - \sigma k+1\tau 

2

\bigm\| 
\bigm\| 
\bigm\| PH⊥

1:k
q
\bigm\| 
\bigm\| 
\bigm\| , q \in Q1:k.

Moreover, it is sufficient to prove that

(5.29) | \langle \phi , Ttq\rangle | \leq 
e - \sigma k+1\tau 

2
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for all \phi \in Φ \cap Q\bot 
1:k and q \in Q1:k with \| \phi \| = \| PH⊥

1:k
q\| = 1. We observe that

(5.30)
\bigm\| 
\bigm\| 
\bigm\| PH⊥

1:k
(\phi \pm q)

\bigm\| 
\bigm\| 
\bigm\| 

2
=

\bigm\| 
\bigm\| 
\bigm\| \phi \pm PH⊥

1:k
q
\bigm\| 
\bigm\| 
\bigm\| 

2
= 2\pm 2

\Bigl\langle 

\phi , PH⊥
1:k
q
\Bigr\rangle 

= 2\pm 2 \langle \phi , q\rangle = 2.

Using the polarization identity and the fact that H\bot 
1:k is an invariant subspace of T\tau , we

conclude that

| \langle \phi , T\tau q\rangle | =
\bigm| 
\bigm| 
\bigm| 

\Bigl\langle 

PH⊥
1:k
\phi , T\tau PH⊥

1:k
q
\Bigr\rangle \bigm| 
\bigm| 
\bigm| (5.31)

=

\bigm| 
\bigm| 
\bigm| 
\bigm| 

1

4

\Bigl\langle 

PH⊥
1:k

(\phi + q) , T\tau PH⊥
1:k

(\phi + q)
\Bigr\rangle 

 - 1

4

\Bigl\langle 

PH⊥
1:k

(\phi  - q) , T\tau PH⊥
1:k

(\phi  - q)
\Bigr\rangle 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

(5.32)

\leq 1

2

\bigm\| 
\bigm\| 
\bigm\| PH⊥

1:k
T\tau PH⊥

1:k

\bigm\| 
\bigm\| 
\bigm\| 
2

(5.33)

\leq e - \sigma k+1\tau 

2
.(5.34)

Proof of Theorem 3.5. When \lambda \tau 
k > e - \sigma k+1 , Proposition 5.5 allows us to calculate

d2F

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) 

\leq d2F

\Biggl( 

span
1\leq i\leq k

\gamma \tau i , span
1\leq i\leq k

\eta i

\Biggr) 

(5.35)

= \| PΦ⊥PH1:k
\| 2F +

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 
P
(Γτ

1:k)
⊥PΦPH1:k

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

2

F

(5.36)

= \| PΦ⊥PH1:k
\| 2F +

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 
P
(Γτ

1:k)
⊥PQ1:k

PH1:k

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

2

F

(5.37)

\leq 
\Biggl( 

1 +
1

4

\bigm| 
\bigm| 
\bigm| 
\bigm| 

e - \sigma k+1\tau 

\lambda \tau 
k  - e - \sigma k+1\tau 

\bigm| 
\bigm| 
\bigm| 
\bigm| 

2
\Biggr) 

d2F

\Biggl( 

span
1\leq i\leq k

\eta i,Φ

\Biggr) 

.(5.38)

Proof of (3.13). When there is a gap between \{ \sigma j , . . . , \sigma k\} and all other \sigma i values, Propo-
sition 5.5 shows that span1\leq i\leq j \gamma 

\tau 
i \rightarrow span1\leq i\leq k qi and span1\leq i\leq k \gamma 

\tau 
i \rightarrow span1\leq i\leq k qi in the

limit \tau \rightarrow \infty . By applying Lemma 2.5, we verify spanj\leq i\leq k \gamma 
\tau 
i \rightarrow spanj\leq i\leq k qi.

5.4. Exponential speed of convergence. In this section, we verify the last statement in
Theorem 3.4 that the top k idealized VAC eigenfunctions satisfy

(3.14) dF

\Biggl( 

span
1\leq i\leq k

\gamma \tau i , span
1\leq i\leq k

qi

\Biggr) 

\lambda \tau 
k

\lambda \tau 
k+1

\rightarrow 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\langle \eta k+1, qk\rangle 
\langle \eta k+1, qk+1\rangle 

\bigm| 
\bigm| 
\bigm| 
\bigm| 

in the limit \tau \rightarrow \infty , provided there is a gap between \sigma k and all other \sigma i values and a gap
between \sigma k+1 and all other \sigma i values.

Proof of (3.14). If there are fewer orthogonalized projection functions (qi)1\leq i\leq p compared
to basis functions (\phi i)1\leq i\leq n, we select additional functions (qi)p+1\leq i\leq n so that (qi)1\leq i\leq n is a
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complete orthonormal basis for Φ. Then,

dF

\Biggl( 

span
1\leq i\leq k

\gamma \tau i , span
1\leq i\leq k

qi

\Biggr) 

=

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

\Bigl( \sum n

i=k+1
qi \langle qi, \cdot \rangle 

\Bigr) \biggl( 
\sum k

j=1
\gamma \tau j

\bigl\langle 
\gamma \tau j , \cdot 

\bigr\rangle 
\biggr) \bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 
F

(5.39)

=

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

\sum n

i=k+1

\sum k

j=1
qi

\bigl\langle 
qi, \gamma 

\tau 
j

\bigr\rangle 
\langle \gamma \tau i , \cdot \rangle 

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 
F

(5.40)

=

\biggl( 
\sum n

i=k+1

\sum k

j=1

\bigl\langle 
qi, \gamma 

\tau 
j

\bigr\rangle 2
\biggr) 1/2

.(5.41)

The terms \langle qi, \gamma \tau j \rangle are determined by the eigenvalue equation

(5.42) \lambda \tau 
j

\bigl\langle 
qi, \gamma 

\tau 
j

\bigr\rangle 
=

\bigl\langle 
qi, T\tau \gamma 

\tau 
j

\bigr\rangle 
=

\sum n

l=1
\langle qi, T\tau ql\rangle 

\bigl\langle 
ql, \gamma 

\tau 
j

\bigr\rangle 
.

As \tau \rightarrow \infty , Theorem 3.2 and the calculations in (5.31)–(5.33) imply that

(5.43) 1/\lambda \tau 
j = \scrO (e\sigma j\tau ) and | \langle qi, T\tau ql\rangle | \leq min

\bigl\{ 
e - \sigma i\tau , e - \sigma l\tau 

\bigr\} 
.

Setting \epsilon = min \{ \sigma k+2  - \sigma k, \sigma k+1  - \sigma k - 1\} and sending \tau \rightarrow \infty , we find that

dF

\Biggl( 

span
1\leq i\leq k

\gamma \tau i , span
1\leq i\leq k

qi

\Biggr) 

= | \langle qk+1, \gamma k\rangle | +\scrO 
\bigl( 
e - \epsilon \tau 

\bigr) 
(5.44)

=

\bigm| 
\bigm| 
\bigm| 
\bigm| 

1

\lambda \tau 
k

\sum n

l=1
\langle qk+1, T\tau ql\rangle \langle ql, \gamma \tau k \rangle 

\bigm| 
\bigm| 
\bigm| 
\bigm| 
+\scrO 

\bigl( 
e - \epsilon \tau 

\bigr) 
.(5.45)

Lastly, using the facts that \gamma \tau k \rightarrow qk and \lambda \tau 
k+1e

\sigma k+1\tau \rightarrow \langle \eta k+1, qk+1\rangle 2, we obtain

dF

\Biggl( 

span
1\leq i\leq k

\gamma \tau i , span
1\leq i\leq k

qi

\Biggr) 

\lambda \tau 
k

\lambda \tau 
k+1

=
\langle qk+1, T\tau qk\rangle 

\lambda \tau 
k+1

(1 + o (1))(5.46)

=
e - \sigma k+1\tau \langle \eta k+1, qk+1\rangle \langle \eta k+1, qk\rangle 

e - \sigma k+1\tau \langle \eta k+1, qk+1\rangle 2
(1 + o(1))(5.47)

=
\langle \eta k+1, qk\rangle 
\langle \eta k+1, qk+1\rangle 

(1 + o(1)) .(5.48)

5.5. Formulas for the estimation error. In this section, we verify the formulas for the
estimation error that are given in Theorem 3.6.

Proof of Theorem 3.6. First, define matrices

Λ (\tau ) = diag
\bigl\{ \bigl( 

\lambda \tau 
1 \cdot \cdot \cdot \lambda \tau 

n

\bigr) \bigr\} 
, V (\tau ) =

\bigl( 
v1 (\tau ) \cdot \cdot \cdot vn (\tau )

\bigr) 
.(5.49)

Due to the normalization \delta ij = \langle \gamma \tau i , \gamma \tau j \rangle , we must have

V (\tau )T C (0)V (\tau ) = I, V (\tau )T C (\tau )V (\tau ) = Λ (\tau ) .(5.50)
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Therefore, idealized VAC eigenfunctions \gamma \tau i and eigenvalues \lambda \tau 
i are the eigenfunctions and

eigenvalues of the multiplication operator

(5.51)
\sum n

i,j=1
\gamma \tau i Λij (\tau )

\bigl\langle 
\gamma \tau j , \cdot 

\bigr\rangle 
.

In contrast, VAC eigenfunctions \gamma \tau i and eigenvalues \̂lambda \tau 
i are eigenfunctions and eigenvalues of

(5.52)
\sum n

i,j=1
\gamma \tau i

\Bigl( 

V (\tau ) - 1 Ĉ (0) - 1 Ĉ (\tau )V (\tau )
\Bigr) 

ij

\bigl\langle 
\gamma \tau j , \cdot 

\bigr\rangle 
.

As Ĉ (0) \rightarrow C (0) and Ĉ (\tau ) \rightarrow C (\tau ), we can calculate

C (0) Ĉ (0) - 1 Ĉ (\tau )(5.53)

=
\Bigl[ 

I +
\Bigl[ 

Ĉ (0)C (0) - 1  - I
\Bigr] \Bigr]  - 1

Ĉ (\tau )(5.54)

= Ĉ (\tau ) - 
\Bigl[ 

Ĉ (0)C (0) - 1  - I
\Bigr] 

C (\tau ) +\scrO 
\biggl( \bigm\| 
\bigm\| 
\bigm\| Ĉ (0) - C (0)

\bigm\| 
\bigm\| 
\bigm\| 

2

F
+

\bigm\| 
\bigm\| 
\bigm\| Ĉ (\tau ) - C (\tau )

\bigm\| 
\bigm\| 
\bigm\| 

2

F

\biggr) 

(5.55)

= V (\tau ) - T
\Bigl[ 

Λ (\tau ) + L̂ (\tau )
\Bigr] 

V (\tau ) - 1 +\scrO 
\biggl( \bigm\| 
\bigm\| 
\bigm\| Ĉ (0) - C (0)

\bigm\| 
\bigm\| 
\bigm\| 

2

F
+

\bigm\| 
\bigm\| 
\bigm\| Ĉ (\tau ) - C (\tau )

\bigm\| 
\bigm\| 
\bigm\| 

2

F

\biggr) 

,(5.56)

where we have made repeated use of the identities (5.50). Multiplying on the left by V (\tau )T and
on the right by V (\tau ), we find that VAC eigenspaces are unitarily equivalent to the eigenspaces
of the matrix operator
(5.57)

V (\tau ) - 1 Ĉ (0) - 1 Ĉ (\tau )V (\tau ) = Λ (\tau ) + L̂ (\tau ) +\scrO 
\biggl( \bigm\| 
\bigm\| 
\bigm\| Ĉ (0) - C (0)

\bigm\| 
\bigm\| 
\bigm\| 

2

F
+

\bigm\| 
\bigm\| 
\bigm\| Ĉ (\tau ) - C (\tau )

\bigm\| 
\bigm\| 
\bigm\| 

2

F

\biggr) 

,

and the two operators share the same eigenvalues. Theorem 3.6 then follows by applying first-
order perturbation bounds [15] for eigenvalues and invariant subspaces of a diagonal matrix
Λ (\tau ) that is perturbed by a matrix L̂ (\tau ).

5.6. Distributional formulas for the estimation error. In this section, we verify the dis-
tributional formulas for the estimation error that are given in Theorem 3.7.

Proof of Theorem 3.7. We fix the lag time t \geq 0 and the indices 1 \leq i, j \leq n, but allow
the total trajectory length T to vary. Then, we write

Ĉij (t) =
∆

T  - t

T−t
∆

 - 1
\sum 

s=0

\phi ij (Xs∆) , \phi ij (x, y) =
\phi i (x)\phi j (y) + \phi i (y)\phi j (x)

2
.(5.58)

As T \rightarrow \infty , we will proceed to show that
\surd 
T (Ĉij(t)  - Cij(t)) converges to an asymptotic

normal distribution.
By assumption, Xt is started from the stationary distribution X0 \sim \mu , so the random

variables (\phi ij (Xs∆, Xs∆+\tau ))s=0,1,... are strictly stationary [24, pp. 230–231] with mean Cij (t).
Moreover, the conditional expectations E [\phi ij (Xs∆, Xs∆+\tau )| X0 = x] satisfy

(5.59) \| E [\phi ij (Xs∆, Xs∆+\tau )| X0 = x] - Cij (t)\| \leq Ce - \sigma 2s∆, s \geq 0,
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for a constant C < \infty that is independent of s. Condition (5.59) is an asymptotic negligibility
condition that guarantees the validity of the central limit theorem for \phi ij (Xs∆, Xs∆+\tau ). Using
the central limit theorem in [10, Chap. 5], we prove that

(5.60)
\surd 
T
\Bigl( 

Ĉij (t) - Cij (t)
\Bigr) 

\scrD \rightarrow \scrN 
\Biggl( 

0,∆
\infty \sum 

s= - \infty 
Cov\mu 

\bigl[ 
\phi \tau 
ij (X0, X\tau ) , \phi 

\tau 
ij (Xs∆, Xs∆+\tau )

\bigr] 

\Biggr) 

.

For simplicity, we have considered the asymptotic distribution of
\surd 
T (Ĉij(t)  - Cij(t)).

However, by the same approach we can prove the asymptotic normality of any linear combi-
nation of random variables

\surd 
T (Ĉij(t)  - Cij(t)) involving different values of i, j, and t. By

the Cramér–Wold theorem [14], therefore, the array

(5.61)
\Bigl[ \surd 

T
\Bigl( 

Ĉ (0) - C (0)
\Bigr) 

,
\surd 
T
\Bigl( 

Ĉ (\tau ) - C (\tau )
\Bigr) \Bigr] 

converges to a mean-zero multivariate normal distribution.
To complete the proof of Theorem 3.7, we then apply the “delta method” [52, p. 26] using

the formulas (3.19) and (3.20). Since the
\surd 
T\| Ĉ(0)  - C(0)\| 2F and

\surd 
T\| Ĉ(\tau )  - C(\tau )\| 2F terms

are \scrO p(
1\surd 
T
) as T \rightarrow \infty , these terms are asymptotically negligible. The matrix

(5.62) L̂ (\tau ) = V (\tau )T
\Bigl( 

Ĉ (\tau ) - Ĉ (0)
\Bigr) 

V (\tau ) - V (\tau )T
\Bigl( 

Ĉ (0) - C (0)
\Bigr) 

V (\tau ) Λ (\tau )

is a linear combination of matrices Ĉ (\tau )  - C (\tau ) and Ĉ (0)  - C (0), with each matrix entry
L̂ij (\tau ) satisfying

(5.63)
\surd 
T L̂ij (\tau )

\scrD \rightarrow \scrN 
\Biggl( 

0,∆

\infty \sum 

s= - \infty 
Cov\mu 

\bigl[ 
F \tau 
ij (X0, X\tau ) , F

\tau 
ij (Xs∆, Xs∆+\tau )

\bigr] 

\Biggr) 

.

Therefore, the formulas (3.19) and (3.20) guarantee the results in Theorem 3.7.

6. Conclusions. In this paper, we have identified and bounded the major error sources
of “the variational approach to conformational dynamics” (VAC) [28, 5, 27, 13]. VAC is
frequently applied in biomolecular simulation studies to estimate the largest eigenvalues
e - \sigma 1\tau \geq e - \sigma 2\tau \geq \cdot \cdot \cdot \geq e - \sigma k\tau for the Markov transition operator T\tau , along with the cor-
responding eigenfunctions \eta 1, \eta 2, . . . , \eta k.

We have proved that VAC accurately identifies subspaces of eigenfunctions spanj\leq i\leq k \eta i
when three conditions are satisfied:
1. The values \{ \sigma j , . . . , \sigma k\} are separated from all other \sigma i values by a spectral gap.
2. The library of basis functions (\phi i)1\leq i\leq n becomes very rich so that linear combinations of

basis functions can fully represent \eta 1, . . . , \eta k.
3. The data set becomes very large so that expectations Cij (0) = E\mu [\phi i (X0)\phi j (X0)] and

Cij (\tau ) = E\mu [\phi i (X0)\phi j (X\tau )] are evaluated with vanishing error.
VAC converges for any value of the lag time parameter \tau > 0, yet the choice of lag time

can dramatically alter the speed of convergence. Hence, our main contribution is to prove
error bounds that explicitly show how error depends on the lag time. These bounds provide
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a full theoretical justification for why limitations in the basis set contribute to the error at
short lag times and limitations in the data set contribute to the error at long lag times.

Our numerical analysis approach is flexible, and it could be extended to algorithms besides
VAC that estimate dynamical quantities of interest using trajectory data. A broadly useful
approach involves decomposing the total error into approximation error and estimation error.
Another useful approach involves identifying asymptotic formulas for the estimation error. In
future research, it is our goal to rigorously analyze the approximation and estimation error
for other powerful algorithms used in biochemical simulation (e.g., [49]).

Lastly, while the main purpose of our work is to deepen theoretical understanding, we
also provide diagnostic tools to assess VAC’s estimation error and tune VAC’s parameters
to reduce this error source. We present the VAC condition number as a tool for identifying
subspaces of VAC eigenfunctions that are prone to experiencing high estimation error. We
also present the mean squared estimation error as a tool for calculating the estimation error
at different lag times. Motivated by the present study, we have also developed an approach
for reducing the lag time sensitivity and increasing VAC’s robustness by integrating over a
window of lag times [20]. These tools have direct relevance to the researchers using VAC,
pointing the way toward a more streamlined lag time selection process and a more critical
assessment of VAC’s error for the future.
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[5] J. D. Chodera and F. Noé, Markov state models of biomolecular conformational dynamics, Current

Opinion Struct. Biol., 25 (2014), pp. 135–144.
[6] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal.,

7 (1970), pp. 1–46, https://doi.org/10.1137/0707001.
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[21] A. Mardt, L. Pasquali, H. Wu, and F. Noé, VAMPnets for deep learning of molecular kinetics,

Nature Commun., 9 (2018), 5.
[22] R. Mathias, Quadratic residual bounds for the Hermitian eigenvalue problem, SIAM J. Matrix Anal.

Appl., 19 (1998), pp. 541–550, https://doi.org/10.1137/S0895479896310536.
[23] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation

of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), pp. 1087–1092.
[24] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 2012.
[25] L. Molgedey and H. G. Schuster, Separation of a mixture of independent signals using time delayed

correlations, Phys. Rev. Lett., 72 (1994), 3634.
[26] Y. Naritomi and S. Fuchigami, Slow dynamics in protein fluctuations revealed by time-structure based

independent component analysis: The case of domain motions, J. Chem. Phys., 134 (2011), 065101.
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in atomic detail revealed by molecular dynamics simulations and Markov modelling, Nature Chem., 9
(2017), 1005.

[35] M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1: Functional Analysis, Academic
Press, New York, 1975.

[36] M. Reed and B. Simon, Methods of Modern Mathematical Physics. 4: Analysis of Operators, Academic
Press, New York, 1978.

[37] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral analysis of

nonlinear flows, J. Fluid Mech., 641 (2009), pp. 115–127.
[38] Y. Saad, Numerical Methods for Large Eigenvalue Problems: Revised Edition, Classics Appl. Math. 66,

SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9781611970739.
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